

Banked Multiported Register Files for High-Frequency Superscalar Microprocessors

Jessica H. Tseng and Krste Asanović

MIT Laboratory for Computer Science, Cambridge, MA 02139, USA

ISCA2003

Motivation

- Increasing demand on number of ports and number of registers in a register file.
- Growing concerns in access time, power, and die area.
 - Example: Alpha 21464
 register file (RF) occupied
 over 5X the area of 64KB
 primary data cache (DC).

Alpha 21464 Floorplan ISSCC, 2002

Distributed Architecture

Duplicated

- Fewer Read Ports
- Same Number of Write Ports
- Twice Total Number of Registers
- Alpha 21264 & Alpha 21464

Non-Duplicated

- Fewer Read Ports
- Fewer Write Ports
- Complex Inter-Cluster
 Communication

Centralized Architecture

Multi-Level: Register File Cache

- Fewer Read Ports
- Fewer Write Ports
- Control Logic Complexity
- Poor Locality

One-Level Multi-Banked

- Fewer Read Ports
- Fewer Write Ports
- Possible Conflicts
- Control Logic Complexity
- Possible Pipeline Stalls

Previous Work

- Use minimal number of ports per register file banks: 1 or 2-read port(s) and 1-write port.
- Avoid issuing instructions that would cause register file read conflicts.
 - Add complexity to the critical wakeup-select loop for the issue logic slower cycle time
- Resolve register file write conflicts by either delaying physical register allocation until write back stage or installing write buffers.
 - Complex pipeline control logic
 - Possible pipeline stalls

Our Work

- Use more ports per register file bank: 2-read ports and 2-write ports.
- Speculatively issue potentially conflicting instructions.
 - Minimize impact to the critical wakeup-select loop for the issue logic
- Rapidly repair pipeline and reissue conflicting instructions when conflicts are detected after issue.
 - No write buffer requirement
 - No pipeline stalls

Simpler and Faster Control Logic

Example

- Four-issue superscalar machine with a 64x32b 8-banked register file.
 - Area Saving: 63%
 - Access Time Reduction: 25%
 - Energy Reduction: 40%
 - IPC Degradation: < 5%</p>

Outline

- 1. Banked Register File Structure
- Basic Pipeline Structure and Control Logic
- 3. Improving IPC
 - Bypass Skip
 - Read Sharing
- 4. Conclusion

Banked Register File Structure

Register File Floorplan

64x32b 8-Read Ports & 4-Write Ports

Baseline Pipeline Structure

Modified Pipeline Structure

- Speculatively Issue Potentially Conflicting Instructions: Same Wakeup-Select Loop
- Additional Arbitration Pipeline Stage
 - Detect read and write bank conflicts when too many instructions try to read from or write to the same register file bank.
 - Mux operand addresses into available register file ports.
 - Adds a cycle to branch misprediction latency.

N-way Arbitration

 N-way Superscalar needs only an N-way arbitration for each bank port.

• Example: 4-way

Pipeline Repair Operation

Evaluating IPC Impact

- IPC degradation simulation: modify Simplescalar simulator to keep track of a unified physical register file organized into banks.
 - Shorter access time of banked register files may lead to higher processor clock rate.
- Benchmarks: Use a subset of SPEC2000 and Mediabench benchmarks that cover a range of different IPCs.

IPC Comparison (1)

 IPC degradation ranges from 0.1 (9%) to 0.5 (31%) with an average of 0.3 (17%).

Improving IPC

- Avoid contending for register file read ports when it is possible.
 - Bypass Skip: Operands that will be sourced from the bypass network do not compete for access to the register file.
 - Read Sharing: Allow multiple instructions to read the same physical register from same bank.
- Suggested in previous work [Park et. al. MICRO-35, Balasubramonian et. al. MICRO-34]

Bypass Skip Implementation

 Need to determine bypassability before the arbitration for register file read ports.

- Problem: Extra pipeline stage, possible latency increase
- Optimistic Bypass Hint: [Park et. al. 02'] Reducing register ports for higher speed and lower energy. MICRO-35.
 - Use wakeup tag search to indicate bypassability.
 - Bypassability indicator is not reset when the source instructions have written back to the register file.
 - Problem: Not always correct → could over subscribe the register file read ports.

Conservative Bypass Skip

- Conservative Bypass Skip Scheme
 - Use wakeup tag search to indicate bypassability.
 - Only avoid read port contentions when the value is bypassed from the immediately preceding cycle.

Bypass Bit Scheme

- Our conservative bypass skip scheme improves IPC by 5% on average.
- IPC degradation ranges from <0.1 (9%) to 0.5 (28%) with an average of 0.2 (12%).

Read Sharing

IPC Comparison (3)

- Adding read sharing improves IPC by another 7% on average.
- IPC degradation ~0.1 across all the benchmarks with an average of <0.1 (5%).

Read Sharing Findings

- Why are so many instructions reading the same register?
 - Groups of load and store instructions that depend on the stack pointer tend to be issued together. (procedure call/return points)
 - 2. Branch instructions that depend on the same register also tend to be issued together.
- Confirms findings in previous work.
 - [Balasubramonian et. al. 01'] Reducing the complexity of the register file in dynamic superscalar processors. MICRO-34
 - [Wallace et. al. '96] A scalable register file architecture for dynamically scheduled processors. *Proc. PACT*.

24

IPC Sensitivity to Configuration

Register File Characteristics

- Area: Magic, 0.25μm TSMC CMOS process
- Delay & Energy: HSPICE, 2.5V supply voltage

64x32b, 8 Read Ports & 4 Write Ports							
Туре	Baseline	8B8R4W	8B2R2W	8B2R1W	8B1R1W		
Area	100%	123%	37%	32%	30%		
Delay	100%	83%	75%	75%	77%		
Energy	100%	61%	59%	58%	41%		
Packing Bitline							

Errata

• Corrected Table 2

Delay	8r4w	2r2w	2r1w	1r1w
1 bank	100.00%			
4 bank	92.38%	79.05%	79.05%	81.90%
8 bank	83.88%	74.76%	74.76%	77.14%

http://www.cag.lcs.mit.edu/scale/

Discussion

- Why Design with Multi-Banked Register File?
 - Reduce Area Dramatically
 - Reduce Access Time > Higher Clock Rate
 - Reduce Energy Consumption
 - Cause Only Slight IPC Degradation
 - Scale With Technology
 - Wire Delay
 - Leakage Power
- Future Work:
 - SMT Architecture

Conclusion

- For register file with a small number of local ports per bank, the overall register file area is dominated by bank interconnect.
- Using more ports per bank to reduce the IPC impact of a simpler and faster pipelined control scheme that allows higher frequency operation.
- For four-issue processors, we reduce register file area by over a factor of three, access time by 25% and access energy by 40%, while reducing IPC by less than 5%.

Thank You

http://www.cag.lcs.mit.edu/scale/