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Large design space studies explore thousands of 
processor designs

Identify those that minimize costs and maximize performance

Speed vs. Accuracy tradeoff
Maximize simulation speedup while maintaining sufficient 
accuracy to identify interesting design points for later detailed 
simulation

Simulation for Large Design Space 
Exploration

Pareto-optimal
designs on curve

Area

CPI
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Reduce Simulated Instructions: 
Sampling

Perform detailed microarchitectural simulation during 
sample points & functional warming between sample 
points

SimPoints [ASPLOS, 2002], SMARTS [ISCA, 2003]
Use efficient checkpoint techniques to reduce simulation 
time to minutes

TurboSMARTS [SIGMETRICS, 2005], 
Biesbrouck [HiPEAC, 2005]

Sample points – simulate in detail
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Generate a short synthetic trace (with statistical 
properties similar to original workload) for simulation

Eeckhout [ISCA, 2004], Oskin [ISCA, 2000]
Nussbaum [PACT, 2001]

Reduce Simulated Instructions: 
Statistical Simulation

Execution 
Driven

Profiling
Statistical
Image

Program
Synthetic 

Trace
Generation

Synthetic
Trace

Simulation IPC
Config

Stage 1 Stage 2

Stage 3
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AXCIS Framework

Dynamic 
Trace
Compressor

Program
&

Inputs

IPC1
IPC2
IPC3

AXCIS
Performance
Model

CIST
Canonical
Instruction
Segment

Table

Configs
In-order superscalars:
• Issue width
• # of functional units
• # of cache primary-

miss tags
• Latencies
• Branch penalty

• Machine independent
except for branch   
predictor and cache 
organizations

• Stores all information  
needed for  
performance analysis

Stage 1 (performed once)

Stage 2
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In-Order Superscalar Machine Model
(size & penalty)

(latency)
. . .

Branch Pred.

FPU LSUALU

(issue width)

Fetch

Issue

Completion

Blocking
Icache

Non-
blocking
Dcache

(# primary
miss tags)

Memory 

(number of units)

(organization
& latency)

(org. & latency)

(latency)

(  ) Parameters
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Stage 1: Dynamic Trace Compression

Dynamic 
Trace
Compressor

Program
&

Inputs

IPC1
IPC2
IPC3

AXCIS
Performance
Model

CIST
Canonical
Instruction
Segment

Table

Configs

Stage 1 (performed once)

Stage 2
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Instruction Segments

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

instruction segment

defining 
instruction

Events: (dcache, icache, bpred)

An instruction segment captures all performance-
critical information associated with a dynamic 
instruction
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Instruction Segments

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

instruction segment

defining 
instruction

Events: (dcache, icache, bpred)

An instruction segment captures all performance-
critical information associated with a dynamic 
instruction
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Dynamic Trace Compression
Program behavior repeats due to loops, and 
repeated function calls
Multiple different dynamic instruction segments can 
have the same behavior (canonically equivalent)
regardless of the machine configuration

Compress the dynamic trace by storing in a table:
1 copy of each type of segment 
How often we see it in the dynamic trace
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Canonical Instruction Segment Table

Freq Segment

Int_ALU1

Int_ALU
CIST

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)
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Canonical Instruction Segment Table

Freq Segment

Int_ALU1

CIST

Load_Miss

Int_ALU

Int_ALU

Load_Miss
1

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)
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addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)

Canonical Instruction Segment Table

Freq Segment

Int_ALU1

CIST

Int_ALU

Load_Miss
1

Load_Miss

Int_ALU

Load_Miss

Int_ALU
1
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addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)

Canonical Instruction Segment Table

Freq Segment

Int_ALU1

CIST

Int_ALU

Load_Miss
1

Load_Miss

Int_ALU
1Load_Miss

Int_ALU
2
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Canonical Instruction Segment Table

Freq Segment

Int_ALU1

CIST

Int_ALU

Load_Miss
1

Load_Miss

Int_ALU
1 2Load_Miss

Int_ALU

2
addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)
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addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)

Canonical Instruction Segment Table

Freq Segment

Int_ALU1

CIST

Int_ALU

Load_Miss
1

Load_Miss

Int_ALU
1

Int_ALU

Load_Miss

Store_Miss

Load_Miss

1

Store_Miss

Int_ALU

2

2

Total ins: 6
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Stage 2: AXCIS Performance Model

Dynamic 
Trace
Compressor

Program
&

Inputs

IPC
AXCIS
Performance
Model

CIST
Canonical
Instruction
Segment

Table

Config

Stage 1 (performed once)

Stage 2
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AXCIS Performance Model
Calculates IPC using a single linear dynamic 
programming pass over the CIST entries

Total work is proportional to the # of CIST entries

Stalls Effective Total  Ins Total
Ins Total

Cycles Total
Ins Total  

+
==IPC

∑
=

=
Size CIST

1
)ningIns(i)talls(DefiEffectiveS * Freq(i)    

i
Stalls Effective Total

EffectiveStalls = MAX ( stalls(DataHazards), 
stalls(StructuralHazards), 
stalls(ControlFlowHazards) )
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Performance Model Calculations

Int_ALU

Freq Segment

Int_ALU

Load_Miss

Load_Miss

Int_ALU

1

2

2

Total ins: 6
Look up in previous segment
Calculate

For each defining
instruction:

Calculate its
effective stalls &
its corresponding 
microarchitecture
state snapshot
Follow 
dependencies to 
look up the
effective stalls &  
state of other   
instructions in  
previous entries

1

Load_Miss

Store_Miss

Int_ALU

Stalls

0

2

99

99

???

State

???
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Stall Cycles From Data Hazards

1

Load_Miss

Store_Miss

Int_ALU 99

Input configuration:

100Load_Miss
3Int_ALU

Latency (cycles)Ins Type

Freq

Use data dependencies (e.g. RAW) to detect data hazards
Stalls(DataHazards)

= MAX ( -1,  
Latency( producer = Load_Miss ) 
– DepDist
– EffectiveStalls( IntermediateIns = Int_ALU ) ) 

= MAX (-1, 
(100 – 2 – 99) ) 

= -1 stalls (can issue with previous instruction)

???

Stalls
…

State

???
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Stall Cycles from Structural Hazards

CISTs record special dependencies to capture all possible 
structural hazards across all configurations
The AXCIS performance model follows these special 
dependencies to find the necessary microarchitectural states 
to: 

1. Determine if a structural hazard exists & the number of stall 
cycles until it is resolved

2. Derive the microarchitectural state after issuing the current 
defining instruction

1

Load_Miss

Store_Miss

Int_ALU

Freq Microarchitectural State

???

Stalls
…

???

99



22 of 32

Stall Cycles From Control Flow Hazards

Control flow events directly map to stall cycles

1

Load_Miss

Store_Miss

Int_ALU

Freq Icache Branch Pred.

… …

hit correct & not taken

… …

Memory latency + mispred penalty
Memory latency
Memory latency - 1

Incorrect & taken/not taken
Correct   & taken
Correct   & not taken

Miss

Mispred penalty
0
-1

Incorrect & taken/not taken
Correct   & taken
Correct   & not taken

Hit
StallsBpredIcache
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Lossless Compression Scheme
Lossless Compression Scheme: (perfect accuracy)

Compress two segments if they always experience the same 
stall cycles regardless of the machine configuration
Impractical to implement within the Dynamic Trace Compressor

addq (--, hit, correct)

ldiq (--, hit, correct)

stq (miss, hit, correct)

ldiq always 
Issues with addq

addq (--, hit, correct)

stq (miss, hit, correct)
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Three Compression Schemes
Instruction Characteristics Based Compression:

Compress segments that “look” alike (i.e. have the same length, 
instruction types, dependence distances, branch and cache 
behaviors)

Limit Configurations Based Compression:
Compress segments whose defining instructions have the same 
instruction types, stalls and microarchitectural state under the 2 
configurations simulated during trace compression

Relaxed Limit Configurations Based Compression:
Relaxed version of the limit-based scheme – does not compare 
microarchitectural state
Improves compression at the cost of accuracy
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Experimental Setup
Evaluated AXCIS against a baseline cycle accurate 
simulator on 24 SPEC2K benchmarks
Evaluated AXCIS for:

Accuracy:

Speed:    # of CIST entries, time in seconds
For each benchmark, simulated a wide range of designs:

Issue width: {1, 4, 8}, # of functional units: {1, 2, 4, 8},
Memory latency: {10, 200 cycles},
# of primary miss tags in non-blocking data cache: {1, 8}

For each benchmark, selected the compression scheme 
that provides the best compression given a set accuracy 
range

Absolute IPC Error =
| AXCIS – Baseline |

Baseline
* 100
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Limit-based Scheme Relaxed Limit-
based Scheme

Characteristics-
based Scheme

Results: Accuracy
Distribution of IPC Error in quartiles

High Absolute Accuracy:
Average Absolute
IPC Error = 2.6 %

Small Error Range:
Average Error 
Range = 4.4%
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Configuration

A
ve
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Ave IPC - Baseline
Ave IPC - AXCIS

Results: Relative Accuracy
Average IPC of Baseline and AXCIS

High Relative Accuracy:
AXCIS and Baseline 
provide the 
same ranking of 
configurations
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0.07
sec

5.56
sec

4.5
sec

7.32
sec

17.4
sec

17.55
sec

Limit-based Scheme Relaxed Limit-
based Scheme

Characteristics-
based Scheme

Results: Speed
# of CIST entries & modeling time AXCIS is over 4   

orders of 
magnitude faster 
than detailed   
simulation

CISTs are 5 orders  
of magnitude 
smaller than the 
original dynamic 
trace, on average

Modeling time ranged from 
0.02 – 18 seconds
for billions of 
dynamic instructions
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Discussion
Trade the generality of CISTs for higher accuracy 
and/or speed

E.g. fix the issue width to 4 and explore near this design point

Tailor the tradeoff made between 
speed/compression and accuracy for different 
workloads

Floating point benchmarks (repetitive & compress well)
More sensitive to any error made during compression 
Require compression schemes with a stricter segment 
equality definition

Integer benchmarks: (less repetitive & harder to compress)
Require compression schemes that have a more relaxed 
equality definition
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Future Work
Compression Schemes:

How to quickly identify the best compression scheme for a 
benchmark? 
Is there a general compression scheme that works well for all 
benchmarks?

Extensions to support Out-of-Order Machines:
Main ideas still apply (instruction segments, CIST, compression 
schemes)
Modify performance model to represent dispatch, issue, and 
commit stages within the microarchitectural state so that given 
some initial state & an instruction, it can calculate the next state
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AXCIS is a promising technique for 
exploring large design spaces

High absolute and relative accuracy across a 
broad range of designs
Fast:

4 orders of magnitude faster than detailed simulation
Simulates billions of dynamic instructions within seconds

Flexible:
Performance modeling is independent of the compression 
scheme used for CIST generation
Vary the compression scheme to select a different tradeoff 
between speed/compression and accuracy
Trade the generality of the CIST for increased speed and/or 
accuracy

Conclusion
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