
Appears in13th Symposium on Integrated Circuits and System Design, Manaus, Brazil, September 2000

Energy-Efficient Register Access

Jessica H. Tseng and Krste Asanovi´c
MIT Laboratory for Computer Science, Cambridge, MA 02139

fjhtseng|krste g@lcs.mit.edu

Abstract

We present and evaluate seven techniques to reduce
energy dissipation for accesses to a processor register
file: modified storage cellavoids bitline discharge for
zero bits, precise read control avoids fetching unused
operands,latch clock gating disables latch clocks when
operands are not needed,bypass skip turns off regfile
reads when bypass circuitry will supply the value,by-
pass R0treats accesses to R0 separately,split bitline re-
duces access energy for frequently-used registers, andread
cachingavoids regfile reads when the same register is read
twice in succession. For a 0.25�m CMOS three-port reg-
file, we find individual energy savings of 27%, 21%, 8%,
16%, 14%, 12%, and 1% respectively, and a combined
saving of 59% when all seven techniques are used in com-
bination. The total area overhead is around 17% and the
total delay overhead is around 3%.

1. Introduction

Register files represent a substantial portion of the en-
ergy budget in modern microprocessors [2, 3, 9]. For ex-
ample, in Motorola’s M.CORE architecture, the register
file consumes 16% of the total processor power and 42%
of the data path power [2]. In this paper, we evaluate
seven techniques to reduce register file access energy by
either lowering the switching activity or the capacitance
switched. Several of these techniques have been proposed
earlier, but in this paper we present the first detailed eval-
uation of their energy dissipation and show how all tech-
niques interact for a pipelined RISC processor running
large benchmark programs.

The paper is structured as follows. Section 2 describes
our experimental methodology. Sections 3–10 describes
our base case register file design and the seven energy sav-
ing techniques in detail:modified storage cell[7] which
avoids bitline discharge for zero bits,precise read control
[1, 7] which avoids fetching unused operands,latch clock
gatingwhich disables latch clocks when operands are not
needed,bypass skip[1, 7] which turns off regfile reads

when regfile bypass circuitry will supply the value,bypass
R0 [7] which treats accesses to R0 separately,split bitline
[7] which reduces access energy for frequently-used regis-
ters, andread-cachingwhich avoids regfile reads when the
same register is read twice in succession. In Section 11 we
show how the seven techniques can be combined to yield a
larger total saving, with a final reduction by a factor of 2.4
in total access energy at a cost of a 17% area increase and
a 3% delay increase. We conclude in Section 12.

2. Evaluation Methodology

For this study we focus on the design of the integer
register file for a single-issue pipelined MIPS-II compati-
ble RISC microprocessor (similar to the MIPS R3000 [4]).
This design point is representative of processors targeted
at low-power embedded applications. The regfile contains
31�32-bit writable registers plus a fixed 32-bit zero reg-
ister (R0), and has two read ports and one write port. A
bypass network is used to forward results to subsequent
instructions to avoid extra latency from regfile accesses.
We evaluate the energy dissipation of our various alterna-
tives by combining the results of bit-accurate and cycle-
accurate microarchitectural simulations with energy mod-
els extracted from custom layouts of the register file and
bypass network.

Our simulator models a five-stage pipeline (Figure 1),
which has a single interlocked load delay slot, 17 delay
cycles between the issue of an integer multiply and read
of result, and 32 delay cycles between the issue of an in-
teger divide and the read of the result. We do not model
cache misses as these do not affect regfile energy assum-
ing the processor stalls for cache misses. The simulator
traces user-level instructions and records register file ac-
cess information, instruction operands’ bypass frequency,
and bit-level data switching activity.

Our benchmark workload is shown in Table 1. Each
benchmark was compiled withgcc version 2.7.0 with -O3
optimization for the MIPS-II architecture and linked with
the Cygnusnewlib standard C library. Each benchmark
was run to completion (a total of over 14 billion cycles of

BenchmarkfData Setg Instruction Cycle Description
Count Count

(Millions) (Millions)

SPECint95:m88ksimftestg 519 567 Motorola 88100 microprocessor simulator
SPECint95:liftestg 997 1,129 xlisp interpreter
SPECint95:goftraing 579 631 An internationally ranked go-playing program
SPECint95:gccfref:2c-decl-sg 1,396 1,524 Based on the GNU C compiler version 2.5.3
SPECint95:vortexftestg 10,054 11,123 An object oriented database
SPECint95:jpegftest:specmum.ppmg 567 710 JPEG 24-bit image compression standard
Sun:g721fclinton.g721g 528 625 Adaptive differential PCM voice compression

Table 1:Benchmark and dataset descriptions, instruction counts, and cycle counts.

addr
rs1

we

read

readb
wd

ws

rs2

sa/16

rs_control

rt_control

sd_control

wdata

rdata

addr
we

Memory accessInstruction fetch Instruction decode/ register fetch Execute Write back

Cache
Inst

GPRs

Imm Ext

Data
Cache

sd

IR
YALU

IRPC rs

rt

sd

Figure 1:MIPS RISC core pipeline structure.

processor operation) with averages weighting each bench-
mark equally.

We developed an energy model for the register file and
bypass network, shown as the shaded region in Figure 1.
We model the average energy consumption as:

E =
1

2

X

r

fr � Cr � Vr � Vdd

wherefr is the average transition frequency of noder as
determined by the simulator,Cr is the switching capaci-
tance related to noder as extracted from circuit layouts,
Vr is the voltage swing on the node, andVdd is the sup-
ply potential. We measure energy for the complete register
access including bypass muxing and latching.

We designed circuits to run at 2.5 V in a 0.25�m CMOS
technology from TSMC. Magic [5] was used for layout,
and the SPACE 2D extractor [8] was used to extract lay-
out parasitics for circuit simulation, including capacitance
to the substrate, fringe capacitance, crossover coupling ca-
pacitance, and capacitance between parallel wires. HSpice

was used to simulate the extracted netlist and to determine
the effective switching capacitance,Cr, for the energy es-
timation model. We measure regfile delay from the start of
the second half of the cycle until read data is available at
the output of the bypass transparent latch, which represents
the critical path in the decode stage. The target read delay
is under 1 ns to satisfy the ALU input setup time required
to reach our nominal processor clock rate of 400 MHz.

3. Base Case Register File Design

The regfile used in this study is a high performance dy-
namic design with two single-ended read ports and one dif-
ferential write port (Figure 2). Registers are written and
read bitlines are precharged during the first half of the cy-
cle, while read data is sensed during the second half of the
cycle. Static address decoders evaluate a half-cycle ahead
of bitline read or write. The base eight-transistor storage
cell (Figure 3) occupies 30.5�m2, and all regfiles were de-

Bit31
Column Circuitry

Bit0

A
dd

re
ss

D

ec
od

er

wordline_w_R31

wordline_rt_R31

wordline_rs_R0

wordline_rt_R0

wordline_w_R0

wordline_rs_R31

clk

sd rt rs sd rt rs

read
src1

read
src2

write
src

5

5

5

w
bi

t0
b

rb
it0

w
bi

t3
1b

rb
it3

1

R
F_

w
0

R
F_

rt
/s

d0

R
F_

rs
0

R
F_

w
31

R
F_

rt
/s

d3
1

R
F_

rs
31

sa
/1

6

sa
/1

6

sd
_c

on
tr

ol

sd
_c

on
tr

ol

rt
_c

on
tr

ol

rs
_c

on
tr

ol

rt
_c

on
tr

ol

rs
_c

on
tr

ol

Column Circuitry

rb
it0

b

w
bi

t0

rb
it3

1b

w
bi

t3
1

Figure 2:Base register file design.

wordline_rt_Rx
wordline_rs_Rx

wordline_w_Rx

rb
itb

rb
it

w
bi

t

w
bi

tb

Figure 3:Base register file storage cell.

signed to use only the lowest 3 of the 5 available layers of
metal. Figure 4 shows the column circuitry, which includes
a clocked inverter sense amplifier to speed bitline sensing.
All dynamic nodes have keeper transistors to support fully
static operation. The bypass network uses transmission
gate muxes and latches, with latches similar to those in the
IBM PowerPC603 [6].

4. Modified Storage Cell

Our benchmark simulations show that 82% of the bits
fetched from the regfile are zeros. We can reduce the reg-
file read bitline switching activity by modifying the bitline
connections to the storage cells to minimize the number
of high-to-low and low-to-high transitions. Since both sets
of read bitlines are precharged high, they dissipate energy

Vdd

write_data

Vdd

Vdd

Vdd

rt/sd_data

rs_data

clk (precharge)

rbit

rbitb

wbit

wbitb

Figure 4:Base column circuitry for one bit slice.

only when the storage cells cause them to discharge their
precharged value. We can also remove the R0 row because
if no wordline is enabled, the regfile will return the required
zero value. The asymmetry of the modified cell (Figure 5)
increases cell area by 17% to add a connecting wire, but
then also allows larger internal pulldowns which avoid any
delay penalty when both read ports are active simultane-
ously (total regfile area increases by 9%). Energy saving
ranges from 17%–36% across benchmarks with an average
of 27%.

(p
or

t2
)

(p
or

t1
)

wordline_rt_Rx

wordline_w_Rx

wordline_rs_Rx w
bi

t

rb
itb

rb
itb

w
bi

tb

Figure 5:Modified storage cell implementation.

5. Precise Read Control

The base case register file always accesses both
operands even if the machine instruction only requires zero
or one. Our dynamic benchmark statistics show that on
average each instruction only requires 1.3 operands. The
decode stage control logic already has to calculate which
operands are necessary for bypassing and interlocking.
With minimal extra control logic we can also disable word
lines, and hence bitline discharge, by gating the word line
enable pulse in the second half of the cycle. Although the
read address decoders are always active in the first half of

the cycle, they represent only a small portion of the to-
tal access energy. Compared with the base case, precise
read control leads to energy savings from 15%–27% across
benchmarks with an average of 21%. We assume that the
decoding of required operands completes in the first half of
the cycle, and hence that there is no access time penalty to
this scheme.

6. Latch Clock Gating

Not all instructions make use of all the values in the by-
pass latches. Our simulations show that only around 81%
of instructions use values held in thers or rt latches (which
can be either register or immediate values), while thesd
register is only used by store instructions (around 10% of
all instructions). We can reduce energy by not clocking
latches whose values are not needed. This results in a 8%
energy savings over the base case that always clocks all
latches.

7. Bypass Skip

Our simulations of the processor pipeline show that an
average of 36% of all necessary operands are bypassed
from other stages of the pipeline instead of being read from
the regfile. Similar to the precise-read control method, if
we can determine that the bypass network will supply the
value in the first half of the cycle, we can gate the word-
line enable and avoid discharging bitlines in the second half
of the cycle. Control logic is already present to drive the
bypass network. If determining the bypass control takes
longer than the first half of the cycle, this scheme will in-
crease latency otherwise there is no access time penalty.
Bypass-skip leads to energy savings between 11%–23%
across benchmarks with an average of 16%.

8. Bypass R0

If we provide a separate zero input to the bypass mux
we can remove the zero cells from the regfile and avoid
discharging bit lines on a read. We can also save energy
by never driving write bitlines when writing R0. R0 is ac-
cessed frequently in the base case and energy saving ranges
from 7% to 17% with an average of 14%.

9. Split Bitline

Our simulations reveal that a few registers account for
most of the register file accesses. The 8 most popular regis-

ters account for 75%–92% (average 83%) of all regfile ac-
cesses. Moreover, the benchmark traces indicate that par-
ticular registers such as R0, R2, R3, R4, R5, R6, R16, and
R29 are always accessed more frequently than others due
to MIPS assembler conventions; R2 and R3 are used for
expression evaluation and to hold integer function results;
R4, R5, and R6 are used to pass the first three actual in-
teger arguments; R16 is the first callee-saved register; and
R29 contains the stack pointer.

We can decrease average bitline switching capacitance
by splitting bitlines into two partitions, one with the most
popular few registers and the other holding the remain-
der. This register file hierarchy reduces the energy cost
of accessing the most-frequently-used registers, with only
a small delay penalty to access the least-frequently-used
registers. A tradeoff exists between including more reg-
isters in the popular partition and reducing the energy of
each access to the popular partition. We determined that
there is a broad optimum in the range of 5–9 popular regis-
ters and present results for a design with 8. We use a single
n-type transistor to separate the two partitions (Figure 6),
and this transistor is opened only when accessing the least-
frequently-used registers. Also, we only precharge the
larger partition to a threshold drop belowVdd through an
n-type transistor and the address decoder wiring is changed
to map the popular register numbers into the short bit-
line partition. The split-bitline energy saving ranges from
11% to 13% with an average of 12%. The constant en-
ergy consumption of the decoders, column circuitry, and
bypass network limits the maximum possible energy sav-
ing to 22%.

precharge

wordline_rs_Ry

wordline_w_Ry

readbit_gateline
write_gateline
readbitb_gateline

wordline_rs_Rx
wordline_rt_Rx

wordline_rt_Ry

wordline_w_Rx

Vdd

Column Circuitry

rb
itb

rb
it

w
bi

t

w
bi

tb

M
os

t P
op

ul
ar

 R
eg

is
te

rs
’

P
ar

ti
ti

on
R

em
ai

ni
ng

 R
eg

is
te

rs
’

P
ar

ti
ti

on

Figure 6:Split-bitline regfile implementation.

10. Read Caching

Our simulations show that in some cases, two succes-
sive instructions read the same register from the register
file, e.g., in the following sequence,

add r4, r1, r6
xor r9, r1, r2

the registerr1 is read twice into the same latch by two
successive instructions. We can reduce energy in this case
by not clocking thers latch and not reading the register
file for the second instruction. Our simulations show that
around 9% of accesses to thers latch can be supplied via
this simple read cache. Most of these cacheable reads are
due to repeated use of the stack pointer register during reg-
ister save/restore code. Because we did not observe much
cacheability of thert andsd latches, we do not attempt to
use read caching for those latches.

There is control logic overhead to managing the register
read cache. The previously read register address must be
compared with the current register read address. This re-
quires an extra 5 bits of latch to hold the old read register
address, a single bit to indicate if the latch state is valid plus
another single bit to hold the address comparison result, as
well as a 5-bit compare circuit. We include the energy cost
of the register address latch and comparison circuit in our
numbers. Our simulations show a 1% energy savings from
using the read cache over the base case. This low energy
saving is due to the overhead of the extra control logic.

11. Combining Techniques

Table 2 summarizes our results showing area, delay, and
energy for each of the seven techniques when applied indi-
vidually to the base case. We can achieve greater savings
by combining all seven techniques as shown by the last row
in the table. We choose to apply the techniques in the order
presented above. The earlier techniques are easiest to add
and incur the largest savings. The later techniques have
reduced incremental savings because they often have some
overlap with earlier techniques in the way they achieve sav-
ings.

Figure 7 shows the progressive reduction in regfile en-
ergy as we add the techniques, and also illustrates where
the energy savings occur. The modified storage cell (MSC)
achieves most of its savings in the bitlines but there are also
savings in the column circuitry and the muxes and latches
due to the reduced number of transitions. MSC is very ef-
fective at reducing bitline energy, so when we add precise
read control (PRC), we find the biggest saving is now in the
column circuitry from reduced activity in the precharge and

Case Area Read Latency Energy/cycle
(ratio) (ns) (pJ)

BASE 1.00 0.94 63.2 (100.0%)
MSC 1.09 0.94 45.9 (72.6%)
PRC 1.00 0.94 50.2 (79.5%)
LCG 1.00 0.94 58.4 (92.4%)
BS 1.00 0.94 53.0 (83.8%)
BR0 1.03 0.94 54.4 (86.1%)
SB 1.02 0.97 55.8 (88.3%)
RC 1.01 0.94 62.4 (98.7%)

COMB 1.17 0.97 26.2 (41.5%)

Table 2: Overall regfile area, performance, and energy evalua-
tion for the base case regfile (BASE), the modified-storage-cell
regfile (MSC), the precise-read-control regfile (PRC), the clock-
gating regfile (LCG), the bypass-skip regfile (BS), the bypass-R0
regfile (BR0), the split-bitline regfile (SB), the read-cache regfile
(RC), and the combination regfile (COMB).

sense amp circuitry. As expected, latch clock gating (LCG)
shows savings only in the latch energy. When bypass skip
(BS) is added, again there is a small further reduction in
bitline energy, but the largest reduction is in the column
circuitry. BS complements PRC; PRC removes reads for
operands that are never required while BS removes reads
for operands that are required but whose current value is
not in the register file. Bypass R0 (BR0) has little effect
now (2%) after applying the other techniques given that
we have already used MSC to avoid most energy associ-
ated with reading zeros. The savings that remain are from
avoiding switching on the bitlines for writes to R0, and for
not switching the column circuitry on a read of R0. BR0
adds some mux energy to all accesses because the bypass
muxes are now larger to support the separate zero input.

Once we have applied the other techniques, the split
bitline technique provides little incremental savings (1%).
Many of the popular register accesses are satisfied from the
bypass skip, and MSC reduces bitline energy for the re-
maining accesses. Although the read cache saves energy in
a different way than the other techniques, it also has only a
small incremental saving (1%) due to its high control over-
head. If we only apply the first five techniques, there is no
delay penalty and a 54% overall energy saving.

The final breakdown of register file energy shows that
we have successfully removed most of the bitline energy.
The major contributors to final energy are the column cir-
cuitry, bypass muxes, and latches. The breakdown also
shows how small the decoder energy is (<2% of final en-
ergy), justifying our decision to always activate the de-
coders regardless of whether a register file port is needed
or not.

26%

14%

 8%

29%

22%

23%

9%

8%

21%

11%

22%

8%

6%

15%

9%

14% 14% 14% 14%

9%

15%

6%

8% 8%

5%

11%

7%
6%

9%

4%

9% 9%

4%

9%

5%
4%

8%
4%

8%

13%

bitline

column

word line

mux

latch

decoder

control overhead

BASE + MSC + PRC + LCG + BS + BR0 + SB + RC

100.0%

72.6%

61.4%

53.8%

46.4%

41.5%42.7%44.4%

Figure 7:Effect of combining techniques.

The final two techniques (split-bitlines and read
caching) are the most complex and give the least benefit
when combined with the other methods. These results il-
lustrate the importance of considering the overlap of vari-
ous energy-reduction techniques when applied to the same
problem. The final breakdown also shows that further ef-
fort to reduce bitline energy (for example, differential read
ports [9]) will yield little overall energy improvement.

12. Conclusions

We have evaluated seven techniques to reduce register
file access energy by simulating large benchmark program
runs. The overall saving was up to a factor of 2.4 over the
base case design. The final energy breakdown in the reg-
ister file shows less than 10% of the power due to bitline
activity, indicating that further work to reduce bitline en-
ergy will have limited impact. Further savings might be
achieved with new column circuitry. It appears difficult
to reduce energy in the muxes and latches at the micro-
architectural level because required operands must ulti-
mately pass through this path, although circuit techniques
might reduce energy further.

13. Acknowledgments

This work was partially funded by an NSF graduate fel-
lowship.

References

[1] N. Nishi et al. A 1GIPS 1W single-chip tightly-coupled four-
way multiprocessor with architecture support for multiple
control flow execution. In2000 IEEE International Solid-
State Circuits Conference, February 2000.

[2] D. R. Gonzales. Micro-RISC architecture for the wireless
market.IEEE Micro, 19(4):30–37, July/August 1999.

[3] A. Kalambur and M. J. Irwin. An extended addressing mode
for low power. InProceedings of the IEEE Symposium on
Low Power Electronics, pages 208–213, August 1997.

[4] G. Kane and J. Heinrich. MIPS RISC Architecture
(R2000/R3000). Prentice Hall, 1992.

[5] J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G. Taylor.
Magic: A VLSI Layout System.Proc. 21st Design Automa-
tion Conference, pages 152–159, 1984.

[6] V. Stojanović and V. G. Oklobdˇzija. Comparative analysis
of master-slave latches and flip-flops for high-performance
and low-power system.IEEE Journal of Solid-State Circuits,
34(4):536–548, April 1999.

[7] J. Tseng. Energy-efficient register file design. Master’s the-
sis, Massachusetts Institute of Technology, December 1999.

[8] N.P. van der Meijs and A.J. van Genderen. SPACE Tutorial.
Technical Report ET-NT 92.22, Technical Report, Delft Uni-
versity of Technology, Netherlands, 1992.

[9] V. Zyuban and P. Kogge. Split register file architectures for
inherently low power microprocessors. InPower Driven Mi-
croarchitecture Workshop at ISCA98, Barcelona, Spain, June
1998.

