
1

AXCIS: Accelerating Architectural
Exploration using
Canonical Instruction Segments

Rose Liu & Krste Asanović
Computer Architecture Group
MIT CSAIL

2 of 32

Large design space studies explore thousands of
processor designs

Identify those that minimize costs and maximize performance

Speed vs. Accuracy tradeoff
Maximize simulation speedup while maintaining sufficient
accuracy to identify interesting design points for later detailed
simulation

Simulation for Large Design Space
Exploration

Pareto-optimal
designs on curve

Area

CPI

3 of 32

Reduce Simulated Instructions:
Sampling

Perform detailed microarchitectural simulation during
sample points & functional warming between sample
points

SimPoints [ASPLOS, 2002], SMARTS [ISCA, 2003]
Use efficient checkpoint techniques to reduce simulation
time to minutes

TurboSMARTS [SIGMETRICS, 2005],
Biesbrouck [HiPEAC, 2005]

Sample points – simulate in detail

4 of 32

Generate a short synthetic trace (with statistical
properties similar to original workload) for simulation

Eeckhout [ISCA, 2004], Oskin [ISCA, 2000]
Nussbaum [PACT, 2001]

Reduce Simulated Instructions:
Statistical Simulation

Execution
Driven

Profiling
Statistical
Image

Program
Synthetic

Trace
Generation

Synthetic
Trace

Simulation IPC
Config

Stage 1 Stage 2

Stage 3

5 of 32

AXCIS Framework

Dynamic
Trace
Compressor

Program
&

Inputs

IPC1
IPC2
IPC3

AXCIS
Performance
Model

CIST
Canonical
Instruction
Segment

Table

Configs
In-order superscalars:
• Issue width
• # of functional units
• # of cache primary-

miss tags
• Latencies
• Branch penalty

• Machine independent
except for branch
predictor and cache
organizations

• Stores all information
needed for
performance analysis

Stage 1 (performed once)

Stage 2

6 of 32

In-Order Superscalar Machine Model
(size & penalty)

(latency)
. . .

Branch Pred.

FPU LSUALU

(issue width)

Fetch

Issue

Completion

Blocking
Icache

Non-
blocking
Dcache

(# primary
miss tags)

Memory

(number of units)

(organization
& latency)

(org. & latency)

(latency)

() Parameters

7 of 32

Stage 1: Dynamic Trace Compression

Dynamic
Trace
Compressor

Program
&

Inputs

IPC1
IPC2
IPC3

AXCIS
Performance
Model

CIST
Canonical
Instruction
Segment

Table

Configs

Stage 1 (performed once)

Stage 2

8 of 32

Instruction Segments

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

instruction segment

defining
instruction

Events: (dcache, icache, bpred)

An instruction segment captures all performance-
critical information associated with a dynamic
instruction

9 of 32

Instruction Segments

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

instruction segment

defining
instruction

Events: (dcache, icache, bpred)

An instruction segment captures all performance-
critical information associated with a dynamic
instruction

10 of 32

Dynamic Trace Compression
Program behavior repeats due to loops, and
repeated function calls
Multiple different dynamic instruction segments can
have the same behavior (canonically equivalent)
regardless of the machine configuration

Compress the dynamic trace by storing in a table:
1 copy of each type of segment
How often we see it in the dynamic trace

11 of 32

Canonical Instruction Segment Table

Freq Segment

Int_ALU1

Int_ALU
CIST

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)

12 of 32

Canonical Instruction Segment Table

Freq Segment

Int_ALU1

CIST

Load_Miss

Int_ALU

Int_ALU

Load_Miss
1

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)

13 of 32

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)

Canonical Instruction Segment Table

Freq Segment

Int_ALU1

CIST

Int_ALU

Load_Miss
1

Load_Miss

Int_ALU

Load_Miss

Int_ALU
1

14 of 32

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)

Canonical Instruction Segment Table

Freq Segment

Int_ALU1

CIST

Int_ALU

Load_Miss
1

Load_Miss

Int_ALU
1Load_Miss

Int_ALU
2

15 of 32

Canonical Instruction Segment Table

Freq Segment

Int_ALU1

CIST

Int_ALU

Load_Miss
1

Load_Miss

Int_ALU
1 2Load_Miss

Int_ALU

2
addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)

16 of 32

addq (--, hit, correct)

ldq (miss, hit, correct)

subq (--, hit, correct)

stq (miss, hit, correct)

ldq (miss, hit, correct)

addq (--, hit, correct)

Canonical Instruction Segment Table

Freq Segment

Int_ALU1

CIST

Int_ALU

Load_Miss
1

Load_Miss

Int_ALU
1

Int_ALU

Load_Miss

Store_Miss

Load_Miss

1

Store_Miss

Int_ALU

2

2

Total ins: 6

17 of 32

Stage 2: AXCIS Performance Model

Dynamic
Trace
Compressor

Program
&

Inputs

IPC
AXCIS
Performance
Model

CIST
Canonical
Instruction
Segment

Table

Config

Stage 1 (performed once)

Stage 2

18 of 32

AXCIS Performance Model
Calculates IPC using a single linear dynamic
programming pass over the CIST entries

Total work is proportional to the # of CIST entries

Stalls Effective Total Ins Total
Ins Total

Cycles Total
Ins Total

+
==IPC

∑
=

=
Size CIST

1
)ningIns(i)talls(DefiEffectiveS * Freq(i)

i
Stalls Effective Total

EffectiveStalls = MAX (stalls(DataHazards),
stalls(StructuralHazards),
stalls(ControlFlowHazards))

19 of 32

Performance Model Calculations

Int_ALU

Freq Segment

Int_ALU

Load_Miss

Load_Miss

Int_ALU

1

2

2

Total ins: 6
Look up in previous segment
Calculate

For each defining
instruction:

Calculate its
effective stalls &
its corresponding
microarchitecture
state snapshot
Follow
dependencies to
look up the
effective stalls &
state of other
instructions in
previous entries

1

Load_Miss

Store_Miss

Int_ALU

Stalls

0

2

99

99

???

State

???

20 of 32

Stall Cycles From Data Hazards

1

Load_Miss

Store_Miss

Int_ALU 99

Input configuration:

100Load_Miss
3Int_ALU

Latency (cycles)Ins Type

Freq

Use data dependencies (e.g. RAW) to detect data hazards
Stalls(DataHazards)

= MAX (-1,
Latency(producer = Load_Miss)
– DepDist
– EffectiveStalls(IntermediateIns = Int_ALU))

= MAX (-1,
(100 – 2 – 99))

= -1 stalls (can issue with previous instruction)

???

Stalls
…

State

???

21 of 32

Stall Cycles from Structural Hazards

CISTs record special dependencies to capture all possible
structural hazards across all configurations
The AXCIS performance model follows these special
dependencies to find the necessary microarchitectural states
to:

1. Determine if a structural hazard exists & the number of stall
cycles until it is resolved

2. Derive the microarchitectural state after issuing the current
defining instruction

1

Load_Miss

Store_Miss

Int_ALU

Freq Microarchitectural State

???

Stalls
…

???

99

22 of 32

Stall Cycles From Control Flow Hazards

Control flow events directly map to stall cycles

1

Load_Miss

Store_Miss

Int_ALU

Freq Icache Branch Pred.

… …

hit correct & not taken

… …

Memory latency + mispred penalty
Memory latency
Memory latency - 1

Incorrect & taken/not taken
Correct & taken
Correct & not taken

Miss

Mispred penalty
0
-1

Incorrect & taken/not taken
Correct & taken
Correct & not taken

Hit
StallsBpredIcache

23 of 32

Lossless Compression Scheme
Lossless Compression Scheme: (perfect accuracy)

Compress two segments if they always experience the same
stall cycles regardless of the machine configuration
Impractical to implement within the Dynamic Trace Compressor

addq (--, hit, correct)

ldiq (--, hit, correct)

stq (miss, hit, correct)

ldiq always
Issues with addq

addq (--, hit, correct)

stq (miss, hit, correct)

24 of 32

Three Compression Schemes
Instruction Characteristics Based Compression:

Compress segments that “look” alike (i.e. have the same length,
instruction types, dependence distances, branch and cache
behaviors)

Limit Configurations Based Compression:
Compress segments whose defining instructions have the same
instruction types, stalls and microarchitectural state under the 2
configurations simulated during trace compression

Relaxed Limit Configurations Based Compression:
Relaxed version of the limit-based scheme – does not compare
microarchitectural state
Improves compression at the cost of accuracy

25 of 32

Experimental Setup
Evaluated AXCIS against a baseline cycle accurate
simulator on 24 SPEC2K benchmarks
Evaluated AXCIS for:

Accuracy:

Speed: # of CIST entries, time in seconds
For each benchmark, simulated a wide range of designs:

Issue width: {1, 4, 8}, # of functional units: {1, 2, 4, 8},
Memory latency: {10, 200 cycles},
of primary miss tags in non-blocking data cache: {1, 8}

For each benchmark, selected the compression scheme
that provides the best compression given a set accuracy
range

Absolute IPC Error =
| AXCIS – Baseline |

Baseline
* 100

26 of 32

0%

10%

20%

30%

am
mp
ap

si art
eq

ua
ke

luca
s

mes
a

sw
im

wupwise
bzip

2
eo

n
gap gcc gzip

perl
bmk

vo
rte

x
cra

fty mcf
pars

er
tw

olf
vp

r
ap

plu
fac

ere
c

galg
el

mgrid

A
bs

ol
ut

e
IP

C
 E

rr
or

P_25
P_MIN
P_50
P_MAX
P_75
ave. IPC error

Limit-based Scheme Relaxed Limit-
based Scheme

Characteristics-
based Scheme

Results: Accuracy
Distribution of IPC Error in quartiles

High Absolute Accuracy:
Average Absolute
IPC Error = 2.6 %

Small Error Range:
Average Error
Range = 4.4%

27 of 32

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12
Configuration

A
ve

ra
ge

 IP
C

Ave IPC - Baseline
Ave IPC - AXCIS

Results: Relative Accuracy
Average IPC of Baseline and AXCIS

High Relative Accuracy:
AXCIS and Baseline
provide the
same ranking of
configurations

28 of 32

0

500

1000

1500

2000

2500

3000

am
mp
ap

si art
eq

ua
ke

luca
s

mes
a

sw
im

wupwise
bzip

2
eo

n
gap gcc gzip

perl
bmk

vo
rte

x
cra

fty mcf
pars

er
tw

olf
vp

r
ap

plu
fac

ere
c

galg
el

mgrid

th
ou

sa
nd

s

of
 C

IS
T

En
tr

ie
s

in

2.26
sec

0.3
sec

0.07
sec

0.09
sec

0.15
sec

0.05
sec

0.08
sec 0.02

sec

0.88
sec

0.55
sec 0.25

sec

2.74
sec

1.09
sec

3.1
sec

1.32
sec 0.69

sec
0.06
sec

0.72
sec

0.07
sec

5.56
sec

4.5
sec

7.32
sec

17.4
sec

17.55
sec

Limit-based Scheme Relaxed Limit-
based Scheme

Characteristics-
based Scheme

Results: Speed
of CIST entries & modeling time AXCIS is over 4

orders of
magnitude faster
than detailed
simulation

CISTs are 5 orders
of magnitude
smaller than the
original dynamic
trace, on average

Modeling time ranged from
0.02 – 18 seconds
for billions of
dynamic instructions

29 of 32

Discussion
Trade the generality of CISTs for higher accuracy
and/or speed

E.g. fix the issue width to 4 and explore near this design point

Tailor the tradeoff made between
speed/compression and accuracy for different
workloads

Floating point benchmarks (repetitive & compress well)
More sensitive to any error made during compression
Require compression schemes with a stricter segment
equality definition

Integer benchmarks: (less repetitive & harder to compress)
Require compression schemes that have a more relaxed
equality definition

30 of 32

Future Work
Compression Schemes:

How to quickly identify the best compression scheme for a
benchmark?
Is there a general compression scheme that works well for all
benchmarks?

Extensions to support Out-of-Order Machines:
Main ideas still apply (instruction segments, CIST, compression
schemes)
Modify performance model to represent dispatch, issue, and
commit stages within the microarchitectural state so that given
some initial state & an instruction, it can calculate the next state

31 of 32

AXCIS is a promising technique for
exploring large design spaces

High absolute and relative accuracy across a
broad range of designs
Fast:

4 orders of magnitude faster than detailed simulation
Simulates billions of dynamic instructions within seconds

Flexible:
Performance modeling is independent of the compression
scheme used for CIST generation
Vary the compression scheme to select a different tradeoff
between speed/compression and accuracy
Trade the generality of the CIST for increased speed and/or
accuracy

Conclusion

32 of 32

Acknowledgements
This work was partly funded by the DARPA HPCS/IBM
PERCS project, an NSF Graduate Research Fellowship,
and NSF CAREER Award CCR-0093354.

