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• Hot Spots
– Rapid rise of processor power density
– Uneven distribution of power dissipation

• Blocks such as issue windows have more than 
20x power density of less active block such as L2$

– Reduced device reliability and speed, increased 
leakage current

• Existing Solutions
– Packaging/cooling: high cost, not possible at laptop
– Dynamic thermal management: performance loss

• Total power dissipation must be reduced until all 
hot spots have acceptable junction temperature

Background



• Activity Migration (AM) to reduce power density
– With AM, we spread heat by transporting 

computation to a different location on the die
– If one unit heats past a temperature threshold, the 

computation is transferred to a second unit allowing 
the first to cool down

• AM for lowering temperature and power or for 
doubling maximum power dissipation at a given 
package
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Die Thickness and Power Density
• Two technology cases

• 180nm case: present, based on TSMC process
• 70nm case: near future, based on BPTM process

• Die thickness
• Most heat is removed through back of die
• Thinning chips: 250um →→→→ 100um
• Increasing lateral resistance

• Power density
• Ideal scaling →→→→ constant power density
• Vdd scale-down slowed, clock frequency increase 

accelerated due to deep pipelining →→→→ power density 
increase: 5W/mm2 →→→→ 7.5W/mm2



Equivalent RC Thermal Model

• Equivalent RC Thermal Model: 
• temperature - voltage, power - current

• Thermal resistance: lateral resistance ignored
• Thermal capacitance: package capacitance modeled as 

a temperature source (isothermal point)
• Exponential dependence of leakage power on 

temperature modeled as voltage-dependent current 
source (P_leakage(Tj))

(Tj)



Benefits of Activity Migration 

• AM: reduced temperature and power
• AM + Perf-Pwr Tradeoff: increased frequency and 

sustainable power
• Example: laptop with limited heat removal

• Battery mode: AM Only: low temp, low leakage power →→→→
energy-efficient execution

• Plugged mode: AM+Perf-Pwr Tradeoff: more power, more 
performance →→→→ max. performance execution without raising 
die temperature
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Activity Migration Model

• Activity Migration by turning on and off active 
power of hotspot and duplicated blocks 
(P_act1 and P_act2) 

• Identical thermal resistance and capacitance
• Identical leakage power at same temperature

Die

HotSpot Block Duplicated Block 

(Tj1) (Tj2)



AM Only

Time

Temperature

Tj1 

Tj2 

Reduced Temperature
Tbase

Tiso Migration Period

P_act2

P_act1

Time

Active Power
Pbase

0



AM + Perf-Pwr Tradeoff
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Migration Period: AM Only
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Migration Period: AM + Perf-Pwr Tradeoff
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Effect of Migration Period

- Small migration period
+ More temperature drop (More power increase)
- Greater CPI penalty 
- AM in hardware: Hardware overhead 

- Large migration period
+ Smaller CPI penalty
+ AM in software: OS context swap
- Less temperature drop (Less power increase)



Simulation Results: 
AM Only
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- Reduced temperature →→→→ reduced leakage power
- Reduced latency due to increased drain current at 

low temperature is exploited by reducing Vdd →→→→
reduced active power



Simulation Results: 
AM+Perf-Pwr Tradeoff
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- Same temperature as baseline 
- Perf-Pwr Tradeoffs: DVS, dynamic cache 

configuration modification, fetch/decode throttling, 
or speculation control

- DVS chosen for Perf-Pwr Tradeoff due to its 
simplicity



AM Architecture Configuration
I$,ITLB,

Branch Predictor

D$,DTLB

Issue Queue, 
Rename Table
Execution Units,

Register File

Base CA B D

• Base: block areas based on Alpha 21264 floorplan
• Hotspot blocks: execution units and register file
• Pessimistic CPI penalties of AM

- Cycle penalty due to increased wire latency 
when sharing a block: e.g. Shared D$ →→→→ extra 
cycle to cache access time

- Migration penalty: draining and copying 



Performance Effects of AM

•Methodology
•4-wide 32-bit superscalar machine
•SimpleScalar 3.0b
•SPEC2000 benchmarks using SimPoints

•Migration Period
•Short migration period chosen: 200K cycles 
(200µµµµs for 180nm case and 60 µµµµs for 70nm case)

Only 0~3% CPI penalty on average even at 
short migration period



Effects of AM for Area and Net Perf
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•normalized to baseline, speed = clock freq / CPI 

•180nm Case: conf. D achieves 12% performance 
gain with 30% area increase
•70nm Case: performance gain relatively small →→→→
AM only to cool down hot spots 
•Other issues

-Extra power for driving increased wire lengths
-Migration triggering by thermal sensors rather 
than fixed migration periods



Conclusion
• Activity Migration (AM) was proposed to solve 

hotspot problem of modern microprocessors
• AM spreads heat by transporting computation 

to a duplicated block
• AM can be used in two ways

1. AM only: low temperature, low leakage
2. AM + Performance-Power Tradeoff: sustainable power 

and performance increase

• Dynamic fixed-period AM was evaluated on a 
superscalar machine

– 12.7 degree temperature reduction
– 12% clock frequency increase with 3% CPI penalty 

and 30% area increase
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Thermal and Process Properties
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* Transistor models: TSMC 180nm and BPTM 70nm processes



Equivalent RC Thermal Model
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from 3D simulation 
results [Barcella02]

Exponential dependence of leakage 
power upon temperature modeled by 
voltage-dependent current source



•Leakage power
-Significant part of total power
-Exponential dependence upon temperature
-Voltage-dependent current source

Temperature Dependency of Leakage

( )110
110

−×= Tj
leakleak ePP β

ββββ=0 (orig)

ββββ=0.036

ββββ=0 (orig)

ββββ=0.036(a) (b)



AM Model
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AM Simulation Results: AM + DVS
AM and DVS for various pingpong periods

for the hot spot block (Current case)

DVS effects were modeled based on
Hspice simulation of a 15-stage ring-oscillator

baseline



AM and DVS for various pingpong periods
for the hot spot block (Future case)

AM Simulation Results: AM + DVS



Performance Effects of AM
•4-wide 32-bit superscalar machine
•SimpleScalar 3.0b
•SPEC2000 benchmarks using SimPoints
•Short migration period chosen: 200K cycles    
(200µµµµs for 180nm case and 60 µµµµs for 70nm case)


