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Abstract

Fast Fourier Transforms perform a vital role in many applications from astronomy to
cellphones. The complexity of these algorithms results from the many computational
steps, including multiplications, they require and, as such, many researchers focus
on implementing better FFT systems. However, all research to date focuses on the
algorithm within a 2-Dimensional architecture ignoring the opportunities available in
recently proposed 3-Dimensional implementation technologies. This project examines
FFTs in a 3D context, developing an architecture on a Field Programmable Gate
Array system, to demonstrate the advantage of a 3D system.
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Chapter 1

Introduction

The Discrete Fourier Transform converts data from a time domain representation to
a frequency domain representation allowing simplification of certain operations. This
simplification makes it key to a wide range of systems from networking to image
processing. However, the number of operations required made the time-to-frequency
conversion computationally expensive until the development of the Fast Fourier Trans-
form (FFT), which takes advantage of inherent symmetries. The FFT still requires
significant communication and data throughput resulting in several variations on the
algorithm and implementations. This project develops a new implementation of the
FFT, improving further by developing an implementation for a 3-Dimensional Field
Programmable Gate Array (FPGA) system.

The 3D FPGA system consists of several FPGA chips, each connected to a bank of
Dynamic Random Access Memory (DRAM) chips within a single package (see Figure
1-1), allowing improved communication between the FPGAs, and between a FPGA
and its DRAMs. This decrease in the delay and cost of inter-chip communication in-
creases the speed of the algorithm. In addition, the use of programmable FPGA logic
decreases the implementation time as development of the algorithm and verification
can be accomplished in-situ on the actual hardware, and increases the flexibility of
both the algorithm design and the variety of algorithms the system can run.

This project focuses on large FFTs, designing a scalable 22°-point implementation.
The FFT uses a 4-step approach to create an iterative algorithm that allows for a
variable number of FPGAs. Due to the lack of manufactured 3D FPGA systems, the
design targets a single Xilinx Virtex2 4000 chip for implementation. Based on mea-
surements from this single Virtex2, a model describing the 10, area and power effects
extrapolates a multi-layer, multi-chip system using Xilinx Virtex2 Pro 40 FPGAs.
This then is compared to other FPGA and ASIC FFT designs to determine the
improvements possible with 3D FF'T structures.

The thesis initially introduces some background of FFT algorithms and related
work, followed by both a Unit-Transaction Level and a Micro-Architectural system
description, concluding with the multi-chip model and results.

13
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Figure 1-1: Overall 3D FPGA Diagram
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Chapter 2

Background and Related Work

This chapter discusses the background and design points of Fast Fourier Trans-
form algorithms, describes relevant hardware implementations, and concludes with
an overview of 3-Dimensional implementation technologies.

2.1 FFT History and Algorithms

The Fast Fourier Transform exploits the symmetry of the Discrete Fourier Transform
to recursively divide the calculation. Carl Gauss initially developed the algorithm in
1805, but it faded into obscurity until 1965 when Cooley and Tukey re-developed the
first well known version in a Mathematical Computing paper [24]. Once re-discovered
in an era of computers, people realized the speedup available and experimented with
different variations. Gentleman-Sande [12], Winograd [25], Rader-Brenner [21], and
Bruun [7] are just a few of the many variants on the FFT.

To distinguish between these different algorithms, a number of variables describe
an FFT algorithm, including the method of division, the size of the smallest element,
the storage of the inputs and outputs of the calculation, and approach to large data
sets. The basic structure of the algorithm consists of scaling steps and combination
steps (see Figure 2-1). As will be discussed below, the order of scaling and combination
influences the division design decision of the algorithm as well as the storage of the
inputs and outputs. The number of steps depends on the number of inputs into the
algorithm, also referred to as points and commonly represented by N, as well as the
size of the smallest element, also called the radix. The choice of approach to large
data sets affects both the radix and the division of the algorithm.

15
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Figure 2-1: Example of Basic FFT Structure Consisting of Scaling and Combinational
Steps

Division Method Two methods exist to recursively divide the calculation. Math-
ematically, either the data can be divided at the time-domain input resulting in a
method called Decimation in Time (DIT) or the data can be divided at the frequency-
domain output resulting in a Decimation in Frequency (DIF) method (see Figure 2-2).
Within an algorithm, this affects where the scaling of the data occurs. A DIT al-
gorithm multiplies the inputs by the scaling factor (also know as a twiddle factor)
before combining them; a DIF multiplies after the combination.

A

/\

/\

''s
Y

7\

- b
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Figure 2-2: DIT Compared to DIF Diagram



Radix Size The divisor used within the recursion defines the radix size, which in
turn defines the smallest element of the calculation. Mathematically, if an N-point
FFT is performed in radix R, the number of stages required is L09(N) ‘and the number

log(R)
&, resulting in ()% (ll‘;‘; ((]]\%[))) radix nodes for the algorithm

(see Figure 2-3). Complexity of the smallest element increases with radix size, while
the number of multiplies decreases. Commonly power-of-two radices are used; if the
number of inputs is odd, then mixed-radix algorithms are required increasing the
complexity of the system.

of radix nodes per stage is

Node Stage

@

\ /

4 &
@
4 4
A 4

N = 8 points
R=2
Stages = log(N)/log(R) =3
Nodes per Stage = N/R =4
Total Nodes = Stages * Nodes per Stage = 12

Figure 2-3: Radix Size Depiction

Input and Output Storage Certain algorithms allow the same location to be read
for input and written for output. This category of in-place algorithms decreases the
storage size required, but increases the complexity especially when dealing with cus-
tom hardware. The other option doubles the amount of storage required by reading
from one location and writing to a different location (see Figure 2-4). Other consid-
erations include the stride access of the data: is the data loaded into the location so
that the algorithm can read it out unit sequentially or does the data need to be read
in stride patterns based on the radix or point size of the algorithm?

17
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Figure 2-4: FFT Calculation and Memory Flow Diagram

Large Data Set Approach If, as in the case of this project, the data set exceeds
the implementable FF'T datapath size, two approaches can be used. First, the same
algorithm used if the datapath size was possible can be utilized by performing sec-
tions of the calculation on the implementable subset of the hardware. This allows the
computation to be scheduled in time on a small portion of the hardware. This com-
plicates the scheduling and increases the complexity of generating and scheduling the
scaling (or twiddle) factors for the scaling step. These design choice trade-offs lead to
another option involving changing the algorithm used to a 4-step algorithm by map-
ping the 1D data set to a 2D data set (see Figure 2-5). This algorithm developed by
Gentleman and Sande [12] consists of viewing an N-point FFT as a (n*m)-point FFT,
where N=n*m. First, n m-point FFTs are performed, covering the rows of the array.
The results are multiplied by a twiddle factor, based on N, and then transposed. Step
four involves m n-point FFTs, covering the new transposed rows of the array. This
4-step algorithm reduces the amount of on-chip memory space by requiring only a
subset of the twiddle factors and allows for better hardware reuse.

2.2 FFT Hardware Implementations
Past implementations focused on two different options - either to develop an algorithm
for a processor or other pre-built hardware system, or to develop new hardware,

usually consisting of either an application specific integrated circuit (ASIC) design

18
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Figure 2-5: 4-Step FFT Method

or, recently, an FPGA design. An FPGA design, which this project explores, allows
the hardware to focus on the specific complexities of the FF'T, creating a more efficient
and faster system at a loss of generality. Although both ASIC and FPGA designs are
more customized than software algorithms, these differences in the architectures vary
due to the unique features of both implementation options.

2.2.1 ASIC Designs

ASIC designs vary greatly in size and implementation from the 64-point requirements
of a 802.11a wireless processor to the 8K needs of a COFDM digital broadcasting
system to the 1M needs of a radio astronomy array. The key divisions between these
designs are the architecture of the FFT calculation and memory, the architecture of
the FFT itself, and the FFT algorithm used. As outlined in Baas [3], five options
exist for the FFT-Memory architecture: a single memory module and a single FFT
module, dual memory modules and a single FF'T module, multiple pipelined memory
and FFT modules, an array of memory and FFT modules, or a cache-memory module
and a single FFT module (see Figure 2-6).

Within these options, the FFT can consist of one computational element (also
called a butterfly) performing the complete FFT serially, a stage of the butterflies
performing the computation in parallel, some pipelined combination of the two, or
splitting the calculation into two separate calculations where each can either be a
parallel or serial implementation. Gentleman and Sande introduced this latter method
known as the 4-step method as, in addition to the two calculation steps, it requires

19
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Figure 2-6: FFT-Memory Architectures Options

an additional multiplication step and a transform step (see Figure 2-5, Section 2.1).
Finally, the FFT algorithm used can vary widely due to the different parameters
available (see Section 2.1).

Combinations of the above options create a wide variety of FF'T ASIC implemen-
tations, mostly for small FFT sizes (see Table 2.1 for a numeric view). To reduce
the number of complex multiplications, Maharatna [15] implemented a 64-point FET
using the 4-step method with no internal memory while a slightly bigger 256-point
implementation by Cetin [3] serially reused one butterfly with ROM storage for the
scaling factors and RAM storage for data. A similar 1024-point implementation by
Baas [3] also used a serially pipelined element with local ROM storage, but inserted
a cache between the FFT processor and the data RAM. Instead of only one butterfly,
Lenart [16] unrolled the calculation and pipelined each stage with small memory be-
tween stages; a larger point implementation by Bidet [6] implemented the same style
as did Park [20] although that implementation increased the bit width at each stage
to reduce noise effects.

A more appropriate comparison to the proposed design is a 1M FFT designed by
Mehrotra [19]. Their system divides into four 64-point units each consisting of radix-
8 butterflies. DRAMs bracket these four units to create the complete system. The
calculation accesses the four units four times, calculating a stage of the computation

20



Designer FFT ASIC Process Area Freq. | Calculation
Points (um) or | (ASIC=mm?, Type (ps)
FPGA Type | FPGA=LUTSs)
Maharatna[l] 64 0.25 13.50 20 MHz 2174.00
Cetin]"] 256 0.70 1517 | 40 Mz 102.40
Baas[}] @ 3.3V | 1024 0.60 21.00 | 173 Mz 30.00
Lenart[10] 2048 0.35 ~6 76 MHz 27.00
Bidet[0] 8192 0.50 1000.00 20 MHz 400.00
Fuster[10] 64 Altera Apex 24320 | 33.54 MHz 1.91
Sansaloni[23] 1024 Xilinx Virtex 626 | 125 MSPS 8.19
(1 CORDIC)
Dillon Eng.[13] 2048 Xilinx Virtex2 9510 125 MHz 4.20
RF Engines[17] 16K Xilinx Virtex2 6292 | 250 MSPS* 65.53
Dillon Eng.[9] 512K | Xilinx Virtex2 Pro 12500 80 MHz Unknown
Table 2.1: Comparison of ASIC and FPGA FFT Implementations

*MSPS=MegaSamplesPerSecond

each time. 64 DRAM chips store all data with one set designated as the input to the
units and other as output during the first stage, and this designation alternating at
each latter stage.

2.2.2 FPGA Designs

Due to their more limited space and speed capabilities, FPGA designs vary slightly
less than ASIC designs, although they share the same key divisions (see Table 2.1 for
a numeric comparison). Multiplications, being the most costly both in terms of area
required and calculation time, are the common focus of optimizations. To perform
a 1024-point FFT, Sansaloni [23] designed a serial architecture reusing one butterfly
element with a ROM for scaling and a RAM for data storage. However, to reduce the
multiplier area required, the butterfly performs the scaling at the end with a serial
multiply for both complex inputs, requiring only one multiplier instead of the usual
four. Another method for reducing the multiplication, used in Fuster [10], split the
64-point calculation into two 8-point calculations, an unrolling step that requires no
multiplies within these two calculations. This 4-step algorithm does require a scaling
multiply between the two stages; however this consists of 3 multipliers compared to
the 24 necessary for the standard 64-point implementation.

Larger point FFT designs within FPGAs focus more on the overall structure
of the computation. RF Engines Limited [17] produced a series of pipelined FFT
cores using a typical approach of unrolling the complete algorithm with pipelines
at each stage of the calculation. This design is parameterizable and can compute
up to 64K-point FFTs. Another company, Dillon Engineering [9] [13], approaches
large FFTs differently. Their design computes 256M-point FFTs using the 4-step
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method. External memory stores the input, which first is transposed before entering
the first FFT calculation. The transpose step also accesses an external SRAM for
temporary storage of some values, followed by a twiddle multiply stage and the second
FFT calculation. A final matrix transpose reorders the data and stores it in another
external SRAM.

2.3 3D Architectures

Two different approaches define current 3D architectures. First, standard processes
build the chip by creating several wafers. These wafers glue together in either a face-
to-face, back-to-back or face-to-back configuration with metal vias carefully placed
to connect the layers thus creating a 3D system. Another option builds a 3D system
out of existing chips, known as a Multi-Chip Module (MCM), embedding them in
a glue layer with routed wires to interconnect the various modules. Production of
either of these approaches challenges current process technologies, especially in areas
such as heat dissipation and physical design [I]. However, while waiting for process
technologies to advance, researchers use modeling and CAD tool design to explore
the potential of 3D systems, determining the performance benefits and discussing
solutions for issues like routing between layers. Rahman [22] found that interconnect
delay can be decreased as much as 60% and power dissipation decreased up to 55%
while Leeser [15] discussed a potential design for connecting the routing blocks of
one layer to another. Yet, few studies examine the architectural possibilities of 3D
systems nor possible implementations on 3D FPGAs. Alam [2] test their layout
methodology by simulating an 8-bit encryption processor and Isshiki [11] develops a
FIR filter for their MCM technology. To begin to fill this void, this thesis examines
the architectural possibilities and implementations of FFTs on 3D systems.
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Chapter 3

System Design Description

This chapter describes the complete system, the system divided into four FPGAs,
and a single FPGA within the system. Each description breaks down into a Unit-
Transaction Level (UTL) perspective first and then the UTL translates into a micro-
architectural description of hardware implemented.

3.1 System UTL Description

To understand the overall requirements of the system, a UTL description explains
what the overall system needs to do. As Figure 3-1 demonstrates, the system accepts
N complex data values, performs an FFT calculation, and outputs N complex data
values.

N Complex N-pOInt N Complex

Data Values — ™ Data Values

Figure 3-1: System UTL Block Diagram

3.2 System Micro-Architectural Description

The overall system consists of one 3D block using a Ball Grid Array (BGA) attach-
ment to a Printed Circuit Board (PCB) (see Figure 1-1).

3.3 Four FPGA UTL Description

One level below this UTL describes the connections of the different sub-blocks (see
Figure 3-2). Each sub-block is identical and each computes an equal portion of the
calculation, communicating to the others via queues, with each knowing which data
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to communicate to the others in which order such that no conflicts occur. For the
purposes of this system, the system contains four sub-blocks although, since all are
equivalent and share the calculation equally, the system as designed can work with
any number of sub-blocks. Four reasonably describes the feasible number of FPGAs
achievable with current processes and sub-divides the required calculation evenly.
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-Blockl!
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Figure 3-2: Four FPGA UTL Block Diagram

Figure 3-3 demonstrates how the algorithm divides among the sub-blocks. Dur-
ing the first stage, each sub-block contains all of the necessary data, requiring no
external communication. The second stage requires communication between pairs of
sub-blocks, while all sub-bocks communicate during the final stage. The example
demonstrates how a simple radix-4 64-point FFT can divide, with similar patterns
allowing sub-blocks to perform larger calculations, 22°-point for example.
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3.4 Four FPGA Micro-Architectural Description

Each sub-block consists of one computational FPGAs connected to 9 DRAMs (see
Figure 3-4). Two additional FPGAs supply external IO communication paths (see
Figure 3-5). All FPGAs can communicate with each other through both standard
and special Rocket 10 paths.

3.5 Single FPGA UTL Description

Since all four FPGAs compute the algorithm equally, an UTL description of one
FPGA describes all FPGAs. Given the size of the FFT, the entire algorithm and
data set will not fit within this one FPGA, requiring it to contain a sub-set of the
FFT hardware to perform a portion of the calculation. A UTL description defines
what this calculation requires (see Figure 3-6) in the following sections.
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Figure 3-4: Four FPGA Micro-Architectural Block Diagram

3.5.1 Control

This module controls the flow of data and initiates transactions. It receives data
and control packets from the FF'T Module, and control packets from the Inter-FPGA
module. Using this information as well as the current state of the calculation, the
module decides where the data should be sent, what data should be requested and
the overall state of the system, which it then translates into control and data packets
for both the Memory and Inter-FPGA modules.

input: e FFTControlQ{addr, current_stage, end_calc, 16 complex pairs},
e InterFPGAControlQ{op, addr, size},

output: e ControlMemoryQ:{op, addr, size, current_stage, end_calc, x amount of
data}

e ControllnterFPGAQ:{op, addr, size, x amount of data}

architectural state: Calculation State, Global Addresses
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Figure 3-5: Overall Block-Level 3D FPGA System Diagram

Transactions:
1. RequestExternalDatal()
(a) ControllnterFPGAQ.enq(READ, start_addr, ext_data_size);
2. SendData()

(a) {addr, current_stage, end_calc data} = FFTControlQ.pop();

(b) Determine data locations and split data into external data and mem-
ory_data

(c¢) ControllnterFPGAQ.enq(WRITE, start_addr, ext_data_size, external data);
(d) ControlMemoryQ.enq(WRITE, start_addr, memory_data_size, memory_data);

3. MemRequest()

(a) ControlMemoryQ.enq(READ, start_addr, dram_data_size, current stage,
end_calc);

4. DetermineState()
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Figure 3-6: UTL Single FPGA System Block Diagram

(a) {op, addr, size} = InterFPGAControlQ.pop();

(b) Update view of mem state

Scheduler: Priority in descending order: RequestExternalData, MemRequest, De-
termineState, SendData

3.5.2 FFT Datapath Block

This module performs FFT calculations when requested by the Memory module.
The results of the calculation are sent along with control information to the Control
module. The control information contains the address, which, while uncessary for the
FFT calculation, provides enough information for the Control module to determine
where the data should reside.

input: e MemoryFFTQ{current_stage, end_calc, start_addr, 16 complex pairs},
output: e FFTControlQ{start_addr, current_stage, end_calc, 16 complex pairs},
architectural state: Twiddle Multiplier Values, Twiddle Multiply State
Transactions:

1. ComputeFFT()

(a) {current_stage, end_calc, start_addr, current_data} = MemoryFFTQ.pop();
(b) Compute FFT
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(c) if (end_calc)
i. Perform Twiddle Multiplication
(d) FFTControlQ.enq(start_addr, current_stage, end_calc, fft_data);

Scheduler: Priority in descending order: ComputeFFT

3.5.3 Memory

Memory controls both the Inter-FPGA memory and the DRAM, regulating the flow
of data from Inter-FPGA and Control modules into these locations and outputting
the requested blocks to either the Inter-FPGA or FFT modules as requested by the
incoming control queues.

input: e InterFPGAMemoryQ{command, addr, size, x amount of data}

e ControlMemoryQ:{op, addr, size, current_stage, end_calc, x amount of
data}

e DRAMMemoryQ{addr, size, x amount of data}

output: e MemoryFFTQ{current_stage, end_calc, start_addr, 16 complex pairs},
e MemorylnterFPGAQ{addr, size, x amount of data},
e MemoryDRAMQ{command, addr, size, x amount of data}

architectural state: DRAM State

Transactions:
1. ExternalFPGAData()

(a) {command, addr, size, data} = InterFPGAMemoryQ.pop();
(b) if (command == READ) begin
i. if (location == DRAM) begin
A. MemoryDRAMQ.enq(READ, addr, size);
ii. end else begin
A. Read Data from Memory
iii. end
iv. MemorylnterFPGAQ.enq(addr, size, data_from_memory);
(c) end else begin
i. if (location == DRAM) begin
A. MemoryDRAMQ.enq(WRITE, addr, size, data_from_memory);
ii. end else begin
A. Write data to Memory

iii. end
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(d) end
2. InternalFPGAData()

(a) {command, addr, size, current_stage, end_calc, data} = ControlMemo-
ryQ.pop();
(b) if (command == READ) begin
i. if (location == DRAM) begin
A. MemoryDRAMQ.enq(READ, addr, size);
ii. end else begin
A. Read Data from Memory
iii. end
iv. MemoryFFTQ.enq(current_stage, end_calc, addr, data_from_memory);
(c) end else begin
i. if (location == DRAM) begin
A. MemoryDRAMQ.enq(WRITE, addr, size, data_from_memory);
ii. end else begin
A. Write data to Memory
iii. end
(d) end
3. DRAMData()

(a) {addr, size, data} = DRAMMemoryQ.pop();
(b) Write data to Memory

Scheduler: Priority in descending order: ExternalData, InternalData

3.5.4 Inter-FPGA Communication

This module communicates to other FPGAs and outside systems. It receives data
from any of the Control, Memory or external Inter-FPGA data queues along with
control information describing the data. It forwards this data to the appropriate
module and can initiate memory transfer sequences for external Inter-FPGA modules.

input: e ControllnterFPGAQ:{op, addr, size, x amount of data}
e OutlnterFPGAQ:{command, addr, size, x amount of data}
e MemorylnterFPGAQ{addr, size, x amount of data},

output: e InterFPGAControlQ{op, addr, size},
e InterFPGAMemoryQ{command, addr, size, x amount of data}
o InterFPGAOutQ:{command, addr, size, x amount of data}
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architectural state: None

Transactions:
1. ControlRequest()

(a) {command, addr, size, data} = ControllnterFPGAQ.pop();
(b) if (command == READ) begin
i. InterFPGAOutQ.enq(READ, addr, size);
(c) end else begin
i. InterFPGAOutQ.enq(WRITE, addr, size, data);
(d) end

2. MemRequest()

(a) {addr, size, data} = MemoryInterFPGAQ.pop();
(b) InterFPGAOutQ.enq(WRITE, addr, size, data);

3. ExternalRequest()

(a) {command, addr, size, data} = OutlnterFPGAQ.pop();
(b) if (command == READ) begin
i. InterFPGAMemoryQ.enq(READ, addr, size);

(c) end else begin

i. InterFPGAMemoryQ.enq(WRITE, addr, size, data);
ii. InterFPGAControlQ.enq(WRITE, addr, size);

(d) end

Scheduler: Priority in descending order: ControlRequest, MemRequest, External-

Request

3.6 Single FPGA Micro-Architectural Description

With an UTL single FPGA description, the micro-architectural description focuses
on this same one FPGA performing a portion of the calculation, requiring control,
memory, and inter-fpga communication (see Figure 3-7). Each sub-system is described

below.
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Figure 3-7: Micro-Architectural Single FPGA System Block Diagram

3.6.1 FFT Datapath Block

The FFT Datapath Block performs a Cooley-Tukey Decimation-In-Time (DIT) al-
gorithm. This form of algorithm splits the data into subsets by even-odd patterns
and performs the twiddle calculation prior to combining data inputs. As the data
set is too large to perform the calculation, the Gentleman-Sande four-step approach
(see Section 2.1) sub-divides the larger data set. A 16-point FFT block is the largest
size that fits on the FPGA becoming the smallest factor of the 4-step algorithm. To
achieve 22°, the algorithm is iterated, first generating a 16x16 or 256-point FFT, then
a 256x256 or 64K-point FFT, and finally a 64Kx16 or 22°-point FFT, all using the
fundamental 16-point block (see Figure 3-8). Within the 16-point block are 8 Radix4
Modules, with a separate module performing the multiplication step of the algorithm,
including a sub-module providing the twiddle factors at each multiplication step of
the calculation.

FFT 16-point Block

Combining the Radix4 modules creates the 16-point block. Each block consists of
two stages of 4 Radix4 nodes each (see Figure 3-9). The inputs and outputs are
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Standard Form of 16-point FFT

Stage 1: Steps 1-3 Stage 2: Step 4

256-point FFT where both stages are replicated 16 times

Stage 1: Steps 1-3 Stage 2: Step 4

2M6-point FFT where both stages are replicated 256 times

Figure 3-8: Diagram Illustrating Iterative 4-Step Approach

re-ordered, as is necessary for the algorithm, implicitly in the hardware so that the
input and output to the block are in natural order and both are registered. Outputs
from the first stage are directly connected to the inputs of the second stage.

Radix4 Module The Radix4 Module computes an optimized version of a 4-point
FFT. This consists of 3 different stages-a twiddle multiplication and two combination
stages (see Figure 3-10). Each input is factored by the twiddle values, requiring 8
multiplies and 8 additions for the stage. Each of the other two stages consists of 8
additions (subtractions consist of one inversion and an addition) resulting in a total of
32 operations per module. This results in a hardware implementation that does not
meet the minimum timing requirements of the hardware system requiring registers
following the multiplication stage, the most time intensive step (see Figure 3-10).
The multiplication stage itself implicitly uses the on-FPGA multipliers by clearly
identifying these for the synthesis tools.

Number Representation Bit width is the first design parameter for the cal-
culation, which, for this design, matches the 18-bit width of the FPGA multipliers.
In addition to this, since the calculation requires fractional values, a special number
representation is required either by using fixed-point or floating-point. A fixed-point
representation consists of an explicit sign bit, fixed number of bits representing a
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Figure 3-9: 16-point Block

range of values, implicit exponent and implicit binary point. Tracking the exponent
value becomes the job of the designer. Floating-point uses an explicit sign bit, fixed
number of value bits, explicit exponent and implicit binary point. Floating-point
allows a larger dynamic range, but fixed-point is easier to implement and /quire less
area, decreases speed and decreases power [11] and therefore represents values in this
design.

Within the design, this number representation adds additional logic to each Radix4
stage. A fixed-point representation requires that the result of every calculation scale
or round to require only the bit width allowed by the representation. For a multipli-
cation, the result of 32 bits rounds at bit 14 and then masks to allow only bits [30 : 15]
to remain as the result (see Figure 3-11). A comparison determines if the special case
of —1x —1 exists, in which case the calculation result saturates to equal —1 requiring
the value reset to the correct result of 1. As no actual scaling occurs, the exponent
does not increment. Addition, on the other hand, requires that the result of 17-bits
rounds at bit 0 and shift 1 left, a scaling step that increments the implicit exponent.
As each number passes through three addition stages within one Radix4 step, the im-
plicit exponent at the end of the step increments by 3. This incrementing exponent
can quickly increase such that the output range does not reflect the accuracy needed,
but is sufficient for lower point FFTs. To perform the larger point FFTs (2!¢ and
greater), scaling needs to occur after the first step of the calculation to achieve any
accuracy.
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Figure 3-10: Radix4 Module with Registers. Each node represents a complex opera-
tion.

Twiddle Factor Multiplication Module

As the FF'T calculation completes, each value passes through the multiplication mod-
ule. If the completed calculation was the fourth step of the 4-step algorithm, the data
moves through untouched. If it was the first step, the module multiplies the value by
a twiddle factor calculated by the Twiddle Factor Generation Module.

Since the 4-step algorithm is iterated, three different multiplication phases exist,
one for each of the 256-point, 64K-point, and 2*’-point iterations. This requires
overlapping multiplications stages such that the fourth step of the 256-point FFT is
equivalent to the first step of the 64K-point FFT and, while not normally multiplied,
the result of the FFT is multiplied by the twiddle factors for the 64K-point FFT.
This also occurs for the fourth step of the 64K-point FFT in relation to the 22°-point
FFT (see Figure 3-8).

Although the data is provided in parallel, the calculation occurs serially to reduce
the hardware required. The data outputs serially as well, moving next to the Memory
module.

Twiddle Factor Generation Module Twiddle Factor Generation supplies the
twiddle factors necessary for each stage of the calculation. The twiddle factors follow
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Figure 3-11: Fixed-Point Multiplication

a pattern seen in the following [n, m] matrix:

WO wo wo i
wo wt w2
wo w2 w4 ...
wo w3 we ... (3.1)
wo w4t ws ...
WO W5 WlO

where W represents e 72V raised to n * m where n is the row and m is the column.

Due to the repetition of values, the calculation stores only the second column val-
ues, relying on the first value to generate the first column and the following equation
[1, 19] to generate the remaining columns:

WP — Pl ppr(a—1) (3.2)

where p is the row and ¢ is the column of the current calculation.

This module can generate values serially, overlapping the FF'T data loading cycles,
reducing the hardware costs to 4 multiplies and 4 additions, and adding no additional
latency to the calculation.

3.6.2 Control

The Control Module organizes the flow of data and the implementation of the algo-
rithm. At each step, it determines which data set to use as input, which data set to
read from memory, which twiddle factors to compute, where the output values should
be written, what the order is for write-back of the data set to memory and what is
the next stage of the calculation. It does this using a micro-code ROM and transform

36



step module.

Micro-code ROM

The Micro-code ROM controls the entire process, providing control signals and ad-
dresses for all other modules. It is implemented using on-FPGA Block RAMs.

Transform Step

Performing the third step of the algorithm requires translating the current [n, m| FFT
address location of the data to a [m,n] address that may be on-FPGA memory or
oft-FPGA memory. The Transform Step performs this operation after the first step
of the algorithm and passes the data through after the fourth step of the algorithm,
writing all data to external memory in standard order.

3.6.3 Memory System

The Memory System consists of four modules: on-FPGA Memory, FPGA Mem-
ory Controller, oft- FPGA DRAM, and DRAM Memory Controller; each is described
briefly below.

FPGA Memory

Within the FPGA is 720Kb of RAM that can be programmed to be RAM, ROM or
logic modules. Most of this acts as internal RAM for the design, holding the working
input data, the next input data, the working output data, and the past output data
set (see Figure 2-4). This allows space for the current computation while the Memory
Controller reads the next set of input data and writes the last set of output data.

FPGA Memory Controller

This module directs the traffic from the various locations into the FPGA Memory,
organizing the memory into the different sets and connecting the on-FPGA memory
to the DRAM system.

DRAM

DRAM contains the entire input data set and store the output data set as well. To
take advantage of the number of attached DRAMs, data stripes across the DRAMs
so that 8 byte bursts access 4 inputs from each one in an interleaved manner.

DRAM Memory Controller

The DRAM Memory Controller requests data from the DRAM using a hand-shaking
protocol. Design and implementation of this module are not covered in this document.
See [5] for more information.
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3.6.4 Inter-FPGA Communication System

The Inter-FPGA Communication system transfers data blocks between FPGAs. The
communication pattern fixes the ordering such that no FPGAs interfere with the
other’s data transfer and a simple protocol provides the communication hand-shaking.
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Chapter 4

System Model

To interpret the single FPGA results into a multi-FPGA system, a model describes
the input/output (I10), area and power effects of the number of FPGAs, the dimen-
sionality of the system, the frequency at which the system functions, and the cycles
required to complete one 16-point FFT. First, the model, described in terms of 10,
demonstrates the iterative quality of the 4-step algorithm, which is then elaborated
into area effects and concluded with power.

4.1 10 Model

The model builds up the 22°-point system, starting with a 16-point FFT and demon-
strating how the 4-step algorithm iterates over the necessary values. At each step,
the model describes the 10 requirements in terms of on-FPGA RAMs, DRAMs and

external communication.

4.1.1 16-point FFT

This model assumes that the bandwidth of the inter-communication connections ex-
ceeds the bandwidth of the DRAM communication connections.

The next key bandwidth consideration is the FFT calculation itself. The following
equation represents this value:

1 d . bit
BHT:f*a*@fwr 16>

) (4.1)

*
cycle word

where f is the frequency of system and C' is the cycles required of 16-point FF'T,
decomposed into:
C' = Cgead + Crrr + Cwrite (4.2)

Figure 4-1 displays how the calculation divides into the values Cgreuq, Crpr, and
Cwrite- This model then assumes that the DRAM connection limits the bandwidth
of the system, although this connection can match the FFT bandwidth by increasing
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the number of DRAMs used to satisfy:

D= [ (43)
DRAM
where D is the number of DRAMs connected to the system. The model assumes that
D DRAMSs connect to the system, leaving Brpr as the dominant factor.

To better understand the connections required, Figure 4-1 demonstrates the data
accesses needed for the 16-point calculation. No external FPGAs or DRAMS con-
tribute to the data required at this stage, all data is read from one internal FPGA
RAM and written into another. This block then requires

t16 - 7 (44)

time to complete, calculation time being our metric for the 10 analysis.

time |

Cpreag = Read From RAM, Coey = FFT Coure = Write To RAM,

Figure 4-1: 16-point Calculation

4.1.2 256-point FFT

Figure 4-2 represents the 256-point FFT, composed of two stages where stage one
consists of 16 16-point FFTs comprising the first three steps of the calculation and
stage two consists of 16 16-point FFTs comprising the final step of the calculation.
Again, no external FPGAs or DRAMs supply any of the data, although the access
pattern for the second stage modifies to read from RAM; and write into RAMs.
Completion of this block requires

S
t256 =2x%x16 % t]_ﬁ + ? (45)

where S is the cycles required to switch between stages.
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Figure 4-2: 256-point Block

4.1.3 2'%point FFT

A 2%_point FFT consists of two stages of 256 256-point FFTs and necessitates DRAM
connections to store the data values. As Figure 4-3 shows, because the access pattern
for the 256-point block modifies the RAMs used in the second stage of 16-point blocks,
RAM; supplies all the data and RAM, stores all the data from the 256-point block
perspective. To ensure this pattern and pipeline the DRAM accesses, two sets of D
DRAMSs connect to the FPGA. DRAM,; loads data into RAM; and DRAM, stores
data from RAM, during the first stage of the calculation, switching during the second
stage to using DRAM, for both roles.

fime

256 256-point FFTs 256 256-point FFTs

e W,

T
g J—

Load Load Preload| Load Load
DRAM, DRAM, DRAM, | DRAM, DRAM,
— AR —
Siore Store Finizh Siore
DRAM, DRAM, Store  DRAM.
DRAM,
Stage 1 Stage 2

Figure 4-3: 2'%-point Block
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Loading begins concurrent with the first 256-point block, assuming that, during
the overhead of loading the data into the DRAMs, a minimum of the first 256 complex
values load directly into the RAM. During the last 256-point block of the first stage,
data is preloaded for the second stage from the results of this block and DRAM,.
Storing stalls during the first 256-point block, commencing writing the outputs during
the second 256-point block and finishing with the first stage during the first 256-
point block of the second stage. The results of the last 256-point block of the second
stage remain in RAM,, inserting into the output stream of the system at the correct
moment. Completion of this block requires

S S, S
t216:2*256*t256+?:2*256*(32*t16+—)+ (46)

Ff

4.1.4 2%-point FFT

While either 256-point or 2'¢ could be implemented with additional FPGAs, 22°-point
seems the most likely size to increase the number of FPGAs (referred to as F' hereafter)
in the system although, as assumed in Section 4.1.1, the bandwidth of accessing the
DRAMs overshadows that of transferring data between FPGAs. Instead, the stage
breakdown appears as the key variation in evaluating multi-FPGA I0O. During the
first stage, % 216_point blocks compute, followed by % 16-point calculations (see
Figure 4-4). Similar to the access pattern of RAMs in the 256-point block, the first
stage loads data from DRAM; and stores to DRAM,, reversing the order for the

second stage. This results in a total calculation time of

16 216 S 16 216 16 S

an equation that is solely dependent on the number of FPGAs F', the number of cycles
to switch stages S, the time to calculate one 16-point FFT ¢4, and the frequency of
the system f.

4.2 Area Model

Area increases linearly as a function of number of FPGAs, F,

A=Fx*(a1ppaa + (F — 1) % arpper—rpca) (4.8)

where a1 ppaa is the area of the design on one FPGA and ajper— ppaa is the area of the
Inter-FPGA module. This module requests and sends data both to other FPGAs and
to the DRAMs, requiring a small amount of logic and some buffers, a value estimated
based on the implemented Inter-FPGA module and reasonable buffer sizes.
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4.3 Power Model

As the number of FPGAs increases, only the IO system contributes significantly
to the power increase. Each FPGA connects to the same number of DRAMs and
performs the same calculation, but the communication time decreases linearly with
the number of FPGAs resulting in the same power usage for the calculation and the
DRAM accesses within a shorter amount of time. However, the additional Inter-
FPGA modules and the I0 communication itself will require more power as the
number of FPGAs communicating increase. Therefore, the power model focuses on
the IO communication power.

If we assume that both 2D Multi-Chip Module (MCM) and 3D MCM technology
use similar wire connections, the power depends on the length of the interconnect and
the bandwidth at which the interconnect operates. Just focusing on one interconnec-

tion, power is:
pi = lix Bi (4.9)

To determine the entire interconnect power, the number of Rocket IO compared to
LVDS connections becomes critical. As long as the Inter-FPGA bandwidth is greater
than or equal to the DRAM bandwidth, LVDS connections can replace Rocket 10
connections. However the number of DRAMSs limits the number of available LVDS
connections (Npyps_a) such that

Nivps.a = Nrvpstotar — D * NLvps pram (4.10)

In order to match the bandwidth requirements, D (the number of DRAMs attached
to a FPGA) LVDS connections are required. This results in a total interconnect
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power of:

P; = Npocket*Pirocket+ D*Nrvps_ a*pirvps = Nrocket*li Rocket* Bigocket D+ Ny ps_axlipy ps*Biryps
(4.11)
Total power then depends on the total interconnect power per FPGA (P;) and
the number of FPGAs (F'):
P=PxF (4.12)
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Chapter 5

Results and Conclusions

This chapter first evaluates the model assumptions and analyzes the results of the
model. Then it compares the results to other ASIC and FPGA designs followed by
some conclusions.

5.1 Model Results

With the models developed and the design implemented in stages of 16-point, 256-
point, 4096-point, and 2'2-point, we now examine the assumptions of the model and
analyze the results. As with the model development, the analysis examines first the
IO model, followed by area and power.

5.1.1 IO Model

The model first assumes that the DRAM communication limits the system bandwidth.
As the system contains Virtex2 Pro 40 FPGAs, two methods for external communi-
cation exist, either Rocket 10 or LVDS. Rocket 10 operates the fastest achieving a
bandwidth of 100 Gb/s for 1 module [20] although the number of modules limits the
number of connections to 12 for the Virtex2 Pro 40. LVDS for this system allows 804
connections with a theoretical maximum of 840 Mb/s bandwidth although this model
uses an experimentally verified value of 320 Mb/s. As the number of FPGAs in one
system is unlikely to exceed 12 in the near future, this model initially describes all
communication between FGPAs in terms of Rocket IO connections and uses LVDS
connections for the DRAMs only. These initial IO values result in bandwidths of:

Gb
Birnter—rrca = 100? (5.1)
Mb
BDRAM - 320? (52)

Therefore the DRAM bandwidth does exceed the Inter-FPGA communication band-
width. Evaluating the FFT bandwidth requires measuring the frequency (f) at which
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the 16-point block functions and the number of cycles required for one 16-point block
(C). Upon implementing this block, the resulting measurements are:

f=93MH: (5.3)

CRead = 16cycles (5.4)

Crpr = Teycles (5.5)

Cwrite = 16cycles (5.6)

C = Cgead + Crrr + Cwrite = 39cycles (5.7)
Brrr = f * % * 512556 - 1.22% (5.8)

A result that also demonstrates that the DRAM limits the bandwidth and requires
one set to consist of 4 DRAMs, or 8 DRAMs attached to each FPGA, which fits
within the 9 DRAMs allocated per FPGA.

Before evaluating the calculation time, we need to establish the validity of using
the measurements of one 16-point block for all measurements. While the 10 model
clearly defines the use of the number of cycles as a consistent value for each stage,
the frequency can depend on the implementation of the various steps within each
stage and may vary between stages, requiring anew the evaluation of the bandwidth,
DRAMSs connected, and 16-point block calculation time. Measurement of each im-
plemented stage has not proven this the case and allows the usage of the 16-point
block calculation time. The model also defined a parameter S, the number of cycles
required to switch between stages, which measures at 2 cycles. This results in:

C
t16 = —== 042,US (59)

f

S
tosg = 2 % 16 x t14 + ? = 13.44pus (5.10)
S
tore = 2 % 256 * (32 x t16) + I 6.88ms (5.11)
16 216 16 S

to20 = (F * 16384 + F) * 116 + (F + 1) * ? = 34.39ms (512)

where the number of FPGAs (F) is 4.
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5.1.2 Area Model

Xilinx ISE Foundation supplies area measurements during the mapping process. De-
termining 2%°-point requires extending all the designs, whose linear size increase
demonstrates that the design will saturate the FPGA. All other design stages use
the Xilinx area numbers although determining the area of a multi-FPGA system
requires the addition of the Inter-FPGA area, measured as:

Arnter—FPGA — 68LUT's (513)
resulting in a 4 FPGA area of

A= F x(a1ppaa + (F — 1) % Grnter—rpaa) = 4 % (46000 + 3 * 68) (5.14)

5.1.3 Power Model

Power reflects the difference between a 2D and 3D design therefore our result is a ratio
of the total interconnect power, which depends on the power of one interconnect, a
function of the length and bandwidth. From previous research [22][15] [1], the ratio
of 2D interconnect length to 3D interconnect length averages to:
— = 0.80 (5.15)
ZZQD
Since all other factors are equal, this translates into an average 20% total interconnect
power savings or an average total power savings of 20%.

The trade-off of Rocket IO and LVDS connections affects both 2D and 3D equally
in terms of power, but highlights an interesting power design point. First, given that
Nrvps prav = 33 and the maximum number of Rocket 10 connections is 12, clearly
the number of LVDS connections available exceeds the number necessary.

(Nrvps.totat — D * NLyps pram)
D

This also demonstrates the relationship between the number of Rocket 10 and LVDS
connections as:

=68 > 12 (5.16)

NLVDS,A - ((F + ]-) - NRocket) * D (517)

Next, we reasonably assume that lig,eer = lipyps since both connections should
average the same length over the various combinations of pin locations and routing
paths. This then allows the power to reduce to a factor of the bandwidth and number
of connections alone:

P = F % (Npgocket * Birocket + D * NLyps_a * Birvps) (5.18)

Combining Equation 5.17 and Equation 5.18, varying over the number of FPGAs and
Rocket 1O connections, the linear relationship appears (see Figure 5-1). This demon-
strates that committing all LVDS connections to both DRAM and other FPGA con-
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nections allows significantly lower power while maintaining the bandwidth. Rocket
IOs then can focus on communication to the external 10 specialized FPGAs, allowing
faster reading and writing of data between the system and external world. Alterna-
tively, use of both LVDS and Rocket 10 connections allows the number of FPGAs
within the system to increase, suggesting that an internal cluster architecture may be
possible with Rocket 10s connecting groups of internally LVDS connected FPGAs.

x 10" Power vs. Number of Rocket 10s for Varying Mumber of FFGAs
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Figure 5-1: Graph Showing the Linear Power Relationship for 2-6 FGPAs
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5.2 Comparison of Results to Other Systems

With the model analyzing the implementation results, we can now add to the table
from Chapter 2, including each stage of the design, with single and 4 FPGA versions
of 22%-point design (see Table 5.1).

Designer FFT ASIC Process Area Freq. | Calculation
Points (um) or | (ASIC=mm?, Type (us)
FPGA Type | FPGA=LUTS)
Maharatna[l] 64 0.25 13.50 20 MHz 2174.00
Cetin[J] 256 0.70 15.17 | 40 MHz 102.40
Baas[3] @ 3.3V 1024 0.60 24.00 173 MHz 30.00
Lenart[10] 2048 0.35 ~6 76 MHz 27.00
Bidet[0] 8192 0.50 1000.00 20 MHz 400.00
Fuster[10] 64 Altera Apex 24320 | 33.54 MHz 1.91
Sansaloni[23] 1024 Xilinx Virtex 626 | 125 MSPS 8.19
(1 CORDIC)
Dillon Eng.[13] 2048 Xilinx Virtex2 9510 125 MHz 4.20
RF Engines]|17] 16K Xilinx Virtex2 6292 | 250 MSPS* 65.53
Design 16 | Xilinx Virtex2 Pro 36301 93 MHz 0.42
Design 256 | Xilinx Virtex2 Pro 39079 93 MHz 13.44
Design 64K | Xilinx Virtex2 Pro 43849 93 MHz 6880.00
Design 1 FPGA 1M | Xilinx Virtex2 Pro 46000 93 MHz 137590.00
Design 4 FPGAs 1M | Xilinx Virtex2 Pro 184816 93 MHz 34390.00
Table 5.1: Comparison of Results, ASIC and FPGA Implementations

*MSPS=MegaSamplesPerSecond

In order to better understand the results, we focus on two sections: calculation

time and design size.

First, as Table 5.2 demonstrates, by normalizing all of the

calculation times to 16-point FFTs, we see that while single FPGA and small point
implementations of this design perform average to poor against the other designs,
increasing the number of FPGAs increases the performance to very near the top.
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Designer FFT Original | Normalized
Points | Calculation | Calculation

Time (us) | Time (us)

Dillon Eng.[13] 2048 4.20 0.06
RF Engines|17] 16K 65.53 0.06
Design 4 FPGAs 1M 34390.00 0.07
Sansaloni[23] 1024 8.19 0.13
Lenart[10] 2048 27.00 0.21
Design 16 0.42 0.42
Baas[3] @ 3.3V 1024 30.00 0.46
Fuster[10] 64 1.91 0.48
Bidet[0] 8192 400.00 0.78
Design 256 13.44 0.84
Design 64K 6880.00 1.68
Design 1 FPGA 1M 137590.00 2.10
Cetin[] 256 102.40 6.40
Maharatna[!] 64 2174.00 543.50

Table 5.2: Calculation Time Normalized to 16-Point Comparison

Table 5.3 shows the effects of gaining this speedup as the multi-FPGA system
has a higher area than the single FPGA design although remains competitive with
the other FPGA systems, while the other designs range across the entire spectrum.
This does not show the entire picture as each design stores the values differently and
may compute area differently. For this thesis, all designs stored large amounts of the
data on-FPGA, containing 2 131Kb RAMs. Other system designs stored the values
oft-FPGA, decreasing their overall size, and not all designs stated what the size value
covered, solely logic or some logic and RAMs or some other combination. However,
the table does demonstrate that achieving the modularity and speedup does effect
the size of the system.

Unfortunately, not enough information exists to compare power across these de-
signs. For this design, results similar to calculation time seem likely as the power
increases as the stages progress ending with almost equal power for the single com-
pared to multi FPGA designs.
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Designer FFT | Original | Normalized
Points Area Area

(LUTS) (LUTSs)

Design 1 FPGA 1M 46000 1
Dillon Eng.[9] 512K 12500 1
Design 4 FPGAs 1M 184816 3
RF Engines[17] 16K 6292 7
Sansaloni[23] 1024 626 10
Design 64K 43849 11
Dillon Eng.[13] 2048 9510 75
Design 256 39079 2442
Fuster[10] 64 24320 6080
Design 16 36301 36301

Table 5.3: Area Normalized to 16-Point Comparison

5.3 Conclusion

This thesis describes the design and implementation of a modular FFT algorithm,
extended from a single FPGA implementation to a multi-FPGA 3-Dimensional model.
With this extension, the benefit of modularity reveals a trade-off of calculation time,
size, and power. Clearly, with 3D architectures, modularity also allows scalability, a
feature useful with a new technology that may exhibit initial yield issues and later
grow to an unexpected number of FPGAs.

While these results would likely hold for similar highly structured and repetitious
algorithms, future work could explore more varied algorithms and applications with
little apparent modularity to determine the feasibility of 3D benefits.
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