GLOBALLY-SYNCHRONIZED FRAMES FOR GUARANTEED QUALITY-OF-SERVICE IN ON-CHIP NETWORKS Jae W. Lee (MIT) Man Cheuk Ng (MIT) Krste Asanovic (UC Berkeley) June 23th 2008 ISCA-35, Beijing, China ## Resource sharing increases performance variation - Resource sharing - (+) reduces hardware cost - (-) increases performance variation - This performance variation becomes larger and larger as the number of sharers (cores) increases. ## Desired quality-of-service from shared resources Performance isolation (fairness) ## Desired quality-of-service from shared resources - Performance isolation (fairness) - Differentiated services (flexibility) ## Resources w/ centralized arbitration are well investigated - Resources with centralized arbitration - SDRAM controllers - L2 cache banks - They have a single entry point for all requests. - → QoS is relatively easier and well investigated. # QoS from on-chip networks is a challenge - Resources with distributed arbitration - multi-hop on-chip networks - They have distributed arbitration points. - → QoS is more difficult. - Off-chip solutions cannot be directly applied because of resource constraints. # We guarantee QoS for flows - Flow: a sequence of packets between a unique pair of end nodes (src and dest) - physical links shared by flows - multiple stages of arbitration for each packet - We provide guaranteed QoS to each flow with: - minimum bandwidth guarantees - bounded maximum delay # Locally fair ≠ globally fair #### With locally fair round-robin (RR) arbitration: - Throughput (Flow A) = (0.5) C - Throughput (Flow B) = $(0.5)^2$ C - Throughput (Flow C) = Throughput (Flow D) = $(0.5)^3$ C - → Throughput of a flow decreases exponentially as its distance to the destination (hotspot) increases. ## Motivational simulation □ In 8x8 mesh network with RR arbitration (hotspot at (8, 8)) w/ dimension-ordered routing w/ minimal-adaptive routing locally-fair round-robin scheduling → globally unfair bandwidth usage # Desired bandwidth allocation: an example #### □ Taken from simulation results with GSF: accepted throughput [flits/cycle/node] 0.04 0.02 0.02 0.06 0.04 0.02 0.06 0.04 0.02 0.06 0.04 0.02 0.06 0.04 0.002 0.004 0.004 0.002 0.004 Differentiated allocation # Globally Synchronized Frames (GSF) - provide guaranteed QoS with minimum bandwidth guarantees and maximum delay to each flow in multi-hop on-chip networks: - with high network utilization comparable to best-effort virtual-channel router - with minimal area/energy overhead by avoiding per-flow queues/structures in on-chip routers - → scalable to # of concurrent flows ## Outline of this talk - Motivation - Globally-Synchronized Frames: a step-by-step development of mechanism - Implementation of GSF router - Evaluation - Related work - Conclusion # GSF takes a frame-based approach shared physical link - Frame is a coarse quantization of time. - The network can transport a finite number of flits during this interval. - We constrain each flow source to inject a certain number of flits per frame. - shorter frames → coarser BW control but lower maximum delay - typically 1-100s Kflits / frame (over all flows) in 8x8 mesh network #### Admission control of flows Admission control: reject a new flow if it would make the network unable to transport all the injected flits within a frame interval ## Single frame does not service bursty traffic well - Both traffic sources have the same long-term rate: 2 flits / frame. - Allocating 2 flits / frame penalizes the bursty source. ## Overlapping multiple frames to help bursty traffic - Overlapping multiple frames to multiply injection slots - Sources can inject flits into future frames (w/ separate per-frame buffers) - Older frames have higher priorities for contended channels. - Drain time of head frame does not change. - Future frames can use unclaimed BW by older frames. - Maximum network delay < 3 * (frame interval)</p> - □ Best-effort traffic: always lowest priority (throughput ↑) ## Reclamation of frame buffers - Per-frame buffers (at each node) = virtual channels - At every frame window shift, frame buffers (or VCs) associated with the earliest frame in the previous epoch are reclaimed for the new futuremost frame. ## Early reclamation improves network throughput - □ Observation: Head frame usually drains much earlier than frame interval → low buffer utilization - Terminate head frame early if empty - Use a global barrier network to confirm no pending packet in router or source queue belongs to head frame. - Empty buffers are reclaimed much faster and overall throughput increases. (by >30% for hotspot traffic pattern) □ GSF in action: two-router network example (3 VCs) Jae W. Lee (24 / 33) # Carpool lane sharing - Buffers are expensive in on-chip environment. - Cannot transport a flit even if there is an empty slot in other frame buffers. - Carpool lane sharing: relaxing frame-VC mapping to improve buffer utilization - Reserve one frame buffer (VC0) for head frame only - → does not increase the drain time of head frame - The other buffers are now colorless and can be used by any frame. - □ Head-of-line (HoL) blocking prevented by not allowing two packets to occupy a VC simultaneously (OK for shallow buffers). ## Baseline virtual channel (VC) router Baseline router for 2D mesh networks - Best-effort router - Three-stage pipeline with look-ahead routing: VA/NRC-SA-ST - Credit-based flow control - VC, SW allocators: iSlip - uses round-robin arbiters (locally fair) - updates the priority of each arbiter only when that arbiter generates a winning grant #### **GSF** router # Simulation setup - Network simulator: Booksim - 0.5 M cycles with 50K-cycle warming up - Network configuration - 8x8 2D mesh, dimension-ordered routing, 1 flit/cycle link capacity - Four traffic patterns - one QoS traffic pattern: hotspot - three best-effort traffic patterns: uniform random, transpose, nearest neighbor - packet size is either 1 or 9 flits (with 50-50 chance) - Baseline VC router - 3-stage pipeline (VA/NRC-SA-ST), 2-cycle credit pipeline delay - 6 VCs/physical link, buffer depth is 5 flits/VC - GSF parameters - □ frame window size = 6 [frames], frame size = 1,000 [flits] - global barrier latency = 16 [cycles] (conservative) # Flexible guaranteed QoS provided - All flows receive more than their minimum guaranteed bandwidth (R_i/e^{MAX}) in accessing hotspot. - \square R_i : # of flit injection slots for Flow i - \blacksquare e^{MAX} : maximum epoch interval. - Example: 8x8 mesh network (a) fair allocation (b) differentiated allocation # Flexible guaranteed QoS provided - □ All flows receive more than their minimum guaranteed bandwidth (R_i/e^{MAX}) in accessing hotspot. - \square R_i : # of flit injection slots for Flow I - \blacksquare e^{MAX} : maximum epoch interval. - Example: 16x16 torus network with 4 hotspot nodes (c) differentiated allocation ## Small throughput degradation for best-effort traffic - Network behavior with non-QoS traffic - no latency increase in uncongested region - at most 12 % degradation of network saturation throughput → can be reduced with larger frame (at the cost of delay bound increase) #### Related work - QoS support in IP or multiprocessor networks - Fair Queueing [SIGCOMM '89], Virtual Clock [SIGCOMM '90] - Multi-rate channel switching [IEEE Comm '86] - Source throttling [HPCA '01] - Age-based arbitration [IEEE TPADS '92, SC '07] - Rotating Combined Queueing (RCQ) [ISCA '96] - → expensive, inflexible, and/or without guaranteed QoS - QoS on-chip networks - AEthereal (strict TDM; exp. channel setup) [IEEE Design & Test '05] - SonicsMX (per-thread queues at each node) [DATE '05] - MANGO clockless NoC (partitioning GS and BE VCs) [DATE '05] - Nostrum (routes fixed at design time) [DATE '04] ## Conclusion #### The GSF network is - guaranteed QoS-capable - with minimum bandwidth guarantees and maximum delay - flexible - fair and differentiated bandwidth allocation - no explicit channel setup required along the path - robust - <5 % throughput degradation on average (12 % in the worst) for four traffic patterns in 8x8 mesh network</p> - fairness vs overall throughput tradeoff with frame size - simple - no per-flow queues/structures in on-chip routers - \rightarrow scalable - relatively small modifications to a conventional VC router