
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-003 January 11, 2007

Scale Control Processor Test-Chip

Chrstopher Batten, Ronny Krashinsky and

Krste Asanovic

Scale Control Processor Test-Chip

Christopher Batten, Ronny Krashinsky, and Krste Asanović

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, 32-G736
Cambridge, MA 02139

January 5, 2007

We are investigating vector-thread architectures which provide competitive performance
and efficiency across a broad class of application domains [1, 4]. Vector-thread architectures
unify data-level, thread-level, and instruction-level parallelism, providing new ways of par-
allelizing codes that are difficult to vectorize or that incur excessive synchronization costs
when multithreaded. To illustrate these ideas we have developed the Scale processor, which
is an example of a vector-thread architecture designed for low-power and high-performance
embedded systems. The prototype includes a single-issue 32-bit RISC control processor, a
vector-thread unit which supports up to 128 virtual processor threads and can execute up
to 16 instructions per cycle, and a 32KB shared primary cache.

Since the Scale vector-thread processor is a large and complex design (especially for an
academic project), we first designed and fabricated the Scale Test Chip (STC1). STC1
includes a simplified version of the Scale control processor, 8KB of RAM, a host interface,
and a custom clock generator. STC1 helped mitigate the risk involved in fabricating the full
Scale chip in several ways. First, we were able to establish and test our CAD toolflow. Our
toolflow included several custom tools which had not previously been used in any tapeouts.
Second, we were able to better characterize our target package and process. For example,
STC1 enabled us to better correlate the static timing numbers from our CAD tools with
actual silicon and also to characterize the expected rise/fall times of our external signal
pins. Finally, STC1 allowed us to test our custom clock generator. We used our experiences
with STC1 to help us implement the Scale vector-thread processor. Scale was taped out on
October 15, 2006 and it is currently being fabricated through MOSIS. This report discusses
the fabrication of STC1 and presents power and performance results.

1 Overview

Figure 1 shows a high-level block diagram of STC1. The scalar processor (SP) is a single
issue in-order processor which implements a subset of the MIPS-II ISA. The SP is fully
interlocked and does not include programmer-visible branch delay slots or load-use delay
slots. To interface with the memory system, the SP is divided into two decoupled units: the
Fetch Unit and the Execute Unit. The Fetch Unit is responsible for generating instruction
addresses and then issuing instruction fetch requests to the memory system. The Execute
Unit is responsible for executing the instructions. For load and store instructions, the Execute
Unit handles issuing the appropriate memory request and then writing back load data when
it returns.

In the full Scale processor many requesters arbitrate for a single shared cache. The cache
interface is fully decoupled: a requester issues a memory request and then some number
of cycles later a memory response is returned to the requester. Therefore, in STC1 the
decoupled Fetch and Execute Units are designed to continue operating even if one of the
units is blocked from making a request. For example, if the Fetch Unit cannot issue an
instruction fetch due to a conflict with another requester, the Execute Unit can continue to
execute arithmetic instructions and even issue new load or store requests. Similarly, if the
Execute Unit is blocked from issuing a memory request, the Fetch Unit can continue to run
ahead and fetch additional instructions. In STC1, there are only three requesters and these
requesters directly access a single bank of on-chip memory instead of accessing the Scale
cache. The STC1 memory controller uses a fixed priority scheme to arbitrate between these
three requesters.

The Fetch Unit consists of a single pipeline stage, while the Execute Unit consists of
four pipeline stages: decode, execute, memory, and writeback. Note that the SP makes use
of a two write port register file so that arithmetic instructions write the register file in the
execute stage while load instructions write the register file in the writeback stage. The SP
manages instruction dependencies to bypass or stall as needed.

Fetch Exec

AHIP
Controller

AHIP Data (8b)

AHIP Control (2b)

Clock Out

VCO Control Scalar Processor

RAM
Subbank

(2KB)

RAM
Subbank

(2KB)

RAM
Subbank

(2KB)

RAM
Subbank

(2KB)

Clock Gen

MC

WX

RX

Figure 1: Scale Test-Chip (STC1) Block Dia-
gram. Address buses are shown with dashed
lines, while data buses are shown with solid
lines. STC1 includes a scalar processor (SP),
four 2 KB RAM subbanks, memory controller
(MC), read crossbar (RX), write crossbar
(WX), Asynchronous Host Interface Protocol
(AHIP) controller, and a custom clock gener-
ator block. The SP is in turn composed of two
decoupled units: a Fetch Unit responsible for
fetching instructions from the on-chip RAM,
and an Execute Unit responsible for actually
executing the instructions.

2

The Fetch Unit always speculates that branches are not-taken so that it can continue to
fetch instructions until the Execute Unit actually resolves the branch. When the Execute
Unit resolves a branch as taken, it sends the new target PC and a special branch token to the
Fetch Unit. The Fetch Unit then starts fetching from the correct target and in addition, it
keeps the branch token with the correct branch target instruction. Since the Fetch Unit has
already speculatively fetched instructions down the wrong path (and these instructions can
be waiting in the various decoupling queues), the Execute Unit must discard instructions
until it sees the branch token. Once the Execute Unit has seen the branch token it can
start executing instructions normally. This simple token scheme enables the two units to be
completely decoupled; the processor will function correctly regardless of how many cycles it
takes for memory requests to return.

STC1 includes a host controller which allows the host to read and write the on-chip mem-
ory as well as several configuration registers. The host uses the Asynchronous Host Interface
Protocol (AHIP) to communicate with STC1. AHIP is a simple read/write protocol; the
on-chip memory and configuration registers are all memory mapped into the AHIP address
space. The full Scale chip will use a similar controller and AHIP protocol. The approach for
running a test program on STC1 involves the following steps.

1. STC1 includes a block cpu signal from the AHIP controller to the memory controller,
and on reset this signal is asserted. If block cpu is asserted, then the memory controller
refuses to grant any requests from the SP.

2. After resetting STC1, the host writes the program and any static data into the on-chip
RAM using the AHIP protocol. When finished, the host writes a memory-mapped
configuration register which deasserts the block cpu signal. The scalar processor is
now free to begin execution starting at the appropriate reset vector.

3. The host polls a specific tohost configuration register using the AHIP protocol. When
STC1 is finished executing it writes this tohost register.

4. When the host sees the finish value in the tohost register, the host can read results
from the on-chip memory using AHIP to verify proper functionality.

5. The host can now reset STC1 and load additional programs for further testing.

STC1 uses a custom clock generator which provides a 50% duty-cycle clock at an ad-
justable frequency up to 1 GHz with good supply voltage noise rejection. For testing pur-
poses, a divided-by-16 clock is also generated and output off-chip. The clock generator in-
cludes a differential voltage-controlled oscillator (VCO), a differential to single-ended clock
converter, and various clock-division logic. The VCO is similar to the one proposed by Hwang
and Kang except that it has been adjusted for our process and frequency requirements [3].
The custom clock generator should enable us to experiment with much higher frequencies
than what would be possible with an off-chip clock generator.

3

2 Implementation and Verification

A C++ functional model served as the reference implementation for STC1. This functional
model is linked with a C++ test harness to enable loading test programs, running the tests,
and reading the results. After implementing the STC1 RTL in Verilog, we used Tenison
VTOC to translate the Verilog into C++. We were then able to link the RTL model
with the same C++ test harness used for the functional model. We verified correctness
by comparing the results from running the same tests on both the functional and RTL
models. In addition to a suite of custom directed tests, we developed Torture, a random test
program generator. The challenge in generating random tests is to create legal programs that
run correctly and also stress different corner cases in the design. Torture randomly generates
relatively simple instruction sequences of various types, and then randomly interleaves these
sequences to construct complex yet correct programs. By tuning parameters which control
the breakdown of instruction sequence types, we can stress different aspects of STC1.

Much of STC1 was implemented using standard cells and SRAM blocks provided by
Artisan. To achieve a high-performance and efficient processor, we made extensive use of
fine-grain standard-cell pre-placement. We wrote several custom tools and gate-level builders
to pre-place individual standard cells into datapath bitslices and register file arrays. The
control logic was synthesized using Synopsys DesignCompiler and placed & routed using
Cadence Encounter. After integrating pre-placed blocks with automatically synthesized and
placed & routed blocks, the final gate-level Verilog RTL was formally verified against the
reference Verilog RTL using Synopsys Formality.

To verify the final GDSII layout for the chip, we ran DRC and LVS using Mentor Calibre.
A final check of correct functionality was provided by running tests on the extracted Spice
netlist using Synopsys Nanosim. VCD signal traces generated by the reference RTL model
were used to drive the input pins of the chip and verify the output pins.

The STC1 chip was fabricated in the TSMC CLO18 process. It is composed of a mixture
of standard cells, memories, and I/O’s provided by Artisan, and our own custom clock
generator module. STC1 has 14 digital I/O pads, 1 analog input pad, and 25 power and
ground pads in a linear wire-bonding configuration. It uses a PGA121M package for pin-
compatibility with previous test chips. The die size is 1.7mm × 2.1mm, and the core size
is 1.0mm × 1.4mm. See Figure 2 for the chip plot and die photo.

3 Physical Test Setup

The physical testing and characterization of STC1 focused on measuring the power consump-
tion across a range of supply voltages and clock frequencies. The infrastructure to test STC1
has been used to test several other custom VLSI chips, including the ATC1 test-chip which
was also fabricated through the MOSIS Educational Research Program [2]. The test setup
includes three primary components: a host computer, a general ATB0 test baseboard, and a
daughter card (see Figure 3). The ATB0 test baseboard and the daughter card are custom
boards designed for use in our research group. The daughter card includes a ZIF socket for
the STC1 chip, and it connects the pins of STC1 to the ATB0 test baseboard. In addition,
the daughter card provides probe points suitable for a logic analyzer or oscilloscope. One

4

SP Datapath SP Regfile

RAM
Subbank

(2KB)

RAM
Subbank

(2KB)

RAM
Subbank

(2KB)

RAM
Subbank

(2KB)

A
H

IP
C

o
n

tr
o

lle
r

SP Control

RAM Interface
VCO

Figure 2: STC1 chip plot and die photo. On the chip plot, the Exec Unit is colored blue, and the
Fetch Unit is colored green and purple.

Host
PC

PLX
9050

ATB0
Controller

Power
Supplies

Probe
Points

PCI

SDRAM

STC1

Host ATB0 Daughter Card

Figure 3: Test System Block Diagram.
The test system includes the ATB0
test baseboard, a daughter card with
the STC1 chip, and a host computer
to control the test system.

5

of these probe points is connected to the clock output of STC1 enabling us to measure the
performance of the custom on-chip clock generator.

The ATB0 test baseboard includes an ATB0 controller, 96MB of SDRAM, and several
adjustable power supplies with current measurement. The ATB0 controller is implemented
in a Xilinx FPGA and it is able to communicate directly with STC1 using the AHIP protocol.
Additionally, the ATB0 controller can adjust the voltage of the STC1 power supplies and
the analog input of the voltage-controlled oscillator on STC1. The ATB0 controller is also
able to read the current being drawn by each power supply. Using this system, we were able
to accurately measure the power consumption of STC1 for various voltages and frequencies.

Software on the host PC communicates with the ATB0 controller using a PLX 9050 PCI
card. A command protocol allows the software to adjust the power supplies, read data from
the SDRAM, and communicate with STC1. More information about our test setup can be
found online at http://www.cag.csail.mit.edu/scale/hardware.

4 Results

After receiving parts back from MOSIS, we were able to quickly plug the packaged chips into
our test system and start running programs. For our basic evaluation, we used our test suite
of 47 custom directed test programs which each primarily test a single instruction type. We
also wrote tests to validate all of the SRAM memory bits. Out of 20 packaged parts 17 were
functional, a yield of 85%.

Figure 4 shows a shmoo plot of frequency and supply voltage for all of the working parts.
We observed a narrow range of variation between the chips. The performance difference
between the fastest and slowest chip is around 10–20MHz, less than 5%. At the nominal
supply voltage of 1.8V, all of the chips run at 440MHz and 6 chips run at 450MHz. This
is around 15% faster than we expected from static timing analysis using the typical process
parameter set.

Figure 5 shows results for a wider range of supply voltages. Scaling the voltage down
to 1.1V, the chips continue to operate at around 200 MHz. We were somewhat surprised
that the frequency continued to improve at extremely high supply voltages up to 700MHz
at 3.6V. However, the rate of frequency improvement did taper off at the higher voltages.

500 2

490 1 9

480 2 9 *

470 9 * *

460 6 * * *

450 4 9 * * *

440 . . . 1 * * * * *

430 . . . 9 * * * * *

420 . . 6 * * * * * *

410 . 2 * * * * * * *

400 . 9 * * * * * * *

1 1 1 1 1 1 1 1 2

6 6 7 7 8 8 9 9 0

0 5 0 5 0 5 0 5 0

0 0 0 0 0 0 0 0 0

Figure 4: Shmoo plot for all 17 work-
ing parts. The horizontal axis plots
supply voltage in mV, and the ver-
tical axis plots frequency in MHz.
A * indicates that all of the chips
functioned correctly at that operat-
ing point, and a dot indicates that
none of the chips functioned correctly.
A number indicates the percentage
of chips which functioned correctly
(e.g. 4 means 40%).

6

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
0 0
0 0

750 ------------- .
740 .
730 .
720 .
710 . * * .
700 ------------- . * * * * .
690 * * * * * .
680 * * * * * * . .
670 * * * * * * * . .
660 * * * * * * * . .
650 ------------- * * * * * * * * * * .
640 * * * * * * * * * * .
630 * * * * * * * * * * . .
620 * * * * * * * * * * * * .
610 * . * * * * * * * * * * . .
600 ------------- * * * * * * * * * * * * . .
590 * * * * * * * * * * * * * * .
580 * * * * * * * * * * * * * . .
570 * * * * * * * * * * * * * * * *
560 * * * * * * * * * * * * * * * *
550 ------------- * * * * * * * * * * * * * * * * * .
540 * * * * * * * * * * * * * * * * . *
530 * * * * * * * * * * * * * * * * * *
520 * * * * * * * * * * * * * * * * * * *
510 * * * * * * * * * * * * * * * * * * *
500 ------------- *
490 *
480 *
470 . . . *
460 . . . * * * * * * * * * * * * * * * * * . * * * *
450 ------------- . . . *
440 . . *
430 . . *
420 . . *
410 . *
400 ------------- . *
390 * * * * *
380 * * * * *
370 * * * * *
360 * * * * *
350 --- * * * * * *
340 * * * * * *
330 * * * * * *
320 . . . * * * * * * *
310 . . . * * * * * * *
300 --- . . . * * * * * * *
290 . . . * * * * * * *
280 . . * * * * * * * *
270 . . * * * * * * * *
260 . . * * * * * * * *
250 --- . . * * * * * * * *
240 . * * * * * * * * *
230 . * * * * * * * * *
220 . * * * * * * * * *
210 . * * * * * * * * *
200 --- * * * * * * * * * *
190 * * * * * * * * * *
180 * * * * * * * * * *

Figure 5: Shmoo plot for a
wide voltage range. The hori-
zontal axis plots supply volt-
age in mV, and the vertical
axis plots frequency in MHz.
A * indicates correct opera-
tion at that operating point
and a dot indicates failure.
The shmoo plot shows com-
bined results from two differ-
ent chips.

la t9, input_end
forever:

la t8, input_start
la t7, output

loop:
lw t0, 0(t8)
addu t8, 4
bgez t0, pos
subu t0, $0, t0

pos:
sw t0, 0(t7)
addu t7, 4
bne t8, t9, loop
b forever

Figure 6: Test program for measuring
typical power consumption. The inner
loop calculates the absolute values of
integers in an input array and stores
the results to an output array. The in-
put array had 10 integers during test-
ing, and the program repeatedly runs
this inner loop forever.

7

STC1 power at 100 MHz

0

20

40

60

80

100

120

140

160

180

200

220

240

260

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

VDD (V)

po
w

er
 (m

W
)

abs loop power
nops power
idle power

Figure 7: Power consumption versus supply
voltage at 100MHz. Results are shown for idle
(clock only), no-operation (nop) instructions,
and the absolute-value test program.

0

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350 400 450 500

frequency (MHz)

p
o

w
er

 (
m

W
)

2.1 V
1.8 V
1.5 V
1.2 V

Figure 8: Power versus frequency for various
supply voltages. The results are typical power
consumption as measured while executing the
test program.

We also measured power consumption using our testing infrastructure. We did this by
measuring steady-state average current draw during operation. The power measurements
are for the core of the chip and do not include the input and output pads. We measured
the idle power draw when the clock is running but the processor is not fetching or executing
any instructions. We also measured the power consumption when the processor is executing
only no-operation (nop) instructions. To estimate typical power consumption, we used the
simple test program shown in Figure 6.

Figure 7 shows how the power consumption scales with supply voltage with the chip
running at 100MHz. At 1.8V, the idle power is 11.5mW, the power while executing nops
is 26.0mW, and the typical power is 38.6mW. The power scaling is roughly linear around
the nominal supply voltage, but becomes nonlinear at higher voltages.

Figure 8 shows how the power consumption scales with frequency for various supply
voltages. The scaling is mostly linear for a given supply voltage. At 1.8V the power increases
from 38mW to 123 mW as the frequency scales from 100MHz to 400MHz. At a given
frequency, the supply voltage can be lowered to reduce power. At 250MHz the chip consumes
80mW at 1.8V but only 27mW at 1.2V.

As another way to evaluate the chip power consumption, Figure 9 shows how energy scales
with frequency for a wide range of supply voltages. To calculate the average energy per cycle,
we multiply the average power consumption by the clock period. This is a measurement of
the energy to perform a fixed amount of work (one clock cycle), so it does not tend to
change very much with frequency as long as the supply voltage remains fixed. However,
we can reduce energy consumption at a given frequency by reducing the supply voltage as
much as possible. At low clock frequencies the chip can run at a low supply voltage, but
as the speed increases the supply voltage must also increase. Looking at the outer edge
of the data points in Figure 9, we see that the minimum energy per clock cycle increases
as the clock frequency increases. Another way to interpret this is that the energy used to
execute a given program will increase as the program executes faster. The rate of energy
increase is moderate at lower frequencies, for example doubling the speed from 240MHz to

8

480MHz increases the energy consumption by about 3×. But the energy increase becomes
more drastic at higher frequencies and voltages.

To characterize the package performance, we used a oscilloscope to measure the rise/fall
time of STC1 driving the digital output pad corresponding to the AHIP acknowledge signal
(see Figure 10). With a rise time of 5.55 ns and a fall time of 6.37 ns we can reasonably
assume that STC1 can switch its digital outputs at 50MHz. We also measured the rise/fall
time of the ATB0 controller driving the AHIP request signal which is connected to a STC1
digital input. We found this signal to have a rise time of 4.72 ns and a fall time of 3.64 ns.
This data helped us set reasonable off-chip I/O expectations for the Scale processor when
packaged in the same PGA121M package and placed in our standard ATB0 testboard. We
also intend to later support a full memory system for Scale using a better package and a
custom circuit board.

0

100

200

300

400

500

600

700

800

900

1000

1100

180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680

frequency (MHz)

en
er

gy
 p

er
 c

yc
le

 (p
J)

3.1
3
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

VDD (V)

Figure 9: Energy versus frequency for various supply voltages. The results are typical energy per
cycle as measured while executing the test program.

5 10 15 20 25 30 35 40 45 500

D
ig

ita
l O

ut
pu

t S
ig

na
l (

V
ol

ts
)

2

5

4

3

1

0

−1

Time (ns)

(a) Rise time is measured at 5.55ns

0 5 10 15 20 25 30 35 40 45 50

5

4

3

2

1

0

−1

D
ig

ita
l O

ut
pu

t S
ig

na
l (

V
ol

ts
)

Time (ns)

(b) Fall time is measured at 6.27ns

Figure 10: Full rail rise/fall time of STC1 digital output signal.

9

5 Acknowledgments

This chip fabrication was made possible by the MOSIS Educational Program. This work was
partially supported by NSF CAREER award CCR-0093354. We acknowledge and thank Al-
bert Ma for designing the VCO and providing extensive CAD tool support. Jaime Quinonez
developed the initial datapath tiler used for fine-grain standard-cell pre-placement. We also
thank Tenison for the use of the VTOC Verilog-to-C++ translation tool.

References

[1] C. Batten, R. Krashinsky, S. Gerding, and K. Asanović. Cache refill/access decoupling
for vector machines. In 37th International Symposium on Microarchitecture (MICRO),
Dec 2004.

[2] S. Heo and K. Asanović. Testchip for AHIP protocol, ASIC flow, and leakage con-
trol through body biasing. http://www.cag.csail.mit.edu/scale/hardware/atc1/atc1-
mosisreport.pdf, April 2005.

[3] I.-C. Hwang and S.-M. Kang. A self-regulating VCO with supply sensitivity of <0.15%-
Delay/1%-Supply. In IEEE International Solid-State Circuits Conference (ISSCC), pages
140–141, February 2002.

[4] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and
K. Asanović. The vector-thread architecture. In 31st International Symposium on Com-
puter Architecture (ISCA), June 2004.

10

