
In 25th IEEE International Conference on Computer Design (ICCD-2007), Lake Tahoe, CA, October 2007.

Continual Hashing for Efficient Fine-grain State Inconsistency Detection

Jae W. Lee, Myron King
Computer Science and Artificial Intelligence Laboratory (CSAIL)

Massachusetts Institute of Technology
Cambridge, MA 02139

{leejw, mdk}@csail.mit.edu

Krste Asanović
Computer Science Division, EECS Department

University of California at Berkeley
Berkeley, CA 94720-1776

krste@eecs.berkeley.edu

Abstract

Transaction-level modeling (TLM) allows a designer to
save functional verification effort during the modular re-
finement of an SoC by reusing the prior implementation of a
module as a golden model for state inconsistency detection.
One problem in simulation-based verification is the perfor-
mance and bandwidth overhead of state dump and compar-
ison between two models. In this paper, we propose an effi-
cient fine-grain state inconsistency detection technique that
checks the consistency of two states of arbitrary size at sub-
transaction (tick) granularity using incremental hashes. At
each tick, the hash generates a signature of the entire state,
which can be efficiently updated and compared. We evalu-
ate the proposed signature scheme with a FIR filter and a
Vorbis decoder and show that very fine-grain state consis-
tency checking is feasible. The hash signature checking in-
creases execution time of Bluespec RTL simulation by 1.2 %
for the FIR filter and by 2.2 % for the Vorbis decoder while
correctly detecting any injected state inconsistency.

1 Introduction

Transaction-level modeling (TLM) is a promising strat-
egy for designing complex systems-on-a-chip (SoCs) [10].
System designers separate communication (channels) from
computation (units or modules) so that they can incremen-
tally refine each module toward synthesizable RTL, while
maintaining the same interfaces to neighboring modules.
TLM also helps hardware and software developers interact
with each other in the very early phases of design, reducing

total system development time.
During the modular refinement process in TLM, design-

ers can save effort for functional verification of a unit in
at least two ways. First, they can reuse the verification
environment surrounding the prior implementation of the
unit [3]. The difference in the level of abstraction be-
tween two implementations of a unit is cleanly isolated
by transaction-based interfaces. Hence, designers can ver-
ify the transaction-level behavior without writing new test-
benches for the implementation under test. In addition,
mixed-level transactional co-simulation can reduce simu-
lation time. Second, designers can use the more abstract
implementation as a “golden” model to check internal state
consistency between the refined unit and the golden model
at various sub-transaction checkpoints as they both execute
a transaction. Once a commonality of data structures be-
tween the two implementations is identified, designers can
simply install monitor points to dump out internal data of
interest for consistency checking [8].

A transaction consists of a series of smaller operations,
or ticks in our terminology. Pinpointing a tick that puts
the candidate design into an inconsistent state against the
golden model is invaluable for debugging, as otherwise de-
signers may have to manually trace back through many
ticks to determine the root cause of a bug. A simple
dump-and-diff technique does not work well for such fine-
grain state inconsistency detection because the performance
and/or bandwidth overhead is proportional to the size of
the checked state. Less frequent (coarse-grain) checking or
checking only certain critical blocks reduces overhead but
degrades temporal precision or coverage.

In this paper, we present an efficient fine-grain state in-
consistency detection technique, which can check the con-



TLM

functional

verification

formal verification

simulation-based

verification

model checking

sequential equivalence checking

black box model

(transaction)

white box model

(internal state)

fine-grain checking

end-simulation checking

simulation-parallel

(online)

scenario-embedded

(offline)

coverage
golden model(upper)

observables(lower) checking granularityCriteria:
reference generation

method 

Figure 1. A taxonomy of TLM functional verification approaches. Our proposed approach is high-
lighted in boldface.

sistency of two states of arbitrary size at frequent check-
points with reasonable simulation slowdown. Our tech-
nique minimizes the bandwidth overhead by having each
implementation send out a hash signature as a compact
summary of its entire state. We rely on incremental hash
functions [5] to reduce performance overhead, since only a
fraction of state elements are modified at each tick in most
cases.

2 Related Work

Figure 1 shows a taxonomy of approaches for TLM func-
tional verification, with our proposed approach highlighted
in boldface.

The first criterion is the coverage of the verification tech-
nique. Formal verification aims to prove the correctness of
a model, providing an exhaustive check for bugs. There
are review papers that cover recent advances and research
challenges in formal verification from the TLM perspec-
tive [4, 10, 13]. Formal verification methods are further
divided into two classes according to how the golden refer-
ence is generated against which the design under test (DUT)
is verified. In model checking, the designer is responsible
for writing assertions to describe properties to be verified.
In sequential equivalence checking, the golden model is a
model at a higher level of abstraction. There are multi-
ple notions of equivalence such as combinational equiva-
lence, cycle-accurate equivalence, transaction equivalence,
pipelined equivalence and stream-based equivalence [13].
However, formal verification approaches do not scale very
well in general, so that they are not always applicable in
practice.

Simulation-based approaches are generally not exhaus-
tive, but can be applied to large designs. In many cases,
both directed and constrained random tests are deployed to
meet coverage goals. Wen et al. [7] discuss a systematic
way to justify test patterns generated automatically. To ease
RTL debugging, Hsu et al. [17] extract a behavioral model

out of an RTL description combined with a simulation trace
and provide an interface to query, trace and assign a value
to an arbitrary node.

Simulation-based approaches are divided into black box
and white box models, depending on what the verification
process can observe. In the black box model, as in [3],
only I/O behaviors (transactions) of the DUT can be ob-
served outside. In the white box model, as in [8], peeking
inside the DUT is also allowed to verify the consistency of
internal states between models. Depending on how often
consistency is checked, the white box model can be fur-
ther divided into fine-grain and coarse-grain state check-
ing. Finally, there are two methods to compare the inter-
nal states [10]: simulation-parallel comparison, where two
models run in parallel as the golden model generates the
golden state sequence (online), scenario-embedded com-
parison, where the golden state sequence is generated in
advance and embedded in the test input a priori (offline).

Brier et al. [8] describe a verification methodology where
they dump out all the intermediate values in two versions (C
and Verilog) of a resize module for fine-grain state consis-
tency checking, but this has high overheads in both band-
width and storage space. We propose a technique for low-
overhead state consistency checking without compromising
the coverage or precision of inconsistency detection.

3 Fine-grain State Inconsistency Detection

In this section, we first introduce common terms and
concepts, then describe a proposed functional verifica-
tion framework, and finally compare three alternative ap-
proaches for state comparison.

3.1 Background

In comparing the internal states of two implementations
of a module having the same transactional behavior, we as-
sume a common specification of the module describing the



FIR

module

buf

(a) Transaction model of FIR

channel (in) channel (out)

num_rows

(y)

num_cols (x)

for (i=0; i<y; i++) {

for (j=0; j<x; j++) {

val=0;

for (k=0; k<num_taps; k++) {

if (j-k>=0) 

val+=tap[k]*in[i][j-k];

}

buf[i][j]=sat(val);

}

}

out=write(buf);

out[][]in[][]

(b) Single FIR transaction with different tick granularities

0

0�

x

1� 2� x� x+1� x+2�

yx

yx�

transaction boundaries

(c) State transitions of FIR module showing transactions, ticks and checkpoints

tick

(RTL)

tick

(C)

checkpoint

#1

checkpoint

# (y-1)

Fine-grain ticks

(e.g. Verilog RTL)

Coarse-grain ticks

(e.g. C functional)
time

1 tick

x ticks

Figure 2. Transactional view of FIR filter module.

set of state elements that an outside block can observe or
mutate. We call this externally-visible state the architec-
tural state (AS). Each implementation may have a unique
set of state elements not visible from outside, which consti-
tute the implementation’s microarchitectural state (µAS).
In the rest of the paper, we focus only on verification of the
architectural state (AS).

Ghenassia and Clouard define a transaction in TLM
as “data transfer or synchronization between two modules
at an instant determined by the hardware/software system
specification” [10]. A module firing off a transaction usu-
ally steps through one or more unit operations, or ticks,
which possibly put the module into an intermediate archi-
tectural state.

Figure 2 illustrates a transactional view of an FIR fil-
ter module which is similar to part of the resizer module
in [8]. This module takes an input frame (in[][]) of
num cols(x) by num rows(y) pixels, filters it and out-
puts the result through a channel. Two implementations
are presented to illustrate different granularities of ticks.
The implementation with coarse-grain ticks (e.g. C func-
tional model) processes one row per tick while the imple-
mentation with fine-grain ticks (e.g. Verilog RTL) processes
one pixel per tick. The common architectural state in this
case is the input buffer (in[][]) and the output buffer
(out[][]), whose intermediate states are shadowed by
buf[][]. Note that for fine-grain transactions (or coarse-
grain ticks) a tick might be equivalent to a transaction.

The figure also shows checkpoints where the two imple-
mentations are supposed to be in the same (intermediate)
architectural state. Our technique is capable of detecting

a state inconsistency at a checkpoint, which usually occur
much more frequently than transactions.

Although we discuss our technique in the context of
TLM, it can be applied to any pair of models for which we
can identify common internal state and checkpoints.

3.2 Proposed Verification Framework

Procedure 1 State consistency checking (at n-th check-
point)
Require: ASA[0] = ASB [0]

1: State InfoA[n] = dump state info(ASA[n])
2: State InfoB [n] = dump state info(ASB [n])
3: if State InfoA[n] == State InfoB [n] then
4: return STATE CONSISTENT
5: else // inconsistent state info
6: if ASA[n] 6= ASB [n] then
7: return STATE INCONSISTENT ERROR
8: else
9: return STATE INFO ERROR

10: end if
11: end if

Procedure 1 describes the state consistency checking for
two implementations of a module, A and B, performed at
every checkpoint. The two implementations do not have to
execute at the same time. A stream of golden state infor-
mation generated and stored offline can be reused for future
implementations of a module.

Require: We assume that there exist a finite aligning se-
quence for each implementation that puts both imple-



mentations into the same initial architectural state [14].
We also assume that non-determinism in simulation is
tightly controlled. Each instance of execution must
preserve the order of checkpoints and the architectural
state must be regenerated identically.

Lines 1-2: Both implementations dump out information on
their current architectural state. This information could
be the full architectural state (AS), a description of
changes since the previous checkpoint (∆AS), or a sig-
nature (SIG) for the state or its changes.

Lines 6-9: If state information mismatches, the checker
performs a full-state checking. If the full states do not
match, it returns STATE INCONSISTENT ERROR.
Otherwise, it returns STATE INFO ERROR, which
means that the state information was different for two
identical architectural states.

The precision of state inconsistency detection possible
in this framework is limited in temporal granularity by the
model with the coarser-granularity tick, and limited in cov-
erage to the common exposed architectural state.

Procedure 2 An example two-pass debugging procedure
using two implementations of a unit, A and B

1: for all (test, input) in a test suite do
2: START :
3: OUT A = execute A(test, input)
4: OUT B = execute B(test, input)
5: if OUT A 6= OUT B then
6: repeat // pass 1
7: coarse grain check(A, B, test, input)
8: until STATE INCONSISTENCY detected
9: rollback to previous checkpoint()

10: repeat // pass 2
11: fine grain check(A, B, test, input)
12: until STATE INCONSISTENCY detected
13: fix bugs(A, B)
14: goto START
15: end if
16: end for
17: return PASSED ALL TESTS

Procedure 2 illustrates an example debugging procedure
using our proposed verification framework for a given test
suite. To minimize the performance overhead caused by
hash calculation, this example performs two passes: coarse-
grain checking followed by fine-grain checking.

3.3 Approaches for State Comparison

We consider three options for state information
(State Info[n] in Procedure 1) as shown in Figure 3:

Implementation

A

ASA[n]

ASA[n]

Implementation

B

ASB[n]

ASB[n]

Common

specification

AS[n]

: describes 

architectural

state only 

(e.g. VerilogRTL)(e.g. C functional)

Option 1: 

full-state checking

Option 2: 

delta checking

Option 3: 

signature checking

ASB[n]ASA[n]ASB[n]ASA[n]

=?

SigB[n]SigA[n]

=?=?

Yes: Consistent

No: Inconsistent

Figure 3. Three possible implementations of
state consistency checking. At n-th check-
point, each implementation dumps out the
entire architectural state (AS[n]) for Option 1,
the changes in the architectural state (∆AS[n])
since the previous checkpoint for Option 2
and a signature (Sig[n]) for Option 3, respec-
tively. The checker can detect a state incon-
sistency by comparing these dumped out-
puts.

3.3.1 Full State Checking (Option 1)

Fine-grain full-state checking is only feasible when the size
of the architectural state is small. Both the bandwidth re-
quirement for dumping state information and the computa-
tion requirement for comparing it is O(sizeof(AS[n])).

One might argue for checking critical words only instead
of checking the full architectural state. However, we ad-
vocate full coverage of architectural state because it is not
always possible to identify critical words. For example, in
the FIR filter in Figure 2 all pixels have the same critical-
ity. This is also true for large memory structures, such as
caches.

3.3.2 Delta Checking (Option 2)

Delta checking, which uses the changes since the previous
checkpoint, is better suited to fine-grain checking. For ex-
ample, each module could dump out a list of (block id,
new data) pairs for state elements being modified. The
bandwidth and computation overhead is O(sizeof(∆AS[n]))
which is much smaller than O(sizeof(AS[n])) in general.

However, we point out two issues with simple delta
checking. First, it is possibly bandwidth inefficient (and
storage inefficient if used offline) if the number of changes
between checkpoints is large. Second, it is not clear how
to implement this scheme efficiently in a hardware platform



(e.g. FPGA). It must either have a queue to log the changes
since the previous checkpoint, or have a dirty bit associ-
ated with each block and walk through the touched blocks
to send out the modified data.

To address these issues, we introduce a third option: hash
signature checking.

3.3.3 Hash Signature Checking (Option 3)

The hash signature reduces the bandwidth overhead to a
fixed constant cost, at the cost of additional computation
to recalculate the hash. We propose the use of incremental
hashes to generate signatures of the entire state to minimize
performance overhead [5]. An incremental hash is designed
such that if a change between two states is small, it is pos-
sible to quickly update the hash of the new state from the
hash of the previous state rather than recomputing the new
hash from scratch. Incremental hashes have been used for
various applications including virus protection, memory in-
tegrity checking, and broadcast networks [15]. To the best
of the authors’ knowledge, this paper is the first work that
applies incremental hashing for efficient state consistency
checking for functional verification.

4 Implementation Issues

In this section, we address several implementation issues
of the incremental hash-based functional verification.

4.1 Incremental Hash Function Design

The simple incremental hash we use to summarize the
architectural state is as follows:

h = ⊗n
i=1

f(block idi, datai)

where n is the total number of blocks, ⊗ is XOR operator,
and f is a block hash function. A pseudorandom function
was used for f in the original literature [5] but we replace
it with a simpler hash function (e.g., multiplicative hash) to
reduce performance overhead. Because we are not coping
with a security application and an active adversary who can
modify the hash based on knowledge about the system, we
leave out data randomization, pair block chaining, and ran-
dom permutation [5].

With this hash, we can readily calculate the new hash
(h′) from the old hash (h) after replacing old datai with
new datai:

h′ = h⊗ f(block idi, old datai)⊗ f(block idi, new datai)

Each signature update costs two ⊗ and two f operations.
One might argue for an alternative hash update scheme (ĥ)
which recalculates the new hash with new datai only, but

1

1

2

1

2

3

1

1 2

2 2

3

checkpoint

#1

checkpoint

#2

checkpoint

#3

Time

x

y

x

y

Golden

sequence

unintended 

write

Erroneous

sequence

by �unintended�

write

Error!

@ checkpoint 

#1

@ checkpoint 

#2

@ checkpoint 

#3

)1,()1,( yfxf

)1,()1,( yfxf

)1,()1,( yfxf

)1,()1,( yfxf

)2,()1,( xfyf

)2,()1,( xfyf

)2,(

)1,()1,(

xf

yfxf

)2,(

)1,()1,(

xf

yfxf

)3,()2,( yfxf

)3,()2,(

)2,()1,(

yfyf

xfyf

)3,()2,(

)1,()1,(

yfxf

yfxf

)3,()2,(

)1,()1,(

yfxf

yfxf

goldenh'

error
h'

goldenh�

error
h�

Figure 4. Example of error caused by unin-
tended write with a module having two blocks
(x and y). This error is detected by hashing
both old and new values of a block (h′) but
not by hashing just new values (ĥ).

not with old datai, to save one ⊗ and one f operations.
This scheme was used in [12] for dynamic detection of a
processor’s soft errors by CRC hashing the stream of com-
mitted values to register file.

However, the alternative hash function ĥ has weaker er-
ror detection capability than h′ and cannot detect errors
caused by so-called “unintended” writes. Some errors are
caused by “intended” writes where a designer updates the
hash signature correctly but has written a wrong value to
the actual storage of data. Others are caused by unintended
writes where a designer has written a value to a storage that
he is not supposed to write, so that the hash fails to keep
track of all write operations actually happened.

Figure 4 illustrates how a designer can detect an error
caused by an unintended write using h′ while he fails to de-
tect it using ĥ. This kind of errors are commonly observed
in the address decoder of a memory block. There are two
memory elements, denoted by x and y, in the module. Then
we can easily find that ĥgolden = ĥerror (i.e., error detec-
tion failure) at Checkpoint #3 while h′

golden 6= h′

error (i.e.,
error detection success). Note that at Checkpoint #2 nei-
ther of the hash signatures (h′

error and ĥerror) can capture
the actual state of memory (i.e., x = y = 2) correctly be-
cause the integrated hash logic updates its signature based
on (addr, data) pair available at the input of the address de-
coder. h′ detects this error at the next write to the errorneous
memory block (i.e., y).



Block hash design (f ) is another implementation issue
and crucial to minimize performance overhead and false
negatives (i.e., undetected inconsistencies). In choosing a
block hash function, a user can exploit efficient implemen-
tations available on the simulation platform. For example,
modern FPGAs have efficient hash implementations avail-
able as IPs such as MD5, SHA-1 [11]. On the other hand,
we can use simple multiplicative hashes on software plat-
forms.

For evaluation in Section 5, we use the following simple
multiplicative hash to hash block i:

f(block idi, datai) =
((⊗m

j=1
wordj) ⊗ block idi) ∗ GOLDEN RATIO

where m is the number of words in datai, GOLDEN RATIO
is the golden ratio (0.61803399...) minimizing collisions in
a multiplicative hash [9]. We need to XOR block id because
we would not be able to differentiate two writes of the same
value to different blocks otherwise.

Choosing block granularity is another design decision,
where a block is the unit of hash calculation. Finer-grain
blocks allow a single block hash (f(block idi, datai)) to be
calculated more quickly but updates more hashes per tick. A
rule of thumb is to use the amount of data typically modified
in a single tick as the block size.

4.2 Hash Integration to DUT

In this paper, our evaluation is all performed on a soft-
ware simulation platform with C/C++ reference models and
RTL models written in the Bluespec HDL [1]. Hash in-
tegration is done manually by inserting sig update and
sig check function calls written in C at every function
and rule that updates the architectural state. Bluespec al-
lows designers to import functions written in C for simula-
tion.

Ideally, we envision this integration to be highly stylized
and automatically performed by a CAD tool chain using a
user-provided specification because manual code transfor-
mation is an error-prone process. The specification could
contain the list of architectural state elements of interest
with block size and ID, hash function to be used, check-
point granularity, and so on. In hardware emulation plat-
forms (e.g., FPGAs), it makes sense to synthesize the hash
logic along with the DUT and expose an interface for the
designer to access the signature value and control signature
generation.

4.3 Extracting Architectural States

Although we confine ourselves to detecting an inconsis-
tency between common architectural state, extracting this
is not always trivial. For example, to verify a pipelined

processor using its functional model, Burch et al. [6] intro-
duce a flush operation to put the pipelined processor into a
state that can be compared against the state of the functional
model. In some cases, a designer may not be able to stati-
cally extract the architectural state. For example, a proces-
sor model having a renamed physical register file has to ex-
tract the architectural state of the register file dynamically.
Here, a user might have to provide a custom post-processing
function to perform the extraction along with other parame-
ters. This will impose additional performance overhead and
add to verification complexity. Therefore, in the TLM ap-
proach, maintaining correspondence between internal states
is a desirable practice for verification purpose [8, 10].

5 Evaluation

We evaluate the error detection capability and perfor-
mance overhead of the incremental hash technique using
both a FIR filter and a Vorbis decoder. For both designs,
the reference model is written in C and the RTL is writ-
ten in Bluespec HDL [1]. We have implemented a portable
C library for signature generation and checking using the
incremental hash discussed previously. Functional correct-
ness of the library has been verified by injecting a random
mismatch between the golden state and the state under test.
This library is linked with C reference models as well as
Bluespec RTL models. We use Bluesim, a cycle-accurate
simulator for Bluespec [1], to measure the performance of
RTL simulation. We have not detected any hash collision
with the default 32-bit hash, but the library supports 64-bit
hash to be used when hash collision (i.e., false negatives or
undetected inconsistencies) is a concern.

5.1 FIR Filter

Although simple, the FIR filter shown in Figure 2 pro-
vides an interesting evaluation example. The FIR filter has a
set of parameter knobs we can exploit to evaluate the perfor-
mance overhead of our proposed hash scheme. By chang-
ing tap size, we can easily change the payload versus
hash calculation ratio. As tap size increases, the FIR fil-
ter does more FIR computation per hash, thereby reducing
the relative overhead of hash calculation. By changing the
frame size, we can obtain an arbitrary size of architectural
state. In addition, we can easily break down a transaction
into multiple ticks at various granularities.

Simulation slowdown is a primary concern in adopting
continual hashing and we consider two cases: online and
offline signature generation. In the online case, the golden
model and the design under test generate signatures dy-
namically as both models execute in parallel (the golden
model slightly runs ahead of the design under test to gen-
erate golden signatures). In the offline case, we execute the



simulation

slowdown

simulation

slowdown

x1

x2

x3

x4

x5

x1.0

x1.2

x1.4

x1.6

x1.8

tap size4 8 16 32 64 128

x5.47

x2.42

x1.13

x1.46

Offline signature generation

(a) Performance overhead (C model) (c) Performance overhead (varying state size)

Online signature generation

State size

(in samples)

128 K

(CIF)

1 M

(720p)

4 M

(1080p)

x1.54 x1.53 x1.53

simulation

slowdown

tap size4 8 16 32 64 128

x1.012

Online signature generation

x1.00

x1.01

x1.02

x1.03

x1.04

(b) Performance overhead (RTL model)

x1.007

Offline signature generation

x1.01 x1.01 x1.00

RTL simulation

C simulation

Figure 5. Performance evaluation of continual hashing in terms of simulation slowdown. We calcu-
late and check the signature at every tick (i.e., for every sample) with 1 mega-sample frames. (a)
shows the performance overhead caused by hash calculation and state inconsistency checking for
reference C model and (b) for Bluespec RTL model. (c) shows that the performance overhead does
not depend on the total state size as expected. For (c) tap size is 32 and the online scheme is used.

model under test only and use the generated signatures of-
fline from the golden model. Because of the file I/O over-
head (reading in and writing out golden signatures) we ex-
pect the online scheme to perform better. Note that we only
measure the simulation speed of the RTL but not that of the
high-level reference model. This gives us an optimistic re-
sult when running two models in parallel, but we believe
this is acceptable because the total simulation time is usu-
ally limited by the slower simulator.

Figure 5 (a) and (b) show the slowdown of simulation
speed for both the C and the RTL models as we vary
tap size in FIR filter. In a typical use case, we gen-
erate a golden signature sequence using a fast C model to
verify an RTL implementation of the same unit. In this use
case, Figure 5 (a) measures the signature generation cost,
and Figure 5 (b) measures the signature checking cost of
the DUT. For signature generation, the range of slowdown
is ×1.46-×5.47 for offline and ×1.13-×2.42 for online as
we change tap size from 4 through 128. The incremen-
tal hash achieves a dramatic improvement (about 2000×
faster) in signature generation compared to recalculating a
hash for the architectural state from scratch at every tick.
We also observe that the most of performance overhead for
the offline scheme is due to file I/O, which underlines the
importance of bandwidth (storage) efficiency of the signa-
tures.

On the other hand, there is only negligible performance
overhead for signature checking with the RTL model as
shown in Figure 5 (b). The maximum observed slow-
down is 1.2 % for the offline scheme when tap size
is 16. The difference in simulation slowdown between C
and RTL models is attributed to the difference in the level
of abstraction. The hash calculation overhead is relatively
much smaller in detailed RTL simulation than in abstract
C simulation. The non-monotonic simulation slowdown, as
tap size increases, is likely to be caused by an artifact of

stream parser

setup module

Huffman 

codebook RAM

VQ table RAM

residue decoder

channel de-coupler

floor decoderspectrum

reconstructor

windowing

function

IMDCT module frame size table

frame cache

Vorbis stream

PCM output

Frontend

Middle

Backend (DUT)

Figure 6. Functional modules of Vorbis de-
coder. Memory and computation modules
are colored differently.

caching behavior.
Finally, Figure 5 (c) illustrates that the performance over-

head does not depend on the size of the entire state. In other
words, our proposed scheme is scalable to the state size
in terms of performance overhead. We use three different
frames whose sizes are 128K, 1M and 4M samples, respec-
tively. These frames roughly correspond to YUV frames of
CIF, 720p HDTV and 1080p HDTV in terms of their size.

5.2 Vorbis Decoder

For more realistic evaluation of the proposed scheme, we
use the backend of a Vorbis decoder implementation. Vor-
bis is an open-source, patent-free lossy audio codec that is
generally comparable to MP3. At a high level, the Vorbis



decoding process can be divided into three sections shown
in Figure 6. Among the three sections, the backend is the
most computation-intensive. Within the backend, we are
particularly interested in the Inverse Modified Discrete Co-
sine Transform (IMDCT) block, which dominates the back-
end in terms of hardware complexity and computation re-
quirement. For the rest of this section, we assume that the
DUT is the IMDCT block.

The golden reference model (Tremor) is written in C
and available in [2]. The RTL implements the algorithm
described in [16] where the kernel takes 8 steps to com-
plete the IMDCT operation of an audio frame. There is
a 4-KB shared memory block where the intermediate val-
ues after each step are stored. In our experiment, we ver-
ify the consistency of the shared memory block, which is
the biggest state element within the DUT, at three sub-
transaction checkpoints after Step 3, 4 and 8 in [16]. Note
that we use an offline scheme–a sequence of golden signa-
tures is generated in advance and read in by file I/O for sig-
nature checking. Given that the reference model executes
about 64× faster than the RTL implementation, it is likely
that the online scheme (i.e., parallel simulation of two mod-
els) will add only a small fraction of execution time to the
RTL simulation.

According to our simulations, hash signature checking
increases execution time of RTL simulation by only 2.2%
while correctly detecting any injected state inconsistency.

6 Conclusion

In this paper, we proposed continual hashing to allow a
designer to detect state inconsistency between two models
at a fine-grain tick granularity. We presented an incremen-
tal hash based on a simple multiplicative block hash to min-
imize the performance overhead. Our evaluation showed
that deploying fine-grain state inconsistency checking is
feasible. Total bug detection time can be reduced even fur-
ther by multi-pass consistency checking, i.e., using coarse-
grain sweeping followed by fine-grain sweeping.

The hash signature is a compact summary of not only
the architectural state but also the state path taken at any
point in time, and can be used for other applications. For
example, a stream of hash signatures can be used to replay
a bug to confirm that the same sequence of state transitions
is followed.

7 Acknowledgements

We thank Nirav Dave for helpful discussion in an early
phase of this work. This work was partly funded by Nokia
Inc. and NSF Award CCF-0541164.

References

[1] http://www.bluespec.com.
[2] http://xiph.org.
[3] A. Bruce et al. Maintaining consistency between SystemC

and RTL system designs. In DAC ’06: Proceedings of
the 43rd Design Automation Conference, pages 85–89, New
York, NY, USA, 2006. ACM Press.

[4] A. J. Hu. High-level vs. RTL combinational equivalence: An
Introduction. In 24th International Conference on Computer
Design (ICCD 2006), San Jose, CA, USA, 2006.

[5] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental
cryptography and application to virus protection. In STOC
’95: Proceedings of the 27th ACM Symposium on Theory of
Computing, pages 45–56, New York, NY, USA, 1995. ACM
Press.

[6] J. R. Burch and D. L. Dill. Automatic verification of
pipelined microprocessor control. In CAV ’94: Proceedings
of the 6th International Conference on Computer Aided Ver-
ification, pages 68–80, London, UK, 1994. Springer-Verlag.

[7] C. H.-P. Wen et al. Simulation-based functional test justi-
fication using a boolean data miner. In 24th International
Conference on Computer Design (ICCD 2006), San Jose,
CA, USA, 2006.

[8] D. Brier and R. S. Mitra. Use of C/C++ models for architec-
ture exploration and verification of DSPs. In DAC ’06: Pro-
ceedings of the 43rd Design Automation Conference, pages
79–84, New York, NY, USA, 2006. ACM Press.

[9] Donald E. Knuth. The Art of Computer Programming, Vol-
ume 3 (2nd ed.): Sorting and Searching. Addison Wesley
Longman Publishing, Redwood City, CA, USA, 1998.

[10] Frank Ghenassia et al. Transaction-level Modeling with Sys-
temC. Springer, Dordrecht, The Netherlands, 2005.

[11] Helion Technology Limited. Helion IP Core Products - Au-
thentication cores. http://www.heliontech.com.

[12] J. C. Smolens et al. Fingerprinting: Bounding soft-error de-
tection latency and bandwidth. In ASPLOS-XI: Proceedings
of the 11th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 224–234, New York, NY, USA, 2004. ACM Press.

[13] A. Koelbl, Y. Lu, and A. Mathur. Embedded tutorial: For-
mal equivalence checking between system-level models and
RTL. In ICCAD ’05: Proceedings of the 2005 IEEE/ACM
International Conference on Computer-Aided Design, pages
965–971, Washington, DC, USA, 2005.

[14] M. N. Mneimneh and K. A. Sakallah. Principles
of sequential-equivalence verification. IEEE Des. Test,
22(3):248–257, 2005.

[15] R. C.-W. Phan and D. Wagner. Security considerations for
incremental hash functions based on pair block chaining.
Computers & Security, 25(2):131–136, 2006.

[16] T. Sporer, K. Brandenburg, and B. Edler. The use of multi-
rate filter banks for coding of high quality digital audio. In
In Proceedings of the 6th European Signal Processing Con-
ference, pages 211–214, 1992.

[17] Y.-C. Hsu et al. Advanced techniques for RTL debugging.
In DAC ’03: Proceedings of the 40th Conference on Design
Automation, pages 362–367, New York, NY, USA, 2003.


