
ATB0 Engineering Document - Software

SCALE Group
MIT Computer Science and Artificial Intelligence Laboratory

1

ATB0 Engineering Document - Software 2

Contents

1 Introduction 4

2 PLX Device Driver 5
2.1 User interface . 5
2.2 An example: using the PLX device driver . 7
2.3 Implementation . 7

2.3.1 Initialization . 7
2.3.2 File operations . 9

3 Low-level Utilities 10
3.1 PLX Diag . 11
3.2 xconfig . 11

4 ATB0 API 12
4.1 Functions . 12

4.1.1 Basic I/O . 12
4.1.2 User Pin I/O . 14
4.1.3 Power Supply Configuration and Measurement . 15
4.1.4 Other ATB0 Configuration . 17
4.1.5 Other utilites . 17

4.2 API examples . 18

5 High-level utilities 18
5.1 ATB0 Console . 18
5.2 sweep . 18

ATB0 Engineering Document - Software 3

List of Figures

1 Software components of ATB0 . 4
2 Example use of PLX driver, writing to a Voltage Set Register. 8
3 Using mmap to write to a Voltage Set Register. 9
4 SDRAM word format . 12
5 Example use of the ATB0 API. Sets voltages of all power supplies 18
6 Example use of API to access the daughtercard and measure power. 19
7 Alternative method to download data to the daughtercard. 20
8 Screen shot of the console utility. 20
9 Pseudo-code of sweep. 22

List of Tables

1 IOCTL functions provided by the PLX device driver. 5
2 Elements of the plx ioc reg structure. 6
3 Constants defined in plx.h. 6
4 AHIP modes. 14
5 Bit assignment of LGA LED register. 17
6 Options to the sweep program. 21

ATB0 Engineering Document - Software 4

1 Introduction

This document is one in a set of three engineering documents describing the Assam Tester Baseboard
(ATB0); this document describes the software interface while the other two describe the actual hardware [1]
and the controller [2]. This document assumes the reader has a general understanding of ATB0 and its uses
and only discusses the software interface.

The software developed for ATB0 is designed to provide a straightforward interface for a user to access
both ATB0 and a daughtercard connected to ATB0. As shown in Figure 1, the software is designed to run
on top of the Linux operating system and provides access at multiple levels. At the lowest level is the
PLX device driver which provides communication with the PLX interface card that connects the host PC
to ATB0. Using this driver, a program can manually configure the PLX card and write to or read specific
addresses in ATB0’s address space. The PLX diagnostic tool (diag) makes use of the driver and allows a
user to use a command line interface to configure the PLX card, read and write to the onboard EEPROM,
and read and write directly to ATB0. The xconfig utility uses the driver to program the Xilinx FPGA on
ATB0 with a user-provided bit stream. Finally, the ATB0 API provides an extra layer of abstraction and
allows applications to configure ATB0 and access the daughtercard without knowing the details involved.
Applications at this level would include programs such as ATC0 LabBench, HTIF and MemIF wrappers (to
interface with the Scale simulation infrastructure), or the provided application, the ATB0 Console, which
provides a text based console interface to ATB0.

This document takes a bottom up approach and begins with a description of the PLX driver in Section 2
followed by the utilities that make use of the driver in Section 3. The API is described in Section 4, and
utilities that make use of the API are described in Section 5.

PLX Diagxconfig

ATB0 API

PLX Driver

Linux

Hardware

Applications

Figure 1: Software components of ATB0

ATB0 Engineering Document - Software 5

Command Argument Description
PLX IOC BUSWIDTH int buswidth Sets the bus width of the PLX device. The LCR

LAS0BRD is changed accordingly and the bus width is
saved and used for seeking, reading, and writing. Sup-
ported bus widths are 8 and 32.

PLX IOC RESET none Toggles bit 30 of the CNTRL LCR of the PLX. This
resets both the PLX and sends a reset signal on Local
Bus 0 whose reset signal is connected to the PRGM pin
of the Xilinx on ATB0.

PLX IOC READLCR struct plx ioc reg lcr Reads the LCR at address lcr.address and stores it in
lcr.value.

PLX IOC WRITELCR struct plx ioc reg lcr Writes lcr.value to the LCR at address lcr.address.

Table 1: IOCTL functions provided by the PLX device driver.

2 PLX Device Driver

The PLX device driver is written as a module of the Linux 2.4 kernel to provide basic low level access to
the PLX, allowing a user program to read and write to the local configuration registers and to Local Bus 0
of the PLX. Many macros and memory management functions new to version 2.4 of the kernel are used, so
the driver is not backward compatibly with version 2.2, but should run on a 2.6 kernel. Much of the code is
based on sample code from Allessandro Rubini’s book Linux Device Drivers [3]. This document assumes
both a general understanding of how the PLX works (see [1][4] for more information), and basic knowledge
of the Linux kernel and how Linux device drivers work (see [3] for more information).

2.1 User interface

The PLX driver is written to use the device file with major number 127; therefore, it is necessary to create
this file (usually /dev/plx), with mknod, before loading the device driver module into the kernel using insmod
or modprobe. Once the module is loaded into the kernel, a user program can open the /dev/plx file and use
it as any other character device. The bus width used in all transactions can be configured to be either 8 bits
or 32 bits using the ioctl function as described below. Reading or writing to an offset within the file reads or
writes to that same offset within Local Address Space 0 of the PLX which is then sent to ATB0. Currently,
only one word can be written or read at a time; therefore, the number of bytes read or written must be 1 if
the bus width is 8 bits, and 4 if the bus width is 32 bits.

The device driver implements a few ioctl functions, one to read and one to write to the Local Configura-
tion Registers (LCR) of the PLX, one to set the bus width, and one to reset the PLX. The ioctl functions are
described in Table 1. The plx ioc reg structure is used to read and write to a LCR, its elements are described
in Table 2. A header file, plx.h, is provided and defines the plx ioc reg structure and various constants
described in Table 3.

The driver also provides support for the mmap command, which allows portions of device I/O memory
to be mapped into user virtual memory. See the mmap man page for more information on how this function
can be used.

ATB0 Engineering Document - Software 6

Element Type Description
offset uint32 t The offset of the register relative to the bottom of Local Configuration

Register space on the PLX.
value uint32 t The value read from the register after a PLX IOC READLCR, or the value

to write to the register during PLX IOC WRITELCR.

Table 2: Elements of the plx ioc reg structure. This structure is used to read and write values to the Local
Configuration Registers using the ioctl function.

Constant Value Description
PLX IOC MAGIC 0xA5 A “magic” number used as the ioctl func-

tion type to insure the function is valid.
PLX IOC READLCR IOWR(PLX IOC MAGIC, 1, 4) ioctl function for reading a LCR.
PLX IOC WRITELCR IOWR(PLX IOC MAGIC, 2, 4) ioctl function for writing a LCR.
PLX IOC RESET IOWR(PLX IOC MAGIC, 3, 4) ioctl function for resetting the PLX.
PLX IOC BUSWIDTH IOWR(PLX IOC MAGIC, 4, 4) ioctl function for setting the bus width of

the PLX.
PLX LCR CNTRL 0x50 Address of the CNTRL LCR.
PLX LCR INTCSR 0x4c Address of the INTCSR LCR, Interrupt

Control/Status.
PLX LCR LAS0RR 0x00 Address of the LAS0RR LCR, Local Ad-

dress Space 0 Range Register.
PLX LCR LAS0BA 0x14 Address of the LAS0BA LCR, Local Ad-

dress Space 0 Base Address (Remap).
PLX LCR LAS0BRD 0x28 Address of the LAS0BRD LCR, Local

Address Space 0 Bus Region Descriptors.

Table 3: Constants defined in plx.h.

ATB0 Engineering Document - Software 7

2.2 An example: using the PLX device driver

As an example, Figure 2 shows an entire program that uses the driver to write to a voltage set register on
ATB0 to set the desired voltage of a power supply. After dealing with command line arguments, the /dev/plx
file is opened and a check is made to make sure it was opened okay. The bus width is set to 32 using ioctl.
The PLX User I/O pins are configured by reading the CNTRL LCR, clearing the bottom 12 bits, and reseting
them to 0x490, setting the direction of all User I/O pins as output. This is not strictly necessary but done here
to show how an LCR can be manipulated. The address of the VSR is calculated using the requested power
supply and the data to write is calculated using the desired voltage and VREF, see [2] for more information.
Once the address and data are known, lseek is used to go to the correct position within the file and the data
is written using a call to write. To read the register back, lseek must be used to set the position again and the
call to read reads the VSR and puts the result in data. The result is printed to the screen, the file is closed,
and the program ends.

Alternatively, the block of memory containing the voltage set registers could remapped to user memory
using mmap and written to directly. Figure 3 shows the code to do this, skipping the code to open and
configure the PLX, which is the same as in Figure 2.

2.3 Implementation

The driver is written in one C file, plx3b.c, and one header file, plx.h. The following sections describe the
implementation of the PLX device driver.

2.3.1 Initialization

When a module is loaded into the Linux kernel, the init module() function is called. The init module()
function in the PLX driver begins by using the register chrdev function to register the device as a character
device with major number 127. This step could be replaced with dynamic device numbering, but since the
driver is meant to be run on very few computers and dynamic numbering would require creating a new
/dev/plx file each time the module is loaded, the number 127 is used as a static number. This is okay because
127 is currently unused.

Once the device has been registered, pci present is called to make sure there is a PCI bus to search, and
pci find device is used to locate the PLX device on the PCI bus. When the device is found, two memory
regions are remapped into memory space using ioremap nocache; the pci resource start function is used
to determine the physical addresses to remap. The first region that is remapped is the local configuration
register space; it is 128 bytes long and located using Base Address Register 0. The second region is local
address space 0, it is 132 MB long and located using Base Address Register 2. Because the driver assumes
that local address space 0 is configured to be 132 MBs, this must be programmed into the EEPROM on the
PLX so the appropriate amount of memory can be set aside when the computer boots up. This can be done
using the diag tool (described in Section 3.1) to set the LAS0RR LCR in the EEPROM to 0x0800000.

Once the two regions of memory have been remapped, LAS0BRD is set to a safe value with 32 bit
accesses and LRDY disabled. Finally, four bytes of kernel memory are allocated using kmalloc to save the
current bus width. The device is then ready to be used.

ATB0 Engineering Document - Software 8

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdint.h>
#include "plx.h"

#define VSR_BASE 0x0210000
#define VREF 4.10

int main(int argc, char **argv)
{

int fd, ps;
uint32_t address, data;
double volts;
struct plx_ioc_reg lcr;

/* Check command-line arguments */
if(argc < 3) {
printf("Usage: vs ps# voltage\n"); exit(0);

}

/* Get arguments from command-line */
ps = atoi(argv[1]);
volts = atof(argv[2]);

/* Open device file and check result */
fd = open("/dev/plx", O_RDWR);
if(fd < 1) {
printf("Unable to open device! (errno = %d)\n", errno); exit(1);

}

/* Set buswidth to 32 */
ioctl(fd, PLX_IOC_BUSWIDTH, 32);

/* Setup PLX USER pins */
lcr.offset = PLX_IOC_CNTRL;
ioctl(fd, PLX_IOC_READLCR, &lcr);
lcr.value &= ˜0xfff;
lcr.value |= 0x490;
ioctl(fd, PLX_IOC_WRITELCR, &lcr);

/* Calculate correct address and data */
address = VSR_BASE + (ps << 4);
data = (uint32_t) (volts / VREF * (4096.0 - 1.0));

/* Write the data */
lseek(fd, address, SEEK_SET);
write(fd, &data, 4);

/* Read the data back */
lseek(fd, address, SEEK_SET);
read(fd, &data, 4);
printf("VSR%d (0x%x) = 0x%x\n", ps, address, data);

/* cleanup and return */
close(fd);
return 0;

}

Figure 2: Example use of PLX driver, writing to a Voltage Set Register.

ATB0 Engineering Document - Software 9

#include <sys/mman.h>

.

.

.

/* Calculate correct offset and data */
offset = (ps << 4);
data = (uint32_t) (volts / VREF * (4096.0 - 1.0));

/* Remap the voltage set registers */
uint32_t *VSR = (uint32_t *)mmap(0, 0x100, PROT_READ | PROT_WRITE, MAP_SHARED, fd, VSR_BASE);

/* Write the data */
VSR[offset] = data;

/* Read the data back */
printf("VSR%d = 0x%x\n", ps, VSR[offset]);

/* cleanup and return */
munmap(VSR, 0x100);
close(fd);
return 0;

}

Figure 3: Using mmap to write to a Voltage Set Register.

2.3.2 File operations

The driver defines functions for the file operations open, release, read, write, llseek, mmap, and ioctl. In the
open function, the driver first checks to see if the device is already open using the MOD IN USE macro,
and if so, the EBUSY error is returned, only one process can open the device at a time. If the device is not
in use, the MOD INC USE COUNT macro is called to remember that the device is now in use. The bus
width bits of the LAS0BRD LCR are checked and the saved bus width is adjusted accordingly, in case the
user has configured this register manually. The f pos element of the file structure is set to 0 and the function
returns. In the release function, the MOD DEC USE COUNT macro is called to indicate the device is no
longer in use and the function returns.

The llseek function is used to move the file pointer contained in the f pos element of the file structure
given to all file operation routines. The f pos contains the offset in number of units of the current bus width,
this offset is translated into a byte address before being sent to ATB0. For example, a f pos of 15 translates
to an address of 0xF if the bus width is 8, but translates to an address of 0x3C (15 * 4 = 60 = 0x3C) if the
bus width is 32. This is hidden from the user in the llseek function by dividing the offset argument by 4 if
the bus width is 32, so the offset the user sends to the lseek function should always be a byte address.

Two seek origins are supported by the driver, SEEK SET and SEEK CUR. If the origin is SEEK SET,
f pos is set to the offset passed if the bus width is 8 or offset/4 if the bus width is 32, otherwise an error is
returned. If the origin is SEEK CUR, f pos is set f pos + offset if the bus width is 8 or f pos + offset/4 if the
bus width is 32. An error is returned if the origin is not SEEK SET or SEEK CUR, an error is also returned
if the bus width is 32 and the offset is not word aligned (divisible by 4).

In the read function, the count is checked to make sure it is only one unit of the current bus width (count
should be 1 if bus width is 8 and 4 if bus width is 32) and that the current bus width is either 8 or 32. If the
count and bus width are both okay, then either readb or readl is used to read the value pointed to by f pos.
If the bus width is 8, readb is used, if it is 32, readl is used. These functions cause the PLX to perform

ATB0 Engineering Document - Software 10

the requested transaction with ATB0 and return the result. The address sent to readb/readl is obtained by
adding f pos to the bottom of the remapped address space of PLX local address space 0 obtained during
initialization (see Section 2.3.1). The result of the read is copied from kernel memory to user memory using
copy to user, the f pos is incremented by one, and the function returns.

Unfortunately, the readb and readl functions block while the PLX performs the transaction with the
ATB0 controller. Because of this, care must be used when reading and writing; if LRDY is enabled in
LAS0BRD and ATB0 does not respond (meaning it never drops LRDY, which will happen if the controller
is not programmed onto the Xilinx or does not see the request for whatever reason), the system will hang,
forcing a hard reboot. This is a problem that needs a solution.

The write function works much the same way as a read. The count and current bus width are checked,
the data to write is copied from user memory to kernel memory using copy from user, and either writeb or
writel is used to write the data to the address pointed to by the f pos, depending on the current bus width.
f pos is incremented by one and the function returns. Like readb/readl, writeb/writel block while the PLX
performs the transaction with the ATB0 controller, so care must be used when writing.

The mmap function is implemented by calling remap page range to generate a new page table using the
virtual address and size passed to the function by the kernel and the physical address obtained by adding the
given offset to the bottom of the remapped local address space 0. Both the VM IO and VM RESERVED
flags are set so the kernel does not attempt to swap the memory to disk. Most of the work of actually mapping
the memory is done by the kernel either before the function in the driver is called, or in the remap page range
function.

When the ioctl function is called, the type of command, obtained from the cmd argument, is checked
for the magic number. If the command is not okay, an error is returned. All ioctl commands read or write
to a LCR; to do so the readl and writel functions are used. The offset passed to the readl/writel function is
obtained by adding the supplied offset to the bottom of the 128 byte remapped local configuration register
address space obtained during initialization. If the command is PLX IOC RESET, the CNTRL LCR is read,
the value read is written back with bit 30 set high, then written back with bit 30 set low. If the command
is PLX IOC BUSWIDTH, the LAS0BRD LCR is read, the value read is written back with bits 22 and
23 set to represent the new buswidth, and the bus width is saved for future reference. If the command is
PLX IOC READLCR, the offset is obtained from the lcr structure in user space using the get user function,
the LCR is read, then put user is used to set the value element of the lcr structure. If the command is
PLX IOC WRITELCR, both the offset and value are obtained from the lcr structure using the get user
function and the value is written to the LCR. The LCR is then read back and the result is written to the value
element of the lcr structure using put user so the user can insure that the value was actually written.

3 Low-level Utilities

Two utilities are provided that make use of the device driver directly and do not need the Xilinx configured
with the ATB0 controller to be used. The diag program (Section 3.1) provides low level access to the PLX
device, allowing the user to read and write directly to the Local Configuration Registers, the EEPROM, and
local address space 0, which is forwarded to ATB0. The xconfig program (Section 3.2) configures the Xilinx
on ATB0 with a bit stream file.

ATB0 Engineering Document - Software 11

3.1 PLX Diag

The PLX diag program provides low level access to the PLX device and uses the device driver directly to
communicate with the PLX. The user interface is a subset of the user interface of the p9050 diag program
provided with the PLX 9050 RDK. The main menu provides 3 choices: PLX Local Configuration Registers,
Address Space 0, and Serial EEPROM; choosing any of these takes the user to a separate sub-menu.

The PLX Local Configuration Registers sub-menu displays the name and current value of each of the 21
LCRs on the PLX. The current values are obtained using the driver’s PLX IOC READLCR ioctl function.
The user can enter a new value for any one of the registers by entering the number displayed next to the
register or go back to the main menu. If the user chooses to enter a new value, the new value is written to
the LCR using the driver’s PLX IOC WRITELCR ioctl function and the list of all LCRs is redisplayed.

The Address Space 0 sub-menu allows the user to read from or write to any address in local address
space 0. When reading, the user enters an address, lseek is called to move the file pointer to that address,
and read is called to read the value. The returned value is simply printed to the screen. When writing, the
user enters an address and a data value, lseek is called to move the file pointer to the address, then write is
called to write the value.

The EEPROM editor is the most complicated part of the program. The user can display the entire
contents of the EEPROM (which is very slow), read a specific dword, or write to a specific dword. Reads
and writes to the EEPROM are performed by reading and writing to bits 24 to 28 of the CNTRL LCR as
described in the PLX databook [4]. Note that EEPROM offsets are NOT equal to LCR offsets. See Table
3-2 on page 3-3 of the PLX databook [4] to get the EEPROM offset of a LCR.

3.2 xconfig

The xconfig utility makes use of specific features of the PLX to configure the Xilinx with a user provided bit
stream. For a description of the process of configuring the Xilinx with timing diagrams, refer to the Xilinx
XC4000 databook [5]. This document assumes basic knowledge of that process. The necessary connections
are made to allow local address space 0 to be used to download the bit stream to the Xilinx: HAD0 through
HAD7 are also wired up to the CFD0 through CFD7 input pins to the Xilinx, the RESET B signal is wired
to the PRGM input pin, the PLX User I/O 0 pin is wired to the Xilinx RDY signal, and the PLX User I/O 1
pin is wired to the Xilinx DONE signal.

After opening the bit stream file and skipping the header information, xconfig opens the PLX device.
First the PLX IOC RESET ioctl function is called, this resets both the PLX and the local bus, because the
reset pin of the local bus is connected to the PRGM input pin to the Xilinx, this raises the Xilinx PRGM pin.
The bus width is set to 8 as only 8 bits can be written to the FPGA at a time. The CNTRL register is set to
default values with all User I/O pins as input to allow for the value on the RDY and DONE signals from the
Xilinx to be read. The LAS0BRD register is configured to have LRDY disabled and 2 NWAD wait states,
this causes the PLX to wait two cycles between sending the address and dropping the write strobe signal to
send the data. This write strobe that is dropped when the data is sent is wired to the WS input bit of the
Xilinx.

With this configuration the bit stream can be sent to the Xilinx by first polling the User 0 I/O pin by
reading the CNTRL register and checking bit 2 and waiting for it to go high, this indicates the Xilinx is
driving its RDY signal high and it is ready to receive the next byte. The next byte is then sent by writing
to local address space 0, the address is ignored and the data is sent as the next byte when the write strobe
drops. This process is repeated until each byte in the bit stream has been sent at which point xconfig waits
for User 1 to go high to indicate the XILINX has raised the DONE signal, reporting itself configured.

ATB0 Engineering Document - Software 12

31 28 27 16 15 12 11 0
unused Value 2 unused Value 1

4 12 4 12

Figure 4: SDRAM word format

4 ATB0 API

The ATB0 API provides a single class, atb0, that makes all the functionality that the ATB0 controller
provides available to applications. It is not meant to be used with anything other than the controller and
therefore assumes that the controller has been programmed onto the Xilinx on ATB0 before being used.
Applications should use the API instead of the driver directly in case design of the controller changes.

To use the API, simply create an atb0 object; doing so opens the device file and initializes the PLX to
be used with the controller. All member functions described in Section 4.1 are then available for use. When
finished, deleting the atb0 object closes the device file.

4.1 Functions

Functions are divided into five sections: basic I/O, User pin I/O, power supply configuration and measure-
ment, other ATB0 configuration, and utilities.

4.1.1 Basic I/O

Basic I/O functions allow the user to read and write to the SDRAM on ATB0 and the Daughtercard via
AHIP. In the SDRAM functions, all addresses are offsets into SDRAM memory space and should be a
multiple of 4 between 0x0 and 0x2000000. In the AHIP functions, all addresses are offsets into AHIP
Daughtercard memory space and should be a mulitple of 4 between 0x0 and 0x4000000.

uint32 t read sdram(uint32 t addr, SDRAM WORD word = SDRAM FULL);

Reads the 32-bit word from addr in the SDRAM on ATB0. If word is SDRAM FULL (the
default), it returns two 12-bit values from SDRAM, one in the lower 16-bits one in the higher
16-bits as shown in Figure 4. If word is SDRAM HIGH it returns the high word obtained;
likewise if word is SDRAM LOW it returns the low word obtained.

Related definitions:
enum SDRAM WORD {SDRAM FULL, SDRAM HIGH, SDRAM LOW};

void write sdram(unint32 t addr, uint32 t data);

Writes the 32-bit word in data to addr in the SDRAM on ATB0. data should be in the
format shown in Figure 4, partial writes are not possible.

uint32 t *get sdram mem(unint32 t start, size t size);

ATB0 Engineering Document - Software 13

Maps a chunk of SDRAM memory on ATB0, of size size and starting at address start, to
user memory space on the host and returns the pointer to the mapped memory. size is the size
in bytes of the requested memory area and should also be a multiple of 4 and between 0 and
0x2000000.

void dump sdram(std::ostream& out, DUMP MODE mode, uint32 t start, uint32 t end);

Dumps the contents of SDRAM memory from address start to address end to the
stream out. mode determines whether to output the values in binary or ASCII and can be
DUMP BINARY or DUMP ASCII. The resulting dump is one value for every SDRAM loca-
tion, so for every four bytes between start and end, two values are written to the output stream
(the low bits are written first, followed by the high bits).

Related definitions:
enum DUMP MODE {DUMP BINARY, DUMP ASCII};

uint32 t read ahip(uint32 t addr);

Reads the 32-bit word from offset addr in the AHIP Daughtercard memory space. The con-
troller performs the necessary AHIP operation to communicate with the Daughtercard, the result
is dependant upon the daughtercard. If AHIP test mode is turned on (See set ahip testmode),
this performs a test read instead of a normal read. If addr is 0 is will perform a test data read;
otherwise, it will perform a test address read.

void write ahip(uint32 t addr, uint32 t data);

Writes the 32-bit word in data to offset addr in the AHIP Daughtercard memory space.
data can be any 32 bit value. Like read ahip, the controller performs the necssary AHIP
operation. If AHIP test mode is turned on (See set ahip testmode), this performs a test write.

uint32 t *get ahip mem(unint32 t start, size t size);

Maps a chunk of the AHIP Daughtercard memory space on the ATB0, of size size and
starting at address start, to user memory space on the host and returns the pointer to the mapped
memory. [NOTE: UNTESTED.]

void set ahip mode(AHIP MODE mode);

Turns AHIP test mode on or off depending on mode. If mode is AHIP NORMAL,all AHIP
reads and writes are normal 32-bit AHIP reads and writes. If mode is AHIP TEST, AHIP reads
and writes are test AHIP reads and writes as described in the descriptions of read ahip and
write ahip. Both AHIP NORMAL and AHIP TEST have 8-bit conterparts in AHIP 8BIT and
AHIP 8BITTEST respectively. Table 4 summarizes these modes.

Related definitions:
enum AHIP MODE {AHIP NORMAL = 0, AHIP TEST = 1, AHIP 8BIT = 2,

AHIP 8BITTEST = 3};

AHIP MODE get ahip mode();

ATB0 Engineering Document - Software 14

Mode Functionality
AHIP NORMAL All reads and writes are normal 32-bit accesses

AHIP TEST Reads and writes are 32-bit test AHIP reads and writes. Any read
performs a test address read, except a read of address 0, which
performs a test data read. Any write performs a test write.

AHIP 8BIT All reads and writes use the 8-bit AHIP protocol to perform normal
accesses

AHIP 8BITEST Reads and writes behave the same as AHIP TEST except the 8-bit
AHIP protocol is used.

Table 4: AHIP modes.

Returns the current AHIP mode. See the description above for set ahip mode for a descrip-
tion of the available modes.

void dump ahip(std::ostream& out, DUMP MODE mode, uint32 t start, uint32 t end);

Dumps the contents of AHIP Daughtercard memory space from address start to address
end to the stream out. mode determines whether to output the values in binary or ASCII and
can be DUMP BINARY or DUMP ASCII. The output is one value for each 32 bit word read. [
NOTE: UNTESTED]

Related definitions:
enum DUMP MODE {DUMP BINARY, DUMP ASCII};

4.1.2 User Pin I/O

These functions allow a user to access the User pins directly. If a value is assigned to a User pin
(either a 0 or 1) in the controller, it is considered an output and is driven by the controller. If the
pin is reset, it is considered an input and is not driven by the controller. On startup, all pins are inputs
and thus not driven by the controller. In the following functions all pin numbers should be between 0 and 25.

void reset user pins();

Resets all User pins to be inputs. (i.e. the controller does not drive them.)

void set user pin(int pin, bool val);

Sets the User pin pin to be an output and drives it high or low depending on val.

void set user pins(uint32 t val);

Sets allthe User pins whose direction is set to be an output and drives them with the corre-
sponding bit in val.

bool set user pin dir(int pin, bool val);

ATB0 Engineering Document - Software 15

Sets the direction of the User pin pin. A val of true means the pin is an output and driven
by the controller and false means the pin is an input and driven by the daughtercard.

bool set user pins dir(uint32 t val);

Sets the direction of all User pins to the corresponding bit in val. A bit value of of true
means the pin is an output and driven by the controller and false means the pin is an input and
driven by the daughtercard.

bool get user pin(int pin);

Returns the logical value seen on the User pin pin, whether the pin is driven by the controller
or the daughtercard.

bool get user pin dir(int pin);

Returns the direction of the User pin pin. Returns true if the pin is an output and driven by
the controller and false if the pin is an input and driven by the daughtercard.

uint32 t get user pins(int start, int end);

Returns the unsigned value seen on the User pins [end:start], whether the pins are driven
by the controller or the daughtercard. It assumes that the higher of the two values is the most
significant bit. (i.e. if start is greater than end, it will consider start the MSB).

uint32 t get user pins dir();

Returns the direction of all User pins in the low 26 bits of the return value, one bit per pin
(Bit 0 is the direction of User pin 0). A value of 1 in a pin’s bit indicates that pin is an output
and driven by the controller, a value of 0 in a pin’s bit indicates that pin is an input and driven
by the daughtercard.

4.1.3 Power Supply Configuration and Measurement

These functions allow the user to configure and verify the voltage of each power supply and measure the
current drawn from the power supply.

void set voltage(int ps, double volts);

Sets the desired voltage of power supply ps to volts. ps should be between 0 and 15 inclu-
sive, Volts should be between 0 and about 4 for power supplies 0 to 13 and between 0 and -4
for power supplies 14 and 15. Each time this procedure is called the Voltage Set register for the
given power supply is set, then the Voltage Set Register 15 is written to, committing the change.

void set voltages(double *volts);

Sets the desired voltage of all power supplies. volts should be an array of 15 double values
corresponding to the desired power supply voltages (i.e. volts[5] should contain the desired
voltage for power supply 5). Again, volts must be within the acceptable range (see set voltage).

ATB0 Engineering Document - Software 16

double get voltage(int ps);

Get the measured voltage across power supply ps. This is used to ensure that the desired
voltage is actually seen across the power supply and for more precise power measurements.

void get voltages(double *volts);

Gets the measured voltage of each power supply. volts should be array of 15 double values
that the voltage measurements are to be written in. Upon returning, this array will be filled with
the measured voltages.

get current(int ps);

Gets the measured current drawn from power supply ps. Each power supply has a unique
offset and ratio that are used in calculating the current from the value returned by the current
measurement ADC using Equation 1 (where CMR is the value returned from the ADC), see
the controller documentation [2] for more information. The offset and ratio used for a power
supply can be set using set calibration.

current = (ratio∗CMR)+o f f set (1)

void get currents(double *currents, uint16 t mask=PSALL

Gets the measured current drawn from each power supply with its bit set in mask. currents
should be large enough to hold all requested measurements and upon returning will contain the
measurements in order from the smallest number power supply to the largest. For example,
if mask is 0x104 then the currents[0] would contain the current from power supply 2 and
currents[1] would contain the current from power supply 8. To make generating the mask
easier, constants are defined for each power supply, PS1 through PS14. These can be or’ed
together to create the mask, for example, (PS2 | PS14) = 0x104. PSALL is defined to be the
mask to measure all power supplies and is the default mask. The mask functionality is not
currently supported and is ignored.

Related definitions:
#define PS0 0x1
. . .
#define PS14 0x4000
#define PSALL 0x7fff

set calibration(int ps, double offset, double ratio);

Sets the offset and ratio used to calculate the measured current from power supply ps. See
get current for a description of how these values are used.

ATB0 Engineering Document - Software 17

Bit # Signal
0 LED0
1 LED1
2 LGA0
3 LGA1

4 - 31 unused

Table 5: Bit assignment of LGA LED register.

4.1.4 Other ATB0 Configuration

These functions are used to set and read the frequency of the clock sent to the daughtercard and set and read
the value on the LGA and LED signals in ATB0.
void set clock(int freq);

Sets the frequency that is generated by the frequency synthesizer on ATB0 to freq MHz.
freq must be between 25 and 400 MHz.

int get clock();

Returns the frequency, in MHz, that the frequency synthesizer is currently set to generate.

void set LED(int LED, bool val);

Sets the LED number LED to val. A val of true turns the LED on, false turns the LED off.

void set LGA(int LGA, bool val);

Sets the LGA ouput number LGA to val.

uint32 t get LGALED();

Returns the the two LED values and two LGA values in the bottom four bits of the return
value as shown in Table 5.

4.1.5 Other utilites

Utilities are provided to save the state of the power supplies to a file and read the state back from a file.
void save state(char *filename);

Creates a new file filename (overwriting the file if it exists) and saves the current state of
the power supplies to that file. For each supply, the desired voltage, calibration offset, and
calibration ratio are saved. No other configuration values are saved.

void read state(char *filename);

Reads the state saved in the file filename. The file must be one generated using the
save state function. For each power supply the desired voltage, calibration offset, and cali-
bration ratio are set. No other configuration values are changed.

ATB0 Engineering Document - Software 18

#include "atb0API.h"

static double volts[16] = {1.8, 3.3, 3.3, 1.5, 1.8, 1.8, 3.3, 1.8, 1.8, 0, 2.5, 0. 0. 0};

int main()
{

atb0 bb;
bb.set_voltages(volts);
return 0;

}

Figure 5: Example use of the ATB0 API. Sets voltages of all power supplies

4.2 API examples

Figure 5 shows a trivial example program that uses the API to set the voltages of all power supplies on
ATB0. The voltages happen to be those necessary to power the ADB0 board.

Figure 6 shows an example program that loads test data into memory on the daughtercard and measures
the power drawn by the daughtercard. It assumes that the daughtercard is already powered and configured
with the test chip and that User pin 0 is an active-low reset of the module which does the AHIP interface and
handles the memory and that User pin 1 is an active-high signal that tells the chip to do something with the
memory. The test data is declared as an external data array with a seperate variable that contains the number
of elements.

Figure 7 shows an alternative way to download the test data to the daughtercard using memory mapping
instead of direct writes. This method may be perferred for more complicated applications.

5 High-level utilities

Two utilities are provided that make use of the ATB0 API. console (Section 5.1) provides a text based
interface to many components of the daughtercard. sweep (Section 5.2) automates performing a voltage and
frequency sweep, measures power, and can generate a schmoo plot of the results.

5.1 ATB0 Console

The console is a utility that provides a text based interface (using ncurses) to the power supplies, frequency
synthesizer, and user pins on ATB0. Figure 8 shows a screen shot of the console. A list on the right hand of
the screen shows available commands which are mostly self explanatory. When the display is refreshed, all
voltages and currents and remeasures and the User pins are resampled. The implementation of the console
is straightforward and mostly user interface so it is not described here.

5.2 sweep

Sweep is a simple program that automates the process of measuring power over a large number of voltages
and frequencies and is controleld by a number of command line options described in Table 6. One power
supply is swept from a minimum voltage to a maximum voltage while the rest of the power supplies are
held at a constant voltage. Optionally, at each voltage, the frequency can be swept as well. At each volt-
age/frequency combination (or at each voltage if the frequency is not swept) the voltage and current of one
or all of the power supplies is measured and the power in watts is calculated from the measured values. A

ATB0 Engineering Document - Software 19

#include <iostream>
#include "atb0API.h"

#define MEM_NRESET_PIN 0
#define GO_PIN 1

extern uint32_t *test_data;
extern size_t test_data_count;

using std;

int main()
{

atb0 bb;
uint32_t *mem;
int i;
double volts[14];
double currents[14];
double power, tpower;

/* Set all voltages using a perviously saved state. */
bb.read_state(‘‘state.sav’’);

/* Stop the test from running */
bb.set_user_pin(GO_PIN, 0);

/* Reset the memory controller on the daughter card */
bb.set_user_pin(MEM_NRESET_PIN, 1);
bb.set_user_pin(MEM_NRESET_PIN, 0);
bb.set_user_pin(MEM_NRESET_PIN, 1);

/* download the test data to memory */
for(i=0; i<test_data_count; i++)
bb.write_ahip(i*4, test_data[i]);

/* Start the test */
bb.set_user_pin(GO_PIN, 1);

/* Measure the voltages and currents */
bb.get_voltages(volts);
bb.get_currents(currents);

/* Print out power usage */
cout << "PowerSupply\tVoltage\tCurrent\tPower" << endl;
tpower = 0;
for(i=0; i<14; i++) {
power = volts[i] * (currents[i]/1000);
cout << i << "\t" << volts[i] << "\t" << currents[i] << "\t" << power << endl;
tpower += power;

}
cout << "Total power: " << tpower << endl;

return 0;
}

Figure 6: Example use of API to access the daughtercard and measure power.

ATB0 Engineering Document - Software 20

.

.

.
/* get AHIP memory */
mem = bb.get_ahip_mem(0, test_data_count * 4);

/* download the test data to memory */
for(i=0; i<test_data_count; i++)
*mem++ = test_data[i];

.

.

.

Figure 7: Alternative method to download data to the daughtercard.

Power Supply Values

Voltage (V) Current (mA)
----------- ------------

1. Refresh display
0) 1.809031 37.186520 Clock frequency: 25 2. Refresh continuously
1) 3.322061 75.853990 3. Set power supply voltage
2) 3.320837 96.895880 4. Set clock frequency
3) 1.499575 76.928550 SDRAM address: 0x1234567 5. Set user pin
4) 1.790684 24.140000 SDRAM data: 0x123, 0x678 6. Read SDRAM memory
5) 1.818816 19.039700 7. Write SDRAM memory
6) 3.318391 25.936950 8. Dump SDRAM memory
7) 1.807808 23.627500 AHIP address: 0x12345678 9. Read AHIP value
8) 1.813923 2.360650 AHIP data: 0x87654321 10. Write AHIP value
9) 0.019570 0.061380 11. Load configuration file
10) 2.503777 2.530530 12. Save configuration to file
11) 0.017124 0.031000 13. Quit
12) 0.022017 1.276580
13) 2.068337 1.721740 Your Selection:

2222221111111111
54321098765432109876543210

User pins: 11111011111111011111111111
Direction: IIIIIOIIIIIIIIOIIIIIOIIIII

Figure 8: Screen shot of the console utility.

ATB0 Engineering Document - Software 21

Option Default Description
-v - Be verbose.
-ps 〈integer〉 - Required. Power supply to sweep. Range is 0 - 13.
-allps - Include all power supplies in the tab file result.
-pin 〈integer〉 0 User pin number that indicates success or failure. Range is 0 - 25.
-successhigh - Indicates that a high value on the success pin means success. De-

fault is a low value means success.
-nocheck - Do not check for success or failure, just measure power.
-pause 〈µs〉 0 Time, in microseconds, to pause after setting the voltage and fre-

quency and before taking measurements.
-samples 〈integer〉 100 Number of samples to take for each measurement.
-minv 〈volts〉 0 Minimum voltage of sweep. Range is 0.0 - 4.0.
-maxv 〈volts〉 0 Maximum voltage of sweep. Range is 0.0 - 4.0
-stepv 〈voltage step〉 .1 Voltage step during sweep. Range is 0.0 - 4.0 exclusive.
-maxw 〈watts〉 2 The maximum wattage to allow before stopping the sweep.
-sf - Sweep the clock frequency as well as the voltage.
-minf 〈 f requency〉 25 Minimum clock frequency of sweep. Range is 25 - 400.
-maxf 〈 f requency〉 400 Maximum clock frequency of sweep. Range is 25 - 400.
-stepf 〈 f requency step〉 1 Frequency step during sweep. Range is 1 - 375.
-res 〈 f ilename〉 “-” Result file for “pretty” output and schmoo plot.
-tab - Generate a tab-delineated result file.
-tabfile 〈 f ilename〉 results.tab Tab-delineated result file with all information.
-tabsuccess - Include success indication in tab-delineated result file.
-taball - Include unsuccessful trials in tab-delineate file, default is only suc-

cesful trials are included.
-schmoo - Generate a schmoo plot.
-reset - Toggle a reset User pin between trials.
-resetpin 〈integer〉 none User pin to toggle when -reset is included. Range is 0 - 25
-resetlow - Indicates the reset pin is active low (default is active high).
-state 〈 f ilename〉 none Load console state file prior to sweeping.

Table 6: Options to the sweep program.

success pin is also checked at each combination to determine if the device under test (DUT) works for that
particular combintation. Therefore, the DUT should output a success value on one of the user pins. Figure 9
shows pseudo-code of the process the program goes through.

Sweep does not measure power at a single point in time, but steady state power over time by taking
multiple samples for each measurement. Statistics (mean, median, standard deviation, min, and max) for
each measurement are provided in a tab-delineated result file. A “pretty” result file is also created for quickly
seeing results and only includes the power drawn from the power supply being swept and does not include
the statistics.

Like console, the implementation of sweep is straightforward and mostly output formatting and statistics
calculation. It is thus not described here.

ATB0 Engineering Document - Software 22

for volts = minv to maxv step stepv
set_voltage(ps, volts)
if (sweep_frequency)

for freq = minf to maxf step stepf
set_clock(freq)
reset_DUT
pause
measure_power
check_success
output_results
if (power > maxw) exit

next freq
else

reset_DUT
pause
measure_power
check_success
output_results
if (power > maxw) exit

end if
next volts
generate_schmoo

Figure 9: Pseudo-code of sweep.

References

[1] Jared Casper. ATB0 Engineering Document - Hardware. assam cvs: atb0/doc/hardware.

[2] Jared Casper. ATB0 Engineering Document - Controller. assam cvs: atb0/doc/controller.

[3] Alessandro Rubini Jonathan Corbet. Linux Device Drivers. O’Reilly, 2nd edition, 2001.
http://www.xml.com/ldd/chapter/book/index.html.

[4] PLX Technology PCI 9050-1 Data Book.
assam cvs: atb0/doc/datasheets/9050-1db-20.pdf.

[5] Xilinx XC4000E and XC4000X Series Field Programmable Gate Arrays.
assam cvs: atb0/doc/datasheets/xilinx-4000-series.pdf.

