
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-066 September 18, 2006

RingScalar: A Complexity-Effective Out-of-Order
Superscalar Microarchitecture

 Jessica H. Tseng and Krste Asanovic

RingScalar: A Complexity-Effective Out-of-Order Superscalar Microarchitecture

Jessica H. Tseng and Krste Asanović
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, Cambridge, MA 02139�
jhtseng,krste � @csail.mit.edu

Abstract

RingScalar is a complexity-effective microarchitecture for
out-of-order superscalar processors, that reduces the area,
latency, and power of all major structures in the instruc-
tion flow. The design divides an � -way superscalar into �
columns connected in a unidirectional ring, where each col-
umn contains a portion of the instruction window, a bank of
the register file, and an ALU. The design exploits the fact that
most decoded instructions are waiting on just one operand to
use only a single tag per issue window entry, and to restrict
instruction wakeup and value bypass to only communicate
with the neighboring column. Detailed simulations of four-
issue single-threaded machines running SPECint2000 show
that RingScalar has IPC only 13% lower than an idealized
superscalar, while providing large reductions in area, power,
and circuit latency.

1 Introduction

Early research in decentralized or clustered architec-
tures [18, 8, 7, 16] was motivated by the desire to build
wider superscalar architectures (8-way and greater) while
maintaining high clock frequencies in an era where wire de-
lay was becoming problematic [10]. Clustered architectures
divide a wide-issue microarchitecture into disjoint clusters
each containing local issue windows, register files, and func-
tional units. Because each cluster is much smaller and sim-
pler than a monolithic superscalar design, the circuit latency
of any path within a cluster is significantly lower, hence al-
lowing greater clock rates than a centralized design of the
same total issue width. However, any communication across
clusters incurs greater latency, and so a critical issue is the
scheme used to map instructions to clusters.

Ranganathan and Franklin [14] grouped decentralized
clustering schemes into three categories. Execution unit
based dependence schemes (EDD) map instructions to clus-
ters according to the types of instructions (e.g., floating-point
versus integer). Control Dependence based schemes (CDD),
such as Multiscalar [18], and Trace Processors [16], map in-
structions that are contiguous in program order to the same
cluster. Data Dependence based schemes (DDD), such as

PEWS [8] and Multicluster [7], try to map data dependent
instructions to the same cluster.

EDD schemes are widely used, dating back to early out-
of-order designs [19], and can also be employed locally
within clusters of other schemes. However, EDD schemes
do not scale well to large issue widths [14]. DDD schemes
were found to be more effective than CDD schemes except
for the largest issue widths, but both these schemes incur sig-
nificant area and complexity overheads for small increases in
total IPC [14].

In recent years, two trends have significantly changed
processor design optimization targets. First, power dissipa-
tion is now a primary design constraint, and designs must be
evaluated based on both performance and power. Second,
the advent of chip-scale multiprocessors has placed greater
emphasis on processor core area, as total chip throughput
can also be increased by exploiting thread-level parallelism
across multiple cores. We believe these trends favor tech-
niques that reduce the complexity of moderate issue-width
cores, rather than techniques that use large area and complex
control to increase single-thread performance.

In this paper, we introduce “RingScalar”, a new cen-
tralized out-of-order superscalar microarchitecture that uses
banking to increase area and power efficiency of all the ma-
jor components in the instruction flow without adding sig-
nificant pipeline control complexity. RingScalar builds an

� -way superscalar from � columns, connected in a unidi-
rectional ring. Each column contains a bank of the issue win-
dow, a bank of the physical register file, and an ALU. Com-
munication throughout the microarchitecture is engineered
to reduce the number of ports required for each type of ac-
cess to each bank within each structure. The restricted ring
topology reduces electrical loading on latency-critical com-
munications between columns, such as instruction wakeup
and value bypassing. We exploit the fact that most decoded
instructions are waiting on only one operand to use just a
single source tag in each issue window entry, and dispatch
instructions to columns according to data dependencies to
reduce the performance impact of the restricted communica-
tion. Detailed simulations of the SPECint2000 benchmarks
on four-issue machines show that a RingScalar design has an
average IPC only 13% lower than an idealized superscalar,
while having much reduced area, power, and circuit latency.

1

2 RingScalar Microarchitecture

The RingScalar design builds upon earlier work in banked
register files [23, 4, 2, 11, 20], tag-elimination [5, 9], and
dependence-based scheduling [8, 10]. For clarity, this sec-
tion describes RingScalar in comparison to a conventional
superscalar. Detailed comparison with previous work is de-
ferred to Section 5.

2.1 Baseline Pipeline Overview

RingScalar uses the same general structure as the MIPS
R10K [24] and Alpha 21264 [12] processors, with a uni-
fied physical register file containing both speculative and
committed state. The following briefly summarizes the op-
eration of this style of out-of-order superscalar processor,
which we also use as a baseline against which to compare
the RingScalar design.

Instructions are fetched and decoded in program order.
During decode, each instruction attempts to allocate re-
sources including: an entry in the reorder buffer to support
in-order commit; a free physical register to hold the instruc-
tion’s result value, if any; an entry in the issue window; and
an entry in the memory queue, if this is a memory instruc-
tion. If some required resource is not available, decode stalls.
Otherwise, the architectural register operands of the instruc-
tion are renamed to point to physical registers, and the source
operands are checked to see if they are already available or
if the instruction must wait on the operands in the issue win-
dow. The instruction is then dispatched to the issue window,
with a tag for each source operand to hold its physical regis-
ter number and readiness.

Execution occurs out-of-order from the issue window,
driven by data availability. As earlier instructions execute,
they broadcast their result tag across the issue window to
wake up instructions with matching source tags. An instruc-
tion becomes a candidate for execution when all of its source
operands are ready. A select circuit picks some subset of the
ready instructions for execution on the available functional
units. Once instructions have been selected for issue, they
read operands from the physical register file and/or the by-
pass network and proceed to execute on the functional units.
When instructions complete execution, they write values to
the physical register file and write exception status to the re-
order buffer entry. When it is known an instruction will com-
plete successfully, its issue window entry can be freed.

To preserve the illusion of sequential program execution,
instructions are committed from the reorder buffer in pro-
gram order. If the next instruction to commit recorded an ex-
ception in the reorder buffer, the machine pipeline is flushed
and execution continues at the exception handler. As instruc-
tions commit, they free any remaining machine resources
(physical register, reorder buffer entry, memory queue entry)
for use by new instructions entering decode.

Memory instructions require several additional steps in
execution. During decode, an entry is allocated in the mem-
ory queue in program order. Memory instructions are split

into address calculation and data movement sub-instructions.
Store address and store data sub-instructions issue indepen-
dently from the window, writing to the memory queue on
completion. Store instructions only update the cache when
they commit, using address and data values from the memory
queue. Load instructions are handled as a single load address
calculation in the issue window. On issue, loads calculate
the effective address then check for address dependencies on
earlier stores buffered in the memory queue. Depending on
the memory speculation policy (discussed below), the load
will attempt to proceed using speculative data obtained ei-
ther from the cache or from earlier store instructions in the
memory queue (the load may later require re-execution if
an address mis-speculation or a violation of memory consis-
tency is detected). If the load cannot proceed due to an unre-
solvable address or data dependency, it waits in the memory
queue to reissue when the dependency is resolved. Loads
reissuing from the memory queue are given priority for data
access over newly issued loads entering the memory queue.

2.2 RingScalar Overview

RingScalar retains this overall instruction flow and uses
the same reorder buffer and memory queue, but drastically
reduces the circuitry required in the issue window, register
file, and bypass network by restricting global communica-
tion within these structures. These restrictions exploit the
fact that most instructions enter the issue window waiting on
one or zero operands.

The overall structure of the RingScalar microarchitecture
is shown in Figure 1. RingScalar divides an � -way issue
machine into � columns connected in a unidirectional ring.
Each column contains a portion of the issue window, a por-
tion of the physical register file, and an ALU. Physical regis-
ters are divided equally among the columns, and any instruc-
tion that writes a given physical register must be dispatched
and issued in the column holding the physical register. This
restriction means each bank of the regfile needs only a single
write port directly connected to the output of the ALU in that
column.

A second restriction is that any instruction entering the
window while waiting for an operand must be dispatched to
the column immediately to the right of the column contain-
ing the producer of the value (the leftmost column is consid-
ered to be to the right of the rightmost column in the ring).
This restriction has two major impacts. First, when an in-
struction executes, it need only broadcast its tag to the neigh-
boring column which reduces the fanout on the tag wakeup
broadcast by a factor of � compared to a conventional win-
dow. Second, the bypass network can be reduced to a simple
ring connection between ALUs as any other value an instruc-
tion needs should be available from the register file. The
bypass fanout is reduced by a factor of � , and each ALU
output now only has to drive the regfile write port and the
two inputs of the following ALU.

These restrictions are key to the microarchitectural sav-
ings in RingScalar, and as shown in the evaluation, have a

2

2nd Wakeup Signal Crossbar

Is
su

e
W

in
do

w

Dispatch Crossbar

Renamed Buffer

S
el

ec
t A

rb
ite

r
I

S
el

ec
t A

rb
ite

r
I

S
el

ec
t A

rb
ite

r
I

S
el

ec
t A

rb
ite

r
I

R
eg

is
te

r
F

ile

Bank1Bank0 Bank2 Bank3

SRC2 Local to Global Data Port Crossbar

SRC1 Local to Global Data Port Crossbar

Write Address Crossbar

SRC2 Read Address Arbiter & Crossbar

SRC1 Read Address Arbiter & Crossbar

Select Arbiter II
Lo

ad
 M

is
s

W
rit

e
D

at
a

Lo
ad

 M
is

s
W

rit
e

A
dd

re
ss

Lo
ad

 M
is

s
W

rit
e

B
ac

k
R

es
er

va
tio

n

R
en

am
e

W
ak

eu
p

&
 S

el
ec

t
R

ea
d

&
 B

yp
as

s
E

xe
cu

te

Col0 Col1 Col2 Col3

oneoneoneone

Figure 1. RingScalar core microarchitecture for a four-issue machine. The reorder buffer and the
memory queue are not shown.

relatively small impact on instructions per cycle (IPC) while
reducing area, power, and circuit latency significantly. The
following subsections describe the major components of the
machine in more detail.

2.3 RingScalar Register Renaming

The RingScalar design trades a little added complexity in
the rename and dispatch stage (and some overall IPC degra-
dation) to reduce the area, power, and latency of the remain-
ing stages (issue window, regfile, bypass network). Fig-
ure 2 shows an example of the RingScalar renaming and dis-
patch process. We used the Alpha ISA in our experiments,
where instructions can have zero, one, or two source register
operands.

As RingScalar decodes each instruction, the source archi-
tectural registers are renamed into the appropriate physical

registers and the readiness of these operands is checked, just
as in a conventional superscalar processor. Instructions that
are not waiting on any operand (zero-waiting) can be dis-
patched to any column in the window. Instructions that are
waiting on one operand (one-waiting) must be dispatched to
the column to the right of the producer column. Instruc-
tions waiting on two operands (two-waiting) are split into
two parts that will issue sequentially, and each part must
be dispatched to the column to the right of the appropriate
producer column. A separate 2nd wakeup port is provided
on each column to enable the first part of an instruction to
wakeup the second part regardless of the column in which it
resides. The second part sits in the window, but will not re-
quest issue until after the first part has issued and woken up
the second part. The second part can be woken up one cy-
cle after the first part. Previous work has considered the use
of prediction to determine which operand will arrive last [5],

3

lw r1 (r3) add r1, r1, #1 sw r1 (r4) xor r3, r1, #4

Rename

Col0 Col1 Col2 Col3

add P2[3], P1[5]lw P1[5], P0[4] sw P2[3], P3[4] xor P3[4], P2[3]

sub P0[4], P3[2]

sw addr. P3[4] add P2[3], P1[5] sw data P2[3]

Dispatch Conflict

Oldest I0 I1 I2 I3

lw P1[5], P0[4]

and P3[4], P2[0]

Figure 2. RingScalar rename and dispatch.
The sub and and instructions were already in
the window before the new dispatch group.

but in this work, we adopt a simple heuristic that assumes the
first (left) source operand will arrive last for a two-waiting
instruction. Store instructions are handled specially by split-
ting them into two parts (address and data) that can issue
independently and in parallel.

To reduce complexity in both the dispatch crossbar and
the issue window entries, there is only a single dispatch port
for each column in the window. The two parts of a store or
two-waiting instruction occupy two separate dispatch ports if
they go to different columns, but can be dispatched together
in one cycle to the same column. Note that a physical register
tag is now two fields: the window column and the register
within the column.

The RingScalar renamer has some flexibility in how any
zero-waiting instructions (and any dependents) are mapped
to columns. To reduce the complexity of the rename logic,
we adopt a simple greedy scheme where instructions are con-
sidered in program order. Zero-waiting instructions select a
dispatch column using a random permutation that changes
each cycle. One-waiting and two-waiting instructions have
no freedom and must be allocated as described above. When
the next instruction cannot be dispatched because a required
dispatch port is busy, dispatch stalls until the next cycle.

Figure 3 shows the renaming and column dispatch cir-
cuitry in detail. As with a conventional superscalar, the first
step is a rename table lookup to find the current physical reg-
ister holding each architectural register source operand to-
gether with its readiness, while, in parallel, the architectural
source registers of later instructions in the group are checked
for dependencies on the architectural destination registers of
earlier instructions.

Each rename table lookup returns the column (Col) in
which the physical register resides and a single bit (Rdy?)
indicating if the value is ready or not, in addition to the phys-
ical register number. Below the rename table in Figure 3,
we show only the circuitry responsible for column allocation
and do not show the physical register number within the col-
umn. Column information is represented using a unary for-
mat with one bit per window column (i.e., Col. is an � -bit
vector) to simplify circuitry.

Rename Table

N N N

Requests N
ex

tCol. Select

N

N

N N

N

N

=

N

Requests N
ex

tCol. Select

src1 src2 destop src1 src2 destop src1 src2 destop

0 0

N =

N

Inst. 1 Col. Grants

N

N

N N

Column
Zero−Wait

N

Column
Zero−Wait

N

N =

N

Inst. 2 Col. Grants

Requests N
ex

tCol. Select
Column

Zero−Wait

N

= =

=

N

N

1

1

1

Rdy?Rdy? Col. Rdy?

0

Col. Full

Col.

Inst. 0 Col. Grants

Inst. 0 Inst. 1 Inst. 2

Col.
N

Rdy?Col.

Figure 3. RingScalar register renaming and
column dispatch circuitry. Only the circuitry
for src1 of instruction 1 and 2 is shown.

For each instruction, the Col. Select circuitry calculates
two � -bit column vectors: Requests and Next. The Requests
vector has one or two bits set indicating which columns the
instruction wants to dispatch into, and is calculated in two
steps. First, if both of the operands are ready, an internal
vector is set to the precomputed Zero-Wait Column vector
which has a single bit pointing at the randomly assigned col-
umn for this instruction. If at least one of the operands is
not ready, the internal vector is set to the bitwise-OR of the
two input Col vectors. The internal vector is then rotated by
one bit position to yield the Requests vector. The rotation is
simple rewiring and so has no additional logic delay.

The Next output has a single bit set indicating the column
into which this instruction will write its final result. First, the
internal vector is assigned either Zero-Wait Column if both
operands are ready, Col for the second source only if the in-
struction is one-waiting on the second operand, or otherwise
Col for the first source (i.e., one-waiting on first operand or
two-waiting). Second, the internal vector is rotated by one
bit position to obtain the Next vector.

Any later instruction in the current dispatch group that has
a RAW dependency on an earlier instruction in the group
must mux in the Next vector from the earlier instruction in
place of the stale column vector read from the rename table.
In the worst case, a series of serially-dependent instructions
requires the Next values to ripple across the different Col. Se-
lect blocks in the dispatch group, as shown in Figure 3. For-
tunately, mux select lines are available early, and the ripple
path always carries non-ready operands (Rdy? �

�
), which

4

reduces worst-case latency to a few gate delays per instruc-
tion.

The dispatch column arbiter is implemented using the se-
rial logic gates shown at the bottom of Figure 3. The left-
most input to the arbiter chain is a Col. Full vector indicat-
ing which columns cannot accept a new instruction, either
because the issue window is full or because there are no free
physical registers left in the column. The arbiter ensures that
instructions must dispatch in program order, by preventing
later instructions from dispatching if an earlier one did not
get all requested columns (this is the purpose of the equal-
ity comparators). The ripple through the arbiter is in parallel
with the slower ripple through the Col. Select blocks, so adds
only a single gate delay before yielding the column grant sig-
nals.

The additional column latency in RingScalar is compen-
sated by the reduced dispatch latency, as each dispatch port
fans out to � times fewer entries than in a conventional su-
perscalar, and each entry has one port rather than � .

Note that the column allocation circuity is a small amount
of logic (dozens of gates on each of the � bit slices) and
represents a very small power and area overhead compared
to the savings in issue window and register file size.

The final step of renaming is to allocate a destination
physical register for the instruction if required (stores and
branches do not require destination registers, and neither
does the first part of a two-waiting instruction). Each column
has a separate physical register free list, and so any instruc-
tion that is dispatched to a column simply takes the head of
the relevant free list.

2.4 Issue Window

The RingScalar issue window has several complexity re-
ductions compared to a conventional superscalar. The pri-
mary savings come from the reduced port count in each col-
umn. A conventional superscalar window has � dispatch
ports, � � wakeup ports, and � issue ports on each entry.
RingScalar has only a single dispatch port, two narrower
wakeup ports, and one issue port.

Each column needs only two wakeup ports. The first
wakeup port is used by the preceding column to wake up
dependent instructions, while the second port wakes up the
second part of a two-waiting instruction. Both of these ports
are narrower than in a conventional superscalar as shown in
Figure 4. The physical register tag requires ����� ��� fewer bits
because the consumer must be waiting for a value located in
the preceding column. The second-part tag can be consider-
ably narrower as it only needs to distinguish between mul-
tiple second parts mapped to the same column in the issue
window.

The RingScalar instruction window design significantly
reduces the critical wakeup-select scheduling loop. Wakeup
has reduced latency because an instruction only has to broad-
cast its tag to one column, each entry has only one compara-
tor, and each tag is narrower. A conventional design requires

=
=

=
=

src1 tagready

=
=

=
=

src2 tag readypart2
tag

==

ready ready src tag

wakeup
port

2nd part
wakeup

port

wakeup ports

Conventional RingScalar

Figure 4. Wakeup circuitry.

the tag be driven across the entire window, with each en-
try having two comparators, leading to a � � times greater
fanout in total. The select arbiter also has considerably re-
duced latency, as each column has a separate arbiter, and
each column can only issue at most one instruction. The
conventional design has an arbiter with � times more inputs
and � times more outputs.

Each entry only has a single issue port, which reduces
electrical loading to read out instruction information after
select. A conventional design has each entry connected to

� issue ports, each with � times greater fanout.
The combination of a single dispatch port and a single is-

sue port makes it particularly straightforward to implement a
compacting instruction queue [3], where each column in the
window holds a stack of instructions ordered by age with the
oldest at the bottom. The fixed-priority select arbiter picks
the oldest ready instruction for issue. To compact out a com-
pleted instruction from the window, each entry below the
hole retains its value, each entry at or above the hole copies
the entry immediately above to squeeze out the hole, while
the previous highest entry copies from the dispatch port if
there’s a new dispatch (Figure 5). The age-ordered window
columns also simplify pipeline cleanup after exceptions or
branch mispredictions.

ready

ready

ready

ready

ready

ready

ready

ready

ready

ENTRY 0ENTRY 0

ENTRY 1

ENTRY 2

ENTRY 3

ENTRY 4

ENTRY 5

ENTRY 1

ENTRY 2

RingScalarConventional

Dispatch Port Issue Port Dispatch Port Issue Port

S
el

ec
t A

rb
ite

r

S
el

ec
t A

rb
ite

r

Figure 5. Compacting instruction queues.

5

In practice, instruction entries are not compacted out right
after issue, but only after it is known they will complete suc-
cessfully. In particular, dependent operations are scheduled
assuming loads will hit in the cache and must remain in the
window until the cache access is validated in case a miss re-
quires the dependent instruction be replayed. As described
in the following section, RingScalar uses the same technique
if a banked register file with read conflicts is used.

Instructions are latched after issue, then undergo a second
stage of select arbitration (Select Arbiter II in Figure 1) that
is used to resolve structural hazards across columns. For ex-
ample, our evaluation machine only allows a single load to
issue per cycle. We also allow only a single first-part sub-
instruction to wake-up a second-part sub-instruction across
the 2nd Wakeup Signal Crossbar each cycle. Instructions
failing the second stage of arbitration remain in the issue
latch and block further issue in the column until the struc-
tural hazard is resolved.

2.5 Register File

One of the greatest savings in the RingScalar design
comes from the reduction in the number of write ports re-
quired on the register file. Each column has a separate phys-
ical register bank, which needs only a single write port.

We allow any column to read data from any register bank
in the machine. In the simplest RingScalar design, we pro-
vide a full complement of read ports (� �) on every bank.
To further reduce regfile power and area, we can reduce the
number of read ports per bank and use the speculative read
conflict resolution strategy previously published in [20]. For
example, the four-issue machine shown in Figure 1 has four
read ports and one write port per bank whereas a conven-
tional machine would have eight read ports and four write
ports. A local to global read port crossbar is required to al-
low any functional unit to read any register from any local
bank’s read port

The reduced-read-port design adds an additional arbitra-
tion stage to the pipeline as shown in Figure 6. Instructions
continue issuing assuming there will be no conflicts. When
read-port conflicts are detected, the instruction window must
be repaired and execution must be replayed [20]. The num-
ber of read bank conflicts is reduced by not requesting read
port accesses when a value was produced in the preceding
cycle and hence will be available on the bypass ring (con-
servative bypass-skip [20]), and by implementing the read-
sharing optimization [2], which allows a single bank port to
send the same register to multiple requesters over the global
ports.

Unlike the previous design [20], there is no need for a
global write port network and an arbiter with bank conflict
detection, as RingScalar associates one column with each
write port and issues at most one instruction per column.
This is a considerable saving, as it was also previously found
that more than one write port per bank was required to reduce
write port conflicts to an acceptable level [21].

Variable latency instructions, such as cache misses, also
require access to the register file write ports to return their
results. To avoid conflicts, a returning cache miss inserts
a high priority request into the select arbiter for the target
column, preventing another instruction from issuing while
the cache miss uses the write port.

2.6 Bypass Network

RingScalar also provides a large reduction in bypass net-
work complexity. An ALU can only bypass to its neigh-
bor around the ring, not even to its own inputs. This bypass
path is sufficient because the dependence-based rename and
dispatch ensures dependent instructions are located immedi-
ately following the producer in the ring. If an operand was
ready when the instruction was dispatched, it would have
been obtained from the register file in any case. If a de-
pendent instruction does not issue right after the producer,
it must wait until the value is available in the regfile before
issuing.

3 Evaluation

To characterize the behavior of RingScalar, we exten-
sively modified SMTSIM [22], a cycle-accurate simulator
that models an out-of-order superscalar processor with si-
multaneous multithreading ability. These modifications in-
cluded changes to the Rename, Dispatch, Select, Issue, Reg-
file Read, and Bypass stages of the processor pipeline. A
register renaming table that maps architectural registers to
physical registers is added to monitor the regfile access from
each instruction. To keep track of a unified physical regis-
ter file organized into banks, extra arbitration logic is added
to each regfile bank to prevent over-subscription of read and
write ports when a lesser-ported storage cell is used. Since
load misses are timing critical, a write-port reservation queue
is also added to give them priority over other instructions.
Additional changes are made to the register renaming pol-
icy, dispatch logic, wakeup-select loop, and issue logic, to
model the RingScalar design.

This paper focuses on evaluating the performance of
RingScalar within integer pipelines, so we choose the SPEC
CINT2000 benchmark suite for its wide range of applica-
tions taken from a variety of workloads. The suite has long
run times but expected performance can be well character-
ized without running to completion. To reduce the simula-
tion run time to a reasonable length, the methodology de-
scribed in [17] is used to fast-forward execution to a sam-
ple of half a billion instructions for each application. The
benchmarks are compiled with optimization for the Alpha
instruction set.

Given the design target for this microarchitecture, we
compare RingScalar against idealized models of 4-issue cen-
tralized superscalars. Table 1 shows parameters common
across the machines compared. We used a large reorder
buffer of 256 entries and a large memory queue of 64 entries

6

Fetch Decode
Issue

Arbitrate Bypass Execute
Read

Wakeup
Rename
Dispatch Select Writeback Commit

Figure 6. RingScalar pipeline structure.

L1 I-cache 16KB 4-way,
64-byte lines, 1 cycle

L1 D-cache 16KB 4-way,
64-byte lines, 1 cycle

L2 unified cache 1MB 4-way,
64-byte lines, 12 cycles

L3 unified cache 8MB 8-way,
64-byte lines, 25 cycles

Fetch width 8
Dispatch, issue, and 4
commit width
Integer ALUs 4
Memory instructions 2 (1-Load and 1-Store)
Reorder Buffer 256 entries
Memory Queue 64 entries
Branch predictor gshare 4K 2-bit

counters, 12-bit history

Table 1. Common simulation parameters.

such that these would not limit performance. The simula-
tor has an unrealizable memory queue model, with perfect
prediction of load latency (hits versus misses) and perfect
knowledge of memory dependencies (i.e. loads are only is-
sued when they will not depend on an earlier store). Al-
though we would obtain greater savings by comparing to
wider issue machines, we did not observe a substantial in-
crease in IPC that would justify more than 4-issue on these
codes even with the optimistic memory system.

In this paper, each configuration is labeled with the fol-
lowing nomenclature: (arch)(#iq):(size)R(#read)W(#write),
where (arch) is either the monolithic baseline (BL) or the
RingScalar (RS) architecture, (#iq) is the total number of
instruction window entries, (size) defines the regfile size,
(#read) and (#write) are the number of read ports and the
number of write ports in each regfile storage cell.

Our idealized 4-issue superscalar base-
line,BL32:80R8W4, contains a conventional monolithic
issue window with 32 issue queue entries, a fully mul-
tiported register file with 80 registers, and a full bypass
network. The issue window uses an oldest-first priority
scheme to select among multiple ready instructions. For
RingScalar, we assume entries are evenly distributed among
columns, e.g., RS48:128R8W1 is a RingScalar design where
each of the four columns has 12 issue window entries, and
a bank of 32 registers with 8 read ports and one write port.
Any RingScalar with a speculatively-controlled banked
register file [21], has an additional read port arbitration stage
added as shown in Figure 6, and the branch misprediction

penalty increases by one cycle.

3.1 Resource Sizing

The register file and issue window of RingScalar is spread
evenly across the columns. Their utilization is less than a
monolithic structure and so the optimal sizing needs to be re-
evaluated. Our first experiments show the effect of increas-
ing the regfile size while keeping the issue window fixed.
Figure 7 shows diminishing performance improvements as
we increase the regfile size for both the baseline superscalar
BL32:xR8W4 and the RingScalar RS48:xR4W1 processor.
For the baseline design, IPC saturates at 144 registers; per-
formance remains the same if additional registers are added
beyond this point. RingScalar, however, keeps improving
as more registers are added. Because instructions can only
be allocated to a particular column, an imbalance of regis-
ters across the columns can lower the total regfile utilization.
Nevertheless, the diminishing returns do not justify imple-
menting a regfile that is larger than 128 for issue queue sizes
of 48 and 64. The performance of the BL128:256R8W4 con-
figuration is also plotted to show the limit on IPC for these
codes with this simulation framework.

100 150 200 250
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Regfile Size

IP
C

BL128:256R8W4
BL32:xR8W4
BL16:xR8W4
RS64:xR4W1
RS48:xR4W1

Figure 7. Average IPC comparison for different
regfile size.

Our second set of experiments in Figure 8 shows how per-
formance varies when increasing the size of the RingScalar
issue window. For designs with 256 registers, IPC improve-
ment tapers off beyond a window size of 64; for designs with
128 registers, it tapers off beyond a 48-entry window. This
also demonstrates the importance of a balanced design, as in-
creasing the resource in just a single area will not always lead
to higher performance. We chose RS64:256 and RS48:128
as the two basic configurations for the RingScalar evaluation.

7

20 40 60 80 100 120
1.2

1.22

1.24

1.26

1.28

1.3

Issue Window Size

IP
C

RSx:256R4W1
RSx:128R4W1

Figure 8. RingScalar average IPC sensitivity to
instruction window size.

 bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg
0

20

40

60

80

100

Benchmark

%
 o

f
T

o
ta

l I
n

st
ru

ct
io

n

two−waiting
one−waiting
zero−waiting

Figure 9. Distribution of zero-waiting, one-
waiting, and two-waiting instructions for SPEC
CINT2000 running on baseline superscalar.

3.2 Operand Availability

Previous work indicates that issue window source tags are
underutilized and many instructions enter the issue queue
with only zero or one outstanding register operands [5, 9].
Our results, shown in Figure 9, confirm this finding, with
more than 80% of instructions waiting on one or zero
operand for our four-way baseline superscalar processor run-
ning the SPEC CINT2000 benchmark suite. The percentage
of two-waiting instructions ranges from 3.9% (mcf) to 21.9%
(bzip) with an average of 11.8%.

As the second part of a two-waiting instruction will only
be issued if woken up by the first part, the arrival tim-
ing of the two unmet operands impacts the performance of
RingScalar. When the source operand of the second part ar-
rives last, the waking of the second part is likely to finish
before the instruction is ready to be issued. However, if the
second part arrives first or arrives at the same time as the
first part, the waking of the second part delays issue of the
ready instruction for additional cycles. RingScalar uses a
simple scheme where the left source operand is always pre-
dicted to arrive last. Figure 10 shows that the left source
operand arrives last more than half of time in seven out of
twelve programs (ratio ranges from 35.8% to 65.0% with an

 bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg
0

20

40

60

80

100

Benchmark

%
 o

f T
w

o−
w

ai
tin

g
In

st
ru

ct
io

n

arrive same time
right arrive last
left arrive last

Figure 10. Percentage distribution of last-
arrival operand for two-waiting instructions.

average of 50.0%). These numbers do not include store in-
structions, where the address calculation and data movement
issue independently and in parallel.

3.3 IPC Comparison

We compared RingScalar performance against the base-
line configuration. Simulations were run with a gshare
branch predictor (Figure 11) and with a perfect branch pre-
dictor (Figure 12) to ascertain the effect of the extra pipeline
stage and branch predictor inaccuracies. Relative perfor-
mance differences remain reasonably consistent across the
different branch predictor designs, with IPC increasing 12%
on average with perfect branch prediction.

Despite their simplified window design and their much
more realistic implementation parameters, the RingScalar re-
sults are quite competitive with the idealized superscalars.
In comparison to the baseline (BL32:80R8W4), the perfor-
mance of the small RingScalar design without regfile read-
port conflicts (RS48:128R8W1) has an average IPC reduc-
tion of 12% with a maximum degradation of 24%. The per-
formance impact is mainly due to delayed issuing of crit-
ical instructions, which can pile up in the same issue col-
umn. Extra regfile savings can be achieved in RingScalar
with a lesser-ported banked structure. Figure 11 show
that IPC drops only another 1% for RS48:128R4W1 de-
sign but 4% for RS48:128R2W1 design. Further comparing
the RS48:128R4W1 design to the large RingScalar design
(RS64:256R4W1), only a 2% IPC difference is observed.
The above data suggests that RS48:128R4W1 is a good de-
sign point for a four-issue machine.

3.4 Two-waiting Queues

The performance loss from using a single-tag instruction
window is evaluated by comparing the results to a variation
of a RingScalar design where each issue queue column is
divided into three banks. Figure 13 shows that instruction
banks are of three types, depending on whether instructions
are waiting on zero, one, or two source register operands.
Unlike the original RingScalar design, instructions that wait
on both operands are placed in the banks with two source

8

 bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg
0

0.5

1

1.5

2

2.5

3

Benchmark

IP
C

BL32:80R8W4
RS64:256R4W1
RS48:128R8W1
RS48:128R4W1
RS48:128R2W1

Figure 11. SPEC CINT2000 IPC with a gshare branch predictor.

 bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg
0

0.5

1

1.5

2

2.5

3

Benchmark

IP
C

BL32:80R8W4
RS64:256R4W1
RS48:128R8W1
RS48:128R4W1
RS48:128R2W1

Figure 12. SPEC CINT2000 IPC with a perfect branch predictor.

tags. The two-waiting queues reduce the complexity in reg-
ister renaming logic and eliminate the prediction on operand
availability as two-waiting instructions are no longer split
into two parts. Simulations show a 3% IPC improvement
across the benchmarks after a 16-entry two-waiting queue
is added to RingScalar (RS48:128R4W1). We believe this
small improvement does not justify the additional area and
power consumption of two-waiting queues.

4 Complexity Analysis

To determine the complexity effectness of RingScalar de-
signs, we analyze the area, latency, and power reductions
of key components in this section. The approach is to first
compare required regfile die area by counting the number of
occupied wire tracks. Then, we evaluate the factors that de-
termine latency and power of issue windows.

The area of register file can be estimated by the number
of bitlines and the number of wordlines [15, 20]. For reg-
files with single-ended reads and differential writes, we use
Equation 1 to approximate its grid area for a bit-slice. The

width (�) and height (
�

) of a storage cell, including power
and ground, is given in unit of wire tracks. � is the number
of read ports, � is the number of write ports, and � is the
number of physical entries in the regfile. The equation ex-
presses that each regfile port calls for one wordline per entry,
plus a single bitline for read ports and a pair of bitlines for
write ports.

���	��
�������������
� ����������� ��� � � ����� � � ���!� (1)

An issue window consist of dispatch ports, issue ports,
wakeup port, comparators, tag broadcast network, and se-
lect arbiters. The speed of the wakeup-select loop is a func-
tion of wire propagation delay and the fan-in/fan-out delay.
Its power consumption is proportional to switched capaci-
tance, such as wire capacitance and transistor parasitic ca-
pacitance. RingScalar reduces these parameters by adopting
lesser-ported banked structures. Power saving can also be
achieved by minimizing the number of active components,
such as comparators. Using Equation 2, the number of bit
comparators in an issue window can be determined. " is the

9

Is
su

e
W

in
do

w

S
el

ec
t A

rb
ite

r
I

zero

one

two
S

el
ec

t A
rb

ite
r

I

zero

one

two

S
el

ec
t A

rb
ite

r
I

zero

one

two

S
el

ec
t A

rb
ite

r
I

zero

one

two

R
eg

is
te

r
F

ile

Select Arbiter II

SRC1 Read Address Arbiter & Crossbar

SRC2 Read Address Arbiter & Crossbar

Bank1Bank0 Bank2 Bank3

SRC1 Local to Global Data Port Crossbar

SRC2 Local to Global Data Port Crossbar

Write Address Crossbar

Lo
ad

 M
is

s
W

rit
e

D
at

a
Lo

ad
 M

is
s

W
rit

e
A

dd
re

ss
Lo

ad
 M

is
s

W
rit

e
B

ac
k

R
es

er
va

tio
n

W
ak

eu
p

&
 S

el
ec

t
R

en
am

e
R

ea
d

&
 B

yp
as

s
E

xe
cu

te

Col0 Col1 Col2 Col3

Dispatch Crossbar & Arbiter

Renamed Stage

Figure 13. RingScalar architecture for designs
with three issue banks per column.

number of tags per entry, � is the number of tag bits per en-
try (depends on the regfile size), � is the number of wakeup
port per tag, and � is the number of entries. For example,
there are � ��� ��� ��� � �	�
�
� � bit-comparators in the
baseline (BL32:80R8W4) design.

������ ����� �������������! #"$ $�%��"'& � " �(� �)� �!� (2)

Table 2 provides a complexity and performance compar-
ison across a few RingScalar designs and the baseline. In
general, RingScalar designs are smaller and more power ef-
ficient than the conventional superscalar. Even the large
RingScalar design (RS64:256R4W1) has a smaller regfile,
a much simpler issue window (faster wakeup-select), and
a smaller bypass network than the baseline, despite the in-
creased number of regfile entries.

The RS48:128R4W1 design point appears to be a sweet
spot in the performance-complexity space. Regfile area is
under half that of the baseline while the issue window is
much smaller, and IPC is just 13.3% away from the base-
line. Adding more read ports only increases IPC by 1%
(RS48:128R8W1). The additional regfile area saving of

moving from RS48:128R4W1 to RS48:128R2W1 is only 9%
but this causes a 3% drop in IPC. Furthermore, a 48-entry
RingScalar issue window requires only one fourth the num-
ber of dispatch, issue, and wakeup ports, and 21% of the tag
comparators of a conventional 32-entry design. Table 2 also
shows that RingScalar reduces wakeup delay because of its
reduction in the wakeup broadcast fan-out. Comparing to
the baseline configuration, RS48:128R4W1 has faster select
timing. BL32:80R8W4 has one arbiter that selects four in-
structions out of a pool of 32 instructions while RingScalar
has four arbiters, each independently selecting only one out
of 12 instructions. The reduced bypass network decreases
the ALU fan-out by a factor of three while the bypass mux
fan-in is cut from seven to four for the RingScalar bypass
networks.

In this evaluation, the baseline architecture was idealized
in several respects. More realistic superscalar models should
have a reduced IPC advantage over RingScalar. For example,
most designs approximate the oldest-first select arbitration to
reduce circuit complexity; real designs have less than fully
orthogonal functional unit issue; and they will experience
load-hit mispredictions and memory dependence misspecu-
lations. These additional stalls will tend to reduce the IPC
advantage of existing superscalar designs.

Although, due to the large engineering effort required, we
are unable to complete a complete analysis using full-custom
circuit implementation of both RingScalar and the conven-
tional design, we believe the complexity analysis above
shows that RingScalar is a promising approach which could
enable significant cycle time, power, and area reductions.

5 Related Work

In this section, we describe how RingScalar relates to
earlier work in banked register files, tag-elimination, and
dependence-based scheduling [8, 10]. We also discuss the
relationship to clustered designs.

RingScalar improves on previous work in banked regis-
ter files by using the rename stage to steer instructions such
that only a single write port per bank is required, avoiding
write conflicts while supporting the simple pipeline control
structure proposed in [20] to also reduce read ports per cell.

The fact that many operands are ready before an instruc-
tion is dispatched has inspired the tag-elimination [5], half-
price architecture [9], and banked issue queue [3] designs.
In comparison to the conventional scheduler, these schemes
reduce the electric loading of the wakeup ports and the num-
ber of comparators by keeping the number of tag checks to
a minimum. However, they still require � wakeup ports, �
dispatch ports, and � issue ports. In contrast, RingScalar
reduces both the number of tag comparisons and the num-
ber of wakeup ports. In addition, each issue queue entry of
RingScalar requires only a single dispatch port and a single
issue port.

Earlier dependence-based scheduling techniques have ex-
ploited the fact that it is unnecessary to perform tag checks

10

Configuration Regfile Issue Window Wakeup Select Bypass Networks IPC
Area # Dispatch/Issue/ # Compa- Fan-out Arbiter ALU MUX

Wakeup Ports rators Fan-out Fan-in

BL32:80R8W4 100.0% 4/4/8 100.0% 64 4 from 32 9 7 100.0%
RS64:256R4W1 80.8% 1/1/2 28.6% 16 1 from 16 3 4 89.7%
RS48:128R8W1 87.6% 1/1/2 21.4% 12 1 from 12 3 4 87.6%
RS48:128R4W1 40.4% 1/1/2 21.4% 12 1 from 12 3 4 86.7%
RS48:128R2W1 31.4% 1/1/2 21.4% 12 1 from 12 3 4 84.2%

Table 2. Total complexity comparisons. Results in percentage are normalized to the baseline
(BL32:80R8W4).

on a consumer instruction prior to the issue of the pro-
ducer, allowing instructions in the same dependency chain
to be grouped to reduce wakeup complexity [8, 10, 13, 6].
By keeping track of the dependency chains and only is-
suing the instructions that reach the head of issue queues,
these schemes eliminate tag broadcast and simplify the se-
lect logic. However, these designs either add complexity in
tracking the dependency chain or require a large intercon-
nect crossbar to connect the distributed ports. For example,
the FIFO-based approach presented by Palacharla et al. [10]
requires that � dependent instructions can be steered into the
tail of a FIFO at dispatch time. This results in an � � ���
interconnect crossbar to allow any of the � dispatched in-
structions to connect to any of the � dispatch ports on any
of the � FIFOs. In contrast, RingScalar spreads dependent
instructions across different columns, reducing the dispatch
interconnect requirements and the number of dispatch ports
per entry. To reduce wakeup costs, RingScalar restricts the
possible wakeup paths across windows, and to reduce select
costs, only a subset of instructions are considered for each
issue slot. RingScalar’s integrated approach also reduces the
cost of the register file and bypass network.

Although the techniques are similar, clustering can be dis-
tinguished from banking in two ways. First, the components
that are most closely connected differ. A clustered architec-
ture first tightly couples a local issue window, a local regfile,
and local execution units within each cluster, then provides
looser coupling between these clusters. A banked architec-
ture first tightly couples the banks within an issue window
or a regfile, often with combinational paths, then connects
these major microarchitectural structures using conventional
registers between pipeline stages. Second, clustering is gen-
erally used in larger scale designs, where each cluster is it-
self a moderate issue-width core, whereas banking reduces
the complexity of a moderate issue-width core.

Multiscalar [18] was the earliest CDD clustered scheme
to exploit control flow hierarchy, and uses compiler tech-
niques to statically divide a single program into a collection
of tasks. Each task is then dynamically scheduled and as-
signed to one of many execution clusters at run time. Ag-
gressive control speculation and memory dependence spec-
ulation are implemented to allow parallel execution of mul-
tiple tasks. To maintain a sequential appearance, each task

is retired in program order. This scheme requires extensive
modification to the compiler and the performance depends
heavily on the ability to execute tasks in parallel. Alter-
native CDD schemes include Trace Processors [16], which
build traces dynamically as the program executes and which
dynamically dispatches whole traces to different clusters.
This approach, however, requires a large centralized cache
to store the traces and the algorithm used to delineate traces
strongly influences the overall performance. Both Multi-
scalar and Trace processors attempt to reduce inter-cluster
communication by localizing sequential program segments
to an individual cluster but rely largely on control and value
predictions for parallel execution.

PEWs [8] and Multicluster [7] are DDD schemes that try
to assign dependent instructions to the same cluster to mini-
mize inter-cluster communication, with the assignments de-
termined at decode time. Although performance is compa-
rable to a centralized design for small numbers of clusters,
these algorithms inherently have poor load balancing and
cannot effectively utilize a large number of clusters. The
Multicluster authors [7] suggest the possibility of using com-
piler techniques to increase utilization by performing code
optimization and code scheduling. The fine-grained banking
approach in RingScalar gives satisfactory performance with
a simple fixed instruction distribution algorithm, whereas
these larger clustered approaches often require complex in-
struction distribution schemes.

Abella and Gonzalez [1] recently published a related ap-
proach for clusters which distributes the workload across all
the clusters by placing consumer instructions in the cluster
next to the cluster that contains the producer instructions.
The processor is laid out in a ring configuration so that the
results of a cluster can be forwarded to the neighboring clus-
ter with low latency. Each partition of the register file can be
read only from its own cluster but can be written only from
the previous neighboring cluster. This design still requires
long latency inter-cluster communication to move missing
operands to appropriate clusters. RingScalar uses a simpler
variant of this ring scheme, although with the goal of reduc-
ing complexity rather than providing good load balancing.

Several of the proposals mentioned above have attempted
to reduce the cost of one component of a superscalar ar-
chitecture (e.g., just the register file or just the issue win-

11

dow), but often with a large increase in overall pipeline con-
trol complexity or possibly needing compensating enhance-
ments to other portions of the machine (e.g., extending the
bypass network to forward values queuing to use limited reg-
file write ports). The RingScalar architecture is engineered
to simplify all of the major components simultaneously.

6 Conclusion

The RingScalar design provides complexity reduction
throughout the major components of an out-of-order proces-
sor, in exchange for a small increase in complexity in the
rename and dispatch stage. Compared with idealized su-
perscalar architectures, there is only a small (10.3-13.3%)
drop in IPC but with a large reduction in area, power, and la-
tency of the issue window, register file, and bypass network.
RingScalar should be even more competitive against realis-
tic conventional superscalar processors, and should provide
a suitable design point for CMP cores that need both high
single thread performance and lower power and area.

References

[1] J. Abella and A. Gonzalez. Inherently workload-
balanced clustered microarchitecture. In IPDPS-19,
Long Beach, CA, April 2005.

[2] R. Balasubramonian, S. Dwarkadas, and D.H. Al-
bonesi. Reducing the complexity of the register file in
dynamic superscalar processors. In MICRO-34, Austin,
TX, December 2001.

[3] A. Buyuktosunoglu, D. Albonesi, P. Bose, P. Cook, and
S. Schuster. Tradeoffs in power-efficient issue queue
design. In ISLPED’02, Monterey, CA, August 2002.

[4] J.-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham.
Multiple-banked register file architectures. In ISCA-27,
Vancouver, Canada, June 2000.

[5] D. Ernst and T. Austin. Efficient dynamic scheduling
through tag elimination. In ISCA-29, Anchorage, AK,
May 2002.

[6] D. Ernst, A Hamel, and T. Austin. Cyclone: A
broadcast-free dynamic instruction scheduler with se-
lective replay. In ISCA-30, San Diego, CA, June 2003.

[7] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. G. Vranesic.
The Multicluster architecture: Reducing cycle time
through partitioning. In MICRO-30, Research Triangle
Park, NC, December 1997.

[8] G. A. Kemp and M. Franklin. PEWs: A decentral-
ized dynamic scheduler. In ICPP’96, Bloomingdale,
IL, August 1996.

[9] I. Kim and M. Lipasti. Half-price architecture. In
ISCA-30, San Diego, CA, June 2003.

[10] S. Palacharla, N. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In ISCA-24, Denver,
CO, June 1997.

[11] I. Park, M. D. Powell, and T. N. Vijaykumar. Reducing
register ports for higher speed and lower energy. In
MICRO-35, Istanbul, Turkey, November 2002.

[12] D. Ponomarev, G. Kucuk, O. Ergin, K Ghose, and
P. Kogge. The Alpha 21264 microprocessor. IEEE
Transactions on Very Large Scale Integration Systems,
11(5), October 2003.

[13] S. Raasch, N. Binkert, and S. Reinhardt. A scalable
instruction queue design using dependence chain. In
ISCA-29, Anchorage, AK, May 2002.

[14] N. Ranganathan and M. Franklin. An empirical study
of decentralized ILP execution models. In ASPLOS-8,
San Jose, CA, October 1998.

[15] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. J. Ka-
pasi, and J. D. Owens. Register organization for media
processing. In HPCA, Toulouse, France, 2000.

[16] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E.
Smith. Trace processors. In MICRO-30, Research Tri-
angle Park, NC, December 1997.

[17] S. Sair and M. Charney. Memory behavior of the
SPEC2000 benchmark suite. Technical report, IBM
Research Report, Yorktown Heights, New York, Oc-
tober 2000.

[18] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multi-
scalar processors. In ISCA-22, Santa Margherita Lig-
ure, Italy, June 1995.

[19] R. M. Tomasulo. An efficient algorithm for exploiting
multiple arithmetic units. IBM Journal, 11(1), January
1967.

[20] J. Tseng and K. Asanović. Banked multiported reg-
ister files for high-frequency superscalar microproces-
sors. In ISCA-30, San Diego, CA, June 2003.

[21] J. Tseng and K. Asanović. A speculative control
scheme for an energy-efficient banked register file.
IEEE Transactions on Computers, 54(6), June 2005.

[22] D.M. Tullsen. Simulation and modeling of a simul-
taneous multithreading processor. In The 22nd An-
nual Computer Measurement Group Conference, San
Diego, CA, December 1996.

[23] S. Wallace and N. Bagherzadeh. A scalable register file
architecture for dynamically scheduled processors. In
PACT-5, Boston, MA, October 1996.

[24] K. C. Yeager. The MIPS R10000 superscalar micro-
processor. IEEE Micro, 16(2), April 1996.

12

