ISLPED 2003 8/26/2003

Reducing Power Density through Activity Migration

Seongmoo Heo, Kenneth Barr, and Krste Asanović Computer Architecture Group, MIT CSAIL

Background

Hot Spots

- Rapid rise of processor power density
- Uneven distribution of power dissipation
 - Blocks such as issue windows have more than 20x power density of less active block such as L2\$
- Reduced device reliability and speed, increased leakage current
- Existing Solutions
 - Packaging/cooling: high cost, not possible at laptop
 - Dynamic thermal management: performance loss
 - Total power dissipation must be reduced until all hot spots have acceptable junction temperature

Introduction

- Activity Migration (AM) to reduce power density
 - With AM, we spread heat by transporting computation to a different location on the die
 - If one unit heats past a temperature threshold, the computation is transferred to a second unit allowing the first to cool down
- AM for lowering temperature and power or for doubling maximum power dissipation at a given package

Activity Migration

Duplicated

HotSpot Block

Original

HotSpot Block

Die Thickness and Power Density

- Two technology cases
 - 180nm case: present, based on TSMC process
 - 70nm case: near future, based on BPTM process
- Die thickness
 - Most heat is removed through back of die
 - Thinning chips: 250um \rightarrow 100um
 - Increasing lateral resistance
- Power density
 - Ideal scaling \rightarrow constant power density
 - Vdd scale-down slowed, clock frequency increase accelerated due to deep pipelining \rightarrow power density increase: 5W/mm² \rightarrow 7.5W/mm²

Equivalent RC Thermal Model

- Equivalent RC Thermal Model:
 - temperature voltage, power current
- Thermal resistance: lateral resistance ignored
- Thermal capacitance: package capacitance modeled as a temperature source (isothermal point)
- Exponential dependence of leakage power on temperature modeled as voltage-dependent current source (P_leakage(Tj))

- AM: reduced temperature and power
- AM + Perf-Pwr Tradeoff: increased frequency and sustainable power
- Example: laptop with limited heat removal
 - Battery mode: AM Only: low temp, low leakage power → energy-efficient execution
 - Plugged mode: AM+Perf-Pwr Tradeoff: more power, more performance → max. performance execution without raising die temperature

- Activity Migration by turning on and off active power of hotspot and duplicated blocks (P_act1 and P_act2)
- Identical thermal resistance and capacitance
- Identical leakage power at same temperature

AM Only

AM + Perf-Pwr Tradeoff

Migration Period: AM Only

Migration Period: AM + Perf-Pwr Tradeoff

Effect of Migration Period

- Small migration period
 - + More temperature drop (More power increase)
 - Greater CPI penalty
 - AM in hardware: Hardware overhead
- Large migration period
 - + Smaller CPI penalty
 - + AM in software: OS context swap
 - Less temperature drop (Less power increase)

Simulation Results: AM Only

- Reduced temperature \rightarrow reduced leakage power
- Reduced latency due to increased drain current at low temperature is exploited by reducing Vdd \rightarrow reduced active power

	180nm Case			70nm Case		
Migration period (μs)	1800	600	200	600	200	60
Temperature drop (K)	9.2	11.5	12.4	3.4	6.4	7.5
Leak power reduction (%)	29.6	35.3	37.6	5.9	10.8	12.6
Act power reduction (%)	3.7	7.6	9.7	3.3	9.5	9.7

Simulation Results: AM+Perf-Pwr Tradeoff

- Same temperature as baseline
- Perf-Pwr Tradeoffs: DVS, dynamic cache configuration modification, fetch/decode throttling, or speculation control
- DVS chosen for Perf-Pwr Tradeoff due to its simplicity

	180nm Case			70nm Case		
Migration period (µs)	1800	600	200	600	200	60
Freq increase (%)	10.5	14.1	15.9	2.3	5.0	5.9
Power increase (%)	56.8	79.5	90.9	25.0	61.4	79.6

AM Architecture Configuration

- Base: block areas based on Alpha 21264 floorplan
- Hotspot blocks: execution units and register file
- Pessimistic CPI penalties of AM
 - Cycle penalty due to increased wire latency when sharing a block: e.g. Shared D\$ → extra cycle to cache access time
 - Migration penalty: draining and copying

Performance Effects of AM

Methodology

•4-wide 32-bit superscalar machine
•SimpleScalar 3.0b
•SPEC2000 benchmarks using SimPoints

Migration Period

•Short migration period chosen: 200K cycles (200μs for 180nm case and 60 μs for 70nm case)

Only 0~3% CPI penalty on average even at short migration period

Effects of AM for Area and Net Perf

	180nm Case			70nm Case				
Conf	Α	B	С	D	Α	В	С	D
Area	2.00	1.84	1.56	1.30	2.00	1.84	1.56	1.30
Speed	1.16	1.13	1.12	1.12	1.06	1.04	1.03	1.03

normalized to baseline, speed = clock freq / CPI

•180nm Case: conf. D achieves 12% performance gain with 30% area increase

•70nm Case: performance gain relatively small \rightarrow AM only to cool down bot spots

AM only to cool down hot spots

•Other issues

-Extra power for driving increased wire lengths -Migration triggering by thermal sensors rather than fixed migration periods

Conclusion

- Activity Migration (AM) was proposed to solve hotspot problem of modern microprocessors
- AM spreads heat by transporting computation to a duplicated block
- AM can be used in two ways
 - 1. AM only: low temperature, low leakage
 - 2. AM + Performance-Power Tradeoff: sustainable power and performance increase
- Dynamic fixed-period AM was evaluated on a superscalar machine
 - 12.7 degree temperature reduction
 - 12% clock frequency increase with 3% CPI penalty and 30% area increase

Acknowledgments

- Thanks to Christopher Batten, Ronny Krashinsky, Heidi Pan, and anonymous reviewers
- Funded by DARPA PAC/C award F30602-00-2-0562, NSF CAREER award CCR-0093354, and a donation from Intel Corporation.

BACKUP SLIDES

Thermal and Process Properties

	Symbol	Current	Future
		Case	Case
Die thickness (μm)	Т	250	100
Die conductivity (W/K/m)	K	100	100
Die specific heat (J/K/m ³)	С	1e6	1e6
Die area (mm²)	A _{die}	100	100
Hot spot area (mm ²)	A _{block}	2	2
Hot spot active power density (W/mm ²)	PD _{act}	5	7.5
Hot spot leakage power density (110°C) (W/mm ²)	PD _{leak}	0.015	0.15
Isothermal point (°C)	T _{iso}	70	70
Channel length (nm)	L	180	70
Supply voltage (V)	V _{DD}	1.5	1.0
NMOS threshold voltage (V)	NV _{th0}	0.269	0.120
PMOS threshold voltage (V)	PV _{th0}	-0.228	-0.153

* Transistor models: TSMC 180nm and BPTM 70nm processes

Equivalent RC Thermal Model

Csilicon =
$$c \times t \times A$$
block

Exponential dependence of leakage power upon temperature modeled by voltage-dependent current source

Temperature Dependency of Leakage

Leakage power

- -Significant part of total power
- -Exponential dependence upon temperature -Voltage-dependent current source

 $P_{leak} = P_{leak110} \times e^{\beta(Tj-110)}$

$$T_{high} = \frac{T_{base} - T_{iso}}{1 + e^{\frac{Period}{2\tau}}} + T_{iso}$$

If period is small enough, •Halve temp increase •Double sustainable power

AM and DVS for various pingpong periods for the hot spot block (Current case)

Hspice simulation of a 15-stage ring-oscillator

AM and DVS for various pingpong periods for the hot spot block (Future case)

Performance Effects of AM

•4-wide 32-bit superscalar machine
•SimpleScalar 3.0b
•SPEC2000 benchmarks using SimPoints
•Short migration period chosen: 200K cycles
(200μs for 180nm case and 60 μs for 70nm case)

