Branch Trace Compression for Snapshot-Based Simulation

Kenneth Barr Krste Asanović

ISPASS March 20, 2006

Branch Trace Compression for Snapshot-Based Simulation

1. Motivation, simulation context, vocabulary

- Branch Predictor-based Compression (BPC)
 - Compress branch traces instead of storing predictor snapshots
 - Goal: reduce storage requirements, increase flexibility, high speed

- 3. Preview of results
 - Size
 - Scalability
 - Speed

Intelligent sampling gives best speed-accuracy tradeoff for uniprocessors (Yi, HPCA `05)

Snapshots amortize fast-forwarding, but imply slow warming or binding to a particular μ arch.

Why can't we create μ arch-independent snapshot of a branch predictor?

In cache, an address maps to a particular cache set.

In branch predictor, an address maps to many locations.
 We combine address with history to reduce aliasing and capture context.

Same branch address.....

In a different context.....

In a cache, we can throw away LRU accesses

 In a branch predictor, who knows if ancient branch affects future predictions?!

If a *µ*arch independent snapshot is tricky, can we store several branch predictor tables?

- Suggested by
 - TurboSMARTS / Livepoints SIGMETRICS '05 / ISPASS '06
 - SimPoint Group: HiPEAC '05
- Not always an option
 - If you generate snapshots via hardware dumps, you can't explore other microarchitectures
- Requires predicting the future
 - If it takes two weeks to run a nondetailed simulation of a real workload you don't want to guess wrong
- "Several branch predictor tables" aren't as small as you think!

One predictor is small, but we need many. Example: 8KB quickly becomes 1000's of MB.

- P: gshare with 15 bits of global history
 - 8 **KBytes**
- n: 1 Billion instructions in trace sampled every million insts requires 1000 samples
- *m*: 10 other tiny branch predictors x 10 = 78
- 26 benchmarks in Spec2000
- 16 cores in design? x 16
- Now, add BTB/indirect predictor, loop predictor...
- Scale up for industry: 100 benchmarks, 10s of cores

x 1000 = 8**MBytes**

MBytes

x 26 = 2.0 **GBytes**

= 32 **GBytes**

Don't store collection of concrete snapshots!

Don't store collection of concrete snapshots! Store entire branch trace... with BPC

BPC = Branch Predictor-based Compression

- Flexible
 - Store entire branch trace: inherently microarchitecture independent
- Fast:
 - Simple algorithm allows fast decompression
- Small Footprint:
 - Compresses to < 0.5 bits/branch

BPC compresses branch traces well and quickly warms up any concrete predictor.

- 1. Simulator decodes branches
- 2. BPC Compresses trace
 - Chaining if necessary
- 3. General-purpose compressor shrinks output further
 - PPMd
- 4. Reverse process to fill concrete predictors, one branch at a time

BPC uses branch predictors to <u>model</u> a branch trace. Emits only unpredictable branches.

- Contains the branch predictors from your wildest dreams! Hurrah for software!
 - Large global/local tournament predictor
 - 1.44Mbit
 - Alpha 21264 style
 - 512-deep RAS
 - Large hash tables for static info
 - Three 256K-entry
 - Cascaded indirect predictor
 - 32KB leaky filter
 - path-based (4 targets)
 - PAg structure

BPC Compression

Input: branch trace from functional simulator


```
0x00: bne 0x20 (NT)
```

0x04: j 0x1c (T)

0x1c: ret (T to 0xc4)

Output:

 If BPC says "I could have told you that!" (Common case): no output

<>

– If BPC says "I didn't expect that branch record!"
< skip N, branch record >

Update internal predictors with every branch.

BPC Decompression

Input: list of pairs < skip N, branch record >

```
< 0, 0x00: bne 0x20 (NT) > < 0, 0x04: j 0x1c (T) > < 13, 0x3c: call 0x74 >
```

Output:

```
if (skip==0)
emit branch record
// update predictors
```

```
while(skip > 0)

BPC says "let me guess!"

emit prediction – guaranteed correct

// update predictors

// decrement skip
```


We produce long chains of good predictions represented by single <skip, branch record>.

Results: Size. BPC-compressed traces smaller than snapshots in all cases

Results: Size. BPC-compressed traces smaller than snapshots in all cases

Results: Scaling. BPC-compressed traces grow slower than concrete snapshots

- We compare against one stored Pentium 4 style predictor:
 2.7x smaller (avg)
- Growth
 - BPC has shallow slope, B
 - concrete scales with mnP
 - m=10 predictors → 27x smaller
- Example (SERV-1)
 - P=31002, B=9972, m=10, n=1000
 - 9.5 MB for BPC+ppmd
 - 295 MB for concrete snapshot+ppmd
- Both grow with number of benchmarks and cores

Results: Speed. BPC is faster than other decompressors and sim-bpred

- Millions of branches/second
- Harmonic means

• 3GHz Pentium 4		SERV	INT	MM	FP	AVG
	gzip	7.27	17.71	15.68	20.23	13.02
	bzip2	0.79	0.67	0.71	0.65	0.70
	PPMd	0.81	1.12	1.14	1.30	1.06
	VPC+bzip2	1.29	1.90	2.03	2.47	1.82
	VPC+PPMd	0.95	1.43	1.46	1.68	1.32
	BPC+PPMd	2.23	3.18	2.98	4.10	2.98
	sim-bpred		1.09		0.34	0.50

Summary: BPC compresses well and decompresses fast

- Best region: upper left fast and small
- BPC is faster than other decompressors
- ...and sim-bpred
- Know your generalpurpose compressors: gzip's too big bzip2 is too slow
- Biggest help for phasechanging Server code

Related work: BPC is a specialized form of VPC or a modified version of CBP.

- 1. Value-predictor based compression (VPC)
 - Prof. Martin Burtscher at Cornell
 - Trans on Computers, Nov 2005
- 2. Championship Branch Prediction Contest (CBP)
 - Stark and Wilkerson, Intel
 - MICRO workshop, Jan 2005
 - Provided traces used a technique with similar spirit

Our Branch Prediction-based Compression (BPC) paper identifies application to snapshot-based simulation

- Barr and Asanović, MIT
- ISPASS, Mar 2006

With BPC, choice of predictor is implicitly provided, not included in output stream.

BPC:

VPC/CBP:

Output: <P1>

Conclusion

- Compressed branch traces are smaller and more flexible than concrete branch predictor snapshots
 - 2.0–5.6x smaller than a **single**, simple predictor snapshot
 - Improvement multiplies for each predictor under test, size of those predictors, and each additional sample
- We introduce Branch Predictor-based Compression
 - Better compression ratios than other compressors
 - Faster than other decompressors; and 3-12X faster than functional simulation.

http://www.mit.edu/~kbarr