
A Low-Power 32 bit Datapath Design

by

Seongmoo Heo

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2000

c
2000 Massachusetts Institute of Technology
All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 15, 2000

Certified by .
Krste Asanovíc

Assistant Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

A Low-Power 32 bit Datapath Design

by

Seongmoo Heo

Submitted to the Department of Electrical Engineering and Computer Science
on August 15, 2000, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In this thesis, we design a low-power 32 bit datapath with a five-stage pipeline for a single-issue
MIPS RISC microprocessor. We compare various designs of flipflops, latches, and muxes
in terms of power, delay, and PDP (Power-Delay Product) since they are the most common
building blocks in the datapath. We develop new precise analytic energy models for flipflops,
latches, and muxes.

We develop a new simulation-based energy model, thenet-transition energy model, to
calculate energy consumption quickly and accurately. The energy model combines effective
capacitance values extracted from layout and transition counts obtained from a simulator to
estimate energy dissipation. We build acapacitance merging methodto extract precise effective
capacitance values from layouts. Also, we model the short-circuit energy for an inverter.

We custom-design the prototype datapath for a 0.25�m TSMC process. We show design
decisions on metal allocation, floor planning, and an adder — one of the most important blocks
in the datapath. We develop an area-efficient logic unit design. Also, we explore shifter designs
– a simple but essential block in the datapath – including our new shifter design, asplit log
shifterusing SPECint95 and Dhrystone benchmarks. We find that the barrel shifter is a better
choice than any log shifter.

Finally, we analyze the datapath energy consumption using our energy model. We show
energy breakdowns by components and functional blocks. We develop a novel method that
chooses better designs of flipflops and latches in different places of the datapath, based on the
data and clock activities. We also examine the effect of clock gating.

Thesis Supervisor: Krste Asanovi´c
Title: Assistant Professor

3

4

A Low-Power 32 bit Datapath Design

by

Seongmoo Heo

Submitted to the Department of Electrical Engineering and Computer Science
on August 15, 2000, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In this thesis, we design a low-power 32 bit datapath with a five-stage pipeline for a single-issue
MIPS RISC microprocessor. We compare various designs of flipflops, latches, and muxes
in terms of power, delay, and PDP (Power-Delay Product) since they are the most common
building blocks in the datapath. We develop new precise analytic energy models for flipflops,
latches, and muxes.

We develop a new simulation-based energy model, thenet-transition energy model, to
calculate energy consumption quickly and accurately. The energy model combines effective
capacitance values extracted from layout and transition counts obtained from a simulator to
estimate energy dissipation. We build acapacitance merging methodto extract precise effective
capacitance values from layouts. Also, we model the short-circuit energy for an inverter.

We custom-design the prototype datapath for a 0.25�m TSMC process. We show design
decisions on metal allocation, floor planning, and an adder — one of the most important blocks
in the datapath. We develop an area-efficient logic unit design. Also, we explore shifter designs
– a simple but essential block in the datapath – including our new shifter design, asplit log
shifterusing SPECint95 and Dhrystone benchmarks. We find that the barrel shifter is a better
choice than any log shifter.

Finally, we analyze the datapath energy consumption using our energy model. We show
energy breakdowns by components and functional blocks. We develop a novel method that
chooses better designs of flipflops and latches in different places of the datapath, based on the
data and clock activities. We also examine the effect of clock gating.

Thesis Supervisor: Krste Asanovi´c
Title: Assistant Professor

Acknowledgments

First of all, I’d like to thank my great advisor, Krste Asanovi´c, deeply for his inspiring advice

and guidance and also for spending a great deal of time and energy for this thesis. He let me

realize how fun research is. I truly thank him for giving me chance to work with him.

I also thank my awesome group mates: Ronny Krashinsky, Mike Zhang, Jessica Tseng,

Mark Hampton, Albert Ma, Luis Villa, and Serhii Zhak for helpful discussions and for helping

with my thesis. In particular, I give special thanks to Ronny Krashinsky for helping me with

English writing. He willingly spent lots of time and energy and made my thesis readable.

I want to thank my sweetheart and also my best buddy, Jieun Yoo, very much for her loving

care. She gave me the boundless encouragement and motivation and led me to finish this thesis.

Finally, I want to thank my wonderful parents and my cute sister for all the support and for

believing in me.

I should point out that much of energy modeling (Chapter 3) was co-work with Ronny

Krashinsky and Mike Zhang. In particular, Mike Zhang developed a custom tool,mergecap

and Ronny Krashinsky built theSyCHOSyscycle-accurate simulator. Also, Jessica Tseng

provided her register file design.

Life is good!

5

6

Contents

1 Introduction 15

2 Flipflop, Latch, and Mux 19

2.1 Simulation Test Bench . 20

2.2 Flipflop . 20

2.2.1 Delay . 21

2.2.2 Power . 22

2.2.3 PDP . 25

2.3 Latch . 26

2.3.1 Delay . 27

2.3.2 Power . 28

2.3.3 PDP . 29

2.4 Mux . 30

3 Energy Modeling 35

3.1 Sources of Power Dissipation in Digital CMOS Circuits 35

3.2 Previous Energy Models . 36

3.3 Node-Transition Energy Model .. 38

3.3.1 Transition Counts Gathering 38

3.3.2 Capacitance Merging Method . 40

3.3.3 Calibrating Effective Gate and Drain Capacitance 43

3.3.4 Energy Calculation . 48

3.3.5 Evaluation of Our Energy Model . 50

7

3.4 Short-Circuit Energy Modeling of an Inverter 51

4 Datapath Design 57

4.1 VLSI Design . 59

4.1.1 Full-custom Design . 59

4.1.2 Metal Allocation . 59

4.2 Floor planning . 61

4.3 ALU . 62

4.3.1 Adder Design . 62

4.3.2 Logic Unit and Branch Checker Design 65

4.4 Shifter . 66

4.4.1 Types of Shifters . 67

4.4.2 Analysis of Shift Instructions . 68

4.4.3 Comparison of Shifters . 69

4.5 Clock Gating . 76

5 Analysis of Datapath Energy 79

5.1 Benchmarks . 79

5.2 Energy Breakdown . 80

5.2.1 Energy Breakdown By Component Type 80

5.2.2 Functional Energy Breakdown . 81

5.3 Selection of Flipflops and Latches . 84

5.3.1 Data Activity . 84

5.3.2 Clock Activity . 85

5.3.3 Power and PDP Curves for Flipflop and Latch Selection 86

5.4 Effect of Clock Gating 89

6 Conclusion 93

8

List of Figures

1-1 Our approach to low-power datapath design.. 16

2-1 Test bench for flipflops, latches, and muxes.. 20

2-2 Modified PowerPC flipflop.. 21

2-3 HL flipflop. 21

2-4 StrongArm 110 flipflop.. 22

2-5 Transmission-gate flipflop. 23

2-6 Power dissipation of flipflops (clock activity=1).. 25

2-7 Power dissipation of modified PowerPC flipflop.. 26

2-8 PDP graphs of flipflops.. 27

2-9 PDP of flipflops when clock activity rate is fixed.. 28

2-10 PowerPC 603 MS latch.. 29

2-11 Pass-transistor latch.. 29

2-12 PDP of latches.. 30

2-13 PDP of latches when clock activity is fixed.. 31

2-14 Transmission-gate mux.. 32

2-15 Pass-transistor mux.. 32

3-1 A 3-input Transmission-gate mux.. 39

3-2 A PowerPC-style flipflop.. 40

3-3 A 4-bit Manchester carry chain.. 41

3-4 Sum of an inverter’s PMOS and NMOS drain capacitances.. 42

3-5 Schematic of cascaded inverters and the capacitances connected to the

internal node . 43

9

3-6 Layout of cascaded inverters.. 43

3-7 The netlist and the capacitance file of a cascaded two inverters.. 44

3-8 Two FO4 inverter chains.. 45

3-9 Gray inverter.. 46

3-10 Deriving gp, dp, gn and dn from measurements.. 47

3-11 Verification of gate and drain capacitance coefficients. P/N is the ratio of PMOS width

to NMOS width. 48

3-12 Energy equations of N bit 3-input mux, N-bit positive flipflop, and 4-bit Manchester

carry chain.. 49

3-13 Mux, latch, flipflop and mux-latch: measured energy vs. estimated energy. Ideally, all

points should fall on the line.. 50

3-14 Two kinds of short circuit current.. 52

3-15 Measurements of fall short-circuit energy for various inverters.. 53

3-16 Measurements of rise short-circuit energy for various inverters.. 54

3-17 Error between the measured average short-circuit energy and the calculated one using

table lookup. 55

4-1 Pipeline diagram for datapath. 58

4-2 Layout of the datapath. 60

4-3 Metal allocation. 61

4-4 Floorplan of datapath (except coprocessor 0).. 63

4-5 Floorplan of coprocessor 0.. 64

4-6 Modified propagate(P) and generate(G) circuit for ALU.. 66

4-7 A barrel shifter. 67

4-8 Logarithmic shifters. 68

4-9 Shift instructions.. 69

4-10 Left shift amounts. 70

4-11 Right shift amounts.. 71

4-12 Average energy of left shifters.. 73

4-13 Average energy of right shifters.. 74

10

4-14 Energy-delay product of left shifters.. 75

4-15 Energy-delay product of right shifters.. 76

4-16 Clock gating circuit. 77

5-1 Average energy breakdown by component type.. 80

5-2 Average functional energy breakdown.. 82

5-3 Average more detailed functional energy breakdown.. 83

5-4 Input data activity of flipflops in the datapath.. 85

5-5 Input data activity of latches in the datapath.. 86

5-6 Clock and data activities for various flipflops. A solid curve is a PDP curve and a

dashed curve is a power curve.. 87

5-7 Clock and data activities for various latches. A solid curve is a PDP curve and a dashed

curve is a power curve.. 88

5-8 The effect of clock gating in terms of components.. 89

5-9 The effect of clock gating in terms of functional blocks.. 90

5-10 The effect of clock gating in terms of sub-functional blocks.. 91

11

12

List of Tables

2.1 MOS model parameters and conditions.. 19

2.2 Minimum D-Q delay measurements of flipflops.. 22

2.3 Power measurements of flipflops (clock activity=1).. 24

2.4 Power measurements of flipflops (clock activity=0).. 24

2.5 PDP of flipflops (clock activity=1). 24

2.6 PDP of flipflops (clock activity=0). 25

2.7 D-Q delay measurements of latches.. 27

2.8 Power and PDP measurements of latches (clock activity=1).. 28

2.9 Power and PDP measurements of latches (clock activity=0).. 29

2.10 Delays and energy consumptions measurements of muxes.. 32

2.11 Average energy consumptions and EDP (Energy-Delay Product) of muxes.. 33

3.1 Short-circuit energy calculation table for an inverter. Average short-circuit energy is

the average of fall and rise short-circuit energy.. 54

4.1 Various adder designs.. 64

4.2 Control signals for logic operation.. 65

4.3 Worst case delay of shifters. (The barrel shifter delay includes the worst case decoder

delay, 0.37 ns.). 72

5.1 Benchmarks used.. 79

5.2 Energy breakdown by component type (pJ/cycle (%)).. 81

5.3 Functional energy breakdown (pJ/cycle (%)).. 84

5.4 More detailed functional energy breakdown (pJ/cycle).. 84

13

14

Chapter 1

Introduction

As portability and embedibility become increasingly crucial for all kinds of electronic devices,

the demand for low-power microprocessors is exploding. Building low-power microprocessors

is challenging because performance must be maintained while lowering energy consumption.

There has been tremendous research effort in this field and, as a result, many low-power

microprocessors with remarkable performance have been produced. However, although low-

power techniques for designing memory blocks such as RAMs or basic blocks such as an adder

have been studied intensively, little work has been done in systematic design of a complete

low-power datapath design — the core of the microprocessor. Accordingly, there is little

understanding of why and how energy is consumed in a microprocessor datapath.

The main goal of our research is to design a prototype low-power datapath and analyze

the energy consumption of the datapath. Of particular hindrance to low-power design of a

datapath is its intrinsic complexity. Datapaths are collections of numerous irregular blocks

which perform various functions. They have complex interconnect structures, a wide variety

of circuit types, and a rich set of activation patterns [8]. This complexity makes both the

analysis of datapath energy consumption and the application of low-power techniques difficult.

Therefore, we restrict our research to a simple datapath — a MIPS-II single-issue five-stage

pipelined RISC datapath. The MIPS architecture is one of the simplest RISC instruction

set architectures (ISAs) [6]. The main blocks of the datapath are a register file, an ALU, a

shifter, a multiplier/divider, and aligners/sign-extenders for load and store instructions. Also,

the datapath includes a program counter (PC) generation block and a system coprocessor block.

15

ALU and Shifter Design

Basic Building Blocks
(Flipflops, latches, and muxes) Energy Estimation Model

Prototype Datapath Design

Energy Analysis of Datapath

Design

Figure 1-1:Our approach to low-power datapath design.

We believe that this research can be a base for future studies of more complicated low-power

datapath designs which issue multiple instructions at the same time and which have more

pipeline stages.

We approach our low-power datapath design problem in a bottom-up fashion (Figure 1-

1). First, we notice that flipflops, latches, and muxes are the most common and frequently-

used building blocks in the datapath. Accordingly, their power consumption accounts for a

significant portion of total power consumption. Therefore, we believe that a crucial first step

when building a low-power system is to find flipflops, latches, and muxes which have good

power and delay properties. In Chapter 2, we compare various flipflops, latches, and muxes

intensively in terms of power and delay. We find that the traditional energy measurements of

flipflops and latches which assume random input and un-gated clock are misleading especially

for the datapath flipflops and latches, because the datapath gives a wide variety of data and

clock activities to flipflops and latches. We develop analytic energy models for flipflops and

latches which present energy dissipation of flipflops and latches as a two-variable function of

input data and clock activities, and thus show dynamic features of energy dissipation. As for

muxes, we develop an analytical energy comparison method.

For the detailed energy analysis of the datapath, we require a fast and accurate energy

estimation tool, since circuit simulators are too slow to use for large systems such as our

16

datapath. However, we find that existing energy estimation tools cannot satisfy both speed

and accuracy requirements. They sacrifice one criterion or the other. Therefore, we decided

to develop a new simulation-based energy estimation technique, thenet-transition energy

model, described in Chapter 3. The basic idea of this technique is to calculate energy

dissipation by using effective capacitance values and transition counts for each node. We

can get accurate transition counts from a simulator. The accuracy of this method depends

mainly on that of the effective capacitance values. In order to calculate these precisely,

we develop acapacitance merging method, which calculates transistor capacitances using

empirical equations and merges them along with parasitic wire capacitances into one single

effective capacitance for each node in the circuit. In Chapter 3, we present results from our

evaluation that show close agreement (<8% error) with Hspice measurements for various basic

circuit blocks and a 32-bit GCD (Greatest Common Divisor) circuit, which can be regarded as

a small version of a datapath. One limitation of our energy modeling is that it ignores the

short-circuit energy which accounts for a significant portion (5-10%) of energy consumption

in digital CMOS circuitry. We observe that most of short-circuit energy in the datapath is due to

inverters, therefore, we try to characterize the short-circuit energy of an inverter with a model

which is within 8% error compared to Hspice measurements.

Chapter 4 describes the custom-design of a prototype datapath for a 0.25�m five metal

process (from TSMC). We detail the VLSI design style and the floor planning of the datapath.

Apart from the flipflops, latches, and muxes, the ALU block is one of main components of the

datapath. We discuss our decision of the adder design and develop an area-efficient logic unit

design. Also, we explore shifter designs because a shifter is an essential block in a datapath and

its simple structure makes energy investigation easy. First, we study dynamic instruction traces

to get a better understanding of the role of a shifter in a datapath. Then, we compare a barrel

shifter and various logarithmic shifters including our new shifter design, asplit shifter, in terms

of delay and power. We use benchmarks to get more realistic activation patterns for energy

analysis. We show that the barrel shifter is a better choice than any log shifter. We include the

register file in our energy breakdowns, but the design is taken from earlier work [17].

Finally, in Chapter 5, we analyze the datapath energy using our energy model and

benchmarks. We perform energy breakdown by components and show that basic building

17

blocks such as flipflops, latches, and muxes, account for over half the total energy (56%). We

also try energy breakdown by functional blocks and reveal that register file read, bypassing,

and the PC generation account for significant portions of the total energy (20%, 22%, and 19%

respectively). Also, we develop a novel method that chooses better designs of flipflops and

latches in different places of the datapath, based on the data and clock activities. Also, we

examine the effect of clock gating and show 25.1% energy reduction by thorough clock gating.

Chapter 6 concludes and summarizes the work herein.

18

Chapter 2

Flipflop, Latch, and Mux

Flipflops, latches, and muxes are the most common blocks in the datapath. Accordingly, their

power consumption accounts for a significant portion of total power dissipation. In particular,

latches and flipflops have local clocks which burn power every cycle if they are not gated.

Therefore, a crucial first-step when we build a low power system is to find flipflops, latches,

and muxes which have good energy-delay products. Before building the datapath, we carefully

compared various possible design candidates of flipflops, latches, and muxes.

This chapter begins by describing our simulation test bench. Comparisons of flipflops,

latches, and muxes in terms of delay, power, and PDP (Power-Delay Product) or EDP (Energy-

Delay Product) follow. Stojanovic at al. [15] established a set of rules for consistent estimation

of the real performance and power features of the different flipflop structures for fair and

realistic comparison. We extend their work to latches and muxes and also introduce new,

precise energy comparison methods for flipflops, latches, and muxes.

Technology: TSMC 0.25�m process
MOSFET Model: Level 49 BSIM3 Ver3.1
Conditions: Vdd=2.5V, T=25�C

Table 2.1:MOS model parameters and conditions.

19

0.2 ns

Input Supply Internal Supply

3 fF

Flipflop,
Latch,

or Mux

Figure 2-1:Test bench for flipflops, latches, and muxes.

2.1 Simulation Test Bench

All experiments were done using Hspice and measurements were made using Hspice’s

.measure command. Table 2.1 shows the parameters and conditions used in our simulation

and Figure 2-1 shows the test bench for simulation. To give more realistic input and clock

signals to the circuits, buffers consisting of two cascaded inverters were used. The ideal input

and clock signals to the buffers had 0.2 ns rail-to-rail rise/fall times which are typical for the

0.25�m process. We assumed that all input data transitions happen at most once per cycle.

For a flipflop, input transitions happen before the primary clock edge (e.g. the rising edge

for a positive flipflop) and for a latch, they happen when the latch is transparent. The clock

frequency was fixed at 333 MHz which represents around 16 FO4 (fanout-of-4) delays in our

process technology. All outputs were loaded with a 3 fF capacitor which is around the same as

the capacitance load as four minimum inverters. All cells were optimized to have low power

consumption using small-sized transistors. Currents from input and internal supplies were

integrated to calculate input and internal energy consumptions.

2.2 Flipflop

We chose a set of representative flipflops which can hold their output values when clock is

gated (to low value) in an energy saving mode. For this reason, purely dynamic flipflops were

excluded from the potential candidates. We experimented with the following flipflops:

1. Modified PowerPC 603 flipflop: pseudo-static master-slave style. Because it is not

fully static, it requires a minimum clock frequency (Figure 2-2), but can hold values

20

Figure 2-2:Modified PowerPC flipflop.

Figure 2-3:HL flipflop.

indefinitely when clock is gated.

2. HLFF flipflop: hybrid style (Figure 2-3).

3. StrongArm110 flipflop: differential sense-amplifier based style (Figure 2-4).

4. Transmission-gate flipflop: pseudo-static master-slave style with a cross coupled inverter

pair to store the output. This also requires a minimum clock frequency (Figure 2-5).

2.2.1 Delay

There are many important timing parameters in the flipflop such as Clk-Q delay, D-Q delay,

setup time, and hold time. As described in Stojavnovic’s paper [15], Clk-Q delay (which is

commonly used as a relevant performance parameter) doesn’t include setup time, and suffers

from the fact that the last transition of input (before the clock) affects Clk-Q delay significantly.

21

Figure 2-4:StrongArm 110 flipflop.

min D-Q 1 to 0 (ps) min D-Q 0 to 1 (ps) max (ps)

Modified PowerPC 305.6 328.1 328.1
HLFF 158.6 245.6 245.6

StrongArm 354.8 290.6 354.8
TG 366.5 313.4 366.5

Table 2.2:Minimum D-Q delay measurements of flipflops.

On the other hand, a minimum D-Q delay yields the optimum setup time and the best possible

performance [15]. Therefore we chose the minimum D-Q delay as our delay parameter.

Table 2.2 shows the delay measurements. We see HLFF is the fastest structure, and the other

three flipflops have similar performance. Where speed is the primary concern, HLFF is the

best choice.

2.2.2 Power

There are three major sources of energy consumption in a flipflop: input energy, which

represents the energy dissipated to drive the input of the flipflop; internal energy, the energy

22

Figure 2-5:Transmission-gate flipflop.

dissipated at the internal nodes; and clock energy, the energy dissipated in the local clock buffer

driving the clock.

One important fact about the energy dissipation of a flipflop is that it is a function not only of

its input data, but also a function of clock activity. Energy can be saved by gating the clock, as is

commonly done in modern low-power designs. However, even when the clock is frozen, there

is some power dissipation due to input data transitions. Another fact is that the various flipflops

in the datapath have significantly different input and clock activity patterns. For example,

the flipflops for PC (Program Counter) usually have few input transitions since the PC value

changes infrequent in the high order bits but their clocks can rarely be gated. On the other hand,

the flipflops which latch the data that will be stored to memory, get input with relatively many

transitions. But, because the flipflops are needed only for store instructions, their clocks can

be gated most of time. Therefore, we decided to analyze energy consumption for both varying

input data and clock activities. This extends the previous work [15] by realizing the importance

of clock activity for power consumption, which was overlooked in the previous work. Here, we

define input data and clock activities for our convenience as follows: input data activity means

the average transitions per cycle of input data, and clock activity is the ratio of the time when

the clock is not gated to the total time.

First, we measured energy dissipations for four different input data patterns when the clock

activity is 100%. The first sequence (...0101010101...) alternates every cycle, the maximum

possible activity, the second sequence (...0110011001...) has one transition every two cycles,

and the third sequence (...0000000000...) and the fourth sequence (...1111111111...) have

no transitions, that is, the lowest data activity. Also, we experimented with the same data

sequences when the clock is frozen. Table 2.3 and Table 2.4 show the measurements of power

23

Power(uW)
Input data sequenceModified PowerPC HLFF StrongArm TG

...0000000000... 52.6 111.4 78.9 43.5

...1111111111... 52.9 230.0 81.2 41.9

...0101010101... 117.5 304.1 141.6 126.8

...0011001100... 84.4 238.8 112.5 84.8

Table 2.3:Power measurements of flipflops (clock activity=1).

Power(uW)
Input data sequenceModified PowerPC HLFF StrongArm TG

...0000000000... 0.0 0.0 0.0 0.0

...1111111111... 0.0 0.0 0.0 0.0

...0101010101... 25.4 15.5 17.9 28.2

...0011001100... 11.5 5.8 10.2 12.2

Table 2.4:Power measurements of flipflops (clock activity=0).

dissipation. Table 2.5 and Table 2.6 show the corresponding PDPs for flipflops.

Figure 2-6 shows the power consumptions of flipflops when the clock activity is 1. We

notice that power dissipation can be modeled as a linear function of data activity rate (likewise,

when the clock activity rate is 0). We can model the power dissipation of a flipflop asf(d; c)

(whered and c represent data and clock activity rate). We can get two linear functions of

variabled, f(d; 0) andf(d; 1) using the experimental measurements. If clock activity isc (0

� c � 1), then the clock is on forc � TotalT ime and off for(1� c) � TotalT ime. Therefore,

we can expressf(d; c) as the following equation.

f(d; c) = c � f(d; 1) + (1� c) � f(d; 0)

Figure 2-7 shows a 3-dimensional power dissipation graph for the modified PowerPC

flipflop which was constructed using the equation. The height represents power dissipation

PDP (fJ)
Input data sequenceModified PowerPC HLFF StrongArm TG

...0000000000... 16.7 22.5 25.5 14.7

...1111111111... 16.8 46.5 26.2 14.2

...0101010101... 37.2 61.5 45.7 43.1

...0011001100... 26.7 48.3 36.3 28.8

Table 2.5:PDP of flipflops (clock activity=1).

24

PDP (fJ)
Input data sequenceModified PowerPC HLFF StrongArm TG

...0000000000... 0.0 0.0 0.0 0.0

...1111111111... 0.0 0.0 0.0 0.0

...0101010101... 8.1 3.1 5.8 9.6

...0011001100... 3.6 1.2 3.3 4.2

Table 2.6:PDP of flipflops (clock activity=0).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

P
ow

er
 (

uW
)

Data Activity Rate (avg. transition per cycle) when clock activity rate is 1

Power consumptions of Flipflops

HLFF

StrongArm

TG

Modified PowerPC

Figure 2-6:Power dissipation of flipflops (clock activity=1).

while the x axis is data activity and the y axis is clock activity. We see it spends the maximum

power (Point A) when data and clock activity are both maximum (c = d = 1). Also, as we

expected, we notice that there is non-trivial power dissipation if the data activity is high even

when the clock is frozen. For example, if data alternates every cycle (d = 1) when clock is off

(c = 0), the flipflop spends around 25% of the maximum power (Point B). On the other hand,

the flipflop spends over 50% of the maximum power (Point C) even when there is no transition

in input data if the clock is left un-gated.

2.2.3 PDP

Figure 2-8 shows PDP graphs for the flipflops. We can see that the modified PowerPC flipflop

has the best power-delay product among the various candidates for most of the clock and data

patterns. Especially when clock and data activities are both high, the modified PowerPC flipflop

25

0

0.5

1

0
0.2

0.4
0.6

0.8
1
0

20

40

60

80

100

120

Data Activity Rate

Power dissipation of Modified PowerPC flipflop

Clock Activity Rate

P
ow

er
 (

uW
)

Point C
Point B

Point A

Figure 2-7:Power dissipation of modified PowerPC flipflop.

is the most attractive choice. We sliced PDP graphs in order to have a closer look. Figure 2-

9 shows the PDP of the flipflops when clock activity rates are 1, 0.75, 0.5, and 0.25. We

find that if the data activity rate is less than 0.2, the TG flipflop is a better choice than the

modified PowerPC flipflop regardless of clock activity since the TG flipflop has less clock

energy. However, the PDP of the TG flipflop increases faster than the others as data activity

rate increases. For example, when clock activity rate is 0.25 and data activity rate increases,

the TG flipflop falls from the best choice to the worst.

2.3 Latch

Two popular latches were compared: the PowerPC 603 latch and the Pass-transistor latch. The

PowerPC 603 latch is a static latch which uses a transmission-gate as its switch. The Pass-

transistor latch is a static latch which has a cross-coupled inverter pair. Both can maintain

their output values when their local clocks are gated for saving energy. Figure 2-10 shows the

PowerPC 603 MS latch and Figure 2-11 shows the Pass-transistor latch. One problem with the

Pass-transistor latch is that the threshold voltage drop across the pass-transistor switch can be

fatal if the supply voltage is not high enough.

26

0
0.5

1

0

0.5

1
0

20

40

60

Data Activity Rate

Modified PowerPC

Clock Activity Rate

P
D

P
 (

fJ
)

0
0.5

1

0

0.5

1
0

20

40

60

Data Activity Rate

HLFF

Clock Activity Rate

P
D

P
 (

fJ
)

0
0.5

1

0

0.5

1
0

20

40

60

Data Activity Rate

TG

Clock Activity Rate

P
D

P
 (

fJ
)

0
0.5

1

0

0.5

1
0

20

40

60

Data Activity Rate

StrongArm

Clock Activity Rate

P
D

P
 (

fJ
)

Figure 2-8:PDP graphs of flipflops.

PowerPC PT

D-Q 1 to 0 (ps) 197.7 311.2
D-Q 0 to 1 (ps) 184.0 251.9
Max D-Q (ps) 197.7 311.2

Table 2.7:D-Q delay measurements of latches.

2.3.1 Delay

Among the many timing parameters of a latch, the D-Q delay (the propagation delay from input

transition to output transition when a latch is transparent) was chosen as the delay parameter

since it best represents the performance (or speed) of the latch. From Table 2.7 we see that

the PT latch is slower than the PowerPC latch. In the PT latch, unlike PowerPC latch, there

is a conflict between the NMOS and PMOS transistors at the internal node before the output

inverter, which harms PT latch performance.

27

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

Data Activity Rate

P
D

P
 (

fJ
)

Clock Activity Rate = 1

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

Data Activity Rate

P
D

P
 (

fJ
)

Clock Activity Rate = 0.75

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

Data Activity Rate

P
D

P
 (

fJ
)

Clock Activity Rate = 0.5

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Data Activity Rate

P
D

P
 (

fJ
)

Clock Activity Rate = 0.25

modified PowerPC
HLFF
StrongArm
TG

Figure 2-9:PDP of flipflops when clock activity rate is fixed.

Power(uW) PDP (fJ)
Input data sequencePowerPC PTL PowerPC PTL

...0000000000... 37.4 14.8 7.1 4.2

...1111111111... 36.3 19.8 6.9 5.6

...0101010101... 79.2 106.9 15.1 30.1

...0011001100... 56.5 59.3 10.8 16.7

Table 2.8:Power and PDP measurements of latches (clock activity=1).

2.3.2 Power

Similar to a flipflop, a latch has three primary sources of power dissipation: input power,

internal power, and clock power. We measured the total power consumption with the same

input sequences used for the flipflop experiments when clock activity is 1 and 0. Table 2.8

and Table 2.9 show the measurements. The measurements indicate that we can model power

dissipation of a latch as a linear function of data activity when clock activity is constant. Also,

using the same reasoning as that used for flipflop power modeling, we can estimate the power

dissipation of a latch,f(d; c) asc � f(d; 1) + (1� c) � f(d; 0).

28

Figure 2-10:PowerPC 603 MS latch.

Figure 2-11:Pass-transistor latch.

2.3.3 PDP

Figure 2-12 shows PDP graphs of two latches. We can see clearly that the PowerPC latch

is a better choice when clock and data activity are high. But if we have a closer look at the

PDP graphs (Figure 2-13) we find that the PT latch gives a better power-delay product when

data activity is lower than 0.1 regardless of clock activity. This is because most of the power

dissipation is clock power when data activity is low and the PT latch spends very little clock

power since the clock signal is only connected to one NMOS transistor.

Power(uW) PDP (fJ)
Input data sequencePowerPC PTL PowerPC PTL

...0000000000... 0 0 0 0

...1111111111... 0 0 0 0

...0101010101... 12.9 14.4 2.5 4.1

...0011001100... 5.7 7.4 1.1 2.1

Table 2.9:Power and PDP measurements of latches (clock activity=0).

29

0
0.5

1

0

0.5

1
0

10

20

30

Data Activity Rate

PowerPC Latch

Clock Activity Rate

P
D

P
 (

fJ
)

0
0.5

1

0

0.5

1
0

10

20

30

Data Activity Rate

PT Latch

Clock Activity Rate

P
D

P
 (

fJ
)

Figure 2-12:PDP of latches.

2.4 Mux

We have experimented with two different muxes: a Transmission-gate (TG) mux, shown in

Figure 2-14, and a Pass-transistor (PT) mux, shown in Figure 2-15. The PT mux uses one

NMOS pass transistor as a selection switch. Thus, it can’t charge up the internal node before

the output inverter to Vdd. Accordingly, a small PMOS keeper whose gate is connected to the

output and whose drain is connected to the internal node, is needed for full charge.

There are two important timing parameters in a mux design: the D-Q delay and the S-Q

delay. The D-Q delay is defined as the propagation delay from the input transition to the

resulting output transition while the control signals remain unchanged. The S-Q delay is

defined as the propagation delay from the change of the control signals to the resulting output

transition while the inputs stay the same.

We identified three main sources of energy dissipation in a mux: pass energy, non-pass

energy, and control energy. We define pass energy as the total energy consumption when one

input transition goes through a mux and makes an output transition while other inputs and

select signals stay the same. Non-pass energy is defined as the energy consumption due to

one transition of a not-chosen input. We define control energy as the energy consumption by

control signal drivers when there is a change of control signals (while inputs stay the same).

Using these components, we can model the average total energy consumption of an N-input

mux using the following equation.

30

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Data Activity Rate

P
D

P
 (

fJ
)

Clock Activity Rate = 1

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Data Activity Rate

P
D

P
 (

fJ
)

Clock Activity Rate = 0.75

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Data Activity Rate

P
D

P
 (

fJ
)

Clock Activity Rate = 0.5

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Data Activity Rate

P
D

P
 (

fJ
)

Clock Activity Rate = 0.25

PowerPC
 PT

Figure 2-13:PDP of latches when clock activity is fixed.

Average Energy Consumption per cycle =

� * Pass Energy +� * (N-1) * Non-pass Energy +
 * Control Energy

In the equation,� is the average switching rate of the chosen input,� is that of all the non-

chosen inputs and
 is the probability that the mux selects a different input from the previous.

We made the following preliminary assumptions for comparison purpose. We assumed that

a mux chooses an input randomly every cycle. Then
 is (N-1)/N. Also, we assumed that all

input data are random but change at most once per cycle. Therefore,� and� are 0.5.

Table 2.10 shows the experimental measurements. First, we notice that the TG mux has

less delay and pass energy. The PT mux has a fight between NMOS and PMOS transistors,

which the TG mux doesn’t have, when discharging the internal node before the output inverter.

This harms performance significantly and also results in a fair amount of short-circuit energy

loss, which contributes to the larger pass energy. Next, we see that the control energy of the TG

mux is around two times bigger than that of the PT mux because the TG mux has an additional

PMOS transistor per switch. However, we see that they dissipate similar amounts of non-pass

31

Figure 2-14:Transmission-gate mux.

Figure 2-15:Pass-transistor mux.

power.

Table 2.11 shows average energy consumption and energy-delay products (EDP) for 2 to 5

input muxes which are typical in the datapath. The average of D-Q delay and S-Q delay was

used as delay parameter when we calculated energy-delay products. First, we notice that if the

number of inputs are larger than 3, the PT mux consumes less power. As the number of inputs

(N) increases from 2 to 5,� and� remain unchanged, but
 gets larger since there is more

PT Mux TG Mux

D to Q delay (ns) 0.277 0.257
S to Q delay (ns) 0.253 0.200
Pass Energy (fJ) 110.5 77.3

Non-pass Energy (fJ) 22.3 23.2
Control Energy (fJ) 19.2 41.6

Table 2.10:Delays and energy consumptions measurements of muxes.

32

PT Mux TG Mux
Num. of input Energy (fJ) EDP (10�24 Js) Energy (fJ) EDP (10�24 Js)

2 76.0 20.1 71.1 16.2
3 90.4 24.0 89.6 20.5
4 103.1 27.3 104.7 23.9
5 115.2 30.5 118.3 27.0

Table 2.11:Average energy consumptions and EDP (Energy-Delay Product) of muxes.

chance of choosing different inputs. As a result, the portion of control energy to total energy

also increases. Therefore, the PT mux which has less control energy, does better than the TG

mux when N is large. Likewise, it is expected that the PT mux will spend less power where

there are frequent control signal transitions and few input data transitions. However, for EDP,

the TG mux is a better choice than the PT mux as seen from the table. For this comparison, we

assumed random input data and mux selection. However, in order to make better decisions, we

need to find more realistic�, �, and
 values from real data statistics.

33

34

Chapter 3

Energy Modeling

This chapter begins by identifying major sources of energy consumption in modern digital

CMOS circuits. It is necessary to understand the energy consumption behavior of a circuit

before applying low-power techniques. Building a fast and accurate energy estimation model is

the first step for low-power design because it allows us to experiment with and evaluate various

low-power techniques. We discuss problems of previous energy models and then present and

evaluate our energy estimation model,net-transition energy model. We describe a short-circuit

energy model for an inverter at the end of this chapter.

3.1 Sources of Power Dissipation in Digital CMOS Circuits

There are three major sources of power dissipation in a digital CMOS circuit: dynamic

switching power due to charging and discharging circuit capacitances, leakage current power

including sub-threshold leakage and reverse-biased diode conduction leakage, and short-circuit

current power due to finite signal rise/fall times.

Dynamic switching power is the primary source of power dissipation in a digital CMOS

circuit; usually it accounts for around 90% of the total power dissipation. It can be modeled as

the following equation [4].

P = a � c � Vswing � Vdd � f
(a - switching activity,c - effective load capacitance,V swing - voltage change,

V dd - source voltage,f - clock frequency)

35

V dd andf can be regarded as constant numbers.V swing is equal toV dd in most cases

where complementary or dynamic CMOS circuit design styles are used. The other terms are

not as easy to quantify:c varies according to terminal voltages, rise/fall time, and coupling

effects whilea is most likely not random in the datapath, and has strong correlations with input

vectors.

Short-circuit currents occur because the rise/fall time of input signals are not zero. During

the finite rise/fall time, both PMOS and NMOS transistors are turned on, the path between Vdd

and GND is connected, and current flows. Usually the short-circuit power dissipation accounts

for approximately 5-10% of total power [2].

Leakage current power is significantly smaller than the other sources of power dissipation

in normal operation mode, but it can be the dominant component in standby mode. Over

time, the threshold voltage in process has been lowered to allow for lowerV dd for less power

consumption. As a result, the sub-threshold current, the main component of leakage current,

has been increasing rapidly. It is certain that the leakage current power will get more attention

in the near future.

3.2 Previous Energy Models

Circuit simulators such as Hspice [11] or Powermill [5] can be used to estimate energy usage.

The main advantages of circuit-level simulation are its accuracy and generality [13]. It can

estimate the energy consumption of any circuit very precisely regardless of technology, design

style, functionality, and architecture. However, it is computationally very expensive and too

slow to use for large systems such as our target microprocessor datapath. Therefore, a fast

energy estimation model with accuracy comparable to the circuit simulators is needed for

research in the design of large low-power systems.

Many approaches have been tried to model energy consumption quickly and accurately.

These approaches can be classified into three broad categories: statistical/empirical techniques,

probabilistic techniques, and simulation-based techniques [9].

The statistical technique simulates the circuit and measures the power consumption

repeatedly with circuit simulators using short random input patterns. When the average of

36

power measurements converges to a specific value, the simulation stops and the convergence

point indicates the average power. This technique was found to be accurate for some logic

gates [13]. However, the average power consumption derived from repeated simulations with

random sample input patterns, is not meaningful for strongly input-dependent circuits such as

a microprocessor. Additionally, the simulation of small input patterns with circuit simulators

may take a long time for large systems.

The probabilistic technique is based on the propagation of probabilities. The user provides

signal probabilities at the primary inputs and these are propagated into the circuit using Boolean

arithmetic and probability theory [13]. Using the probabilities of each node, the average power

of the circuit is estimated. It is fast and independent of input data. However, the accuracy

of this method is limited by the quality of the input signal probabilities specification and the

spatial and temporal correlation model between internal node values.

The simulation-based technique uses high-level simulators such as RTL (Register-Transfer

Level) simulators to count circuit node transitions, and calculates energy dissipation from

these. It is far more accurate than the previous methods since it is input-dependent and

also transition-sensitive. Its accuracy is almost comparable to that of a circuit-level simulator

while its speed is 5-7 orders of magnitude faster than that of circuit simulators [8]. However,

compared to previous energy models, it is still slower. By developing a fast high-level simulator

and trading off the simulation time and accuracy wisely, we can mitigate this disadvantage.

Additionally, this technique can provide detailed energy analysis such as spatial and temporal

energy breakdowns for real input loads such as SPECint benchmarks easily since it uses a

high-level simulator. Therefore we determined that the simulation-based technique is the

most appropriate for the study of microprocessor datapath energy consumption. It can give

us sufficient accuracy and enough information on many respects of energy consumption.

The most important part of the simulation-based energy model is to get the necessary

switching activities. However, getting switching activities is only the first part in the

simulation-based technique. The next part is converting them to energy consumption. One

possible solution is to make an energy calculation table for each module [19]. Basic blocks

are simulated using a circuit simulator for every possible input and internal-state combination,

energy consumption is measured, and then the table is constructed. After building an energy

37

table for every block of the system, we can calculate energy consumption by looking up pre-

computed values in the energy tables. This is accurate because it uses the energy measured from

a transistor-level simulator, but it has three obvious disadvantages. First of all, building energy

tables is not cheap. It is labor-intensive and time-consuming since we need to simulate every

module using every possible input and internal state combination. Second, it is not flexible.

If we need to change some features of a circuit block, for example, resizing transistors, we

can’t help but repeat the whole simulation of that block again in order to update the energy

lookup table of the block. Lastly, the table size (accordingly, the simulation time) grows

exponentially with the size of the input vector (for example, a 32 bit adder requires264 table

entries.) Clustering algorithms can be used to decrease the size of the energy tables, but they

lose a large amount of accuracy (up to 30% [10]).

3.3 Node-Transition Energy Model

We developed a new simulation-based energy model, theNode-Transition Energy Model,

based on acapacitance merging method. The basic idea of our method is simple: If we get

the effective, equivalent capacitance,Ceq and the 0-to-1 transition counts of every node, we

can calculate the dynamic energy consumption of each node by using the following simple

equation. The total energy of a circuit is the sum of the energy dissipation of every node.

Energy Consumption of a node = 0-to-1 Transition Counts *Ceq * V dd2.

In the following subsections, we first show how we gather transitions counts for all nets.

Next, we show how we calculate the accurate, effective capacitance for each net using our

capacitance merging method. Then, we show how we calculate energy consumption with the

transition counts and the effective capacitance using energy equations. Lastly, we evaluate our

energy model with sample circuit blocks.

3.3.1 Transition Counts Gathering

An important measurement for our energy model is the transition count. A conventional RTL

simulator only counts transitions at registers — not intermediate nodes. This is a limitation

38

Figure 3-1:A 3-input Transmission-gate mux.

because our energy model requires transition counts for every node including internal nodes in

the circuit. However, our simulator,SyCHOSys[8] enables us to gather the transition counts

for all interesting nodes in the circuit. First, it is cycle-accurate and it can count and gather

transitions on the nets which connect components together directly; that is, the input and output

transitions of components. Second, we can add any energy statistics gathering functions to our

simulator and the functions calculate and gather the transition counts on all the internal nodes.

We found that we can factor out many transition counts of internal nodes. First, for

simple components such as our buffers and muxes, internal node switchings are the same as

input/output transitions. Figure 3-1 shows the schematic of a 3-input transmission-gate mux

design. We can see that the transition counts ofin1b andoutb are the same as those ofin1

andoutput respectively since they are connected by inverters, and likewise the transition

counts of other internal nodes are the same as those of inputs and an output.

For other blocks such as latches and flipflops, the internal node switchings can also be

approximated using input/output transitions. Figure 3-2 shows the schematics of a modified

PowerPC-style positive edge-triggered flipflop. We see that the transition counts ofnode1 and

node2 are approximately the same as that ofin if we assume that input transitions happen at

most once per cycle. Those ofnode3 andnode4 are the same as that ofout .

However, for more complicated blocks such as an adder, our simulator,SyCHOSysneeds

39

Figure 3-2:A PowerPC-style flipflop.

to perform an arithmetic/logical evaluation of input/output in order to obtain the internal node

switchings inside the block. For example, when we model our adder, we use bitwise XORs and

ANDs of the input vectors to determine the values for P (propagate) and G (generate) while the

individual carry values are determined by XOR-ing the adder output with the internal propagate

value. For a 32-bit adder, one bit-parallel operation determines a group of corresponding

internal nodes simultaneously. By using bit-parallel arithmetic in this way, we can rapidly

calculate transitions of all internal nodes. Additionally, the simulator must sometimes count

the number of the 1s or 0s instead of transitions in the case of dynamic circuits. For example, a

dynamic node,carry0b in Figure 3-3 continues pre-charging and discharging ifCi remains

high. We need to count 1s ofCi to determine the transition counts ofcarry0b .

Since many internal node transitions in a component mirror those of the inputs and outputs,

the simulator needs to gather only a fraction of the total statistics. For example, the simulator

needed to keep statistics for only 300 nodes in a sample datapath with 1278 nodes in total [8].

3.3.2 Capacitance Merging Method

Ceq is defined as a single equivalent capacitance to ground for each node. Obtaining an accurate

value forCeq is very crucial for our model since its accuracy is directly related to that of energy

40

Figure 3-3:A 4-bit Manchester carry chain.

consumption estimation. In CMOS circuits, two kinds of capacitances are connected to a net:

transistor capacitance and wire capacitance. Transistor capacitance includes drain (diffusion)

capacitance and gate capacitance. Wire capacitance includes wire-to-substrate area/fringe

capacitance, and interwire capacitance. Among them, interwire capacitance is hard to estimate

since it depends on relative switching of the coupling wires. For example, if the coupling wire

has the same signal as the net, the interwire capacitance is zero. On the other hand, if the

coupling wire has exactly the opposite signal to the signal of the net, the interwire capacitance

is twice bigger than the interwire capacitance when the coupling wire is grounded.

We developed acapacitance merging methodto estimateCeq fast and accurately. We obtain

Ceq using two phases of calculation. First, the circuit layout is passed to SPACE 2D extractor

[18] and it extracts a circuit netlist with accurate parasitic wire capacitances including coupling

and fringing wire capacitances. Next,mergecap, our custom tool, reads the netlist and sums all

transistor gate and drain capacitances, and parasitic wire capacitances connected to each net to

give a single effective capacitance for the net.

41

0
5

10
15

20
25

30

0

0.1

0.2

0.3

0.4

0.5
4

4.5

5

5.5

6

6.5

Load (fF)Rise/Fall time (ns)

E
ffe

ct
iv

e
C

ap
ac

ita
nc

e
(f

F
)

Figure 3-4:Sum of an inverter’s PMOS and NMOS drain capacitances.

One complication is that transistor capacitance values vary dynamically depending on

terminal voltages. That is, transistor capacitances are not constant values. We experimented

with an inverter, varying the rise/fall time of the input and the size of the output load. We could

obtain the sum of NMOS and PMOS drain capacitances by measuring the current from source.

Figure 3-4 shows the dependency of the drain capacitances on the input rise/fall time and the

output load. We see that the maximum (6.35 fF) is 47% bigger than the minimum (4.31fF)

in the table. The rise/fall time and the output load determine the change rate of PMOS and

NMOS transistors’ operating modes during the transition, which result in different effective

drain capacitances. Gate capacitances also vary dynamically like drain capacitances. In order

to solve this problem, we took advantage of the fact that our design domain is a well-built

low-power circuit. A well-built circuit usually has the FO4 (fanout-of-four) characteristics

[16]; therefore, we assumed that our circuit has the characteristic FO4 rise/fall time and loads.

Therefore, we built FO4 inverter chains and experimented with them to measure realistic gate

and drain capacitance coefficients instead of calculating these using equations. The details of

this experiment are shown in Section 3.3.3.

Interwire capacitance (coupling wire capacitance) causes another complication. It varies

from 0 to twice the static capacitance dynamically depending on the relative timing of signal

transitions on coupling wires. A cycle-accurate simulator cannot determine it. Therefore, we

made the approximation that the coupled wire is always grounded and simply sum all interwire

42

Input Output

Neighbor_wire

Internal_node

C

C

C

Cdrain_P

drain_N

gate_P

gate_N

Ccoupling

Cwire-to-substrate

Figure 3-5:Schematic of cascaded inverters and the capacitances connected to theinternal node .

Figure 3-6:Layout of cascaded inverters.

capacitances into a single equivalent capacitance to ground.

For an example of thecapacitance merging method, we show how we calculate the

capacitance of the internal node between two cascaded inverters. Figure 3-5 shows the example

circuit and the capacitances connected to the internal node. The layout of two cascaded

inverters is shown in Figure 3-6. The corresponding netlist and the extracted capacitance file

— the final output ofcapacitance merging method— are shown in Figure 3-7. We see from

the netlist thatinternal node has 0.340 fF (= c2 + c5 + c7 + c9 + c11) wire capacitance in

total. This value is added to two gate and two drain capacitances obtained using the calibrated

gate and drain capacitance coefficients and results in aCeq of 8.075 fF.

3.3.3 Calibrating Effective Gate and Drain Capacitance

As shown earlier, transistor capacitances are difficult to model because they are voltage

dependent. However, exploiting the fact that a well-designed circuit has the natural fanout-

of-four (FO4) characteristics, we calibrated effective gate and drain capacitance coefficients.

The basic idea of our method is to calibrate gate and drain capacitance coefficients by

experimenting with two kinds of FO4 inverter chains, where inverters are all the same-size:

43

NETLIST :
m1 Vdd1 input internal_node Vdd1 PMOS
+ w=600n l=240n ad=432f as=360f pd=2.04u ps=1.8u
m2 GND1 input internal_node GND NMOS
+ w=600n l=240n ad=432f as=360f pd=2.04u ps=1.8u
m3 output internal_node Vdd1 Vdd1 PMOS
+ w=600n l=240n ad=360f as=432f pd=1.8u ps=2.04u
m4 GND1 internal_node output GND NMOS
+ w=600n l=240n ad=432f as=360f pd=2.04u ps=1.8u
c1 GND1 output 34.99428e-18
c2 GND1 internal_node 44.83748e-18
c3 GND1 neighbor_wire 62.31828e-18
c4 GND1 Vdd1 63.218e-18
c5 input internal_node 73.79929e-18
c6 input neighbor_wire 43.82269e-18
c7 neighbor_wire internal_node 121.0628e-18
c8 neighbor_wire Vdd1 62.31828e-18
c9 output internal_node 55.8099e-18
c10 output Vdd1 34.99428e-18
c11 Vdd1 internal_node 44.83748e-18

CAPACITANCE FILE :
cap_input 3.203 fF
cap_internal_node 8.075 fF
cap_output 4.775 fF
cap_neighbor_wire 0.290 fF

Figure 3-7:The netlist and the capacitance file of a cascaded two inverters.

44

node X node Y

Figure 3-8:Two FO4 inverter chains.

a normal FO4 inverter chain and a modified FO4 inverter chain with slightly different FO4

characteristics. Exploiting the slight difference, we could calibrate the coefficients.

Figure 3-8 shows these two inverter chains. We see that four NMOS gates, four PMOS

gates, one NMOS drain, and one PMOS drain are connected to node X. Likewise, three NMOS

gates, three PMOS gates, two NMOS drains, and two PMOS drains are connected to node Y.

We assumed that one NMOS gate and one PMOS gate capacitance are comparable to one

NMOS drain and one PMOS drain capacitance. (If this assumption doesn’t hold, the modified

chain will lose the FO4 characteristic.)

The gray inverter is intentionally turned off since we wanted to keep the same amount of

driving power as the normal FO4 inverter chain. It is shown in Figure 3-9. Therefore, we can

expect that both nodes have similar but different FO4 rise/fall times. Energy consumptions of

node X and node Y were measured and, from them, effective capacitances of the nodes were

calculated.

We assumed that NMOS and PMOS gate and drain capacitances are linear functions of the

45

Figure 3-9:Gray inverter.

transistor widths since the length of transistors is usually set to the minimum value in digital

CMOS circuits. The following are the functions and coefficients used:

PMOS gate capacitance =gp * PMOS width

PMOS drain capacitance =dp * PMOS width

NMOS gate capacitance =gn * NMOS width

NMOS drain capacitance =dn * NMOS width

In order to derivegpanddpcoefficients, we measured the capacitances of node X and node

Y while varying PMOS width with a fixed NMOS width. The left graph of Figure 3-10 shows

the measurements. We can see that the capacitances of both nodes are linearly proportional to

the PMOS width, but the slopes of the two functions are slightly different. The linearity of the

two functions validates our assumption that the gate and drain capacitances can be modeled as

linear equations. Also, the slight difference validates our assumption that the two chains have

similar FO4-like characteristic. Using our linear capacitance equations, we could calculate the

capacitances of the node X and the node Y as follows. (Here,Pw andNw represent PMOS

width and NMOS width respectively.)

Capacitance(nodeX) = 4 � gp � Pw + 4 � gn �Nw + dp � Pw + dn �Nw

= (4 � gp+ dp) � Pw + (4 � gn �Nw + dn �Nw)

Capacitance(nodeY) = 3 � gp � Pw + 3 � gn �Nw + 2 � dp � Pw + 2 � dn �Nw

46

0 10 20 30 40

20

40

60

80

100

120

140

160
NMOS width is fixed as 6 lambda

PMOS width

ca
pa

ci
ta

nc
e(

fF
)

0 10 20 30 40
40

60

80

100

120

140

160
PMOS width is fixed as 36 lambda

NMOS width

ca
pa

ci
ta

nc
e(

fF
)

dp = 0.554 fF / lambda

gp = 0.207 fF / lambda

node X node Y

gn = 0.410 fF / lambda

dn = 0.376 fF / lambda

node X node Y

Figure 3-10:Deriving gp, dp, gn and dn from measurements.

= (3 � gp+ 2 � dp) � Pw + (3 � gn �Nw + 2 � dn �Nw)

Since the NMOS width is fixed, the slope of the node X plot is4 � gp + dp and that of the

node Y plot is3 � gp+ 2 � dp. After getting the slopes using the linear-square method from the

measurements, we can derivegp anddp by solving linear equations. The results are shown in

the left Figure 3-10.

In the same way, we can derivegn anddn using the measurements where PMOS width is

fixed, as shown in the right graph of Figure 3-10. In order to verify the derived capacitance

coefficients, we calculated the capacitance of node X for different PMOS and NMOS widths

and compared these values with the empirically measured capacitances obtained using Hspice.

Figure 3-11 shows that the calculated capacitances match the measured ones well. The relative

error is within 5% for 18 different NMOS and PMOS widths.

The entire measuring process is done automatically and only needs to be done once for a

given process technology.

47

3 6 9 12 15 18
0

20

40

60

80

100

120

NMOS width

C
ap

ac
ita

nc
e

(f
F

)

Measured capacitance
Calculated capacitance using our coefficients

P/N = 3

P/N = 2

P/N = 1

Figure 3-11:Verification of gate and drain capacitance coefficients. P/N is the ratio of PMOS width to
NMOS width.

3.3.4 Energy Calculation

Energy calculation is divided into two parts: external and internal. External energy is defined

as the energy dissipated on the nets which connect components together, and is modeled for

each net as the effective capacitance times the transition counts timesV 2

dd. Internal energy is

the energy dissipated inside components. Each component has its own internal energy equation

which calculates the energy consumption using effective capacitances of all internal nodes and

internal statistics as described above. While a layout is required for external capacitance, the

internal effective capacitances are independent of the specific layout, and can be determined

once when the component is designed. Figure 3-12 shows energy equations for a 32-bit 3-

input mux, a 32-bit positive-edge triggered flipflop, and a 4-bit Manchester carry chain (an

adder block for our 32-bit carry skip adder, as shown in Figure 3-3). In the equations, each

prefix cap , tran , andone represents the effective capacitances, the transition counts, and

the 1s counts respectively. We see that the energy equations directly reflect the structure and

the circuit style of a circuit.

48

N bit 3-Input Mux :
(tran_in1[N-1:0], tran_in2[N-1:0], tran_in3[N-1:0], tran_out[N-1:0],
cap_in1b, cap_in2b, cap_in3b, cap_outb) {

for (i=0;i<N;i++)
internal_energy += Vddˆ2 * (tran_in1[i] * cap_in1b +

tran_in2[i] * cap_in2b +
tran_in3[i] * cap_in3b +
tran_out[i] * cap_outb);

}

N bit Positive-edge triggered Flipflop :
(tran_in[N-1:0], tran_out[N-1:0], cap_node1, cap_node2, cap_node3,
cap_node4) {

for (i=0;i<N;i++)
internal_energy +=

Vddˆ2 * (tran_in[i] * (cap_node1 + cap_node2) +
tran_out[i] * (cap_node3 + cap_node4));

}

4 bit Manchester Carry Chain :
(tran_p[3:0], one_g[3:0], one_carry[3:0], one_carryout, cap_pb[3:0],
cap_ev[3:0], cap_carry[3:0], cap_carryb[3:0],
cap_carryout, cap_carryoutb) {

for (i=0;i<4;i++) {
internal_energy += Vddˆ2 * tran_p[i] * cap_pb[i];
internal_energy += Vddˆ2 * one_g[i] * cap_ev[i];
internal_energy +=

Vddˆ2 * one_carry[i] * (cap_carry[i] + cap_carryb[i]));
}
internal_energy

+= Vddˆ2 * one_carryout * (cap_carryout + cap_carryoutb);
}

Figure 3-12:Energy equations of N bit 3-input mux, N-bit positive flipflop, and 4-bit Manchester carry
chain.

49

0 1 2 3 4 5
0

1

2

3

4

5
3 input Transmission−gate Mux

Estimated Energy Consumption (pJ)
M

ea
su

re
d

E
ne

rg
y

C
on

su
m

pt
io

n
(p

J)

4 6 8 10 12
4

6

8

10

12
Powerpc−style Flipflop

Estimated Energy Consumption (pJ)

M
ea

su
re

d
E

ne
rg

y
C

on
su

m
pt

io
n

(p
J)

2 4 6 8
2

3

4

5

6

7

8
Powerpc−style Latch

Estimated Energy Consumption (pJ)

M
ea

su
re

d
E

ne
rg

y
C

on
su

m
pt

io
n

(p
J)

8 10 12 14 16 18 20

8

10

12

14

16

18

20
Mux−Latch

Estimated Energy Consumption (pJ)

M
ea

su
re

d
E

ne
rg

y
C

on
su

m
pt

io
n

(p
J)

Figure 3-13:Mux, latch, flipflop and mux-latch: measured energy vs. estimated energy. Ideally, all
points should fall on the line.

3.3.5 Evaluation of Our Energy Model

We first evaluated our energy model using small circuit examples. Figure 3-13 shows the

estimated energy consumption using thenet-transition energy model(X-axis) versus the

measured energy consumption using Hspice (Y-axis) for a mux, a latch, a flipflop, and a mux-

latch circuit, where the output of the mux is connected to the latch input.

We used the typical FO4 rise and fall times and output load for the simulation. We chose

5 random input patterns for each circuit. We found that the maximum relative errors are

4.76%, 2.36%, 8.02%, and 4.32% for the mux, the latch, the flipflop and the mux-latch circuits

respectively. We see that the errors are of the same order of magnitude as those of the gate and

drain capacitance coefficients.

For a larger example, we used the 32-bit GCD (Greatest Common Divisor) circuit. The

circuit implements Euclid’s GCD algorithm. The GCD circuit is a small version of a CPU

datapath in the sense that it has muxes, latches, flipflops and an adder. Our energy model could

estimate energy dissipations within 7% error compared to Hspice simulation for 7 different

input test vectors [8].

Our method has three advantages over other simulation-based energy estimation tools.

First, it is fast. The total time needed for energy calculation depends mainly on the running time

50

of the cycle-accurate simulator (with statistics gathering code). The time needed for merging

capacitances and calculating energy equations are very little compared to the simulation time.

Our simulator, SyCHOSys [8] was fast enough to simulate a billion cycles of benchmark

programs per day. Second, it is flexible. For example, if we change a mux design, we need

to do only two things. We need to get the capacitance values from the layout of the new mux

design, which can be done automatically after the layout is ready, and we need to modify

the energy equation if the internal structure of the new mux is different from the old. Third,

it is accurate. A cycle-accurate simulation-based technique is the most accurate of the three

categories of energy estimation techniques. Additionally, our detailed energy equations and

realistic effective capacitance values guarantee the accurate energy estimation. The verification

of our method with some examples will be shown in section 3.3.5.

One limitation of our method is that it can’t model glitch power since it is only cycle-

accurate. But, we can assume that for a well-built low-power circuit, glitches are rare and

small. Another limitation is that it deals with only dynamic switching energy, but ignores

short-circuit and leakage energy. Lastly, if we substitute a block with another block which

executes the same function, but requires different internal statistics from a simulator, we have

to re-simulate.

3.4 Short-Circuit Energy Modeling of an Inverter

Short-circuit energy accounts for a significant portion (5-10%) of the total power consumption

in CMOS circuits. However, our energy model, theNet-Transition Energy Model, did not

include the short-circuit energy. Therefore, we tried to model the short-circuit energy to be

included in the next version of thenet-transition energy model.

Short-circuit energy is difficult to model in general since it varies dynamically depending

on the on-time of the transistors and their operating modes. Also, the relative switching time

of multiple inputs to a logic gate further complicates the problem. However, we observed that

most of the short-circuit power in our design is consumed in inverters since they are the most

common components in complementary static CMOS circuits (transmission-gate and dynamic

circuits don’t dissipate short-circuit power). For example, our latches, buffers, muxes, and

51

Fall short-circuit energy Rise short-circuit energy

Figure 3-14:Two kinds of short circuit current.

flipflops dissipate short-circuit power only in their inverters. Modeling the short-circuit energy

of an inverter is relatively easy since it has only one input and no internal nodes. In addition,

the inverter is most likely to have the short-circuit current (every transition), compared to more

complex gates such as three-input NANDs. Thus, if we can calibrate the short-circuit energy

loss per transition for a given inverter strength, transition counts are enough to calculate the

total short-circuit energy of inverters.

The basic intuition of our model is that if all transistors scale the same, then the rise/fall time

remains constant since strength of the transistors and the load capacitance scale proportionally

to the transistor sizes. Short-circuit current is proportional to the rise/fall time and the the

strength of the transistors. Therefore, the average short-circuit power scales linearly with the

transistor size. Using this intuition, when the ratio of PMOS width to NMOS width (P/N) is

fixed, the short-circuit energy of an inverter can be modeled as a linear function of NMOS

width.

Short-circuit energy per transition =Ratio constant* NMOS width + Base energy

(P/N is fixed)

We define two kinds of short-circuit energy for inverters: Rise short-circuit energy and fall

short-circuit energy (Figure 3-14). Rise short-circuit energy is the energy dissipation due to

the current from output to GND when the output goes from low to high and fall short-circuit

energy is the energy dissipation due to the current from Vdd to output when there is an output

transition from high to low.

For our test bench, we used an FO4 inverter chain whose inverters are all the same size, in

order to represent the typical FO4 environment of a well-built low-power datapath. We used

52

0 5 10 15
0

0.5

1

1.5

2

2.5

3
Measurements of Fall Short−circuit energy

NMOS width

10
−
14

J

P/N=1

P/N=2

P/N=3

P/N=4

P/N=5

Figure 3-15:Measurements of fall short-circuit energy for various inverters.

inverters which have ratios between 1/1 and 5/1 since they are typical in CMOS digital circuits.

We measured rise and fall short-circuit energy while varying PMOS and NMOS widths and

derivedRatio constantandBase energyfor various ratios of PMOS width to NMOS width

using a linear least square method.

Figure 3-15 and Figure 3-16 show the empirical results. We see that the short-circuit energy

of an inverter is proportional to the NMOS width linearly when P/N is fixed and the lines

derived by the linear-square method fit the measurements well. We notice that fall short-circuit

energy gets smaller and rise short-circuit energy gets bigger as P/N increases. This is because

as P/N gets bigger, rise times get smaller and fall times get bigger, leading to less on-time

for PMOS transistors and more on-time for NMOS transistors. This results in smaller fall

short-circuit energy and bigger rise short-circuit energy.

Table 3.1 represents the short-circuit energy calculation table for an inverter. Given the

PMOS and NMOS widths of an inverter, we can get the slope and the y-intercept from the

table and calculate the energy due to short-circuit current per transition using the equation.

Figure 3-17 shows that we can estimate short-circuit energy within 8% error compared to

Hspice simulation results for 65 differently sized inverters.

53

0 5 10 15
0

0.5

1

1.5

2

2.5

3
Measurements of Rise Short−circuit energy

NMOS width

10
−
14

J

P/N=1

P/N=2

P/N=3

P/N=4

P/N=5

Figure 3-16:Measurements of rise short-circuit energy for various inverters.

Fall short-circuit energy Rise short-circuit energy Avg. short-circuit energy
P/N Ratio constant Base Energy Ratio constant Base Energy Ratio constant Base Energy

1 0.1399 0.1783 0.0118 0.2035 0.07935 0.1909
2 0.0915 0.3372 0.0348 0.2034 0.0631 0.2703
3 0.0772 0.1832 0.0512 0.1175 0.0642 0.1503
4 0.0441 0.2210 0.1178 0.0244 0.0809 0.1227
5 0.0177 0.2242 0.1678 0.0841 0.0927 0.1542

Table 3.1:Short-circuit energy calculation table for an inverter. Average short-circuit energy is the
average of fall and rise short-circuit energy.

54

1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

P/N

Error between measured avg. short−circuit energy and calculated one using Table

E
rr

or
(%

)

Figure 3-17:Error between the measured average short-circuit energy and the calculated one using
table lookup.

55

56

Chapter 4

Datapath Design

The low-power datapath design presented here is a part of the Vanilla Pekoe microprocessor

developed by the SCALE research group at the MIT Laboratory for Computer Science. Vanilla

Pekoe (VP) is a 32-bit single-issue low-power MIPS-compatible RISC microprocessor. VP has

an integer CPU, instruction and data caches, an external SDRAM interface, and a byte serial

host interface. The VP CPU can execute all integer instructions of the MIPS-II ISA except trap

instructions, misaligned load/stores, and multiprocessor instructions [6].

The datapath is fully pipelined and completes up to one instruction per cycle. The datapath

consists of a register file, an ALU, a shifter, a hardware multiplier/divider, a program counter,

and a system coprocessor. Instructions are executed in a five stage pipeline: instruction

fetch (F), instruction decode (D), execute (X), memory access (M), and result writeback (W).

Additionally, program counter generation (P) is considered to be a stage before the F stage.

The pipeline diagram of the datapath is shown in Figure 4-1. Suffices h and l represent clock

high and clock low respectively.

This chapter begins by elaborating on the VLSI design of the datapath. Next, we deal with

floorplaning of the datapath. Then we detail the low-power design of two execution blocks:

the ALU and the shifter. We describe a clock-gating scheme at the end of this chapter.

57

Ph

+

+

4

+

+

1

MlMhFl XhDh DlFhPl Xl WlWh

PCplus4Adder

BranchAdder

PCMux

<<2 SignExt

PCcatenator
reset

excep

I$ Miss?

Instruction
16

I$
Addr Data RegFile

Ext
Shifter

ALU

taken? ovf

Mul/Div

Addr Data
D$

SDalign

LDalign

LDext

Regfile
Write

CP0 Regs
Counter

EqualityCheck

Equal?

CP0 Bus

Positive
edge-triggered
flipflop

edge-triggered
flipflop

High
level-sensitive
latch

Low

Negative

level-sensitive
latch

SD

RT

RSF
igure

4
-1:

P
ipeline

d
iagram

for
d

atapath.

5
8

4.1 VLSI Design

We implemented the datapath in a 0.25�m CMOS process from TSMC with five aluminum

metal layers. We used the MOSIS SCMOSDEEP (� = 0:12�m) design rules for layout.

Figure 4-2 shows the layout of the entire datapath. The total size is 0.27 mm x 1.40 mm (=

0.378mm2). The supply voltage range is from 2.5 V down to 1.0 V. The circuit design style

used throughout the datapath is based on static/pseudo-static circuits that can maintain output

values even when the clock stops in a power-saving mode. Thus, when we use dynamic circuits,

leakage currents of dynamic nodes are protected by keepers.

4.1.1 Full-custom Design

We chose a full-custom VLSI design style. Custom design has proven to be better than a

standard cell approach in terms of important criteria such as power, speed and area. For

example, the M*CORE design achieved a 40% power reduction and 175% area reduction in

going from a synthesized to a custom 32-bit adder. Although custom design usually takes more

time, the regularity in most of the datapath makes custom design efficient in design time.

4.1.2 Metal Allocation

We used a regular, area-efficient metal allocation. The first three layers of metal are allocated

to intra-datapath wiring while metals 4 and 5 are used for global routing, the power grid, and

clock distribution. Metal 1 is used for local interconnect and Metal 2 is used for Vdd/GND and

control signals. Data buses use metal 3. Metal 3 and 5 are laid out horizontally along the bit

slice of the datapath, and metal 2 and 4 are laid out vertically. The datapath has a bit pitch of

54 lambda (6.48�m), sufficient for six metal 3 buses across each bit slice. The bottommost

metal 3 bus track is reserved for strapping metal 2 power rails across datapath columns and the

other five metal 3 tracks are used for datapath buses. The bottommost metal 3 track is GND in

even bit slices and Vdd in odd bit slices. All bus tracks run over the top of datapath leaf cells;

this allows us to make a very tight datapath.

Figure 4-3 shows an example of metal allocation. (Metal 4 and 5 are excluded from the

layout for clarity purposes.) We see five vertical metal 2 wires (Vdd1, GND1, clk, GND2, and

59

Register File Block

Load and Store Block

ALU and Bypass Block

Shifter Block

Multiplier/Divider Block

PC generation Block

Coprocessor 0 Block
Counter

Branch Target Adder

PC Incrementor

ALU

Store Aligner

Load Aligner

Load Extender

Figure 4-2: Layout of the datapath.

60

Figure 4-3:Metal allocation.

Vdd2 from the left) and six horizontal metal 3 wires. The first metal 3 bus from the top (track

1) is strapped to the input and the output is connected to the second metal 3 bus (track 2). The

bottommost metal 3 wire (track 6) is connected to two Vdd metal 2 wires.

4.2 Floor planning

Floorplanning is the exercise of arranging the various circuit blocks of layout. Floorplanning

is one of the important processes in the design of low-power systems because it affects wire

lengths of buses, which in turn directly impacts the power consumption on buses.

First, we minimized the length of buses with tight timing requirements. Then, buses with

high switching activities were minimized in length in order to reduce power consumption. For

example, the bypass muxes, the bypass latches, and the ALU were placed close together to

minimize the length of the frequently used bypass path. This was done for both delay and

power optimizations. Another consideration which affected floor planning was that we could

have a maximum of only five buses on top of the datapath as described in Section 4.1.

Figure 4-4 shows the floor plan of the datapath excluding the coprocessor 0 block. The

five horizontal routes (four routes above the datapath and one below it) represent five metal

data bus routes and the bottom bus in the figure is the coprocessor bus. The coprocessor 0 bus

was implemented using metal 5, since it is a global bus for both the datapath and the control

logic. One problem is that metal 5 bus blocks metal 3 buses when connected to circuit blocks.

However, the coprocessor 0 bus has only few connections to the datapath and we could manage

61

to make the connections through unused metal 3 tracks. The coprocessor 0 block is shown in

Figure 4-5.

The register file uses metal 3 for its local interconnect as an exception to the wiring

conventions. As a result, data buses are not allowed to cross it, and it resides at the leftmost end

of the floor plan. The Load and Store block which consists of load sign-extender, load aligner,

and store aligner follow the register file. Next, from left to right, there are the ALU and bypass

block, Shifter and Multiplier/Divider block, Program counter block, and coprocessor 0 block.

4.3 ALU

The ALU is arguably the most important block in the datapath. It performs arithmetic

operations like addition and subtraction, load and store address calculation, and logical

operations such as XOR, OR, AND, and NOR. SPECint95 benchmarks results indicate that

over 70% of instructions use the ALU block [17]. Therefore, the ALU is one of the hottest

spots in the datapath. However, applying low-power techniques to the ALU is not straight-

forward since it is also one of the main speed bottlenecks in the datapath. For this project,

we chose an adder design which consumes the least power while satisfying speed and area

constraints.

4.3.1 Adder Design

Because the adder is the most frequently used block in the datapath, a lot of research effort has

gone into its design. As a result, there are a myriad of adder designs; for example, the ripple

carry adder, carry select adder, carry skip adder, and carry save adder.

A ripple carry adder was ruled out since it is too slow for 32-bit addition (O(N)). A carry

select adder shows good performance (O(
p
N)), but its power consumption is more than twice

that of a ripple carry adder. This is because it requires two carry chains which execute at the

same time and an additional N-bit output mux which chooses between the two adder outputs.

A carry lookahead adder has a dramatic speed advantage (especially for large adders) since

it has a logarithmic propagation delay (O(lgN)); but, a 32-bit carry lookahead adder requires

over 5 times more area and power than a ripple carry (32 bit) [12]. A carry save adder has a

62

RegFile

+

16

++

4

reset
excep

LDext LDalign

D$ Data Load

SDalign

D$ Data Store

Instruction D$ Address

Bus Track 1
Bus Track 2

Bus Track 3
Bus Track 4

Bus Track 5 CP0 Bus Track

To Co-Processro0

ALU Shifter Mul/Div
I$ Address PCplus4

<<2
SignExt

Adder
Branch
Adder

PCcat

Instruction

Load and Store Block ALU Bypass Block Shifter and PC Generator Block
 BlockMul/Div

F
igure

4
-4:

F
loorplan

ofdatapath
(exceptcoprocessor

0).

6
3

+

1C
o

u
n

te
r

E
q

u
a

lit
yC

h
e

ck

E
q

u
a

l?

P
ri

B
u

s
T

ra
ck

 4

B
u

s
T

ra
ck

 5

C
P

0
 B

u
s

T
ra

ck

Figure 4-5:Floorplan of coprocessor 0.

Adders Speed Power Area

Ripple Carry Adder O(N) O(N) O(N)
Carry Select Adder O(

p
N) O(2N+�) O(2N+�)

Carry Lookahead Adder O(lgN) O(lgN �N) O(lgN �N)
Carry Save Adder O(1) O(>2N+�) O(>2N+�)
Carry Skip Adder O(

p
N) O(N+�) O(N+�)

Table 4.1:Various adder designs.

constant time propagation delay (O(1)) independent of the number of bits, but it requires data

encoding and decoding stages with delay and power consumption proportional to the number

of bits [14]. On the other hand, a carry skip adder is well balanced. It is only slightly more

complex than a ripple carry adder and results in comparable area and power consumption.

However, it is far faster than a ripple carry adder. Its speed is O(
p
N) for N bit addition at

maximum, which is comparable to O(lgN) when N is small [7]. Therefore, we chose a carry

skip adder design for our datapath. Table 4.1 summarizes various adder designs.

We built a one-level constant-width carry skip adder. We chose the Manchester carry chain

adder for the adder cell due to its speedy carry propagation. A four bit width was chosen

among 2-bit, 4-bit, 8-bit, and 16-bit options. It was found that a two bit width results in too

many mux delays (15) for the worst case. Also, 8-bit and 16-bit Manchester carry chain delays

are around 4 and 16 times slower respectively than a 4-bit one since the Manchester carry chain

delay is quadratically proportional to the number of bits due to the distributed RC chain [3].

Extra hardware was added to the adder to execute subtraction and the MIPS SLT (set less than)

operations.

64

LOGIC Sel1 Sel2 Sel3

XOR 1 0 1
AND 0 1 1
NOR 1 1 0
OR 1 1 1
OFF 0 0 1

Table 4.2:Control signals for logic operation.

4.3.2 Logic Unit and Branch Checker Design

We observed that we can use the adder’s P (propagate) and G (generate) signals (which were

originally generated for addition/subtraction) for logic operations since P is the bitwise XOR

of the two inputs and G is the bitwise AND of them. Also, we can perform the OR operation by

OR-ing P and G, and inverting the OR signal makes the NOR signal. Figure 4-6 and Table 4.2

show how we execute the XOR, AND, OR and NOR operations by making use of P and G and

three control signals. OFF control signals turns off the logic unit and prevents spurious data

transitions.

The main advantage of this scheme is area reduction due to the reuse of already existing

signals. Another advantage is the reduction of the bypass muxes’ output loads since they no

longer need to drive the logic unit in addition to the adder. The output nodes of the bypass

muxes are among the most frequently-used nodes, so the reduced load capacitance results in

large energy savings and an important delay reduction. This scheme slows down the adder’s P

and G signals, yet usually the delay of an adder is not determined by the P and G delay but by

carry chain delay. However, this scheme increases the internal energy dissipation of the adder

itself because of the additional gate caps on P and G.

Another observation is that we may use P to test the equality of two inputs (for branch

condition checking) since the XOR indicates when two inputs are different. We built a dynamic

equality checking circuit by adding one additional NMOS transistor as shown in Figure 4-6.

The precharge line in Figure 4-6 stretches across the bit-slices of the adder, and is precharged

every cycle. If any of the 32 P bits becomes one (two inputs are different), the NMOS transistor

whose gate is connected to the P bit, starts discharging and the precharge line discharges. If all

Ps are zero (two inputs are the same), the precharge line remains charged during the evaluation

65

Figure 4-6:Modified propagate(P) and generate(G) circuit for ALU.

phase. The branch checker circuit is located at the top of the adder. It gets the equality signal,

the 31st P signal, and three control signals as inputs and tells whether the branch is taken or

not.

4.4 Shifter

A shifter is one of the essential blocks in the datapath. It is used extensively for multiplication

by constant numbers, scaling, and floating-point arithmetic. However, compared to other

blocks such as an ALU or a multiplier, its structure is very simple. It is nothing more than

an array of switches and intricate wiring patterns. Its simple structure makes investigation of

various shifter designs easy and attractive.

This section begins by describing various types of shifters. Next, we analyze the

characteristics of shift instructions in SPECint95 and Dhrystone as a base study. We then

compare shifter designs in terms of delay, power, and PDP.

66

in 3

in 2

in 1

in 0

out 3

out 2

out 1

out 0

lsh 3 lsh 0lsh 1lsh 2

: solid connection

: switch

: GND

Figure 4-7:A barrel shifter.

4.4.1 Types of Shifters

There are two kinds of shifts: left and right. To deal with both shifts, we may build both a left

shifter and a right shifter, or a bidirectional shifter. We decided to have two unidirectional (left

and right) shifters. There is no advantage to unifying the two shifters into a bidirectional shifter

if area is not a main concern of the design. A bidirectional shifter has around twice the wire

capacitance at the internal nodes compared to a unidirectional shifter. This results in slower

speed and also more power dissipation than a dual shifters scheme, provided that we turn off

the unused unidirectional shifter in the dual shifters scheme.

There are two commonly used shifter structures: a barrel shifter and a logarithmic shifter

[14]. The barrel shifter is an array of switches which connect input and output. By turning on

the switches which connect the m-th input and the (m+n)-th output, an n-bit left shift is done.

Figure 4-7 shows a 4-bit left barrel shifter. For example, if lsh 1 goes high and the switches

connected to it are turned on, out[n+1] is connected to in[n] (0 � n � 2) and out[0] becomes

zero; this results in a 1-bit left shift. The primary advantage of this shifter is that the signal

goes through only one switch from input to output, which results in high speed. However, it

has the major disadvantage that it needs an extra decoder for the control signals. For example,

it needs a 5-to-32 decoder for a 32-bit shifter.

A log shifter, on the other hand, is divided into stages which consist of muxes. For example,

a 32-bit log-2 shifter has five stages: 1 bit, 2 bit, 4 bit, 8 bit, and 16 bit. Figure 4-8(a) shows an

example of a log-2 shifter. As it goes through the stages, input data is either shifted or passed

through. Unlike the barrel shifter, a log shifter doesn’t need much extra hardware for decoding.

In particular, a log-2 shifter doesn’t need any extra hardware.

67

Output

Input

16 bit shift

1 bit shift

2 bit shift

4 bit shift

8 bit shift

1, 2, 3 bit shift

4, 8,12 bit shift

Mux

Switch

LOG-2 SHIFTER LOG-4 SHIFTER SEPARATION
LOG-4 SHIFTER

Input

Output

Output

16 bit shift

Input

1, 2, 3 bit shift

4, 8,12 bit shift

16 bit shift

(a) (c)(b)

Figure 4-8:Logarithmic shifters.

4.4.2 Analysis of Shift Instructions

We decided to analyze the characteristics of shift instructions in real programs as a base study.

To gather statistics, we used the VP-ISA simulator, which simulates the MIPS-II ISA. We used

SPECint95 and Dhrystone as a workload.

Figure 4-9 shows that on average 5.9% of instructions are shift instructions which consist of

SLL, SRL, SRA, SLLV, SRLV, and SRAV. It also shows that 84.0% of shift instructions are left

shifts and that variable shifts (whose shift amounts come from register values) only account for

7.8%. A surprising fact is that 80% of shift instructions are logical left shift (SLL). Figure 4-

10 shows that very small left shifts are heavily used, especially 2-bit left shifts which account

for 63% of all left shifts. Thus, around half of all shift instructions are 2-bit SLL. Figure 4-

11 shows right shift amounts. Like left shifts, right shifts are not well distributed. However,

popular shifts are not restricted to small shifts; 31-bit shifts (26%), 1-bit shifts (19%), 3-bit

shifts (14%) and 16-bit shifts (9%) are all popular.

68

li m88ksim jipeg go gcc vortex compress Dhrystone Avg
0

5

10

15

20
Shift Instructions

P
er

ce
nt

ag
e

li m88ksim jipeg go gcc vortex compress Dhrystone Avg
0

20

40

60

80

100

P
er

ce
nt

ag
e

SRAV
SRA
SRLV
SRL
SLLV
SLL

SLL−logical left shift, SLLV−variable logical left shift
SRL−logical right shift, SRLV−variable logical right shift
SRA−arithmetic right shift, SRAV−variable arithmetic right shift

Figure 4-9:Shift instructions.

4.4.3 Comparison of Shifters

We built a barrel shifter where a pass-transistor is used as the switch. Also, we designed

various log shifters. First, we varied the number of internal buffers used for strengthening

internal signals in a series of muxes in order to investigate the effect of buffers on delay and

power in a log shifter. Second, we varied the ordering of the stages. We also built log shifters

which perform the smaller shifts first and ones which do the larger shifts first.

Third, we built a log shifter with only three stages which we call alog-4 shifter. Figure 4-

8(b) shows one example of a log-4 shifter. By reducing the number of stages, we intended to

lower power consumption and delay. The first stage of the log-4 shifter is the combination of

the first two stages of a log-2 shifter, so it shifts by 0,1,2 or 3 bits. Likewise, the second stage

of a log-4 shifter shifts by 0,4,8 or 12 bits. These two stages require 4 input muxes. The last

stage is the same as that of a log-2 shifter, and shifts by 0 or 16 bits using 2 input muxes.

Lastly, in light of the benchmark analysis, we proposed asplit log shifter. The basic goal of

this shifter is to save energy by turning off unnecessary higher bit shift stages when the shifter

shifts data only by small amounts. This is the most common case as indicated by the benchmark

results (85% of left shifts and 39% of right shifts are less than 4 bit shifts). Figure 4-8(c) shows

one example of a split log shifter. It is based on a log-4 shifter, except that a transmission-gate

69

0 10 20 30
0

50

100
li−ref

0 10 20 30
0

50

100
m88−ref

0 10 20 30
0

50

100
sij−ref

0 10 20 30
0

50

100
go−ref

%
 o

f l
ef

t s
hi

ft
am

ou
nt

0 10 20 30
0

50

100
gcc−ref

0 10 20 30
0

50

100
vo−ref

0 10 20 30
0

50

100
com−ref

0 10 20 30
0

50

100
dhr

bits
0 10 20 30

0

50

100
tot

Figure 4-10:Left shift amounts.

switch is located between the low bit shift stages and the high bit shift stages and a new output

mux is introduced. When the shift amount is small (less than 4), the shifter is separated by

turning off the switch and the high bit shift stages become inactive. The low bit shift signal is

chosen by the output mux. On the other hand, when the shift amount is greater than or equal

to 4, the switch is closed and the shifter operates like a normal log-4 shifter.

A transmission-gate mux was used for all log shifters. All designs were laid out by hand

using Magic and optimized for area. We compared a barrel shifter and various log shifters

including a log-4 shifter and a split log shifter in terms of delay, energy, and EDP for left and

right shifts.

A. Delay

As a delay parameter, we used the worst case delay. It is the propagation delay from bit

0 of input to bit 31 of output or that from bit 31 input to bit 0 of output for log shifters. But,

the worst case delay of a barrel shifter should include the decoder delay. This is because shift

amounts must be decoded to appropriate control signals first before the data propagates, when

the shift amounts are values of registers.

We extracted the layouts using SPACE 2D [18], simulated the extracted netlists and

70

0 10 20 30
0

50

100
li−ref

0 10 20 30
0

50

100
m88−ref

0 10 20 30
0

50

100
sij−ref

0 10 20 30
0

50

100
go−ref

%
 o

f r
ig

ht
 s

hi
ft

am
ou

nt

0 10 20 30
0

50

100
gcc−ref

0 10 20 30
0

50

100
vo−ref

0 10 20 30
0

50

100
com−ref

0 10 20 30
0

50

100
dhr

bits
0 10 20 30

0

50

100
tot

Figure 4-11:Right shift amounts.

measured the delay using Hspice [11].measure command. Table 4.3 shows the worst case

delays of a barrel shifter and various log shifters. The first thing we can notice is that a barrel

shifter is the fastest. It is around 20% faster than log-2 shifters. Secondly, we see that less

buffering results in less delay for a log-2 shifter. Although buffering strengthens the signals,

it adds extra inverter delays. Less buffering also means less power since we have less internal

capacitance. Therefore, we can conclude that we don’t need any internal buffer for a five-stage

log shifter; yet, buffering might help for a log shifter which has more stages.

Third, we can see that the reverse order (the highest shift first) gives slightly better

performance for a log-2 shifter. The wire capacitance between smaller shift stages is smaller

than that between bigger shift stages. Therefore, the reverse ordering places larger capacitance

in front and smaller capacitance at rear, which results in less delay since the total effective

capacitance gets smaller in RC delay model. (We can model the worst log shifter delay as RC

delay model.)

Also, we can see that a log-4 shifter is around 20% faster than a log-2 shifter with no

internal buffer. The delay of a log shifter is a function of not only the number of stages, but

also the stage-to-stage delay. Since the mux output is connected to four mux inputs instead

of two, a log-4 shifter has around double the wiring capacitance between stages than a log-2

shifter; this results in larger stage-to-stage delay. Therefore, the delay of the log-4 shifter is

71

Delay(ns) Barrel Log-2 Log-2 Log-2 Log-2-rev Log-4 Log-4-split
(4 buf) (2 buf) (0 buf) (0 buf) (0 buf) (0 buf)

0-to-1 delay 0.67 1.20 1.01 0.92 0.91 0.75 1.05
1-to-0 delay 0.90 1.31 1.05 1.11 1.10 0.90 1.18

Maximum delay 0.90 1.31 1.05 1.11 1.10 0.90 1.18

Table 4.3:Worst case delay of shifters. (The barrel shifter delay includes the worst case decoder delay,
0.37 ns.)

larger than3=5 (the ratio of the number of the stages in a log-4 shifter to that in a log-2 shifter)

of the log-2 shifter delay.

Lastly, we can see the delay penalty of a split log shifter. We see around 40% slow down

compared to a log-4 shifter due to the extra delays added by the switch and the output mux,

which results in slower speed than a log-2 shifter (with no internal buffer).

B. Energy

As an energy parameter, we used the average energy consumption per shift operation.

We calculated the average energy consumption using our energy estimation model, which is

explained in detail in Chapter 2. As the simulator for the energy model, the T0-ISA simulator

was used. As a workload, the SPECint 95 reference programs (li-ref, m88ksim-ref, sijpeg-ref,

go-ref, gcc-ref, vortex-ref, and compress-ref) and Dhrystone were used.

Figure 4-12 and Figure 4-13 show average energy consumption of left shifters and right

shifters. We compared four different shifters; a normal-order log-2 shifter (log-2), a reverse-

order log-2 shifter (log-2rev), a log-4 shifter (log-4), and a split log-4 shifter (log-4split). All

shifters have no internal buffer because, as shown before, internal buffers slow down the shift

and also dissipate additional energy.

There are two main sources of energy consumption in shifters. One is due to transitions

on internal nodes, internal energy, and the other is due to transitions on control signal wires,

control energy. From the figures, we notice that control energy is comparable to internal energy

for most of the cases except for left shifters in li, go, and vortex.

First, we notice that right shift instructions consume more energy per operation than left

shift instructions for most of benchmarks and shifters. Compared to left shifts, a wider variety

72

0

2

4

6

li−ref

0

2

4

6

m88−ref

0

2

4

6

sij−ref

0

2

4

6

pJ
 /

op
er

at
io

n

go−ref

0

2

4

6

gcc−ref

0

2

4

6

vor−ref

0

2

4

6

com−ref

0

2

4

6

dhr

Bottom stack is internal energy and top stack is control energy
0

2

4

6

Average

barrel

log2

log2
(rev)

log4 log4
(split)

Figure 4-12:Average energy of left shifters.

of right shift amounts cause more data shifts in right shifters, which result in more power

consumption.

One noticeable observation is that the barrel shifter dissipates the least amount of energy

for most of benchmarks, regardless of left and right shifts. The barrel shifter consumes similar

amount of internal energy compared to log shifters, but its control energy is much smaller.

This is because the barrel shifter has less transitions on control wires since the control signals

are decoded. The decoder itself dissipates additional control energy, but it’s insignificant in

comparison.

The reverse-order log-2 shifter spends slightly less energy than the normal-order log-2

shifter. Compared to the normal-order log2 shifter, a reverse-order left shifter has a 2.1%

energy savings, and a reverse-order right shifter has a 2.5% energy savings. If we do higher

bit shifts first, we might have less transitions on internal nodes. For example, a shift of 16 bits

first prevents any irrelevant shifts in the lower 16 bits of the input data [1]. This results in less

internal energy while consuming the same control energy.

The total sum of the internal wiring capacitances and the transistor capacitances of the log-4

shifter is around the same as the log-2 shifter. Also, the average transition counts of the internal

nodes in the log-4 shifter is similar to that in the log-2 shifter. Therefore, they dissipate similar

internal energy. On the other hand, the log-4 shifter has less control signal transitions because

73

0

5

10

15
li−ref

0

5

10

15
m88−ref

0

5

10

15
sij−ref

0

5

10

15

pJ
 /

op
er

at
io

n

go−ref

0

5

10

15
gcc−ref

0

5

10

15
vor−ref

0

5

10

15
com−ref

0

5

10

15
dhr

Bottom stack is internal energy and top stack is control energy
0

5

10

15
Average

barrel

log2

log2
(rev)

log4 log4
(split)

Figure 4-13:Average energy of right shifters.

control signals are slightly decoded. For example, if the previous shift amount is 0 and the

present shift amount is 3 , the log-2 shifter needs two transitions on control wires, but the log-4

shifter needs only one transition. Since they consume similar amounts of energy per control

wire transition, the log-4 shifter consumes less control energy. In total, the log-4 shifter spends

16.9% less energy for left shifts and 28.5% less energy for right shifts than the reverse-order

log-2 shifter.

The split log-4 shifter shows a 16.5% energy savings for left shifts compared to the log-

4 shifter, but it gives only a 3.3% energy reduction for right shifts. The split log-4 shifter

saves a big portion of internal energy when shift amounts are less than 4 by separating (or in-

activating) the higher bit stages. Yet, it spends more internal energy if shift amounts are great

than or equal to 4 due to extra hardware such as the switch and the output mux. Also, the split

log-4 shifter wastes a fair amount of extra control energy for turning on and off the switch.

After summing both effects, only the left shifter can get a significant energy savings. This is

because the portion of shift amounts which are less than 4 is 85% for left shifts, but only 39%

for right shifts.

In summary, we see that compared to the normal log2-shifter, the log-4 shifter spends

18.6% less energy for left shifts and 30.2% less energy for right shifts and the split log-4

shifter spends 32.0% less energy for left shifts and 32.5% less energy for right shifts.

74

0

2

4

6

li−ref

0

2

4

6

m88−ref

0

2

4

6

sij−ref

1 2 3 4 5
0

2

4

6

10
−
21

 J
s

/ o
pe

ra
tio

n

go−ref

0

2

4

6

gcc−ref

0

2

4

6

vor−ref

0

2

4

6

com−ref

0

2

4

6

dhr

0

2

4

6

Average

log4
(split) log4

log2
(rev) log2

barrel

Figure 4-14:Energy-delay product of left shifters.

C. EDP (Energy-Delay Product)

Figure 4-14 and Figure 4-15 show energy-delay products for the shifters. We see that the

barrel shifter has the best energy-delay products for both left and right shifts. Also, we see that

the log-4 shifter has the best energy-delay products for both left and right shifts among the log

shifters. The split log-4 shifter, the reverse-order log-2 shifter, and the log-2 shifter follow in

order. However, this doesn’t mean that the log-4 shifter is always the best among log shifters.

If the delay is not the main concern, the split log-4 shifter is the best choice among log shifters.

In summary, we found the following from our experiments.

� A 32-bit barrel shifter is faster and consumes less power than any 32-bit log shifter.

Except for the burden of building a big decoder, the barrel shifter is the right choice.

� Internal buffering doesn’t help delay and energy if the number of stages is 5 or less in a

log shifter.

� Reverse-ordering decreases both delay and energy slightly for a log-2 shifter.

75

0

5

10

15
li−ref

0

5

10

15
m88−ref

0

5

10

15
sij−ref

1 2 3 4 5
0

5

10

15

10
−
21

 J
s

/ o
pe

ra
tio

n

go−ref

0

5

10

15
gcc−ref

0

5

10

15
vor−ref

0

5

10

15
com−ref

0

5

10

15
dhr

0

5

10

15
Average

barrel

log2

log2
(rev)

log4

log4
(split)

Figure 4-15:Energy-delay product of right shifters.

� A log-4 shifter is faster than a log-2 shifter due to less stages and it consumes less power

due to fewer control wire transitions.

� A split can lower power consumption significantly for a logarithmic left shifter. Most

left shifts are small shifts as determined by our benchmarks results. Therefore, we can

save energy by disconnecting unnecessary stages when the shift amount is small.

� The split log-4 shifter consumes the least power, but the log-4 shifter without separation

has the best energy-delay product among log shifters.

4.5 Clock Gating

Clock gating is a very popular dynamic low-power technique. It is crucial since clock power

is a big portion of the total power. Clock gating saves power by eliminating unnecessary

transitions on the (usually big) clock loads of latches and flipflops. It also eliminates spurious

transitions in the logic after latches and flipflops, and it removes unnecessary precharging of

dynamic circuits when they are not used. Our clock gating circuit ANDs the global clock and a

latched enable signal to create a gated local clock signal. The enable signal is latched in order

to eliminate possible glitches on the local clock signal when the global clock is high. Figure 4-

76

Enable Signal

Local Clock

Global Clock

buffer

latch

AND

Figure 4-16:Clock gating circuit.

16 shows the schematic of our clock gating circuit. To minimize clock skews, we customized

the sizes of the AND gate and buffer according to load capacitances of local clocks.

77

78

Chapter 5

Analysis of Datapath Energy

We analyzed the energy consumption of the Vanilla Pekoe datapath using our energy model.

Using the analysis results, we can locate energy hot spots in the datapath and develop

appropriate low-power techniques for reducing energy dissipation.

This chapter begins by describing the benchmarks used. Next, we analyze the datapath

energy consumption with two kinds of energy breakdown. At the end of this chapter, we show

how to choose better flipflops and latches in terms of power and PDP (Power-Delay Product)

using the flipflop and latch energy equations developed in Chapter 2.

5.1 Benchmarks

As a workload, we chose a combination of integer benchmarks drawn from SPECint95

benchmarks and LZW, a modified version of the compress SPECint benchmark. We simulated

a total of 2.6 billion cycles. Table 5.1 lists the benchmarks and their cycle counts.

BenchmarkfData Setg Cycle Count (Millions)

LZW fmedium testg 315
m88ksimftestg 751
gof20 9 testg 797

ijpegftestg 818
Total 2,681

Table 5.1:Benchmarks used.

79

Flipflop

Latch

Mux

RegFile

ALU

Adder

Shifter
BufferEqualCheck

36.6 pJ/cycle (23%)

36.6 pJ/cycle (23%)

16.8 pJ/cycle (10%)

37.2 pJ/cycle (23%)

12.3 pJ/cycle (8%)

11.1 pJ/cycle (7%)

3.9 pJ/cycle (2%)
0.9 pJ/cycle (<1%)4.5 pJ/cycle (3%)

Figure 5-1:Average energy breakdown by component type.

5.2 Energy Breakdown

We excluded the energy consumption of the multiplier/divider unit. However, we believe that

its contribution to energy consumption is insignificant because it is rarely used (although it

requires multiple clock cycles for computation). For example, multiplication and division

instructions in MIPS SPECint95 benchmarks comprise less than 1% of all instructions [17].

We haven’t yet implemented clock gating control logic, but we plan to add thorough clock

gating based on these preliminary results. Supply voltage was 2.5 V for the energy analysis

presented here.

5.2.1 Energy Breakdown By Component Type

We decided to study what portion of energy is consumed by each component. We classified

the datapath components as flipflops, latches, muxes, a register file, an ALU, adders, a shifter,

buffers, and an equality checker. Incrementors are classified as adders, and tri-state buffers as

buffers.

Table 5.2 shows the energy breakdown by component type for each benchmark. Figure 5-1

shows the average energy breakdown. First, we notice that flipflops, latches, and muxes — the

blocks that glue a datapath together — consume over half the total energy (56%). They are the

80

Benchmark Flipflop Latch Mux RegFile ALU Adder Shifter Buffer EqualCheck

LZW 34.8 (22%) 37.2 (23%) 19.2 (12%) 37.5 (23%) 12.0 (7%) 10.5 (6%) 4.5 (3%) 1.5 (<1%) 4.5 (3%)
m88ksim 36.6 (23%) 35.7 (23%) 15.0 (10%) 36.0 (23%) 12.6 (8%) 11.4 (7%) 3.0 (2%) 0.6 (<1%) 4.5 (3%)

go 35.7 (23%) 34.6 (23%) 13.8 (9%) 36.6 (24%) 10.8(7%) 11.1 (7%) 4.2 (3%) 0.9 (<1%) 4.5 (3%)
ijpeg 38.1 (22%) 38.7 (23%) 20.1 (12%) 38.4 (23%) 13.2 (8%) 11.4 (7%) 4.2 (2%) 1.2 (<1%) 4.5 (3%)

Average 36.6 (23%) 36.6 (23%) 16.8 (10%) 37.2 (23%) 12.3 (8%) 11.1 (7%) 3.9 (2%) 0.9 (<1%) 4.5 (3%)

Table 5.2:Energy breakdown by component type (pJ/cycle (%)).

most numerous components and these results also demonstrate that they are among the most

energy-consuming. We see that a careful low-power design of these blocks can lower the total

power significantly. Also, for flipflops and latches, we see that clock gating can potentially

lower the total power.

We also see that the register file is one of the largest consumers of datapath power (23%).

We can expect that a power-efficient register file design will lower datapath power significantly

[17]. On the other hand, the major execution blocks such as the ALU, the shifter, and the

adders account for only 17% in total. In particular, the shifter consumes only 2% of the total

energy.

5.2.2 Functional Energy Breakdown

We decided to obtain a functional energy breakdown as follows.

� Decode: this block fetches data from the register file and prepares inputs for the

execution blocks. It consists of the register file read, bypass muxes, bypass latches,

and bypass flipflops.

� Execute: this block computes operations. It consists of an ALU and a shifter.

� LoadStore: this block processes load and store data. It consists of the load

aligner/extender, the store aligner, latches, and flipflops.

� WriteBack: this block takes the output of the execute block and writes back to the register

file. It consists of the register file write, muxes, latches, and flipflops.

� PC generation: this block generates the next PC (Program Counter). It consists of muxes,

an incrementor, an adder, latches, and flipflops.

81

68.4 pJ/cycle (43%)

15.9 pJ/cycle (10%) 11.1 pJ/cycle (7%)

22.5 pJ/cycle (14%)

30.0 pJ/cycle (19%)

12.3 pJ/cycle (8%)

Decode

Execute LoadStore

WriteBack

PC generation

Coprocessor0

Figure 5-2:Average functional energy breakdown.

� Coprocessor-0: this block consists of coprocessor registers, a counter, tri-state buffers,

and an equality checker.

Table 5.3 shows the functional energy breakdown for each benchmark. Figure 5-2 shows

the average energy breakdown. First, we notice the decode block consumes 43% of the total

energy. It is the largest consumer among all. Another observation is that the PC generation

block consumes a significant portion (19%) of the total energy.

In order to understand more features of the datapath energy consumption, we divided each

functional block into sub-functional blocks. Table 5.4 shows the more detailed functional

energy breakdown for each benchmark. We divided the Decode block into register file read

(RFR), Rs mux-latch (RS), Rt mux-latch (RT), and Sd mux-latch (SD) (Figure 4-1).

The Execute block was divided into an ALU (ALU) and a shifter (SH). The LoadStore

block was divided into memory data (MD) and memory address (MA). The WriteBack block

was divided into data pipeline (DP) and register file write (RFW). Finally, the PC generation

block was divided into PC calculation (PCC) and PC chain (CH). PC chain is a series of

flipflops which save the previous PCs for exceptions or cache misses.

Figure 5-3 shows the average of the energy breakdowns. We notice that the register file read

is the most energy-consuming function in this breakdown. It consumes 19% of the total power.

82

RegFile−Read

Bypass−Rs

Bypass−Rt

Bypass−Sd

ALU

Shifter Data

Address

Pipe

RegFile−Write

PC calculation

PC chain

Coprocessor0

31.8 pJ/cycle (20%)

19.8 pJ/cycle (12%)

9.6 pJ/cycle (6%)

6.9 pJ/cycle (4%)

12.3 pJ/cycle (8%)

3.9 pJ/cycle (2%) 4.8 pJ/cycle (3%)

6.3 pJ/cycle (4%)

17.1 pJ/cycle (11%)

5.4 pJ/cycle (3%)

19.8 pJ/cycle (12%)

10.5 pJ/cycle (6%)

12.3 pJ/cycle (8%)

Figure 5-3:Average more detailed functional energy breakdown.

On the other hand, the register file write consumes only 3%. Differences in the number of read

and write ports, the circuit style (the dynamic read ports were required for the register file, but

we could construct the write port with static circuits), and the input/output data transitions (the

write port has fewer transitions than read) all contribute to this significant difference.

Also, we notice that the Rs mux-latch energy is around twice as big as the Rt or Sd mux-

and-latch energy, even though they consist of the same hardware. The register file precharges

the Rx port high, while precharging the Ry port low because of its intrinsic hardware structure.

Since operands from the register file usually have more zeros than ones, the Rx port has more

data transitions than the Ry port [17]. This explains the discrepancy.

As expected, most of the execute energy is spent by the ALU. More instructions use the

ALU and the ALU spends more power per operation than the shifter. Two main contributors

of the PC generation energy are the adders that calculate the next PC and the PC chain which

saves the previous PCs for setting the exception PCs and handling cache misses. We see that

the PC chain spends around a third of the total PC generation energy.

83

Benchmark Decode Execute LoadStore WriteBack PCgen CP0

LZW 72.6 (45%) 16.5 (10%) 11.1 (7%) 21.9 (14%) 27.3 (17%) 12.6 (8%)
m88ksim 65.1 (42%) 15.6 (10%) 10.8 (7%) 21.9 (14%) 31.5 (20%) 12.0 (8%)

go 65.4 (43%) 15.0 (10%) 10.2 (7%) 20.7 (13%) 29.1 (19%) 12.6 (8%)
ijpeg 73.2 (43%) 17.4 (10%) 12.0 (7%) 24.9 (15%) 30.9 (18%) 12.6 (7%)

Average 68.4 (43%) 15.9 (10%) 11.1 (7%) 22.5 (14%) 30.0 (19%) 12.3 (8%)

Table 5.3:Functional energy breakdown (pJ/cycle (%)).

Benchmark RFR RS RT SD ALU SH MA MD DP RFW PCC CH CP0

LZW 32.1 22.2 9.9 7.8 12.0 4.5 5.1 6.0 16.8 5.1 18.9 8.4 12.6
m88ksim 31.2 18.3 9.0 6.3 12.6 3.0 4.5 6.3 16.8 5.1 20.7 10.5 12.0

go 32.1 16.8 9.6 6.6 10.8 4.2 4.5 5.7 15.9 4.5 18.6 10.8 12.6
ijpeg 32.1 23.4 10.2 7.5 13.2 4.2 5.4 6.6 18.6 6.3 20.4 10.5 12.6

Average 31.8 19.8 9.6 6.9 12.3 3.9 4.8 6.3 17.1 5.4 19.8 10.5 12.3
Average(%) 20% 12% 6% 4% 8% 2% 3% 4% 11% 3% 12% 6% 8%

Table 5.4:More detailed functional energy breakdown (pJ/cycle).

5.3 Selection of Flipflops and Latches

As we found in the previous section, flipflops and latches consume around half the entire

datapath power. Therefore, it is important to select the lowest power-consuming flipflops and

latches while meeting the delay requirements. However, as shown in Chapter 2, there is no

universally superior power-efficient flipflop or latch. The one with the lowest power or PDP

varies according to input data and clock activities.

In this section, we look at various input data and clock signals of flipflops and latches in

the datapath, and we show how to choose the optimal design.

5.3.1 Data Activity

Figure 5-4 and Figure 5-5 show average bitwise data activities of data signals in the datapath.

As in Chapter 2, we define data activity as the ratio of the number of data transitions to total

clock cycles. All these data signals are input to flipflops or latches in the datapath.

First, we notice that data activities vary distinctly depending on signals and bits. This

means that data signals in the datapath are far from stochastic, and we see that assuming

uniform random statistics is not appropriate for datapath energy analysis. Second, the data

signals related to the PC (p pcplus4 p, f pc np , andd epc np in Figure 5-4, as well

as,p nextpc p andp pc pn in Figure 5-5) have interesting characteristics. Most of time

84

0 10 20 30
0

0.5

1
p_pcplus4_p

0 10 20 30
0

0.5

1
f_pc_np

0 10 20 30
0

0.5

1
d_sd_p

0 10 20 30
0

0.5

1

D
at

a
ac

tiv
ity

x_alu_n

0 10 20 30
0

0.5

1
x_exe_np

0 10 20 30
0

0.5

1
m_exe_np

0 10 20 30
0

0.5

1
cp0_nextcount_p

0 10 20 30
0

0.5

1
m_cp0bus_np

bit
0 10 20 30

0

0.5

1
d_epc_np

Figure 5-4:Input data activity of flipflops in the datapath.

(when there is no branch or jump), the PC increments each cycle. Therefore, bit transitions

show exponential decrease from low bits to high bits. Thus, on average, PC-related data has

few data transitions.

On the other hand, the other signals (not related to PC) don’t show much fluctuation in

data transitions between bits. However, we notice the peak at the highest bit of these signals.

The Vanilla Pekoe microprocessor has user addresses in top part of memory (0x80000000-

0xffff ffff) and the highest bit of the addresses is always one. The switchings between address

and data result in the frequent transitions at the highest bit. An interesting comparison is shown

betweend rs p and d rt p. d rs p is the signal after Rs mux, and likewised rt p is

the signal after Rt mux. We seed rs p has 0.72 data activity, yetd rt p has only 0.14

on average. This significant difference results from the precharging nature of the regfile.

Precharging the Rx port to high produces unnecessary data transitions.

5.3.2 Clock Activity

In order to get more realistic clock activities, we assumed thorough clock gating for flipflops

and latches, that is, all flipflops and latches are clock-gated whenever unused. However,

because clock gating has not been implemented yet, we had to estimate clock activities for

85

0 10 20 30
0

0.5

1
p_nextpc_p

0 10 20 30
0

0.5

1
p_pc_pn

0 10 20 30
0

0.5

1
d_rs_p

0 10 20 30
0

0.5

1
d_rt_p

D
at

a
ac

tiv
ity

0 10 20 30
0

0.5

1
x_exe_n

0 10 20 30
0

0.5

1
x_sdalign

0 10 20 30
0

0.5

1
m_resultext_p

bit

Figure 5-5:Input data activity of latches in the datapath.

some non-clock-gated flipflops and latches. We can calculate the clock activities based on

the instruction mix. For example, the flipflop which latches the data address for load/store

instructions can be clock-gated when there is no load/store instruction. If load/store instructions

account for 32% of the total instructions, then the clock activity for the flipflop is 0.32. For the

instruction mix, we used the instruction mix of SPECint95 [17].

One complication about estimating clock activities is that clock gating affects the data

activity of the output. Therefore, when we estimated the clock activity of a flipflop/latch, we

didn’t include (for our analysis) the flipflops/latches whose inputs are related to the output of

the flipflop/latch. This is because these flipflops/latches would get different inputs with lower

data activities if the previous flipflop/latch were clock-gated.

We didn’t allow the possibility of having more than one clock for a N-bit flipflop/latch.

That is, all N flipflops/latches in an N-bit flipflop/latch have the same clock activity rate.

5.3.3 Power and PDP Curves for Flipflop and Latch Selection

Figure 5-6 shows data and clock activities for various flipflops in the datapath. Each* ,+, or o

stands for the input and clock activities of a 1-bit flipflop.

We picked two types of flipflops from our candidates in Chapter 2: a Modified PowerPC

86

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Activity

C
lo

ck
 A

ct
iv

ity

Flipflop

+ : Flipflop A
o : Flipflop B
* : Other Flipflops

Figure 5-6:Clock and data activities for various flipflops. A solid curve is a PDP curve and a dashed
curve is a power curve.

(MPC) flipflop and a Transmission-gate (TG) flipflop. Using the energy equations derived in

Chapter 2, we constructed two curves: a power curve (dashed) and a PDP curve (solid). The

left side of the solid curve is the region where a TG flipflop is better in terms of PDP (Power-

Delay Product). On the other hand, the right side of the solid curve represents the region where

a MPC flipflop is better. The dashed curve divides the region in terms of power. If delay is not

a concern, we should make decisions based on this curve. In the same way as the solid curve,

at the left side of the dashed curve, a TG flipflop is better and at the right side, a MPC is the

right choice.

First, we see that if data activity is larger than 0.5, an MPC flipflop is the better choice

in terms of both power and PDP regardless of clock activity, since it consumes less input and

internal energy than a TG flipflop. If data activity is close to zero, most of energy is consumed

by clock. Therefore, a TG flipflop which consumes less clock energy, is a better choice in

terms of both power and PDP when the input has few transitions.

The flipflop A, expressed as+ in Figure 5-6, represents a 30-bit flipflop which latches PC.

We see that the data activities between bits vary from around 0.7 (bit 0) to 0 (bit 29). For this

flipflop, we can conclude that MPC flipflops are appropriate for low bits (bit 0,1,2) and TG

flipflops for high bits (larger than 2). The flipflop B, expressed aso in Figure 5-6, represents a

87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Activity

C
lo

ck
 A

ct
iv

ity

Latch

+ : Latch A
o : Latch B
* : Other Latches

Figure 5-7:Clock and data activities for various latches. A solid curve is a PDP curve and a dashed
curve is a power curve.

32-bit flipflop which latches memory data address. Unlike the flipflop A, we see that the data

activities are narrowly distributed (from around 0.2 to around 0.4). This range of data activities

makes the decision hard since they are in between the power and the PDP curves. In general,

if delay is not a concern, TG flipflops are better. Otherwise, MPC flipflops should be better.

Likewise, Figure 5-7 shows data and clock activities for various latches in the datapath.

Each* ,+, or o stands for the input and clock activities of a 1-bit latch. We chose two latches:

a PowerPC (PC) latch and a Pass-transistor (PT) latch. Using the energy equations derived in

Chapter 2, we made a power curve (dashed) and a PDP curve (solid). The left side of each

curve is the region where a PT latch is the better choice. We see that if data activity is larger

than 0.4, a PC latch is the better choice in terms of power and PDP regardless. On the other

hand, if data activity is close to zero, a PT latch is better.

The latch A, expressed as+ in Figure 5-7, is a 32-bit latch which latches the first input

(Rs) to the ALU. The latch B, expressed aso in Figure 5-7, is a 32-bit latch which latches the

second input (Rt) to the ALU. Although they have the same clock activities, we see that they

have different ranges of data activities. Because their timing requirements are tight, we have to

make decisions depending on the PDP curve (solid). Therefore, the PC latches are appropriate

for both latches.

88

Before clock−gating After clock−gating
0

10

20

30

40

50

60

m
W

The Effect of Clock−Gating in terms of Components

Buffer
Shifter
Adder
ALU
Latch
Flipflop
Mux
EqualCheck
RegFile

Figure 5-8:The effect of clock gating in terms of components.

5.4 Effect of Clock Gating

This section investigates the effect of clock gating on the datapath. Clock gating is a popular

dynamic low-power technique. It saves power consumption by eliminating clock power of

unused flipflops, latches, and dynamic blocks. It also eliminates spurious transitions in the

logic after flipflops, latches, and dynamic blocks. We compared the energy consumption of the

datapath without clock gating (the energy consumption we got in Section 5.2) with that with

the clock gating.

As in Section 5.3, we assumed the thorough clock gating and estimated the clock activity

based on the instruction mix. One complication is that clock gating of a flipflop/latch affects

the data transition of the flipflop/latch output. We made the assumption that the data transition

of the flipflop/latch output is the estimated clock activity of the flipflop/latch times the data

transition when the clock is not gated. We believe that this assumption is reasonable for this

preliminary investigation.

Figure 5-8 shows the effect of clock gating in terms of components. First, we notice that

as expected, flipflops, latches, and dynamic blocks such as the ALU and adders got the most

benefit from clock gating (28% reduction for flipflops, 47% for latches, 41% reduction for the

ALU, and 30% for adders). Also, we see that the average power consumption of the shifter

89

Before clock−gating After clock−gating
0

10

20

30

40

50

60

m
W

The Effect of Clock−Gating in terms of Functions

LoadStore
Execute
WriteBack
Decode
PC generation
CO−Processor0

Figure 5-9:The effect of clock gating in terms of functional blocks.

reduced drastically from 1.3mW to 0.1mW. Clock gating of the latch before the shifter prevents

all spurious input data transitions (over 90% of data transitions were spurious before clock

gating) to the shifter, which results in this significant reduction. We see that the low-power

design of the register file becomes more important. The register file accounts for 31% of the

total energy of the datapath with clock gating.

Figure 5-9 shows the effect of clock gating in terms of functional blocks. First, we notice

that the coprocessor-0 block and the PC generation block didn’t get much benefit from clock

gating. We found that there were not many places where we could apply clock gating technique

in these blocks. The small reduction of the PC generation block comes from clock gating of the

branch target adder. We see that the load/store block got the largest energy reduction (68%).

Since the block is not used often compared to other blocks such as the execute block, the

decode block and the write-back block, it can be turned off for more cycles.

Figure 5-10 shows the effect of clock gating in terms of sub-functional blocks. We see that

all the pipeline registers, all the Rs, Rt, and Sd bypass blocks, and all the execution blocks

such as the ALU and the shifter experienced energy reduction from clock gating. However,

the energy consumptions of the register file read and write, the PC chain, and the coprocessor

registers remain unchanged since they don’t allow clock gating for energy saving.

In total, clock gating could lower the energy consumption of the datapath by 25.1%. This

90

Before clock−gating After clock−gating
0

10

20

30

40

50

60

m
W

The Effect of Clock−Gating in terms of Sub−functions

Shifter
MemoryData Pipe
MemoryAddress Pipe
Bypass−Sd
Bypass−Rt
ALU
WriteBack Pipe
Bypass−Rs
PC calculation
RegFile−Write
PC chain
CO−Processor0
RegFile−Read

Figure 5-10:The effect of clock gating in terms of sub-functional blocks.

indicates that clock gating is an effective, worthy low-power technique for the datapath even

though it increases the complexity of the control logic.

91

92

Chapter 6

Conclusion

In this thesis, we approached a low-power datapath design problem in a bottom-up fashion.

First, we studied flipflops, latches, and muxes - the most common and frequently-used blocks in

the datapath. For flipflops and latches, we proposed that energy dissipation should be modeled

as a two-variable function of data and clock activities. We found that power dissipation is

linearly proportional to data activity when clock activity is fixed. We built two linear functions

with measurements when clock activity is 100% and 0% and using these, we constructed the

two-variable energy function. The graph of this energy function showed more dynamic features

of energy dissipation than traditional measurements which assume random input and un-gated

clock. For example, we found that a Modified PowerPC flipflop and a PowerPC latch have

the best PDP (Power-Delay Product) for most cases, but when data activity is low (<10%), a

Transmission-gate flipflop and a Pass-transistor latch are better in terms of PDP. We compared

two representative mux designs: a Transmission-gate (TG) mux and a Pass-transistor (PT) mux.

We identified three main energy sources: pass energy, non-pass energy, and control energy. We

found that a TG mux has less pass energy, but more control energy while they have similar non-

pass energy. We made an analytic equation which calculates total energy consumption using

these. Assuming the random input and control signals, we found that PT mux spends slightly

less energy if the number of inputs is 4 or more. However, in terms of EDP (Energy-Delay

Product), a TG mux was found to be better than a PT mux if the number of inputs is in the

range of 2-5.

Second, we built a new simulation-based energy estimation model, thenet-transition energy

93

model. The energy model combines effective capacitance values and statistics from a simulator

to calculate energy dissipation. In order to obtain accurate effective capacitances, we developed

acapacitance merging method. This method calculates transistor capacitances using empirical

equations and merges them with parasitic wire capacitances into a single effective capacitance

for each node. We experimented with two slightly different FO4 (fanout-of-four) inverter

chains and derived the empirical equations. We showed the calculated capacitances using the

equations match the measured ones (with Hspice) within 5% error. Our energy model showed

close agreement (<8% error) with Hspice measurements for various basic circuit blocks and a

32-bit GCD (Greatest Common Divisor) circuit, which can be regarded as a small version of

a datapath. Also, we modeled short-circuit energy for an inverter. We revealed that the short-

circuit energy is linearly proportional to a transistor width, when the ratio of PMOS and NMOS

widths is fixed in a typical FO4 (fanout-of-four) environment. We developed a table lookup

method based on this observation. We showed this method can estimate the short-circuit energy

with 8% error at maximum.

Third, we custom-designed a prototype datapath for a 0.25�m five metal process (from

TSMC). Our metal allocation scheme resulted in a very tight datapath (2270 x 11640�2 = 0.27

mm x 1.40 mm = 0.38mm2). Also, we showed design decisions on floor planning, an adder,

and clock gating. We explored shifter designs — one of the essential blocks in the datapath, but

a relatively simple structure — intensively. We found 84% of shifts are left shifts and 85% of

left shifts are less than 4 bit shifts for SPECint 95 and Dhrystone benchmarks. We developed a

new shifter design,split log-4 shifter. The split log-4 shifter takes advantage of the fact derived

from the benchmarks that most shifts are small. It deactivates unnecessary stages to save power

when the shift amount is less than 4. We found that the barrel shifter is better than any other

log shifters in terms of both delay and energy. Among log shifters, we found that the split log-4

shifter consumes the least energy (32% energy saving compared to a log-2 shifter), although it

had a significant delay penalty when the shift amount is 4 or more. The log-4 shifter showed

the best EDP among log shifters. Also, we found reverse ordering helps for both delay and

power but internal buffering is not worth for log shifters, if the number of stages is 5 or less.

Finally, we analyzed the energy consumption of the prototype datapath using our energy

estimation tool. From the energy breakdown by components, we revealed the basic blocks

94

such as flipflops, latches, and muxes account for over half the total energy (56%). On the

other hand, we found that the execution components such as the ALU, adders, and the shifter

consume only 17% of the total energy. From the energy breakdown by functional blocks,

we revealed the decode functions such as register file read, bypassing, and PC generation,

account for significant portions of the total energy (20%, 22%, and 19% respectively). Also,

we showed how to choose the optimal design between two choices of flipflops/latches using the

power curve and the PDP curve, based on the clock and data activities in the datapath. Then,

we investigated the effect of thorough clock gating. We found that clock gating is an effective

low-power technique. Clock gating resulted in 25.1% energy reduction in total.

95

96

Bibliography

[1] K. Acken, M. Irwin, and R. Owens. Power comparisons for barrel shifters. InProceedings

ISLPED, pages 209–212, Monterey, CA, 1996.

[2] Tom Burd. Low-power cmos library design methodology. Master’s thesis, University of

California at Berkeley, 1994.

[3] P. K. Chan and M. D. F. Schlag. Analysis and design of cmos manchester adders with

variable carry-skip.IEEE Transactions on Circuits and Systems, 39(8):983–992, August

1990.

[4] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power cmos digital design.

IEEE Journal of Solid-State Circuits, 27(4):473–484, April 1992.

[5] C. X. Huang, B. Zhang, A.-C. Deng, and B. Swirski. The design and implementation

of PowerMill. In Proceedings of the IEEE Symposium on Low Power Electronics, pages

105–111, October 1995.

[6] G. Kane and J. Heinrich.MIPS RISC Architecture (R2000/R3000). Prentice Hall, 1992.

[7] V. Kantabutra. Designing optimum one-level carry-skip adders.IEEE Transactions on

Computers, 42(6):759–764, June 1993.

[8] R. Krashinsky, S. Heo, M. Zhang, and K. Asanovi´c. SyCHOSys: Compiled energy-

performance cycle simulation. InWorkshop on Complexity-Effective Design, 27th ISCA,

Vancouver, Canada, June 2000.

97

[9] J. Lee, B. Vinnakota, and L. Lucke. Power estimation using input/output transition

analysis (iota). InInternational Symposium on Circuits and Systems, volume 6, pages

49–52, June 1998.

[10] H. Mehta, R. M. Owens, and M. J. Irwin. Energy characterization based on clustering. In

DAC, pages 702–707, Las Vegas, NV, June 1996.

[11] L. Nagel. SPICE2. Technical Report ERL-M520, ERL Technical Memo, University of

California, Berkeley, 1975.

[12] C. Nagendra, M. J. Irwin, and R. M. Owens. Area-time-power tradeoffs in parallel adders.

IEEE Transactions on Circuits and Systems, 43(10):689–702, October 1996.

[13] F. N. Najm. A survey of power estimation techniques in vlsi circuits.IEEE Transactions

on VLSI Systems, 2(4):446–455, December 1994.

[14] J. Rabaey.Digital Integrated Circuites. Prentice Hall, 1996.

[15] V. Stojanovic and V. G. Oklobdzija. Comparative analysis of master-slave latches and flip-

flops for high-performance and low-power system.IEEE Journal of Solid-State Circuits,

34(4):536–548, April 1999.

[16] I. Sutherland, B. Sproull, and D. Harris.Logical Effort. Morgan Kaufmann, 1999.

[17] J. Tseng. Energy-efficient register file design. Master’s thesis, Massachusetts Institute of

Technology, December 1999.

[18] N.P. van der Meijs and A.J. van Genderen. SPACE Tutorial. Technical Report ET-NT

92.22, Technical Report, Delft University of Technology, Netherlands, 1992.

[19] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye. A unified

energy framework with integrated hardware-software optimizations. InISCA, Vancouver,

Canada, June 2000.

98

