
EProf: An Energy Profiler for the iPAQ

by

Kelly Koskelin

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2004

c© Kelly Koskelin, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .

Department of Electrical Engineering and Computer Science
February 4, 2004

Certified by. .
Krste Asanovic

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

EProf: An Energy Profiler for the iPAQ

by

Kelly Koskelin

Submitted to the Department of Electrical Engineering and Computer Science
on February 4, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

In this thesis, I designed and built EProf, a system that profiles the energy use
of a Compaq iPAQ. Energy profilers help determine what parts of code are most
energy-intensive so that programmers can concentrate on software hotspots. EProf
uses statistical sampling to measure an iPAQ’s energy use under a variety of working
conditions. The EProf infrastructure is a foundation for further work on portable,
online energy profiling.

Thesis Supervisor: Krste Asanovic
Title: Associate Professor

3

4

Acknowledgments

I would first like to thank my advisor, Krste Asanovic, for giving me the opportunity

to work on this project. His guidance and immense patience and understanding were

crucial for my success. I would also like to thank the members of the Assam group

for their support. Ken Barr was especially knowledgeable and accessible throughout

this process. Ken Steele was a great iPAQ hardware resource.

Many thanks to Yaoyao and Taka for their delicious meals and encouragement.

Lars and the Bat Boy helped more than they will ever know.

5

6

Contents

1 Introduction 13

1.1 System Overview . 14

1.2 Paper Overview . 14

2 Related Work 15

2.1 Statistical Sampling . 15

2.1.1 Time-driven Sampling . 15

2.1.2 Energy-driven Sampling . 16

2.2 Energy characteristics of embedded processors 16

3 Design and Implementation 19

3.1 Design Overview . 19

3.2 Implementation Overview . 20

3.2.1 Hardware . 20

3.2.2 Software . 23

4 Experimentation and Results 27

4.1 Testing Setup . 27

4.2 Varying the Sampling Rates . 28

4.3 Different Energy Patterns . 29

4.4 Time Varying . 31

5 Conclusion and future work 35

7

8

List of Figures

3-1 Energy allocation. The instruction sampling rate is jittered to avoid

synchronization with system events. 20

3-2 EProf Hardware System Overview. 21

3-3 EProf Software System Overview. Arrows indicate dependencies. . . . 23

4-1 Average instantaneous current samples changing with energy and in-

struction sampling rate. 29

4-2 Average instantaneous voltage samples changing with energy and in-

struction sampling rate. 30

4-3 Average instantaneous power samples changing with energy and in-

struction sampling rate. 31

4-4 Examples of different energy sample characteristics. 33

4-5 Energy samples changing over time. 34

9

10

List of Tables

3.1 EProf card registers. 22

3.2 Example energy profile. 26

4.1 Summary of energy characteristics of different programs. All energy is

expressed in joules (J). 32

11

12

Chapter 1

Introduction

Efforts to extend battery life have become more crucial as the use of portable elec-

tronic devices has become increasingly widespread. Much work has gone toward

improving the efficiency of hardware components and recently more software tech-

niques are being developed to help conserve energy. In the past when more empha-

sis was placed on performance, cycle profilers gave programmers an idea of where

the processor was spending its time [8]. Now that extra consideration is placed on

energy-efficiency, profilers are being developed to correlate energy use with functions

or instructions within a program. These energy profilers allow programmers to see

where most energy is consumed, enabling them to write more energy-efficient code.

This thesis describes EProf, a collection of hardware and software tools that are

used to profile the energy use of the Compaq iPAQ [1]. EProf uses statistical sam-

pling techniques to measure the iPAQ’s energy consumption, and correlates these

samples with the appropriate process running in the system. EProf is a platform to

further develop techniques for measuring energy outside of a laboratory environment.

With appropriate packaging, EProf can profile the iPAQ’s energy use without being

tethered to laboratory equipment because all the energy measurement hardware fits

on a PCMCIA Card. EProf can measure the energy consumed under typical working

conditions, even as factors such as battery level vary. It is also a flexible tool because

the only hardware modification necessary is the addition of a sense resistor to the

iPAQ’s battery pack.

13

1.1 System Overview

The use of statistical sampling techniques for energy profiling borrows from work done

on cycle profilers [8]. A cycle profiling system periodically interrupts the processor

in order to record the executing instruction. The system keeps track of how many

times each instruction is interrupted, thus building a statistical profile of where the

processor spends its time.

EProf periodically samples the program counter and process identifier just as is

done in a cycle profiler. Additionally, it records information to determine the amount

of energy used since the last interrupt. The amount of energy used is computed by

integrating power samples that are continuously taken in the background. The in-

stantaneous power samples are computed by sampling the current and voltage being

supplied to the iPAQ. A separate processing system reports the amount of energy

used by each process as well as supplementary data such as average per-process in-

stantaneous power and current.

1.2 Paper Overview

This thesis is structured as follows. Chapter 2 reviews related energy measurement

work. Chapter 3 addresses issues related to the design and implementation of the

EProf system. Chapter 4 presents experiments and testing. Chapter 5 concludes the

thesis and suggests directions for future work.

14

Chapter 2

Related Work

This chapter addresses two classes of relevant energy measurement techniques. There

are a few closely related statistical sampling systems for in-laboratory use. Also,

some non-statistical sampling based work supports the efficacy of EProf’s energy

measurement techniques.

2.1 Statistical Sampling

Basic cycle profilers give the user an idea of where the processor spends its time.

However, because all the components of a system, not just the processor, consume

energy this does not correlate well with overall energy use. Two types of statistical

sampling techniques have been developed for energy measurement; time-driven and

energy-driven.

2.1.1 Time-driven Sampling

PowerScope [9] is an example of a time-driven statistical sampling system. A labora-

tory multimeter periodically interrupts the system to signal that it is time to sample

the program counter, process identifier, and instantaneous current being drawn by

the system. This is enough information to determine the instantaneous power drain

because the system is powered by a lab supply. Because the battery is unplugged the

15

variation in supply voltage is minimal, thus PowerScope energy profiles do not take

into account the effects of battery charging and discharging. Also, since the system

relies on the multimeter and lab supply, it cannot be used outside of lab.

2.1.2 Energy-driven Sampling

Energy-driven sampling techniques determine when to take a sample based upon the

amount of energy consumed rather than the amount of time that has passed [6].

The profiler issues an interrupt when a given quanta of energy has been used. The

interrupted instruction is then recorded and time-stamped. One advantage of the

energy-driven approach is that when a lot of energy is being used, a series of inter-

rupts will be triggered in quick succession. This allows analysis tools to pinpoint the

expensive processes and catch energy peaks that might be missed in the time-driven

scheme. Also, when the system is in an idle state using little power, fewer samples

will be taken, saving storage space and reducing the amount by which the system

is disturbed. In F. Chang et al.’s energy-driven sampling paper, the authors claim

that their implementation of a PowerScope-like profiler tends to over-estimate kernel

idle power [6]. EProf samples power continuously so the associated power sampling

overhead is constant. Much like the energy-driven scheme, most consideration needs

to be placed upon disturbances caused by the software instruction sampler.

2.2 Energy characteristics of embedded processors

There are a number of approaches to energy measurement that do not involve statis-

tical sampling which offer results that are relevant to EProf’s techniques.

The JouleTrack [11] system illustrates that processor speed and voltage are the

two factors that most affect the amount of energy used by the system. EProf takes

voltage supply variation into account whereas the above in-lab systems ignore it.

Isci and Martonosi [7] are critical of time-based statistical sampling when applied

to complex processors with multiple power states. Similarly, F. Chang et al. [6]

report that energy-driven estimates are more accurate when the processor cycles

16

through a number of different power states. The iPAQ’s processor has only two power

states, but the system as a whole is much more complex. One must consider separate

components such as DRAM, screen, and wireless card; a wireless card alone has a

number of different power states. Future work should address these considerations,

but even so, most measurements by the energy-driven sampler and PowerScope were

within 4 percent of eachother [4].

17

18

Chapter 3

Design and Implementation

This chapter addresses the architecture of the EProf system. It describes the energy

measurement strategy as well as design and implementation details.

3.1 Design Overview

EProf is composed of a hardware subsystem that measures instantaneous power and

a software portion for sample recording and data analysis. It is possible to set the

rates of power sampling and instruction sampling independently, however, the hard-

ware system samples power at least as often as instructions are sampled. Figure

3-1 illustrates how power samples are integrated and energy is charged to the inter-

rupted instruction. The alternating shaded regions are the groups of power samples

attributed to the next interrupted instruction, indicated by a heavy black line.

Consider two sequential interrupts in two separate processes. The second process

is charged for any energy used in between interrupts regardless of where the majority

of the intervening time slice is spent. One advantage of this technique is that many

power samples can be taken by the EProf card while minimally disturbing the rest

of the system, resulting in a finer-grained analysis. However, this is only useful if

the power samples are charged to the appropriate process. The problem of properly

attributing power samples makes it crucial to look at the way the instruction and

energy sampling rates interact.

19

power

instruction samples

power samples

time

Figure 3-1: Energy allocation. The instruction sampling rate is jittered to avoid
synchronization with system events.

3.2 Implementation Overview

EProf was developed on a Compaq iPAQ H3600 [1] running the Familiar distribution

of Linux [2]. The H3600 contains a 206 Megahertz (MHz) Intel StrongArm SA1110

processor and plugs into an iPAQ backPAQ sleeve with two PCMCIA slots. One slot

houses the EProf PC Card, the other can be used by any other PC Card. In this

application the second slot enables the profiling of programs that use the wireless

card.

3.2.1 Hardware

Most of the power-measurement portion of EProf sits on a card that plugs into a

PCMCIA slot on the iPAQ’s backPAQ. The EProf card consists of an oscillator, two

analog to digital converters (ADCs), and a Field Programmable Gate Array (FPGA).

Overview

One of the ADCs measures the voltage drop across a sense resistor that is placed

between the battery and the battery connector to the iPAQ. This allows EProf to

determine the current being drawn by the system. The other ADC measures the

voltage being supplied by the iPAQ’s battery. This is necessary because the supplied

20

voltage will vary as the battery charges and discharges. Because instantaneous power

is equal to current times voltage, the above information is sufficient to determine

the power being used at the time of the sample. The FPGA controls the ADCs and

passes their samples to the iPAQ via the PCMCIA port for processing.

A/D (iPAQ current)

A/D (supply voltage)Battery

R sense

Vbattery

ViPAQ
iPAQ

PCMCIA Port

FPGA

Figure 3-2: EProf Hardware System Overview.

Implementation

The 20 MHz oscillator clocks the state machines inside the FPGA. The FPGA gen-

erates the 588 Kilohertz (kHz) clock signal used by the ADCs as well as the ADC

chip enable signals that allow sample timing to be finely controlled by the user. The

ADCs are 8-bit, have differential inputs, and use successive approximation. The sense

resistor is 0.5 Ohm. The battery is rated to provide a maximum of 1 Amp of current

so this introduces a drop of at most 0.5 Volt over the resistor. The FPGA is a 3.3 Volt

Xilinx SpartanXL which easily interfaces with the data and control signals needed for

the PCMCIA slot. The FPGA contains one state machine to control sampling and

one to respond to user input.

The sampling state machine generates the ADC clock and control signals and

aggregates sample data. At the end of a conversion the resulting 8-bit sample is added

to the corresponding voltage aggregate buffer and a sample counter is incremented.

21

When the user reads sample data the two 16-bit totals are returned, along with

the counter data indicating how many voltage samples the aggregates correspond to.

The registers can hold 255 samples before overflowing, so the user must be careful to

coordinate the instruction and energy sampling rates to avoid this situation. Also, all

the buffers are cleared when the sample counter register is read, so all three buffers

must be read sequentially to ensure that the voltage aggregates correspond to the

number of samples returned by the counter.

Name Size Read/Write? Description
reset 8-bit W-Only write any value to reset card
sample rate 16-bit R/W power is sampled at a rate of adc clk÷

(10 + (sample rate reg − 1))
adc0 sample 16-bit R-Only aggregate supply voltage
adc1 sample 16-bit R-Only aggregate voltage drop across sense re-

sistor
sample counter 16-bit R-Only number of samples above aggregates

correspond to

Table 3.1: EProf card registers.

The iPAQ’s interface to the PC Card slot/EProf driver is via the second state

machine in the FPGA. This machine handles reads and writes to the EProf’s five

registers, summarized in Table 3.1. The three read-only data registers were described

above; there are two 16-bit aggregate voltage sample buffers and a 16-bit sample

counter. Writes to the reset register clear all buffers and return the card to its

starting state. The 16-bit sample rate register is read/write and determines the ADC

sampling rate. The ADC clock rate is given by adc clk = (20 ∗ 106) ÷ 34 ≈ 588 kHz;

it must be a multiple of the 20 MHz clock, but less than 600 kHz. Because sample

conversion takes 10 ADC clock cycles, the maximum power sampling rate is given by

adc clk÷ (10+(sample rate reg)), as long as sample rate reg is nonzero. The fastest

power sampling rate of approximately 49 kHz is achieved when the sample counter is

one.

The ADCs are 8-bit Texas Instruments TLC0831s that use 5 Volt control signals.

The TLC0831 is a successive approximation analog to digital converter with a ref-

22

erence voltage input that allows for the accurate measurement of signals less than

5 Volts. Its differential inputs enable accurate voltage measurements even when the

negative terminal is not connected to ground. However, the differential inputs are

directional so the voltage drop across the sense resistor can only be measured when

charge is flowing out of the battery. When a negative voltage is detected, the ADCs

return a sample value of 0. This means that EProf cannot be used when the battery

is charging. One solution to this problem would be to disallow charging of the iPAQ’s

battery when it is plugged into the sleeve and the sleeve is plugged into the wall

outlet. However, this would involve nontrivial modifications to the sleeve to disable

the iPAQ’s battery charge enable pin.

3.2.2 Software

EProf’s software subsystem is comprised of online tools needed for profiling and offline

tools for data analysis and debugging. The online tools consist of two loadable kernel

modules and a user-level daemon, eprofd, to control sampling. Additionally, there is

a command-line interface to the EProf card and perl and shell scripts for offline data

analysis. An overview of the organization is shown in Figure 3-3.

eprof-analyzer

eprofd

user

eprof-cmd-line

eprof_cs.oeprofiler.o

kernel

iPAQ

eprof.v

FPGA

Figure 3-3: EProf Software System Overview. Arrows indicate dependencies.

23

Kernel code

The kernel level code is split into two modules. The EProf card driver exports a

character device interface that allows programs to read and write the card’s control

registers. It also exports the eprof read function used by the profiling module to

read energy sample data. The profiling module exports a separate character device

interface that the user-level daemon uses to read the instruction and energy samples.

The EProf card driver is based on a basic memory card driver that is part of the

Card Services for Linux PCMCIA support package (pcmcia-cs) available from Source-

Forge [3]. Reads and writes to the card directly manipulate the registers summarized

in Table 3.1. The exported eprof read function allows the profiling module to read

energy samples.

The profiling module is a slightly modified version of the cycle profiler distributed

with Familiar. During the interrupt that records instruction information, the profiling

module reads the latest energy samples from the EProf card. It provides the API that

the user-level daemon uses to start profiling, stop profiling, and control instruction

sampling parameters.

To reduce overhead, a future implementation of EProf might more tightly integrate

the two modules. For example, rather than exporting the eprof read function, the

two modules might share a kernel memory buffer. It might also be advantageous

to combine them; the functionality might be separated by creating two devices with

different minor numbers that are serviced by one combined EProf module.

User-level sampling control

The user-level daemon is invoked at the command-line and allows the user to specify

both the instruction sampling rate and the energy sampling rate. The default instruc-

tion sampling rate is 625 Hz which is the rate used by PowerScope [9]. The default

energy sampling rate is 49 kHz which is the fastest sampling rate achievable by the

hardware. The user may also randomly jitter the sampling rate around a specific

value. This helps guard against samples that are synchronized with system events.

24

Analysis and debugging tools

The command-line interface to the EProf card allows the user to directly manipulate

the card’s registers. From the command line the user the can start or stop sampling,

change the power sampling rate, or read the most recent samples. Currently the

EProf card driver does not distinguish between reads from the profiling module and

the command-line program. If the eprofd daemon is running the user must be careful

not to clear the sample buffer or this will result in eprofd reading an incomplete power

sample.

The main offline analysis tool is a perl script that can be run on any machine. It

displays average power/instruction in a given process, average instantaneous current

and voltage, converts the power samples to energy values and correlates them with

the appropriate process. The tool also displays the incremental percentage of total

energy consumed. Example output is shown in Table 3.2.

25

cycles cycle % cum cycle% image

68731 71.23% 71.23% kernel

27598 28.60% 99.83% loop

136 0.14% 99.98% profd

13 0.01% 99.99% ld-2.2.3.so

8 0.01% 100.00% libc-2.2.3.so

2 0.00% 100.00% sh

1 0.00% 100.00% init

energy (Joules) energy % cum energy % image

106.79330 66.58% 66.58% kernel

53.26959 33.21% 99.79% loop

0.28268 0.18% 99.97% profd

0.02627 0.02% 99.99% ld-2.2.3.so

0.01708 0.01% 100.00% libc-2.2.3.so

0.00389 0.00% 100.00% sh

0.00192 0.00% 100.00% init

power samples power/samp avg V avg I avg e/i image

5270376 0.97112W 3.703V 0.262A 76.7 kernel

2123784 1.20637W 3.682V 0.328A 77.0 loop

10633 1.29906W 3.645V 0.356A 78.2 profd

996 1.26283W 3.652V 0.346A 76.6 ld-2.2.3.so

631 1.33460W 3.653V 0.365A 78.9 libc-2.2.3.so

154 1.21541W 3.603V 0.337A 77.0 sh

80 1.19804W 3.696V 0.324A 80.0 init

Table 3.2: Example energy profile.

26

Chapter 4

Experimentation and Results

This chapter presents some of the data that has been collected using the EProf system.

It addresses the effects of varying the instruction sampling rate versus varying the

energy sampling rate. This chapter also compares programs with differing energy

characteristics and evaluates a profile of the iPAQ’s energy consumption as its battery

drains.

4.1 Testing Setup

For all testing the wall charger was unplugged so the batteries of both the sleeve and

iPAQ were being drained. The ADCs and clock were powered by the 5 Volt pins

from a PCMCIA slot on the backPAQ. The ADC measuring the voltage supplied

by the 3.7 Volt iPAQ battery also used one of the slot’s power pins as its reference

voltage. The other ADC used the lab power supply to get the 1 Volt reference

needed to measure the voltage drop across the sense resistor. (See 3.2.1 for more

information.) Instruction sample rate jittering was enabled to minimize correlating

instruction samples with system events. The looping program simply incremented a

counter from 0 until 0x2fffffff. This lasted an average of 46 seconds.

27

4.2 Varying the Sampling Rates

Energy measurements were taken using six different energy sampling rates and six

different instruction sampling rates. When the energy sampling rate was varied the

instruction sampling rate was kept at a constant 625 Hz [9]. When the instruction

sampling rate was varied energy was sampled at the highest possible rate, 49kHz.

During testing the profiling daemon was run in the background while a single instance

of the looping program was run in the foreground. Each test was repeated three times

and the figures show the the average of the three test runs.

Figure 4-1 shows the average instantaneous current being drawn when running

kernel code, the loop code, and other user-mode code. Although there is some noise

in the system, the variation in current is within a few percent. Also, both plots show

the current drain increasing as sampling frequency increases; one would expect to

incur higher overhead when taking more samples. The tests also show more current

being drawn by kernel code than by the loop code. The loop code is CPU-bound so

the rest of the system is relatively quiescent when it is running. The kernel is likely

to be using other parts of the system, thus drawing more current from the battery.

Figure 4-2 shows the average voltage sampled for the different processes running

in the system. The measured voltage is strongly correlated with the time that the

instruction was sampled. This explains why the graphs in Figure 4-3 showing average

instantaneous power have a shape similar shape to those in Figure 4-1.

The tests varying the energy sampling rate were run in order from highest fre-

quency to lowest frequency so the supply voltage seems to increase with frequency.

The tests varying instruction sampling rate were run in order from lowest frequency

to highest frequency so the voltage seems to decrease as frequency increases. The

effect of time on battery voltage is illustrated further in Section 4.4.

28

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0 5 10 15 20 25 30 35 40 45 50

Cu
rre

nt
 (a

m
ps

)

Energy Sampling Frequency (kHz)

loop
kernel
other

0.4

0.41

0.42

0.43

0.44

0.45

0.46

500 550 600 650 700 750 800

Cu
rre

nt
 (a

m
ps

)

Instruction Sampling Frequency (Hz)

loop
kernel
other

Figure 4-1: Average instantaneous current samples changing with energy and instruc-
tion sampling rate.

4.3 Different Energy Patterns

In order to observe differences in the energy characteristics of distinct processes, two

different looping programs were profiled simultaneously. With the profiling daemon

running in the background, a modified loop-writing program synchronously wrote

4 bytes to flash memory then incremented a counter. After 0x3ff iterations of the

loop-writing program, the original loop program was run. Whereas the unmodified

program took 46 seconds to run on average, the modified program lasted between 25

and 100 seconds depending on the timing of the flash memory accesses [1].

Figure 4-4 shows the resulting effects on average instantaneous current, voltage,

and power for three runs of the test described above. These averages are shown for

only the most commonly interrupted processes. Notice that the modified loop-writing

program does not appear in the list, and that the kernel uses around 1 milliamp less

current on average than other processes. Manual inspection of the detailed results

returned by the profiling daemon reveal that the kernel is spending most of its time

29

3.5

3.55

3.6

3.65

3.7

3.75

3.8

0 5 10 15 20 25 30 35 40 45 50

Vo
lta

ge
 (v

ol
ts

)

Energy Sampling Frequency (kHz)

loop
kernel
other

3.5

3.55

3.6

3.65

3.7

3.75

3.8

500 550 600 650 700 750 800

Vo
lta

ge
 (v

ol
ts

)

Instruction Sampling Frequency (Hz)

loop
kernel
other

Figure 4-2: Average instantaneous voltage samples changing with energy and instruc-
tion sampling rate.

waiting for the synchronous writes to complete. The time spent waiting for the flash

memory lowers the kernel’s average current drain. Figure 4-4(b) shows an inverse

relationship between supply voltage and current, while Figure 4-4(c) shows that power

is strongly correlated with current drain.

Although Figure 4-4 shows a high variance in instantaneous power, Table 4.3

demonstrates consistency in total energy use. The original loop program uses an

average of 53 joules, though the percentage of overall energy consumption varies

depending on how long the test lasts. Interestingly, regardless of test length the

average amount of energy attributed to each power sample (shown in column 6) varies

little. This emphasizes that although minimizing current draw may be helpful, the

amount of time that a program runs is still the most important factor in determining

energy consumption.

30

1.5

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7

0 5 10 15 20 25 30 35 40 45 50

Po
we

r (
wa

tts
)

Energy Sampling Frequency (kHz)

loop
kernel
other

1.5

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7

500 550 600 650 700 750 800

Po
we

r (
wa

tts
)

Instruction Sampling Frequency (Hz)

loop
kernel
other

Figure 4-3: Average instantaneous power samples changing with energy and instruc-
tion sampling rate.

4.4 Time Varying

Energy measurements were taken as a full battery was draining in order to investigate

the way that battery level affects current and energy use. A script on the iPAQ

continuously ran iterations of the loop program and slept for one second in between

invocations. Figure 4-5(a) shows the average instantaneous current drawn by the loop

program over time, while figure 4-5(b) shows average instantaneous voltage. When

the battery voltage is high, the amount of current drawn is inversely proportional

to voltage. After about 15 iterations of the loop program, when the battery voltage

drops below 3.6 Volts, the current operates in an almost linear region between 0.46

Amps and 0.48 Amps. However, once the voltage gets below 3.4 Volts the amount

of current drawn increases dramatically. Figure 4-5(c) shows the resulting effect on

average instantaneous power. As long as current stays constant, power decreases. As

soon as voltage drops below the critical level the current and power increase quickly.

Figure 4-5(d) shows that despite the fluctuations in average instantaneous power total

31

Test Loop Energy Total Energy % of Total # Power Samples Energy/Sample
0 52.79 (J) 89.49 (J) 59 % 4002377 2.24e−5
1 53.27 (J) 160.39 (J) 33 % 7406654 2.17e−5
2 54.77 (J) 123.52 (J) 44 % 5684369 2.17e−5

Table 4.1: Summary of energy characteristics of different programs. All energy is
expressed in joules (J).

energy consumption remained relatively constant. The unusual data points are likely

due to characteristics of the converter used to regulate the sleeve’s voltage.

32

0.2

0.25

0.3

0.35

0.4

0 1 2

Cu
rre

nt
 (a

m
ps

)

Test Run

kernel
loop

ld
profd

(a) Current

3.55

3.6

3.65

3.7

3.75

3.8

0 1 2

Vo
lta

ge
 (v

ol
ts

)

Test Run

kernel
loop

ld
profd

(b) Voltage

0.8

0.9

1

1.1

1.2

1.3

1.4

0 1 2

Po
we

r (
wa

tts
)

Test Run

kernel
loop

ld
profd

(c) Power

Figure 4-4: Examples of different energy sample characteristics.

33

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0 20 40 60 80 100 120

Cu
rre

nt
 (a

m
ps

)

Sample number

loop

(a) Current

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

0 20 40 60 80 100 120

Vo
lta

ge
 (v

ol
ts

)

Sample number

loop

(b) Voltage

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

0 20 40 60 80 100 120

Po
we

r (
wa

tts
)

Sample number

loop

(c) Power

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

En
er

gy
 (j

ou
le

s)

Sample number

Totals

(d) Energy

Figure 4-5: Energy samples changing over time.

34

Chapter 5

Conclusion and future work

This thesis presented the EProf system, an infrastructure for the development of

a portable, online energy monitoring tool. It focused on the design of the system,

issues involved in achieving its design goals, and a preliminary investigation of EProf’s

effectiveness as an energy profiler.

Future research on the EProf platform can proceed in a number of directions.

For example, one might focus on making EProf more portable. This is a challenging

project because low-power components are needed to build an efficient power distri-

bution system on the EProf card. A portable tool is likely to have greater storage

needs, so data compression techniques will be useful to keep the amount of space used

from becoming unwieldy. It may be valuable to investigate an energy-driven version

of EProf to evaluate its accuracy; an energy-driven version may incur less overhead

over all. One might add hooks to the operating system to cause samples to be taken

upon process switches rather than on time-driven or energy-driven events; it is not

clear whether the improvement in accuracy would justify the added complexity.

EProf is a solid base upon which further portable energy monitoring projects can

build.

35

36

Bibliography

[1] Compaq ipaq h3600 hardware documents. http://handhelds.org/Compaq/

iPAQH3600/.

[2] Familiar linux. http://familiar.handhelds.org/.

[3] Linux pcmcia card services. http:/pcmcia-cs.sourceforge.net/.

[4] K. Barr. Energy aware lossless data compression, master’s thesis.

http://citeseer.nj.nec.com/barr02energy.html.

[5] K. Barr and K. Asanovic. Energy aware lossless data compression.

http://citeseer.nj.nec.com/article/barr03energy.html.

[6] F. Chang, K. Farkas, and P. Ranganathan. Energy-driven statistical profiling:

Detecting software hotspots. In Proceedings of the Workshop on Power-Aware

Computer Systems, February 2002.

[7] C. Isci and M. Martonosi. Runtime power monitoring in high-end processors:

Methodology and empirical data. In Proceedings of the 36th Annual IEEE/ACM

International Symposium on Microarchitecture, page 93. IEEE Computer Society,

2003.

[8] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Leung, D. Sites

M. Vandevoorde, C. Waldspurger, and W. Weihl. Continuous profiling: Where

have all the cycles gone. In Proceedings of the 16th Symposium on Operating

Systems Principles, October 1997.

37

[9] J. Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy us-

age of mobile applications. In Proceedings of the Workshop on Mobile Computing

Systems and Applications, February 1999.

[10] S. Lee, A. Ermedahl, and S. L. Min. An accurate instruction-level energy con-

sumption model for embedded risc processors. In Proceedings of the ACM SIG-

PLAN workshop on Languages, compilers and tools for embedded systems, pages

1–10. ACM Press, 2001.

[11] A. Sinha and A. Chandrakasan. Jouletrack - a web based tool for software energy

profiling. In Design Automation Conference, pages 220–225, 2001.

[12] T. Simunic, L. Benini, and G. De Micheli. Energy-efficient design of battery-

powered embedded systems. In Proceedings of the International Symposium on

Low-Power Electronics and Design ’98, June 1998.

[13] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: A first

step towards software power minimization. In Proceedings of the International

Conference on Computer-Aided Design, November 1994.

38

