
1

Banked Multiported Register Files for
High-Frequency Superscalar

Microprocessors

Jessica H. Tseng and Krste Asanoviü
MIT Laboratory for Computer Science,

Cambridge, MA 02139, USA
ISCA2003

2

Motivation
• Increasing demand on

number of ports and
number of registers in
a register file.

• Growing concerns in
access time, power,
and die area.
– Example: Alpha 21464

register file (RF) occupied
over 5X the area of 64KB
primary data cache (DC).

RF
512x64b
16R/8W

DC
64KB

Alpha 21464 Floorplan
IS SCC, 2002

3

Distributed Architecture
• Duplicated

– Fewer Read Ports
– Same Number of Write Ports
– Twice Total Number of Registers
– Alpha 21264 & Alpha 21464

• Non-Duplicated
– Fewer Read Ports
– Fewer Write Ports
– Complex Inter-Cluster

Communication

RF

ALU

RF

ALU

Cluster 0 Cluster 1

RF

ALU

RF

ALU

Cluster 0 Cluster 1

Inter-Cluster Communication

4

Centralized Architecture
• Multi-Level:

Register File Cache
– Fewer Read Ports
– Fewer Write Ports
– Control Logic Complexity
– Poor Locality

• One-Level Multi-Banked
– Fewer Read Ports
– Fewer Write Ports
– Possible Conflicts
– Control Logic Complexity
– Possible Pipeline Stalls

RF

ALU

RF

ALU

RF

ALU ALU

RF

5

Previous Work
• Use minimal number of ports per register file

banks: 1 or 2-read port(s) and 1-write port.

• Avoid issuing instructions that would cause
register file read conflicts.
– Add complexity to the critical wakeup-select loop for

the issue logic Æ slower cycle time

• Resolve register file write conflicts by either
delaying physical register allocation until write
back stage or installing write buffers.
– Complex pipeline control logic
– Possible pipeline stalls

6

Our Work
• Use more ports per register file bank: 2-read

ports and 2-write ports.

• Speculatively issue potentially conflicting
instructions.
– Minimize impact to the critical wakeup-select loop for

the issue logic

• Rapidly repair pipeline and reissue conflicting
instructions when conflicts are detected after
issue.
– No write buffer requirement
– No pipeline stalls

S impler and Faster Control Logic

7

Example
• Four-issue superscalar machine with a

64x32b 8-banked register file.

– Area Saving: 63%
– Access Time Reduction: 25%
– Energy Reduction: 40%
– IPC Degradation: < 5%

8

Outline
1. Banked Register File Structure
2. Basic Pipeline Structure and

Control Logic
3. Improving IPC

• Bypass Skip
• Read Sharing

4. Conclusion

9

Banked Register File Structure

ALUALUALU

64x32b 8B1R1W

ALU

Bank 0

Bank 1

Bank 2

Bank 7

8-Read 4-Write

ALUALUALU

64x32b 8B2R2W

ALU

Bank 0

Bank 1

Bank 2

8-Read 4-Write

Bank 7

10

Register File Floorplan

8B8R4W 8B2R2W 8B1R1W

storage array
address decoder
bank overhead
column cell

Baseline

64x32b 8-Read Ports & 4-Write Ports
123%

37%
30%

Area: 100%

11

Baseline Pipeline Structure

• Issue
– WAKEUP PHASE:

Broadcasts the result
tags of issued
instructions to update
operand readiness.

– S ELECT PHASE:
Picks a subset of
ready instructions to
issue.

DecodeFetch Rename Read
Bypass

Execute Writeback

0 1 2 3 4 5 6
Issue

opcode src1 src2
0 0 add
1 1 sub
0 0 xor
1 1 beq

0 1 add

1 r3
1 5
0 r17
1 r1

1 r3

dst
r9
r7
r8
0

r17

0 r2
1 r3
0 r13
1 r3

1 r24

Instruction window

src ready bitready bitissued bit

12

Modified Pipeline Structure

• Speculatively Issue Potentially Conflicting
Instructions: Same Wakeup-Select Loop

• Additional Arbitration Pipeline Stage
– Detect readand write bank conflicts when too

many instructions try to read from or write to the
same register file bank.

– Mux operand addresses into available register file
ports.

– Adds a cycle to branch misprediction latency.

Fetch Decode Rename Arbitrate Read
Bypass

ExecuteIssue Writeback

0 1 2 3 4 5 6 7

13

src10 src17 src12 src11
inst1 inst2 inst3 inst4

4-way arbitration

Left Operands

N-way Arbitration
• N-way Superscalar

needs only an N-way
arbitration for each
bank port.

• Example: 4-way

Bank 0

Bank 1

Bank 2

8-Read 4-Write

64x32b 8B2R2W

Bank 7

14

Pipeline Repair Operation

Arbitrate Read
Bypass

Issue

Wakeup Select

Arbitrate Read
Bypass

Issue

Wakeup Select

Wakeup
Dependents

Arbitrate Read
Bypass

Issue

Wakeup Select

Clear Ready Bits

Kill Following Issue Group
Kill Conflicting Instructions

Conflict
Detected

15

Evaluating IPC Impact

• IPC degradation simulation: modify
Simplescalar simulator to keep track of a
unified physical register file organized into
banks.
– Shorter access time of banked register files may

lead to higher processor clock rate.

• Benchmarks: Use a subset of SPEC2000
and Mediabench benchmarks that cover a
range of different IPCs.

16

IPC Comparison (1)

• IPC degradation ranges from 0.1 (9%) to 0.5
(31%) with an average of 0.3 (17%).

0.0

0.5

1.0

1.5

2.0

2.5

bzip2 gcc gzip twolf vortex ijpeg adpcm avg

Baseline
8B2R2W

17

Improving IPC
• Avoid contending for register file read ports when

it is possible.

– Bypass Skip: Operands that will be sourced from the
bypass network do not compete for access to the
register file.

– Read Sharing: Allow multiple instructions to read the
same physical register from same bank.

• Suggested in previous work [Park et. al. MICRO-35,
Balasubramonian et. al. MICRO-34]

18

Bypass Skip Implementation
• Need to determine bypassability before the arbitration for

register file read ports.

– Problem: Extra pipeline stage, possible latency increase

• Optimistic Bypass Hint: [Park et. al. 02’] Reducing register
ports for higher speed and lower energy. MICRO-35.
– Use wakeup tag search to indicate bypassability.
– Bypassability indicator is not reset when the source

instructions have written back to the register file.
– Problem: Not always correct Æ could over subscribe

the register file read ports.

Bypass? Arbitrate Read/BypassIssue

19

Conservative Bypass Skip
• Conservative Bypass Skip Scheme

– Use wakeup tag search to indicate bypassability.
– Only avoid read port contentions when the value is

bypassed from the immediately preceding cycle.

RF A
LU

20

Bypass Bit Scheme

opcode src1 src2
0 0 add
0 0 sub
0 0 xor
0 0 beq

0 0 add

dst
r9
r7
r8
0

r17In
st

ru
ct

io
n

w
in

do
w

ready bitissued bit

0 r2
0 r3
0 r13
0 r3

1 r24

0
0
0
0

0

0 r3
1 5
0 r17
1 r1

0 r3

0

0
0

0

0

src ready bit src bypass bit

wakeup

1 1 r3

r3

r3
r31 1

1

1

1

1

1

1

1
select

1

1

tag match r3

wakeup

0

0

tag match r9

21

IPC Comparison (2)

• Our conservative bypass skip scheme
improves IPC by 5% on average.

• IPC degradation ranges from <0.1 (9%) to 0.5
(28%) with an average of 0.2 (12%).

0.0

0.5

1.0

1.5

2.0

2.5

bzip2 gcc gzip twolf vortex ijpeg adpcm avg

Baseline
8B2R2W
8B2R2W+B

22

Read Sharing
• A local port drives

multiple global ports Bank 0

Bank 1

Bank 2

8-Read 4-Write

64x32b 8B2R2W

Bank 7

src12 src10 src16 src10
inst1 inst2 inst3 inst4

Left Operands

4-way arbitration

=

YES

23

IPC Comparison (3)

• Adding read sharing improves IPC by another 7% on
average.

• IPC degradation ~0.1 across all the benchmarks with
an average of <0.1 (5%).

0.0

0.5

1.0

1.5

2.0

2.5

bzip2 gcc gzip twolf vortex ijpeg adpcm avg

Baseline
8B2R2W
8B2R2W+B
8B2R2W+B+S

24

Read Sharing Findings
• Why are so many instructions reading the

same register?

1. Groups of loadand store instructions that depend
on the stack pointer tend to be issued together.
(procedure call/return points)

2. Branch instructions that depend on the same
register also tend to be issued together.

• Confirms findings in previous work.
– [Balasubramonian et. al. 01’] Reducing the complexity of the

register file in dynamic superscalar processors. MICRO-34
– [Wallace et. al. ’96] A scalable register file architecture for

dynamically scheduled processors. Proc. PACT.

25

IPC Sensitivity to Configuration

8B2R2W-B+S

92.1%

-3%

conflict free select
8B2R2W+B+S

99.2%
+4%

8B2R1W+B+S

91.2%

-4%

4B2R2W+B+S

92.3%

-3%

8B2R2W+B-S

88.4%

-7%

8B2R2W-B-S

83.2%

-12% 8B2R2W+B+S
95.1%

Baseline IPC

8B2R4W+B+S

95.4%
+0%

26

Register File Characteristics

• Area: Magic, 0.25Pm TSMC CMOS process
• Delay & Energy: HSPICE, 2.5V supply voltage

41%58%59%61%100%Energy

Packing
Bitline

77%75%75%83%100%Delay

30%32%37%123%100%Area

8B1R1W8B2R1W8B2R2W8B8R4WBaselineType

64x32b, 8 Read Ports & 4 Write Ports

27

Errata

• Corrected Table 2

http://www.cag.lcs.mit.edu/scale/

77.14%74.76%74.76%83.88%8 bank

81.90%79.05%79.05%92.38%4 bank

------100.00%1 bank

1r1w2r1w2r2w8r4wDelay

28

Discussion
• Why Design with Multi-Banked Register File?

– Reduce Area Dramatically
– Reduce Access Time Æ Higher Clock Rate
– Reduce Energy Consumption
– Cause Only Slight IPC Degradation

– Scale With Technology
• Wire Delay
• Leakage Power

• Future Work:
– SMT Architecture

29

Conclusion
• For register file with a small number of local ports per

bank, the overall register file area is dominated by bank
interconnect.

• Using more ports per bank to reduce the IPC impact of a
simpler and faster pipelined control scheme that allows
higher frequency operation.

• For four-issue processors, we reduce register file area
by over a factor of three, access time by 25% and
access energy by 40%, while reducing IPC by less than
5%.

30

Thank You

• http://www.cag.lcs.mit.edu/scale/

