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Chip Multiprocessors (CMPs) are Here

Easily utilizes on-chip transistors 
Naturally exploits thread-level parallelism 
Dramatically reduces design complexity

Future CMPs will have more processor cores 
Future CMPs will have more cache 

IBM Power5
with 1.9MB L2

AMD Opteron
with 2MB L2

Intel Montecito
With 24MB L3
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Current Chip Multiprocessors

Layout: “Dance-Hall” 
Core + L1 cache
L2 cache

Small L1 cache: Very low 
access latency 

Large L2 cache: Divided into 
slices to minimize access 
latency and power usage

Intra-Chip Switch
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A 4-node CMP with 
a large L2 cache
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L2 Slice
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Increasing CMP Cache Capacities lead to Non-
Uniform Cache Access Latency (NUCA)

Current: Caches are designed with 
(long) uniform access latency for the 
worst case:

Best Latency == Worst Latency

Future: Must design with non-uniform 
access latencies depending on the on-
die location of the data:

Best Latency << Worst Latency

Challenge: How to minimize average 
cache access latency:

Average Latency Best Latency
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Intra-Chip Switch
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Current Research on NUCAs

Targeting uniprocessor machines

Data Migration: Intelligently place 
data such that the active working 
set resides in cache slices closest 
to the processor

D-NUCA [ASPLOS-X, 2002]
NuRAPID [MICRO-37, 2004]



Data Migration does not Work Well with CMPs

Problem: The unique copy of 
the data cannot be close to 
all of its sharers

Behavior: Over time, shared 
data migrates to a location 
equidistant to all sharers

Beckmann & Wood [MICRO-36, 2004]
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This Talk: Tiled CMPs with Directory-
Based Cache Coherence Protocol

Tiled CMPs for Scalability
Minimal redesign effort 
Use directory-based protocol for 
scalability

Managing the L2s to minimize 
the effective access latency

Keep data close to the requestors
Keep data on-chip

Two baseline L2 cache designs
Each tile has own private L2
All tiles share a single distributed L2
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Private L2 Design Provides Low Hit Latency

core L1$

Private 
L2$
Data

Switch

DIRL2$
Tag

core L1$

Private 
L2$
Data

Switch

DIRL2$
Tag

Sharer jSharer i

The local L2 slice is used 
as a private L2 cache for 
the tile

Shared data is duplicated in 
the L2 of each sharer
Coherence must be kept 
among all sharers at the L2 
level

On an L2 miss:
Data not on-chip
Data available in the private 
L2 cache of another chip
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Home Node
statically determined by address

Owner/SharerRequestor

The local L2 slice is used 
as a private L2 cache for 
the tile

Shared data is duplicated in 
the L2 of each sharer
Coherence must be kept 
among all sharers at the L2 
level

On an L2 miss:
Data not on-chip
Data available in the private 
L2 cache of another tile 
(cache-to-cache reply-
forwarding)

Off-chip 
Access



Private L2 Design Provides Low Hit Latency
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Characteristics:
Low hit latency to resident L2 data 
Duplication reduces on-chip capacity

Works well for benchmarks with 
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Shared L2 Design Provides Maximum Capacity

Requestor
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Shared 
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Data

Switch

DIRL2$
Tag

Owner/Sharer

Off-chip 
Access

All L2 slices on-chip form 
a distributed shared L2, 
backing up all L1s

No duplication, data kept in a 
unique L2 location
Coherence must be kept 
among all sharers at the L1 
level

On an L2 miss:
Data not in L2
Coherence miss (cache-to-
cache reply-forwarding)

Home Node
statically determined by address
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Shared L2 Design Provides Maximum Capacity

SWc L1

DirShared
L2

Characteristics:
Maximizes on-chip capacity
Long/non-uniform latency to L2 data 

Works well for benchmarks with 
larger working sets to minimize 
expensive off-chip accesses
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Victim Replication: A Hybrid Combining the 
Advantages of Private and Shared Designs

Shared design 
characteristics:

Long/non-uniform L2 hit 
latency 
Maximum L2 capacity

Private design 
characteristics:

Low L2 hit latency to 
resident L2 data
Reduced L2 capacity



Victim Replication: A Hybrid Combining the 
Advantages of Private and Shared Designs

Shared design 
characteristics:

Long/non-uniform L2 hit 
latency 
Maximum L2 capacity

Private design 
characteristics:

Low L2 hit latency to 
resident L2 data
Reduced L2 capacity

Victim Replication: Provides low hit latency 
while keeping the working set on-chip



Victim Replication: A Variant of 
the Shared Design
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Implementation: Based 
on the shared design

L1 Cache: Replicates 
shared data locally for 
fastest access latency

L2 Cache: Replicates the 
L1 capacity victims 
Victim Replication



Victim Replication: The Local Tile 
Replicates the L1 Victim During Eviction
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Replicas: L1 capacity 
victims stored in the 
Local L2 slice

Why? Reused in the 
near future with fast 
access latency

Which way in the 
target set to use to 
hold the replica?



The Replica should NOT Evict More 
Useful Cache Blocks from the L2 Cache
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Never evict actively 
shared home blocks 
in favor of a replica

Replica is NOT always made

Sharer i

1. Invalid blocks
2. Home blocks w/o sharers
3. Existing replicas
4. Home blocks w/ sharers



Victim Replication Dynamically Divides the 
Local L2 Slice into Private & Shared Partitions
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Victim Replication 
dynamically creates 
a large local private, 
victim cache for the 
local L1 cache



Experimental Setup

Processor Model: Bochs
Full-system x86 emulator running Linux 2.4.24
8-way SMP with single in-order issue cores

All latencies normalized to one 24-F04 clock cycle
Primary caches reachable in one cycle

Cache/Memory Model
4x2 Mesh with 3 Cycle near-neighbor latency 
L1I$ & L1D$: 16KB each, 16-Way, 1-Cycle, Pseudo-LRU
L2$: 1MB, 16-Way, 6-Cycle, Random
Off-chip Memory: 256 Cycles

Worst-case cross chip contention-free latency is 
30 cycles

Applications

Linux 2.4.24

DRAM
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The Plan for Results

Three configurations evaluated:
1. Private L2 design L2P
2. Shared L2 design L2S
3. Victim replication L2VR

Three suites of workloads used:
1. Multi-threaded workloads 
2. Single-threaded workloads 
3. Multi-programmed workloads

Results show Victim Replication’s Performance 
Robustness



Multithreaded Workloads

8 NASA Advanced Parallel Benchmarks:
Scientific (computational fluid dynamics)
OpenMP (loop iterations in parallel)
Fortran: ifort –v8 –O2 –openmp

2 OS benchmarks
dbench: (Samba) several clients making file-centric system calls
apache: web server with several clients (via loopback interface)
C: gcc 2.96

1 AI benchmark: Cilk checkers
spawn/sync primitives: dynamic thread creation/scheduling
Cilk: gcc 2.96, Cilk 5.3.2
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Average Access Latency, 
with Victim Replication
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Average Access Latency, 
with Victim Replication
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FT: Private Design is the Best When Working 
Set Fits in Local L2 Slice
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The large capacity of the shared design 
is not utilized as shared and private 
designs have similar off-chip miss rates

The short access latency of the private 
design yields better performance

Victim replication mimics the private 
design by creating replicas, with 
performance within 5%
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Best
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CG: Large Number of L2 Hits Magnifies Latency 
Advantage of Private Design
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MG: Victim Replication is the Best When 
Working Set Does not Fit in Local L2 
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The capacity advantage of the shared 
design yields many fewer off-chip 
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The latency advantage of the private 
design is offset by costly off-chip 
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Victim replication is even better than 
shared design by creating replicas to 
reduce access latency
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Checkers: Dynamic Thread Migration Creates 
Many Cache-Cache Transfers
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transfers

Victim replication is even better than 
shared design by creating replicas to 
reduce access latency
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Victim Replication Adapts to 
the Phases of the Execution
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Each graph shows the percentage of 
replicas in the L2 caches averaged
across all 8 caches



Single-Threaded Benchmarks

SpecINT2000 are used as Single-
Threaded benchmarks

Intel C compiler version 8.0.055

Victim replication automatically 
turns the cache hierarchy into 
three levels with respect to the 
node hosting the active thread
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Single-Threaded Benchmarks

SpecINT2000 are used as Single-
Threaded benchmarks

Intel C compiler version 8.0.055

Victim replication automatically 
turns the cache hierarchy into 
three levels with respect to the 
node hosting the active thread

Level 1: L1 cache 
Level 2: All remote L2 slices
“Level 1.5”: The local L2 slice acts as 
a large private victim cache which 
holds data used by the active thread
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Three Level Caching
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Single-Threaded Benchmarks

Average Data Access Latency
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Victim replication is the best policy in 11 out of 12 
benchmarks with an average saving of 23% over 
shared design and 6% over private design



Multi-Programmed Workloads
Average Data Access Latency
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Created using 
SpecINTs, each 
with 8 different 
programs chosen 
at random

1st :  Private design, always the best
2nd : Victim replication, performance within 7% of private design
3rd : Shared design, performance within 27% of private design



Concluding Remarks

Victim Replication isVictim Replication is
SimpleSimple: Requires little modification from a shared 
L2 design

ScalableScalable: Scales well to CMPs with large number of 
nodes by using a directory-based cache coherence 
protocol

RobustRobust:: Works well for a wide range of workloads
1. Single-threaded
2. Multi-threaded
3. Multi-programmed

Thank You!Thank You!


