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1 Introduction

This document is one in a set of three engineering documents describing the Assam Tester Baseboard Revi-
sion 0 (ATB0); this document describes the controller while the other two describe the actual hardware [1]
and the software interface [2].

ATB0 is designed to provide a testbed for custom designed circuit boards that require multiple differing
power supplies (referred to in this document as the “daughtercard”). ATB0 also provides a communication
channel between a host PC and the daughtercard. To do so, ATB0 has the following devices:

Sixteen power supplies. Each power supply can be configured to supply a voltage independently of each
other; there are fourteen power supplies that supply a positive voltage between 0 and 4 volts and two
that supply a negative voltage between 0 and -4 volts. The voltage of each of the positive power
supplies can be read back to ensure proper operation; the current drawn from each positive power
supply can also be read for power measurements.

Onboard SDRAM. The onboard SDRAM is 12 bits wide and 64 MWs deep. Its primary purpose to pro-
vide temporary storage for power measurements allowing measurements to be performed quickly
while testing and read back later, after testing is complete.

Frequency synthesizer. The frequency synthesizer is used to provide a clock to the daugthercard and can
be configured to run between 25 MHz and 400 Mhz.

60 I/O pins between ATB0 and the daughtercard. 34 of these pins are used to perform reads and writes
on the daughtercard using the AHIP protocol [3]. The remaining 26 are used as individual user defined
I/O pins.

Two LEDs. These can be used to provide status flags to the user.

The controller for ATB0 is written in Verilog for the Xilinx on ATB0. Its purpose is two-fold: 1) control
the various devices on ATB0, and 2) facilitate communication between the host PC and the daughtercard.
All communication between the host PC and the controller is in the form of reads and writes to memory
locations. A PLX interface card is used to convey a read or write from the host PC to the controller.

Standard operation involves the user connecting a daughtercard to ATB0 then writing to memory-
mapped registers to configure the devices on ATB0 according to the requirements of the daughtercard. The
user then performs some task by communicating with the daughtercard, either directly, by reading from or
writing to the user pins, or using the AHIP interface. Tasks could include operations such as such as running
an application on a synthesized CPU, performing memory operation on a memory controller, etc. While the
task is being performed, certain events, as configured by the user, cause the controller to measure the current
drawn from each of the power supplies and store those measurements in the onboard SDRAM chips. The
user can later read those values from the SDRAM and analyze the power consumption over time of the task.

Figure 1 shows a block diagram of the system. A memory access operation from the host PC is con-
veyed by the PLX interface card to ATB0. A decode module in the controller receives the operation and
decodes it. The decode module then drives the address and data onto the central buses and enables the
appropriate module according to the nature of the operation. The voltage set and voltage measure modules
communicate directly with the power supplies. The current measure module communicates with both the
power supplies and the SDRAM control module to enable it to store current measurements into the onboard
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memory. The SDRAM module can receive memory accesses from both the decode module and the cur-
rent measure module and performs the access to the SDRAM. The AHIP module communicates with the
daughtercard through dedicated AHIP pins and the user pin control module allows the user to set and read
individual pins connected to the daughtercard. The LED control module drives the LEDs directly and the
Clock set module communicates with the frequency synthesizer to provide the clock to the daughtercard.

SDRAM

SDRAM

Control

Power Supplies

Control signals

Address bus

Data bus

Decode

Clock Set

Frequency

Synthesizer

Current Measure Voltage Measure Voltage Set AHIP

LED Control
Control

User pin

Controller

ATB0

LEDs

PLX Daughtercard

Figure 1: Block diagram of ATB0.

2 User Interface

The user interacts with the controller by reading and writing to memory locations on the host PC. The PLX
then forwards these requests to the baseboard and relays the response back to the user. The PLX allows
addresses up to 28 bits wide and enforces word addressing by forcing the lower two bits to zero. The
controller currently uses 27 of those bits, leaving the top half of possible memory space open for expansion.
As shown in Figure 2, memory is divided into three main sections, SDRAM Memory, Control Registers,
and AHIP Daughtercard Memory space.

Accessing memory in SDRAM is described in Section 2.1. Configuration of the devices using the
control registers is described in Section 2.2. Finally, communicating with the daughtercard is described in
Section 2.3.

2.1 Accessing SDRAM

Each word in SDRAM memory space corresponds to two 12-bit values in the actual SDRAM; Figure 3
shows the resulting memory layout, relating SDRAM memory locations to addresses in SDRAM memory
space. Since there are 224 locations in SDRAM, 223 four byte words, or 32 MBs, are needed to access all
the SDRAM memory, thus the SDRAM memory space in the controller is 32 MBs. To access a word in
SDRAM memory space, simply read from or write to the corresponding address in the ATB0 memory space.
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0x0000000

0x7FFFFFF

0x2000000

0x4000000

Control
Registers

SDRAM
Memory Space

AHIP Daughtercard
Memory Space

(64 MB)

(32MB)

(32 MB)

Figure 2: ATB0 Memory Map. Address are relative to the bottom of ATB0 address space.
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0

0

0
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0
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0
0111531 27
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Figure 3: SDRAM memory layout. Addresses are relative to the bottom of SDRAM Memory space.
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2.2 Configuration

Configuring ATB0 is accomplished by writing to a number of memory-mapped control registers. The ad-
dress and functionality of each register is summarized in Table 1. Setting the voltage of the Power Supplies
is described in Section 2.2.1. Measuring the current is described in Section 2.2.2. Calibrating the current
measurements is described in Section 2.2.3. Setting the clock speed that the frequency synthesizer generates
is described in Section 2.2.4. Finally, Section 2.2.5 show how to set refresh rate of the onboard SDRAM
chips and the Logic Analyzer and LED outputs.

2.2.1 Setting the voltage

ATB0 is equipped with 16 user-controlled independent power supplies. The desired voltage of power sup-
plies 0 - 13∗ can be set between 0V and 4.095V†; the actual voltage supplied and the current drawn from
the power supply can be measured and read by the user. The desired voltage of power supplies 14 and 15
can be set between 0V and -4.095V but the actual voltage and current can not be measured. Note that the
current that each supply is able to produce varies, see the hardware document [1] for more information.

Setting the desired voltage is accomplished by writing the appropriate register (VSR0 - VSR15) with the
desired value. The registers are 12 bits wide (thus, only the lower 12 bits of the 32 bits written to the register
are used) and their value corresponds linearly to the range of 0V to 4.095V. To convert from a desired voltage
into a value to put in the register, divide the desired voltage by the maximum voltage (VREF ) and multiply
by the maximum value 212-1 = 4095 as shown in Equation 1.

VSRn =
volts
VREF

∗ (212 −1) ≈ volts
4.095 ∗4095 = volts∗1000 (1)

This results in a coding that is about 1 mV
bit since VREF is about 4.095V and thus the voltage set register

can be set to approximately 1000 times the desired voltage; however, if precision is necessary, the user
should measure VREF and use the actual value in the calculation. Writing to VSR0 - VSR14 will only set the
register, it will not cause the power supply to output the desired voltage. Writing to VSR15 both sets VSR15
and causes all 16 power supplies to output the voltage that is contained in their corresponding register.

Once VSR15 is written to and the power supplies are set to the desired values, the actual voltage pro-
duced by each power supply can be obtained by simply reading the appropriate voltage measure register
(VMR). This returns a 12-bit value that corresponds linearly to the range of 0V to 5V, which is the reference
voltage supplied to the ADC used to measure the voltage. Thus, to obtain a voltage from the value read
from the VMR, divide by the maximum value (212-1 = 4095) and multiply by the ADC reference voltage
(VREF ADC) as shown in Equation 2. VREF ADC is approximately 5V, but like VREF , the user should measure
this if precision is required.

Volts =
V MR

212 −1 ∗VREF ADC ≈ VMR
4095 ∗5 (2)

∗Power supplies are numbered 0 - 15 to make it coincide more nicely with the addressing scheme; however, on the schematics,
power supplies are numbered 1 - 16, this numbering scheme is not used anywhere but the schematic, don’t let that confuse you.

†“4.095V [is] the theoretical maximum voltage. The actual voltage is limited by the dropout voltage of the regulators, with 3.9V
the expected limit.”[4] See the hardware document[1] for more information.
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Register Address Description Read Write
VSn 0x21000n0 Voltage Set Registers - The desired voltage for power sup-

ply n. Writing to VSR15 commits the voltages to the
power supplies.

√ √

VMn 0x22000n0 Voltage Measure Registers - The actual voltage of Power
Supply n. A measurement is made each time one of these
registers is read.

√

CM BURST 0x2300000 Current Measure Burst - Reading this register causes the
current being drawn from each power supply specified
in the CM MASK register to be measured and placed in
SDRAM memory. The address in SDRAM memory space
of the first measurement is returned. Writing sets the ad-
dress in SDRAM memory space where the next burst will
be placed.

√ √

CM MASK 0x2300004 Current Measure Mask - Each of the lower 14 bits in this
register correspondes to a power supply (bit 0 correspon-
des to Power Supply 0). When CM BURST is read, each
power supply whose bit in this register is 1 has its current
measured. (Currently not supported)

√ √

CMmn 0x2301mn0 Current Measure Registers - The current being drawn from
Power Supplies m and n. A measurement is made each
time one of these registers is read.

√

CLOCK 0x2400000 Clock - Used to set the frequency generated by the on-
board frequency synthesizer.

√ √

SDRAM RT 0x2500000 SDRAM Refresh Timer - The number of clock ticks be-
tween each refresh of the SDRAM modules.

√ √

USER ALL 0x2600000 All user pins - The logical values of all 26 user pins.
√ √

USER DIR 0x2600004 User pins direction - Whether all 26 user pins are set to
be input or output. A high bit indicates the controller is
driving that pin (an output).

√ √

USERp 0x2601pp0 User Pins - Reading returns the logical value of user pin p
and I/O direction. Writing a 0 or 1 sets the pin as output
with the given value and writing a value of 2 resets the pin
to be an input.

√ √

LGA LED 0x2000000 LGA and LED outputs.
√ √

AHIP MODE 0x2700000 AHIP Mode. Used to allow for test and 8 bit modes.
√ √

STATUS 0x2800000 Status flags
√

Table 1: ATB0 Control Registers. Addresses are relative to the bottom of the ATB0 address space.
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31 28 27 16 15 12 11 0
unused Value for PS m unused Value for PS n

4 12 4 12

Figure 4: Format of VMRmn.

2.2.2 Measuring the current

The current drawn from a power supply can be measured either individually or as a burst with other power
supplies. The current from two different power supply can be measured individually by reading from the
appropriate Current Measure Register (CMmn). The current drawn from power supply m is returned in the
top 16 bits, and the current drawn from power supply n is returns in the lower 16 bits as shown in Figure 4.
The value returned for each supply is described in Section 2.2.3. To measure multiple power supplies in
a single burst, first set the CM MASK register so that each power supply to be measured has a 1 in its bit
within the mask. The CM BURST register can optionally be written to to specify where in SDRAM memory
space to place the measurements. Reading the CM BURST register actually performs the measurements and
returns the address in SDRAM memory space at which the first measurement was placed.

2.2.3 Calibrating current measurement

Because of hardware issues (see [1]), the current measured by the power supplies is not exactly the current
that is being drawn from the power supply by the daughtercard; therefore, it is necessary to adjust the
measurements recieved. To calibrate a power supply to determine how to adjust the measurements, load the
power supply with two different loads and measure, with lab equipment, the actual current through each
load, as well as the value returned by the controller by reading the Current Measure register. These two
measurements define two points in a plane with the current on the y-axis and the return value on the x-axis.
These two points define a line in that plane. That line defines the relationship between the value returned
by the controller as the current measurement and the actual current being drawn by the daughtercard for a
single power supply. Figure 5 shows this plane.

Return Value

Actual Current (mA)

p1

p2

Figure 5: Calibrating the current. The y-axis is the measured current, the x-axis is the value returned by
the controller as the current for that supply. p1 and p2 represent values obtained by placing different loads
across the power supply. The line relates the value returned by measuring the current to the actual current
drawn by the daughtercard.

Given the above calibration, basic geometry gives us an equation to convert a value returned by the
controller to the actual current begin drawn by the daughter card. Equation 3 gives the slope of the line,
Equation 4 gives the intercept. Using the slope and the intercept, Equation 5 is the equation needed. More
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31 14 13 11 10 9 8 0
unused test N M

18 3 2 9

Figure 6: Clock register format.

Frequency (MHz) N M
25 - 50 3 8 * f requency

50 - 100 2 4 * f requency
100 - 200 1 2 * f requency
200 - 400 0 f requency

Table 2: Frequency to M and N values conversion chart.

representative names, ratio and offset, can be used for the slope and intercept respectively.

slope =
(Measured1 −Measured2)

CMR1 −CMR2
(3)

intercept = Measured2 − (slope∗CMR2) (4)

current = (slope∗CMR)+ intercept = (ratio∗CMR)+o f f set (5)

2.2.4 Setting the generated clock speed

ATB0 has a frequency synthesizer that is capable of creating clock signals in the range of 25 to 400 MHz;
the frequency can be set up by writing to the CLOCK register whose format is shown in Figure 6. The
used 14 bits of the register are split into three fields: test, N, and M. The test field is used to choose what
test mode to put the frequency synthesizer in and should be set to 0 for normal operation. Table 2 provides
values for N and M to achieve a desired frequency. Note that M should always be between 200 and 400. See
the frequency synthesizer’s datasheet [5] for more information on what these numbers mean and what test
modes are available.

2.2.5 Other configuration registers

The STATUS register provides status for each of the modules within the controller and can be used for
debugging purposes. As shown in Figure 7, bits 15 to 8 contain the da (data available) signal for each
module and bits 7 to 0 contain the done signal for each module. The bits are ordered according to the module
numbers in Table 9 (i.e. module 2’s done signal is bit 2 and its da signal is bit 10). See the implementation
section (Section 3) for more information on module numbers and what the da and done signals mean.

Using other configuration registers is mostly a matter of simply writing a value to the register. Each of
the registers can also be read if necessary.

SDRAM Refresh Timer The SDRAM Refresh Timer register (SDRAM RT) contains the number of clock
ticks between each refresh of the SDRAM modules and is independent of anything else. To change
this timer simply write a new value to the register, and to check the currently value simply read it. The
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31 16 15 8 7 0
unused da signals done signals

16 8 8

Figure 7: Status register format.

Bit # Signal
0 LED0
1 LED1
2 LGA0
3 LGA1

4 - 31 unused

Table 3: Bit assignment of LGA LED register.

SDRAM documentation [6] states that the modules should be refreshed every 15.625µs; the default
value of 78 (0x4E) causes a refresh every 15.6µs with a 5 MHz clock. If a 40 MHz clock is used, this
value should be set to 625 (0x271) to achieve a refresh every 15.625µs.

LGA and LED outputs The two LGA outputs go to a jumper on the back side of the baseboard such that
they can be used as inputs to a logic analyzer. The LED outputs go to the two LEDs on the baseboard.
All four of these outputs can be set using the LGA LED register with the bit assignments shown in
Table 3.

2.3 Communication with the daughtercard

The controller allows the user to either manually communicate with the daughtercard using the user pins
directly (Section 2.3.1), or read and write to the AHIP Daughtercard Memory area and have the controller
take care of forwarding the data to the daughtercard, which it does using AHIP (Section 2.3.2).

2.3.1 Accessing the user pins

User pins can be accessed directly, either individually or collectively in parallel. The USERp registers allow
access to an individual pin p. When a USERp register is read, bit 0 contains the logical value currently on
the pin, whether it is being driven by the controller or the daughtercard, and bit 1 contains the I/O direction
of the pin, a 1 indicates the pin is an output pin and being driven by the controller, a 0 indicates the pin is
an input and being driven by the daughtercard (or floating) (as shown in Table 4). When a value of 0 or 1
is written to a USERp register, the controller will drive the pin at that value; if a value of 2 is written to a
USERp register, the controller will stop driving the pin with any value, making it an input pin, available for
the daughtercard to drive.

The USER ALL and USER DIR registers allow access to all 26 pins at once. Reading USER DIR
returns wether each pin is set as an output or input, each pin’s direction is in 1 bit (i.e. pin 0’s direction is in
bit 0). Writing to USER DIR sets the direction of all 26 pins according to the corresponding bit in the value
written (i.e. if bit 5 of the value written is 1, pin 5 will be set to be an output). Reading the USER ALL
register returns the value of all 26 pins in the low 26 bits of the result. Writing to USER ALL sets all out put
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Bit value Meaning
0 Pin is an input and being driven by the daughtercard (or floating).
1 Pin is an output and being drive by the controller.

Table 4: Meaning of direction bits in the user pin registers.

Mode Number Description
Normal 0 All reads and writes are normal 32 bit reads and writes.

Test 1 All writes are test writes, reads to address 0x0 are test ad-
dress reads, reads to any other address are test data reads.

8-bit 2 All reads and writes are normal 8 bit reads and writes.
8-bit test 3 Like Test mode, but all 8 bit reads and writes.

Table 5: AHIP modes.

pins to the corresponding bit in the value written. Pins that are set to be input pins will not be affected by a
write to USER ALL.

2.3.2 Asynchronous Host Interface Port (AHIP)

AHIP is a data communication protocol that facilitates communication between two devices that do not share
a common clock. The controller uses AHIP to allow the user to access memory space on the daughtercard
directly. To read from or write to a memory location on the daughtercard, the user need only read from or
write to the AHIP Daughtercard Memory space on ATB0. The controller performs the host side of AHIP
and handles the actual transfer of data to and from the daughtercard, which acts as the slave.

AHIP can be used in one of four modes by setting the AHIP MODE register to a mode number shown
in Table 5. When in normal mode, all reads and writes to AHIP Daughtercard memory space become
normal AHIP reads and writes using the standard 32-bit AHIP protocol. When in test mode a write causes
a test write, a read from daughtercard address zero causes a test address read and a read from any other
daughtercard address causes a test data read, see Section 2.3.2.4 for more information on test mode. When
in 8 bit mode, normal reads and writes are performed, but the 8-bit AHIP protocol (Section 2.3.2.3, which
uses only the bottom 8 bits of the bus, is used. Finally, in 8 bit test mode, test reads and writes are performed
the same as in test mode, but the 8-bit AHIP protocol is used.

The AHIP protocol is described below to facilitate creating a client for the daughtercard that can com-
municate with ATB0. An example client is included in the source directory (in the ahip client subdirectory)
which is written to be connected to a block memory module on a Virtex II FPGA to create a simple memory
system that can be written to and read from using AHIP. ahip client.v contains the ahip client module for
normal 32 bit operation, and ahip8 client.v contains an ahip client that uses an 8 bit bus. Another example
can be found in ATC0 [3] which implements the client side of AHIP.

2.3.2.1 Asynchronous Transaction Protocol The protocol uses a 32-bit wide bi-directional bus and two
handshake signals, req, controlled by the host, and ack, controlled by the slave, to transfer data to and from
the daughtercard, with the controller acting as the host and the daughtercard as the slave. When idle, both
req and ack are low and the host is responsible for driving the bus so that it does not float. The host starts a
transaction by raising the req signal and placing a header on the bus in the format shown in Figure 8. The
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31 28 27 24 23 0
opcode bmc address

4 4 24

Figure 8: AHIP Header format.

Opcode Function
0000 Normal Write
0001 Normal Read
1000 Test Write
1001 Test Read (Data)
1101 Test Read (Address)

Table 6: AHIP opcodes.

header contains three fields: a 4-bit opcode field; a 4-bit burst-mode counter (bmc) for burst-mode read and
write; and a 24-bit address. The burst-mode read/write is not currently implemented by the controller and
reserved for future implementations, so the bmc field is set to zero and should be ignored. Table 6 shows
the different opcodes available. During normal operation, only the normal read and write are used. Some
opcodes are used to perform a self-test of AHIP, as described in Section 2.3.2.4. A variation of the standard
protocol that uses an 8-bit data bus is also supported and described in Section 2.3.2.3.

2.3.2.2 Writing and reading with AHIP The host starts a write by placing the header on the bus and
raising the req signal. After the slave observes that req is high, it reads the header word and raises the ack
signal. After the host receives ack, it places the write data on the bus and lowers req. The slave reads the
bus value and then lowers ack. The host will then free the data bus and both the host and the slave return to
the idle state. Figure 10 shows the timing diagram of the transaction.

Similar to word write, the host starts a read by placing the header on the bus and raising the req signal.
The slave will obtain the header and asserts ack. Once the host sees the ack, it frees the data bus and lowers
req. Once the slave is ready with the data, it places the data on the bus and lowers ack. The host reads the
data off the bus and raises req again, the slave then frees the data bus and raises ack. The host lowers req,
followed by the slave lowering ack, and both return to an idle state. Figure 9 shows the timing diagram of
the word read.

2.3.2.3 8 bit reads and writes When used in an 8 bit mode, reads and writes still transfer 32 bits, but
they do so 8 bits at a time. The protocol is similar, the host begins a transaction by placing the bottom 8
bits of the header (header[7:0]) onto the bus and raising the req signal. The slave observes that req is high,
reads the data from the bus and raises the ack signal. The host places the next 8 bits of the header onto the
bus and lowers req, which the slave reads and lowers ack. This process continues until all 4 bytes of the
header have been transmitted, one byte per edge. When the slave acknowledges receiving the last byte of
the header, if the access is a write, the host continues to send the data word, 1 byte at a time, starting from
the bottom 8 bits (data[7:0]), in the same manner until all four bytes have been sent. If the access is a read,
the host frees the bus and raises req to signal the slave can begin transmitting the read data back. The slave
then transmits the read data back to the host, one byte at a time, in similar manner. When the host raises
req to acknowledge receipt of the last byte, the slave raises ack one more time to indicate it it no longer
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driving the bus and the protocol finishes just as it did with the 32 bit read. The timing diagram for both an 8
bit write and read is shown in Figure 11, the write is on top.
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Figure 9: Timing diagram of an AHIP read.
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Figure 10: Timing diagram of an AHIP write.
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Figure 11: Timing diagram of an 8 bit AHIP write and read. The write is on top and the read is on the
bottom.

2.3.2.4 AHIP Self-Test To verify the correctness of AHIP functionality, both in the controller and the
implementation on the daughtercard, the top bit of the opcode is used to run AHIP in test mode. The
daughtercard must implement AHIP test mode for the test modes to be useful. When in test mode, a slave
device will store the address and the value written during a Test Write. A Test Read will then return either
the stored address or the stored data. The host can thus verify that both the data and address are being



ATB0 Engineering Document - Controller 16

transmitted correctly by performing a Test Write then a Test Read on both the data and the address and
checking that those values correspond to the data and address just written.

3 Implementation details

The ATB0 controller is written in Verilog and consists of the following interconnected modules.

Controller The top level module. It instantiates all other modules, connects them together, divides the
clock to provide a slower clock when needed, collects output from all the modules and pipelines it off
the chip, and defines the external interface.

Decode Responsible for decoding requests received from the host computer via the PLX interface and
forwarding the request on to the correct module depending on the address.

Voltage set Controls the DACs which set the desired voltage on the power supplies.

Voltage measure Controls the ADCs which measure the actual voltage on the power supplies.

Current measure Controls the ADCs which measure the current drawn from the power supplies.

SDRAM control Provides an interface to the on board SDRAM.

Clock Interfaces with the frequency synthesizer.

User pin Sets and reads the user pins.

AHIP Performs the host side of AHIP to perform memory transactions with the daughtercard on behalf of
the user.

LGALED A small module which holds the LGA LED register.

Figure 1 in the Introduction (Section 1) shows a block diagram of how these module interconnect with
each other and the rest of the system. In some instances, more than one of the modules requires the same
functionality, such as shifting the bits of a register onto a serial data line; in these cases, a seperate “helper”
module is defined and instantiated in each module that requires that functionality. The helper modules are:

shiftreg out Shifts the bits of a register onto a serial data line.

shiftreg in Shifts bits into a register from a serial data line.

counter A simple counter with an enable signal.

3.1 Clocking

One of the signals sent from the PLX daughtercard is a clock that is used as a global clock for the entire
controller; it is called CXCOE in the schematics (Chip Transmission Line Clock and Output Enable). A
slightly skewed second clock, called HCLK (Host Clock) in the schematics, is also sent but never used in
the current implementaiton of the controller. This global clock is laballed “clk” in the block diagrams in this
section.

Multiple modules (voltage set, voltage measure, current measure, and clock) interact with on board
components that can not run at the frequency of the global clock, thus a clock that is eight times slower is
generated for these components. It is labelled “sclk” in the block diagrams.
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3.1.1 Syncing with the slow clock

The FSM’s of the modules that interact with the on board components that require a slower clock must run
at the speed of the global clock for communication with the host PC to work. It is therefore necessary to get
in sync with the slow clock before communicating with the on board component. To avoid repetition, the
process is described here.

When leaving the idle state, the FSM checks to see if the slow clock is low or high, if it is high it enters
the SYNC1 state and waits for it to go low. Once the slow clock is low, it enters SYNC2 and waits for it to
go high. It then moves onto the next state at the beginning of the slow clock’s cycle. A timing diagram of
this can be seen in Figure 25 which shows the timing for the voltage set module.

3.2 Helper modules

Because they are used in many of the main modules, the helper modules are described here first.

3.2.1 Shift registers

The shift registers act like ordinary shift registers, except they only shift once every 8 clock cycles because
every modules that uses them interacts with a device running on a slower clock. They both use a 3 bit
counter to slow the shifting down. The size of the shift register is variable and determined by the module
that instantiates it using Verilog parameters.

The shiftreg out has three inputs, an input value the width of the register, a shift signal, and a clock
signal; it has one single bit output. When shift is low, the input is latched into the register on each positive
edge of the clock, the counter is disabled, and the output is tied low. When shift goes high the counter is
started and the output switches to the most significant bit of the register. The register maintains its value
until the count reaches 7, at which point it shifts it contents left by one bit, shifting a 0 into the LSB. The
process continues while shift is held high.

The shiftreg in has the same ports, except the input value is a single bit and the output value is the width
of the register. The shift input is used as the enable signal to the counter. When the count equals 7, the input
bit is shifted into the LSB of the register, otherwise the register remains unchanged. When shift is low, the
counter does not count and thus never equals 7, so no shifting occurs.

3 bit counter

7

clk
shift

in

<<
1

0

1

0
1

0
out

MSB

0

3 bit counter

7

1

0

clk

in

shift

out

3

?

(a) (b)

Figure 12: (a) shiftreg out block diagram. (b) shiftreg in block diagram.
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3.2.2 Counter

The counter is a variable width counter with an enable signal. The width is determined by the module that
instantiates it using Verilog parameters. When enable is low, the count stays at zero. When enable is high
the count increases by one each rising edge of the clock. The implementation is straightforward.

3.3 Controller module

The controller module is the top level module of the ATB0 controller. Its port are the interface with the PLX
interface card as well as the rest of the components on the baseboard, meaning each port in the controller
module is an actual pin on the FPGA. Figure 13 is a high level block diagram of the controller module
and how it connects everything together. It does not show each module’s control signals or the connections
between the modules and the external components on the baseboard. Figure 14 illustrates the flow of data
through the controller. A memory access request comes in to the controller through the HADS, HLWNR,
and HAD signals, is decoded by the decoder and forwarded on to a specific module via the address, enable,
w nr, and data lines. The address bus to the modules is 25 bits wide because the address space requires
27 bits to access and two of those bits are always zero due to word alignment. The modules perform the
requested task and communicates with the decode module using the done and da (data available) signals.
When the module is done performing its task, the data from the correct module is selected from the data
outputs of all the modules using the datasel signal; hadsel then selects to output this data to HAD. The data
is sent back to the PLX using the HLRDY, HXDIR, and HAD signals. These three signals are all registered
before being sent to the PLX for speed. While the module is performing the task, hadsel allows the status
lines from the decoder to be driven onto data bus and consequently onto HAD. The HXDIR signal is used to
enable a tri-state driver which drives the data bus onto HAD. The protocol of using these signals is described
in Section 3.4 when the decode module is described.

32

32
32

32

HADS
HLWNR

HLRDY

HXDIR

data_out signals

decode

modules

hadsel
status

clk

datasel

HAD

address
enable
w_nr

data

done
da
decode_data

data_bus

clk_div (x8)

sclk

25

Figure 13: Block diagram of the controller module.

The controller also instantiates a clock divider which is used by many of the components on the base-
board. The clock divider is implemented using a single 3 bit register that increments by one each rising edge
of the input clock. The top bit of the register is used as the slow output clock.
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HLWNR

HLRDY

HXDIR

clk

HAD

HADS

Figure 14: Dataflow through the controller.

3.4 Decode module

The decode module is responsible for communicating with the PLX interface card and controlling all other
modules. Inputs from the PLX interface are HADS (Host Adddress/Data Strobe), HLWNR (Host Local
Write Not Read), and HAD (Host Adress Data bus). The module also receives a done signal and a da
(data available) signal from each module in the controller. There are two outputs to the PLX, HXDIR (Host
Transmission Direction), and HLRDY (Host Local Ready). Control signals to each module are a w nr (write
not read) and enable signal. The module has a data output to drive the data bus with and an address bus that
goes to each module. Section 3.4.1 describes the PLX interface and Section 3.4.2 describes how the module
operates.

3.4.1 PLX Interface

The controller is designed to receive memory access commands from a PLX interface card, with the PLX
the bus master and the controller the bus slave. The protocol uses a 32-bit multiplexed address/data bus
(HAD), an address/data strobe signal (HADS), a write/read signal (HLWNR), and a ready signal (HLRDY).
The PLX begins a transaction by driving HAD with an address, setting HLWNR appropriately, and dropping
HADS. This sends the address to the controller. The PLX then waits for the controller to drop HLRDY. If
the operation is a write, when the controller drops HLRDY the PLX drives HAD with the write data until
HLRDY goes high again. If the operation is a read, when the controller drops HLRDY the controller drives
HAD with the read data for the PLX to read. Waiting for the HLRDY signal to drop allows the controller to
delay the read or write until it is ready. Figure 15 shows the timing of the transaction.

CXCOE

HADS

HLWNR

HAD

HLRDY
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address data

Figure 15: Timing diagram of general PLX access.



ATB0 Engineering Document - Controller 20

3.4.2 Decode implementation

The decode module is one of the more complex modules in the controller. It is responsible for communicat-
ing with the PLX and controlling all other modules. Figure 16 shows a block diagram of the control module,
with Table 7 providing an alphabetized description of each wire. At the heart of the module, like most of the
modules in the controller, is an FSM which performs each step necessary during a read or a write. Table 8
shows each state with its output.

8next_selected_module

state next_state

to registers

data_out

address_out

32

25

32

enable_outdecoder
3−to−8 enable
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1
0
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Figure 16: Block diagram of the decode module.

The module processes memory accesses from the PLX as they arrive. An access is initiated when
the FSM is idle and the HADS signal is dropped. If HADS is dropped and the FSM is not idle, it is
ignored. When the HADS signal is dropped the FSM raises the latch address signal to latch the address to
the address out bus and examines the address to determine which module should handle the access. To do
this, each module is given a number from 0 to 7 as shown in Table 9. If the address is in the SDRAM or
AHIP memory spaces, the appropriate module is saved in the selected module register. If the address is in
the control register space, bits 20 to 23 of the address are used as the selected module, this work because the
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Signal Description
address Output to modules. Used to drive the address bus that goes to each module.
clk Global clock. Used as clock input to all registers.
count Input to FSM. 16-bit count. Incremented by one each clock period when count go is high.
count go Output from FSM. Instructs the counter to count.
cs address Input from current measure module. Address to drive the address bus with when the current

measure module is writing directly to the SDRAM.
cs we Input from current measure module. Used to drive the address from the current measure

module onto the address bus instead of the address from the PLX. The only signal not from
the FSM.

da in Input from modules. One signal from each module indicates wheter or not the data supplied
by the module is available or not.

data Output to modules. Used to drive the data bus when datasel is DECODE.
datasel sel Output from FSM. This determine whether the datasel out output is hardwired to DECODE

or is driven with the selected module register.
done in Input from modules. One signal from each module indicates whether or not that module is

in an idle state. (i.e. done with a transaction).
enable Output to modules. One signal to each module which enable that module.
error Output from FSM. This is used to drive the status bus with the value 0xdeadbeef.
HAD Input from PLX. Mulitplexed bus that carries both the address and data from the PLX.
HADS Input from the PLX. Used to initiate a memory access.
hadsel Output to main controller module. Used to determine if the data bus or the status signal

should be driven to HAD on a read. High means the status is driven.
HLRDY Output to PLX. Used to signal to the PLX that the controller is ready to either send or

receive data. When this is low, the data on the bus is valid.
HLWNR Input from the PLX. Used to determine if memory access is a read or a write.
HXDIR Output to PLX. Used to determine if the controller of the PLX should drive the HAD bus.

High means the controller is driving the bus.
latch address Output from FSM. The enable signal for the address out register. When high, address out

latches the address portion of the HAD bus. This is also the enable signal for the se-
lected module register.

latch data The enable signal for the data out register. When high the data out register latches the
HAD bus.

module da Input to FSM. One of the da in signals selected by selected module.
module done Input to FSM. One of the done in signal selected by selected module.
module en This is used to enable the currently selected module. When high, the enable signal going

to the module saved in the selected module register is driven high.
nreset Global reset. Used to reset all register.
selected module An internal register. Contains the module number of the most recent access from the PLX.

It determines this using the address on the HAD bus. If the address is in the SDRAM
memory space or AHIP memory space it is the number corresponding to those modules, if
the address is in the control register space, it obtains the module number from the address
itself. Enabled by the latch address signal.

status A status word to send back to the user. Contains all the done and da signals from the
modules.

w nr Output to the modules. The HLWNR signal is simply forwarded to each module to indicate
whether the access is a write or a read.

Table 7: Decode module wire descriptions.
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latch enables
state data address datasel sel hadsel HLRDY HXDIR module en count go error next state
IDLE 0 !HADS 1 1 1 1 0 0 0 [1]

WAIT START 0 0 1 1 1 1 0 1 0 [2]
WRITE 0 0 1 1 0 1 0 0 0 WAIT WRITE

WAIT WRITE count == 1 0 1 1 1 1 count == 1 1 0 [3]
READ 0 0 0 0 1 0 1 0 0 STALL
STALL 0 0 0 0 1 0 0 0 0 WAIT READ

WAIT READ 0 0 0 0 1 0 0 1 0 [4]
SEND 0 0 0 [5] 0 0 0 0 0 IDLE

TIMEOUT 0 0 0 HLWNR 0 HLWNR 0 0 1 IDLE

[1] next state = HADS ? IDLE :
(next selected module == DECODE) ? SEND : WAIT START

[2] next state = module done ? HLWNR ? WRITE : READ :
(count = timeout) ? TIMEOUT : WAIT START

[3] next state = count == 1 ? IDLE : WAIT WRITE
[4] next state = module da ? SEND :

(count == timeout) ? TIMEOUT : WAIT READ
[5] hadsel = (selected module == DECODE)

Table 8: Decode module state definitions.

Module Number
Voltage Set 0
Voltage Measure 1
Current EMasure 2
Clock 3
SDRAM 4
USER pin 5
LGALED 6
AHIP 7
DECODE 8

Table 9: Module numbers.

control registers are placed in memory such that bits 20 to 23 of the address contain the module number. If
the selected module is the decode module, the FSM goes straight to the SEND state to send the status word.
Otherwise it goes to the WAIT START state.

In the WAIT START state, the FSM waits for the selected module to raise its done signal in case the
module is busy finishing a previous operation. During this state the counter is going and if the count reaches
a specified timeout (currently 0xFFFF) the FSM goes to the TIMEOUT state. When the selected module’s
done signal is high, the FSM goes to either the WRITE or READ state depending on the value of HLWNR.

In the WRITE state, the FSM drops the HLRDY signal for one cycle and moves immediately to the
WAIT WRITE state. Here it waits one cycle for the HLRDY signal to make it off the baseboard and to
the PLX (it must go through two registers). In the second cycle in the WAIT WRITE state the latch data
signal is raised to latch the data from the PLX and module en signal is raised to enable the selected module.
Following the second cycle in the WAIT WRITE state, the FSM goes back to IDLE ready to process another
request while the module that just received the write command is processing the write. Figure 17 shows a
timing diagram of this process.
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Figure 17: Timing diagram of a write for decode module.
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During the READ state, the module en signal is raised, enabling the selected module. The FSM then
waits a cycle in the STALL state to give the module enough time to lower its da signal and for that da signal
to make it back to the decoder. After waiting a cycle the FSM enters the WAIT READ state in which it waits
for the module to raise its da signal to indicate that the read data is available. Like the WAIT START state,
this state is timed by the counter and can timeout. Once the module raises its da signal, the FSM moves to
the SEND state. In the SEND state, HXDIR is lowered to make the HAD bus driven by the controller and
the HLRDY signal is lowered to tell the PLX the data is being sent on the bus. If the selected module is the
decode module, hadsel is used to send the status word, otherwise the data bus, which is the output from the
currently selected module, is sent to the PLX. After the SEND state the FSM goes back to IDLE. Figure 18
shows a timing diagram of this process.
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Figure 18: Timing diagram of a read for decode module.

In the TIMEOUT state, HLRDY is dropped so the PLX will stop waiting for the controller. If the access
is a read, the hadsel and error signal are used to return 0xdeadbeef. If the access is a write, the write is never
performed. Following the TIMEOUT state the controller returns to IDLE.

3.5 SDRAM control module

The SDRAM control module is responsible for all communication with the SDRAM chips on the baseboard.
The SDRAM chips need to be regularly refreshed so the module uses a seperate refresh timer to keep track
of when a refresh should occur, this is described in Section 3.5.1 then the operation of the actual SDRAM
control module is described in Section 3.5.2.



ATB0 Engineering Document - Controller 25

3.5.1 Refresh Timer

The refresh timer has three main inputs, a clock, reset, and maximum value, and one output, an expired
signal. It consists of a simple counter that counts up by one each clock cycle until the count equals the
maximum value given. When the count reaches the maximum value it stops counting and raises the expired
output. It holds expired high until the reset signal is raised at which point it resets the counter to 0, and starts
over. A block diagram is shown in Figure 19.

maxvalue

expired

reset
clk

+1
1

0

0

10

16

Figure 19: Refresh timer for the SDRAM control module.

3.5.2 SDRAM control module implementation.

The SDRAM control module performs the necessary initialization of the SDRAM chips when reset and
performs reads and writes to the SDRAM during use. Along with the standard interface to the decode
module, the SDRAM control modules controls all signals going to the SDRAM chips. The global clock
is used as the clock for the SDRAM chips and the CKE (clock enable) input to the SDRAM is tied high
so the clock is always activated. The input/output mask, SDDQM, to the SDRAM is tied low so SDDQ is
never masked. The three command inputs, SDWE B, SDCAS B, and SDRAS B, are controlled by the FSM
within the SDRAM control module. The bank address (SDBA), address (SDA), and data (SDDQ) inputs to
the SDRAM come from internal registers, as controlled by the FSM.

Figure 20 shows a block diagram of the SDRAM control module, with Table 12 providing an alphabet-
ized description of each wire. Table 10 shows each state with its output. Because it is often necessary to wait
a specific number of cycles, three WAIT states are defined in the FSM and an additional wait state register
is added. When in the wait states, the FSM counts down from WAIT3 to WAIT2 to WAIT1 then returns to
the state saved in the the wait state register.

After a reset, the FSM goes through an initialization process to prepare the SDRAM chips for use, this
follows the process described in the SDRAM data sheets [6]. After issuing an initial NOP command in
the INIT state, in the PRECHARGE ALL state, sda sel is set to precharge all (00b) to output the address
0x400 to indicate the SDRAM should precharge all banks, a PRECHARGE command is then issued to
the SDRAM. The FSM waits three cycles to ensure all banks are precharged then issues two REFRESH
commands with a 3 cycle delay after each. Finally, a LMR command is issued loading the mode register
with the value of 0x021 by setting sda sel to mode (01b). This tells the SDRAM that the controller wants
sequential bursts of length two and a CAS latency of two (this means that data appears two cycles after a
read command is issued). After the mode register is loaded, the FSM goes to an IDLE state. Figure 21
shows a timing diagram of this process.

When idle, the FSM waits for a memory access to come from ether the decode module or the current
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Figure 20: Block diagram of the SDRAM control module.
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latch enables
state sdram op data sel sda sel write data rt address sddq hilo drive sddq da done
INIT NOP - - 0 0 0 - 0 0 0

PRECHARGE ALL PRECHARGE - precharge all 0 0 0 - 0 0 0
INIT REFRESH REFRESH - - 0 0 0 - 0 0 0

INIT REFRESH2 REFRESH - - 0 0 0 - 0 0 0
INIT LMR LMR - mode 0 0 0 - 0 0 0

IDLE [1] [2] - [3] [4] [3] - 0 ![3] ![3]
BEGIN WRITE ACTIVE save row 0 0 0 - 0 1 0

WRITE 1 WRITE save column 0 0 0 1 1 1 0
WRITE 2 NOP save - 0 0 0 0 1 1 0

BEGIN READ ACTIVE save row 0 0 0 - 0 0 0
READ ISSUE READ save column 0 0 0 - 0 0 0

READ 1 NOP get hi - 0 0 0 - 0 0 0
READ 2 NOP get lo - 0 0 0 - 0 1 1
WAIT3 NOP save - 0 0 0 - 0 0 0
WAIT2 NOP save - 0 0 0 - 0 0 0
WAIT1 NOP save - 0 0 0 - 0 0 0

[1] sdram op = refresh expired ? REFRESH : NOP
[2] data sel = (enable & ctl reg & !w nr) ? rt : save
[3] latch write data, latch address, !da, !done = (enable & !ctl reg)
[4] latch rt = (enable & ctl reg & w nr)

Table 10: SDRAM control module state definitions.

State Next State Next Wait State
INIT PRECHARGE ALL -
PRECHARGE ALL WAIT3 INIT REFRESH
INIT REFRESH WAIT3 INIT REFRESH2
INIT REFRESH2 WAIT3 INIT LMR
INIT LMR IDLE -
IDLE [1] -
BEGIN WRITE WAIT1 WRITE 1
WRITE 1 WRITE 2 -
WRITE 2 WAIT1 IDLE
BEGIN READ WAIT1 READ ISSUE
READ ISSUE WAIT1 READ 1
READ 1 READ 2 -
READ 2 WAIT1 IDLE
WAIT3 WAIT2 wait state
WAIT2 WAIT1 wait state
WAIT1 wait state -

[1] next state = (enable & !refresh expired & !ctl reg) ? (w nr ? BEGIN WRITE : BEGIN READ) : IDLE

Table 11: SDRAM control module state transitions.
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Signal Description
address This is the last saved address and is split into the three parts: address[23:22] is the bank, ad-

dress[21:10] is the row, and address[9:0] is the column.
address in Input from the decode module, this is saved (latched) as address whenever latch address is high and

cs we is low.
clk Global clock. Used as clock input to all registers and sent to the SDRAM as SDCK.
cs address Input from current measure module. Address to write to when cs we goes high.
cs we Input from current measure module. Indicates that the current measure module wants to write what

is on the data bus to cs address.
ctl reg Used to determine if an access is reading or writing to a control register (namely, the refresh time) or

actual SDRAM memory.
da Output to decode module. Indicates when data out is valid.
data in Input from decode module. Value to write to the SDRAM or set the refresh time to.
data out Output to PLX. Contains either the latest value read from SDRAM or the value of the refresh time.
data sel Internal control signal. Used to determine what value is latched into data out. There are four choices:

the refresh time, keep the same value, keep the low 16 bits and get the high 16 bits from SDDQ, or
keep the high 16 bits and get the low 16 bits from SDDQ.

done Output to decode module. Indicates that the FSM is idle and ready for a memory acceess.
drive sddq Internal control signal. Used as the enable pin to the tri-state driver on SDDQ to determine if the

module should drive SDDQ or not.
enable Input to FSM. Begins a memory access; either cs we going high or the enable in signal from the

decode module raises enable.
latch address Enable signal to address register. When this is high, the address register latches address in on the the

rising edge of the clock.
latch rt Enable signal to the refresh time register. When this is high, the refresh time register latches data in

on the rising edge of the clock.
latch write data Enable signal to write data register. When this is high, the write data register latches the appropriate

bits of data in on the rising edge of the clock.
nreset Global reset. Used to reset all registers.
refresh expired Input from refresh timer. Indicates that the timer has reached the maxvalue, which is refresh time,

and the SDRAMs should be refreshed.
refresh time The time the user has set to be the number of ticks between refreshes of the SDRAM. Used as the

maxvalue input to the refresh timer.
reset refresh Input into the refresh timer, indicates that a refresh has occured and the refresh timer should reset and

start counting again.
sda sel Used to selected what is output to SDA. There are four choices: the command to precharge all banks

(0x400), the mode to use (0x021), the row (address[21:10]) or the column (01b, address[9:0], 0b)
SDA Output to SDRAM. The address bus.
SDBA Output to SDRAM. The bank address. Obtained from the highest two bits of the last saved address.
SDCAS B Output to SDRAM. One of three control signals to the SDRAM that make up the opcode (the others

are SDWE B and SDRAS B).
SDCK Output to SDRAM. The clock to the SDRAM.
SDCKE Output to SDRAM. The clock enable signal, used to put the SDRAM in a low-power standby mode,

tied high to indicate SDRAM should always be ready.
SDDQ Output to SDRAM. The data bus, used for both input and output.
sddq hilo Internal control signal. Used to determine wether the high or low bits of the saved write data is driven

to SDDQ when drive sddq is high.
SDDQM Output to SDRAM. The mask for SDDQ, tied to ground to indicate SDDQ should always be used.
sdram op Output from FSM. Split into SDWE B, SDCAS B, and SDRAS B. Forms the opcode sent to the

SDRAM.
SDRAS B Output to SDRAM. One of three control signals to the SDRAM that make up the opcode (the others

are SDWE B and SDCAS B).
SDWE B Output to SDRAM. One of three control signals to the SDRAM that make up the opcode (the others

are SDRAS B and SDCAS B).
write data Internal register. The data that will be written to the SDRAM.
wait state Internal register. The state to go to after waiting in the wait states.
w nr Input to FSM. Used to determine if a memory access is a write or a read, cs we can force this high,

otherwise it follows w nr in from the decode module.

Table 12: SDRAM control module wire descriptions.
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measure module. To allow the current measure module to write to the SDRAM, cs we and cs address are
used. When cs we goes high, enable and w nr both go high and cs address is sent to the address register
instead of address in; thus a write from the current measure module looks just like a write from the user.
While waiting for an access, if refresh expired goes high it issues a REFRESH command and resets the
refresh timer. When enable is raised indicating an access request has arrived, it checks the ctl reg signal
to see if the access is to the control register (the refresh time) or to SDRAM. If the access is to the control
register and a write, latch rt is raised to latch the new refresh time and the FSM remains idle. If the access
is to the control register and a read, then data sel is set to rt (01b) to output to refresh time and the FSM
remains idle. If the access is to SDRAM it latches both the write data and the address and goes to either
BEGIN WRITE or BEGIN READ depending on w nr.

In BEGIN WRITE, the ACTIVE command is sent to the SDRAM with the top two bits of the latched
address as the bank (SDBA) and the next 12 bits as the row to activate (sent on SDA by setting sda sel to
row (10b)). It waits a cycle for the correct bank and row to be activated then goes to the WRITE 1 state. In
WRITE 1, the WRITE command is issued to the SDRAM with the the bottom 11 bits of SDA the bottom 10
bits of the latched address multiplied by two because there are two SDRAM locations for every 32-bit word
in SDRAM address space. Bit 10 of SDA is set to 1 to indicate we want the SDRAM chip to auto precharge
when done, and bit 11 is unused and set to 0. All this is accomplished by setting sda sel to column (11b).
During WRITE 1, sddq hilo and drive sddq are high to drive the high 12 bits of the latched write data onto
SDDQ. Next, in WRITE 2, a NOP is issued and sddq hilo is dropped, keeping drive sddq high, to drive
SDDQ with the low 12 bits of write data, finishing the burst. The FSM waits one more cycle for the bank to
be precharged and then returns to the IDLE state. Figure 22 shows a timing diagram of this process.
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Figure 22: Timing diagram of a SDRAM write.

In BEGIN READ, the ACTIVE command is sent to the SDRAM with the top two bits of the latched ad-
dress as the bank (SDBA) and the next 12 bits as the row to activate (sent on SDA), just like BEGIN WRITE.
It waits a cycle for the correct bank and row to be activated then goes to the READ ISSUE state. In
READ ISSUE the READ command is issued to the SDRAM with SDA selecting the appropriate column
and auto precharge as it was during a write. After waiting a cycle for the data to arrive, in READ 1, data sel
is get hi (10b) to latch the high word from SDDQ into data out. Then in READ 2 data sel is get lo (11b) to
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state done PVSCSB sr shift vsreg we count go next state
IDLE 1 1 0 (enable & w nr) 0 [1]

SYNC1 0 1 0 0 0 sclk ? SYNC1 : SYNC2
SYNC2 0 1 0 0 0 sclk ? ZEROS : SYNC2
ZEROS 0 0 0 0 1 (count[6:0] == 0x1F) ? SHIFT : ZEROS
SHIFT count == 0x7FF 0 1 0 1 [2]

[1] next state = (enable & w nr & (address == 0xF)) ? (sclk ? SYNC1 : SYNC2) : IDLE
[2] next state = (count[6:0] == 0x7F) ? (count[10:7] == 0xF) ? IDLE : ZEROS : SHIFT

Table 13: Voltage set module state definitions.

latch the low word from SDDQ into data out. The FSM waits one more cycle for the bank to be precharged
and then returns to the IDLE state. Figure 23 shows a timing diagram of this process.
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Figure 23: Timing diagram of a SDRAM read.

3.6 Voltage Set module

The voltage set module interacts with the 16 DACs on ATB0 that are used to set the voltage level for each
of the 16 power supplies. There are 16 registers to hold the values for each of the power supplies (VSR0 -
VSR15). Writing to any of them except VSR15 just sets the register value, it does not set the actual voltage.
Writing to VSR15 sets the VSR15 register then initiates the scanning-in process described below to actually
set the voltage on each power supply. Reading a voltage set register just returns the value in the register, it
does not return the actual voltage of the power supply, the voltage measure module can be used for that.

The DACs used are daisy chained together, and for each chip, “the data at DIN appears at DOUT, delayed
by 16 clock cycles plus one clock width” [7]. Therefore, by shifting 256 bits into the first DAC, with values
in the order they are daisy chained together, the module sets all 16 of them. This is accomplished with a
shiftreg out module. The ordering of the chips is: 9, 1, 5, 15, 11, 7, 3, 13, 12, 2, 6, 10, 14, 4, 0, 8 (starting
from the last in the chain, going to first). See the DAC’s datasheet [7] or the hardware document [1] for
more information. Another caveat is the DACs can not run at 40 MHz, 15 MHz is the fatest they will go, so
we use the slow clock provided by the controller module.

Figure 24 shows a block diagram of the voltage set module, with Table 14 providing an alphabetized
description of each wire. The module uses a FSM to perform the scanning-in to the DACs. Table 13 shows
each state with its output.
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Signal Description
address Input from decode module. Contains the power supply number of the access and is used as

an address into the register file.
clk Global clock. Used as clock input to all registers.
count Input to FSM and used to selected which register in the register file to load into the shift

register during shifting. From an 11-bit counter that is incremented by one each clock
period when count go is high.

count go Output from FSM. Instructs the counter to count.
da out Output to decode module. Tied high to indicate data is always available.
data in Input from decode module. Value to set the register to when writing.
data out Output to PLX. Always contains the register at the address on the address bus (one cycle

later).
done Output to decode module. Indicates that the FSM is idle and ready for a memory access.
enable Input from decode module. Begins a memory access.
nreset Global reset. Used to reset all registers.
PVSCK Power Voltage Set Clock. Clock to the voltage setting DACs.
PVSCSB Power Voltage Set Chip Select (Bar). Used to instruct the voltage set DACs to latch the

incoming serial data into their internal registers. Active low.
PVSDI9 Power Voltage Set Data In (#9). Serial output to DAC that sets desired voltage for the

power supply 9. This is the beginning of the chain of DACs that sets the voltage for all
power supplies.

PVSRSB Power Voltage Set Reset (Bar). Used to reset the voltage set DACs. Active low.
sclk Slow clock from controller module.
sr in Input to the shift register. This is one of the 16 registers in the register file.
sr shift Input to the shift register. This instructs the shift register to shift its data onto the serial data

line PVSDI9. When this is low, the shift register latches its input, sr in.
vsreg we Write enable input to the register file. When high, data in is latched onto the register at

address.
w nr Input from decode. Determines whether an access is a write or a read.

Table 14: Voltage set module wire descriptions.
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Figure 24: Block diagram of the voltage set module.

The FSM is not used when the user reads and writes to the registers. When both enable and w nr
are high, vsreg we is raised and the data is latched into the appropriate register, selected by address. The
vsreg we register is part of the FSM to ensure that the registers are only written to when the FSM is idle
and not shifting. Since data out is always driven with the register selected by address, no additional work is
needed to perform a read of a register, the data available signal is always high.

When register 15 is written to, the FSM performs the scanning in process. First the FSM gets insync
with the slower clock that the DACs use as described in Section 3.1.1. Once synced, the scanning in process
occurs during the ZEROS and SHIFT state and PVSCSB is therefore low during both of these states. The
counter is also going while scanning in. During the ZEROS state, four zeroes are outputted by holding
sr shift low (causing the shiftreg to hold it’s output low) for four sclk cycles (0x1F normal cycles). While
waiting for the zeros to complete, the shift register is loaded with the next register value to shift out, based
on the value of the count. Because the sclk is 8 times slower than the global clock each bit takes 8 cycles to
complete, and each power supply requires 16 bits to be “shifted” in, totalling 128 cycles per power supply.
Therefore, the top 4 bits of the count (count[10:7]) can be used to count what power supply’s value is being
shifted in (i.e. if count[10:7] is 0, VSR9 is loaded into the shift register, if count[10:7] is 2, VSR5 is loaded
into the shift register). After waiting 4 sclk cycles in the ZEROS state, the FSM enters the SHIFT state and
instructs the shift register to shift out its newly latched value, one bit every 8 cycles. After 12 sclk cycles
(or a total of 0x7F normal cycles), the FSM goes back to the ZEROS state and repeats the process. This is
continued until the counter reaches 0x7FF, marking the end of the scanning in. The FSM then returns to the
IDLE state. Figure 25 shows a timing diagram of the beginning of this process.
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VSR9 VSR1sr_in
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Figure 25: Timing diagram for the voltage set module. Shows the beginning of the scanning in process, will
continue to switch between the ZEROS and SHIFT state until all power supplies have been finished.

state done da count go sr shift latch address convert next state
IDLE !read !read 0 0 read 0 read ? sclk ? SYNC1 : SYNC2 : IDLE

SYNC1 0 0 0 0 0 0 sclk ? SYNC1 : SYNC2
SYNC2 0 0 0 0 0 0 sclk ? SYNC2 : CONV

CONVERT 0 0 1 0 0 1 (count == 0x1) ? SHIFT : CONV
SHIFT 0 0 1 1 0 0 (count == 0xD) ? SAMPLE NEXT : SHIFT

SAMPLE NEXT 0 1 1 0 0 0 (count == 0xF) ? IDLE : SAMPLE NEXT

Table 15: Voltage measure module state definitions.

3.7 Voltage measure module

The voltage measure module interacts with the 14 ADCs on ATB0 that are used to measure the actual
voltage of each of the positive power supplies. All 14 ADCs have an individual convert signal and all share
a single serial data line. The module uses a single shift register, but from the user’s point of view there
are 14 different registers, VMR0 - VMR13, one for each power supply. Writes to any register are ignored.
When the user reads a register, the module instructs the specified power supply’s voltage measure ADC
to convert the voltage to a 12-bit value and then reads that value into the shift register. When the shifting
has completed, the newly obtained value is sent to the user. A FSM is used to step through the process.
Figure 26 shows a block diagram of the module, Table 16 contains an alphabetized description of each wire,
and Table 15 shows each state with its outputs.

When the FSM is idle, it waits for enable to go high with w nr low to indicate a read. When this
happens, latch address is raised to save the address of the read and the FSM gets insync with the slower
clock as described in Section 3.1.1. When done syncing, it moves to the CONVERT state and raises the
convert signal, causing the PVMCVB to the ADC specified by the saved address to go low; the counter is
also started in the CONVERT state. The count into the FSM is the top 4 bits of the actual count, so it is
incremented once every 8 cycles, the same rate at which the bits are shifted in. After waiting two sclk cycles
in the CONVERT state while the ADC converts the voltage to a value, the FSM moves into the SHIFT state
for 12 sclk cycles and raises sr shift to instruct the shift register to shift the value coming in on PVMD into
its register. When done shifting, the data is available so the da signal is raised, but the FSM moves into
SAMPLE NEXT state to wait two sclk cycles for the ADC to get the next sample before raising done and
becoming idle, this is to insure another access to the same ADC does not follow too closely. After two sclk
cycles in SAMPLE NEXT, the FSM returns to the IDLE state. Figure 27 shows a timing diagram of this
procedure.
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Figure 26: Block diagram of the voltage measure module.

Signal Description
address Input to decoder. Saved address used to determine which ADC’s convert signal to drop

when convert is raised.
address in Input from decode module. Saved when an access occurs to be used later.
clk Global clock. Used as clock input to all registers.
count The top 4 bits of the 7 bit counter.
count go Output from FSM. Instructs the counter to count.
da Output to decode module. Informs decode when data is available to send to PLX.
data out Output to PLX. Always contains the current value of the shift register.
done Output to decode module. Informs decode that FSM is idle and ready for an access.
enable Input from decode module. Begins a memory access.
latch address Output from FSM. Enable signal to address register.
nreset Global reset. Used to reset all registers.
PVMCK Power Voltage Measure Clock. Clock to the voltage measure ADCs.
PVMCVB Power Voltage Measure Convert (Bar). Used to instruct the voltage measure ADCs to

convert the voltage on their input to their internal register.
PVMD Power Voltage Measure Data. Serial input from voltage measure ADCs.
read Input to FSM. High when enable is high and w nr is low to indicate a read access from the

decode module.
sclk Slow clock from controller module.
sr shift Input to the shift register. This instructs the shift register to shift in data from PVMD. (One

bit every 8 cycles).
w nr Input from decode module. Determines whether an access is a write or a read.

Table 16: Voltage measure module wire descriptions.
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Figure 27: Timing diagram for the voltage measure module. This is the timing of the value from the ADC
being shifted into the shift register.

state done da count go sr shift convert write sdram sdram we next state
IDLE !conv !conv 0 0 0 0 0 conv ? sclk ? SYNC1 : SYNC2 : IDLE

SYNC1 0 0 0 0 0 0 0 sclk ? SYNC1 : SYNC2
SYNC2 0 0 0 0 0 0 0 sclk ? CONVERT : SYNC2

CONVERT 0 0 1 0 1 0 0 (bit∗ == 0x1) ? SHIFT : CONVERT
SHIFT 0 0 [1] 1 0 0 0 [2]

SAMPLE NEXT 0 1 1 0 0 0 0 (bit == 0x1) ? IDLE : SAMPLE NEXT
WRITE SDRAM 0 0 1 0 0 1 [3] (bit == 0x7) ? IDLE : WRITE SDRAM

∗ bit = count[6:3]
[1] count go = !(bit == 0xD)
[2] next state = (bit == 0xD ? address[10] ? SAMPLE NEXT : WRITE SDRAM : SHIFT
[3] sdram we = (count[2:0] == 0x7)
latch address = (state == IDLE & enable) | write sdram
latch sda = (state == IDLE & enable & w nr & address in == 0x0) | (write sdram & count[2:0] == 0x0 & count[6:3] != 0x0)

Table 17: Current measure module state definitions.

3.8 Current measure module

The current measure module interacts with the 14 ADCs on ATB0 that are used to measure the current
drawn from each of the positive power supplies. One convert signal controls all 14 ADCs and each of them
have an individual serial data line. The module works much like the voltage measure module except that it
has 14 shift registers instead of just one and does not need a decoder to use the correct convert signal to the
ADCs, as there is only one. It also has the added functionality of writing the measurements to the onboard
SDRAM when requested. From the users point of view, there is one register (CM BURST) that holds the
address in SDRAM memory space where measurements are put and initiates a measurement of all power
supplies when read, there are also 196 (14 ∗ 14) registers (CMmn) that can be used to read any two power
supplies at once. The CM MASK register is not currently implemented.

When the user reads either CM BURST or one of the CMmn registers, the module instructs each power
supply’s current measure ADC to convert the voltage from the current sensor to a 12-bit value and then reads
those values into the 14 shift registers. When the shifting has completed, if CM BURST was read, each of
the 14 measurements are stored into SDRAM and the address they were stored at is returned to the user; if
a CMmn register was read, the two values requested are returned to the user.

As usual, a FSM is used to step through the process. Figure 28 shows a block diagram of the module,
Table 18 contains an alphabetized description of each wire, and Table 17 shows each state with its outputs.
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Figure 28: Block diagram of the current measure module.
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Signal Description
address Internal register. Contains the address of the current memory access. Used to determine

what to sent back to the user on the data out bus.
address in Input from decode module. Saved when an access occurs to be used later. The LSB is used

immediately when enable is raised to determine if the access requires a conversion or is
just reading a control register.

clk Global clock. Used as clock input to all registers.
count The count of the 7 bit counter.
count go Output from FSM. Instructs to the counter to count.
conv Obtained from enable, w nr, and the LSB of address in. When high, indicates to the FSM

that new measurements (a conversion) are required.
convert Output from FSM. Inverted to obtain the PCMCVB signal.
da Output to decode module. Informs decode when data is available to send to PLX.
data in Input from decode module. Used to set the sdram address where new measurements should

be placed in SDRAM memory.
data out Output to PLX. Contains either the value of the two shift registers pointed to by address or

start sdram address.
done Output to decode module. Informs decode that FSM is idle and ready for an access.
enable Input from decode module. Begins a memory access.
latch address Output from FSM. Enable signal to address register. When high the address register latches

either address in or an address created from the count when writing to the SDRAM.
latch sda Output from FSM. Enable signal to sdram address register. When high the sdram address

register latches either data in from the user or sdram address plus 4 when writing to the
SDRAM.

nreset Global reset. Used to reset all register.
PCMCK Power Current Measure Clock. Clock to the current measure ADCs.
PCMCVB Power Current Measure Convert (Bar). Used to instruct the current measure ADCs to

convert the voltage on their input to their internal register. Active low.
PCMD Power Current Measure Data. Individual serial input from each of the 14 current measure

ADCs.
sdram address Output to decode and SDRAM control modules. Used as the address to write data out to

when sdram we is high.
sdram we Output to decode and SDRAM control modules. Used to tell those module that the current

measure module wants to write to SDRAM. When high, the value on data out is written to
the SDRAM address sdram address.

sclk Slow clock from controller module.
sr shift Input to shift registers. This instructs the shift registers to shift in data from PCMD. (One

bit every 8 cycles.)
w nr Input from decode module. Determines whether an access is a write or a read.
write sdram Output from FSM. Control signal used to instruct rest of module that we are writing to

the SDRAM and to behave accordingly. When high, address is obtained from the count,
data out is determined by the address, and sdram address increments by 4.

Table 18: Current measure module wire descriptions.
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When the FSM is idle, it waits for the user to read from CM BURST or a CMmn register, this is done
by waiting for the conv signal to go high, indicating that enable is high and w nr is low, which means a read
is requested and a conversion is necessary. If the user is writing to CM BURST then latch sda is raised to
cause sdram address to latch the new address on data in and the FSM remains IDLE. All other writes are
ignored.

When conv goes high, the FSM raises latch address to save the address and drops done and da to indicate
that it is busy and data out is not valid. The FSM then gets insync with the slower clock as described in
Section 3.1.1 and moves to the CONVERT state. In CONVERT, it raises the convert signal, causing the
PCMCVB to the ADCs to go low. Using the counter, the FSM waits two sclk cycls in CONVERT then
moves to the SHIFT state for 12 sclk cycle and raises sr shift to instruct the shift registers to shift in the value
coming in on PCMD into their registers. During the shifting state, start sdram address latches sdram address
so it is available to output after a write to SDRAM when sdram address has changed. On the last cycle of
shifting, the counter is reset to prepare for a possible write to SDRAM and the address is checked; if the user
is reading from a CMmn register, the FSM waits two additional sclk cycles in SAMPLE NEXT to allow the
ADC to sample the next voltage before another read is performed. Because address[10] is high, data out
will be the value of the two shift registers pointed to by the saved address. This part of the process is nearly
identical to the voltage measure timing shown in Figure 27.

When done shifting, if the user is reading CM BURST, the FSM goes into the WRITE SDRAM state.
During the WRITE SDRAM state, the module is in an 8 cycle loop controlled by the counter. Each loop
iteration writes two measurements into an SDRAM word; writing only once every 8 cycles give the SDRAM
time to perform the write and return IDLE. Within the loop, the counter is used to generate an address to
output. Bits 9 to 6 of the address are count[5:3] followed by a 1, and bits 5 to 2 of the address are count[5:3]
followed by a 0. This way as the count progresses upward, the address bits used to determine data out
move through 0x10, 0x32, 0x54, etc. on up to 0xCB, changing every time around the 8 cycle loop. At the
beginning of the loop, sdram address is also incremented by one (except for the first iteration, when it is
not incremented). The address into the SDRAM control module is a word address, not a byte address, so
incrementing this address by one takes us to the next word in SDRAM memory space. The next cycle in the
loop, data out contains the values of the appropriate shift registers. Then at the end of a loop iteration (when
count[2:0] is 7) the sdram we signal is raised to tell the SDRAM controller to write the value on data out to
sdram address. A timing diagram of two loop iterations is shown in Figure 29. This method was chosen as
opposed to performing a burst write to the SDRAM to avoid dealing with bank and row boundaries.
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Figure 29: Timing diagram of the current measure module writing to SDRAM memory.
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state done CKSL sr shift count go latch data next state
IDLE !write 0 0 0 write write ? (sclk ? SYNC1 : SYNC2) : IDLE

SYNC1 0 0 0 0 0 sclk ? SYNC1 : SYNC2
SYNC2 0 0 0 0 0 sclk ? WAIT : SYNC2
WAIT 0 0 0 !(count == 0x2) 0 (count == 0x2) ? SHIFT : WAIT
SHIFT 0 1 1 1 0 (count == 0x70) ? IDLE : SHIFT

Table 19: Clock module state definitions

3.9 Clock module

The clock module interacts with a programmable frequency synthesizer to set the frequency of the clock
sent to the daughtercard. A 14 bit control register is used to configure the chip (CLOCK). When the register
is written to the value written to the register is immediately shifted into the frequency synthesizer and saved
for later reference. When the register is read, the last value sent to the synthesizer is returned. As usual, an
FSM is used to step through the process. Figure 30 shows a block diagram of the module, Table 20 contains
an alphabetized description of each wire, and Table 19 shows each state with its output.
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write

data_in
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Figure 30: Block diagram of the clock module.

When the FSM is idle, it waits for enable to go high with w nr high to indicate a write operation. When
this happens latch data is raised to latch the data for future read back and done is dropped to indicate the
module is no longer idle. After syncing up with the slower clock of the frequency synthesizer as described
in Section 3.1.1, the module starts the counter and waits an additional three cycles in the WAIT state. It
does this so the shift register shifts in the middle of the CKSC cycle to help meet the long hold time of the
frequency synthesizer. After waiting the three cycles (normal cycles, not sclk cycles), the FSM enters the
shift state where it raises CKSL to instruct the frequency synthesizer to load in a new value, raises sr shift to
instruct the shift register to shift out its value onto CKSD, and waits another 14 sclk cycles (or 0x70 normal
cycles) while the shift registers shifts. It then returns to IDLE. Figure 31 shows a timing diagram of this
process.
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Signal Description
CKSC Clock Set Clock. Clock sent to the frequency synthesizer.
CKSD Clock Set Data. Serial data signal to the frequency synthesizer.
CKSL Clock Set Load. Instructs the frequency synthesizer to load the data coming in on CKSD.

Active high.
clk Global clock. Used as clock input to all registers.
count Input to FSM. A 7 bit counter, incremented by one each clock edge if count go is high
count go Output from FSM. Instructs the counter to count.
da out Output to decode. Tied high to indicate data is always available.
data in Input from decode module. The value to shift into the frequency synthesizer.
data out Output to PLX. Contains the last value shift into the frequency synthesizer.
done out Output to decode module. Used to indicate when the FSM is idle.
enable Input from decode module. Begins a memory access.
latch data Output from FSM. Enable signal to data out register. data out latches data in on the rising

edge of the clock if this is high.
sclk Slow clock from the controller module.
sr shift Output from FSM. Instructs the shift register to shift its value out onto CKSD.
w nr Input from decode module. Determines whether an access is a write or a read.
write Input to FSM. This is obtained by anding enable and w nr and indicates when the decode

module issues a write access.

Table 20: Clock module wire descriptions.
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Figure 31: Timing diagram for the clock module.
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3.10 User pin control module

The user pin control module is responsible for handling the 26 user pins connected to the daughtercard. It
allows the user to set both the direction of the pin (i.e. whether the controller or the daughtercard drive
the pin) and the value of the pin if the controller is driving it. The user can read each pin’s value whether
it is being driven by the controller or daughtercard and each pin’s direction, as well as all pin values and
directions at once. It is one of the few modules in the controller that does not use a FSM. Figure 32 is a
block diagram of the module and Table 21 is an alphabetized description of each wire.
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Figure 32: Block diagram of the User pin control module.

The module uses a “special” register file that acts much like two separate register files, each with 26 1 bit
register, but allows for some special features as described below. One register file contains the 26 user def
registers, each register is the user defined value for one pin. The other register file contains the 26 drive pin
register, each register is the direction of one pin. The output of the combined register file is two busses, one
containing each drive pin register and one containing each user def register. The user def bus is separate
from the USER bus, which is the actual value on the user pin whether it is being driven by the controller or
daughtercard. 26 seperate tri-state drivers are used to drive each pin of the USER bus with the corresponding
user def register if the corresponding drive pin register is high.

Reads are split into two categories: reads of a “register” (reading USER ALL or USER DIR) and a
read of a user pin (one of the USERp registers). If the read is to a register, address[0] selects either the
drive pin or USER bus depending on if USER ALL or USER DIR is read. Address[10] then selects to send
the selected bus to the data out register where it is latched into data out and sent as the output. If the read
is to a user pin, address[6:2] selects a drive pin register and a bit from the USER bus, puts the drive pin
register in bit 1 and the bit from USER in bit 0 of a new bus and address[10] selects that bus to latch into
data out and send as the output. The data out register keeps its value unless a read occurs, at which point it
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Signal Description
address Input from decode module. Address[10] determines if the lower bits select a pin number

or a register. Address[6:2] hold the pin number and address[1:0] is the register number.
addr okay A signal that indicates if address[6:2] is below 26 and thus a valid pin number.
clk Global clock. Used as clock input to all registers.
da Output to decode module. Tied high to indicate data is always available.
data in Input from decode module. Value to set the pin(s) to.
data out Output to PLX. Contains either value and direction of a user pin, all values, or all directions.

Latches new value on positive edge of the clock when read is high.
done Output to decode module. Tied high to indicate module is always idle.
drive pin A register that contains one bit for each pin that determines whether or not the module

should drive the pin or leave it in high impedance.
enable Input from decode module. Begins a memory access.
nreset Global reset. Used to reset all registers.
read Indicates that a memory read is requested. Used an enable signal to the data out register.
USER 26 I/O pins connected to the daughtercard.
user def The user defined value for each pin. A bit in this register is driven onto the User pin if the

corresponding bit in drive pin is high.
w nr Input from decode module. Determines whether an access is a write or a read.
write pin Indicates a write has been requested to a user pin register and that the pin number is valid.
write reg Indicates a write has been requested to a register.

Table 21: User pin control module wire descriptions.

latches the new value on the rising edge of the clock.
The register file knows how to handle writes to any of the registers, which is why it is called “special”.

If a user pin is written to, address[6:2] is checked to make sure it is a valid pin number. If data in is 0 or 1,
then the user def register at address[6:2] is set to data in[0] and the drive pin register at address[6:2] is set
to 1. If data in is 2, then the drive pin register at address[6:2] is set to 0 to reset the pin to be an input. If the
USER ALL register is written to, all user def registers are set with the bits from data in and all drive pin
registers are set to 1. If the USER DIR register is written to, all drive pin registers are set to 0 to reset them
all to inputs.

3.11 AHIP module

The AHIP module is responsible for communicating with the daughtercard using the Asynchronous Host
Interface Port (AHIP) protocol (see Section 2.3.2.1). The module can be used in one of four modes: normal
mode, test mode, 8 bit mode, and 8 bit test mode. The module has one control register which holds the
current mode. Writes to the AHIP daughtercard address space are forwarded to this module by the decode
module. This module is then responsible for performing the memory access to the daughtercard using
AHIP and returning the result. Figure 33 shows a block diagram of the module with Table 22 providing
an alphabetized description of each wire. An FSM is used to walk through the protocol, Table 23 provides
definition of each state and Table 24 shows the state transitions.

When the user writes to the AHIP MODE address, address[24] is low and w nr is high, so when enable
is raised by the decode module, latch mode goes high and the value on data in, which is the new mode,
is latched onto the mode register for future use. The FSM remains idle. When the user reads from the
AHIP MODE register, address[24] is low and w nr is low, so when enable is raised by the decode module,
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Figure 33: Block diagram of the AHIP module.
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Signal Description
ack Input to FSM, one of two control signals used during AHIP.
ack in Asynchronous input from daughtercard. Synchronized through two flip flops to make ack.
address Input from the decode module. The top bit (bit 24) is used to determine if a memory access is to

the mode register or AHIP daughtecard memory space, the bottom 24 bits are used, along with the
current mode and w nr, to generate the AHIP header.

ahip bus 32 bit I/O bus connected to the daughtercard, used as both input and output to transfer data.
ahipdata An internal register used to latch either the outgoing data to send to the daughtercard or the incoming

data being received from the daughtercard.
ahipdata sel Output from FSM. Used to determine if ahipdata is latched with data in or the data from the daugh-

tercard that is on the ahip bus.
ahip dir Output from FSM. Used as the enable signal to the tri-state driver on ahip bus. When this is high,

either the header or ahipdata is driven to ahip bus. When low, ahip bus is not driven by the controller.
bus sel Output from FSM. Used to select whether the header of ahipdata is driven to ahip bus when ahip dir

is high.
byte Output from FSM. Used during 8 bit operation to determine which byte of the header or ahipdata

to drive to ahip bus. Also used to determine which byte of ahipdata to replace with ahip bus when
performing a read.

clk Global clock. Used as clock input to all registers.
count 16 bit counter value. Used to detect timeouts.
count go Output from FSM. Instructs counter to count.
da Data avaialable output to controller. Indicates value on data out is valid.
data in Input from the decode module. Data that is to be sent to the daughtercard.
data out Output to PLX. Either the current mode or the last read value of ahipdata, sent to the user via the

PLX.
done Output to controller. Indicates module is done with a transaction and idle.
enable Input from decode module. Instructs the module to perform the access requested.
error Output from FSM. Indicates the module has timed out, used to latch 0xdeadbeef into ahipdata to send

to the user if the operation that timed out was a read.
go Input to FSM. And of address[24] and enable, indicates an access to an address in AHIP daughtecard

space has been requested and the FSM should perform an AHIP transaction.
header Internal register. The header to send at the beginning of an AHIP transaction.
latch ahipdata Output from FSM. Enable signal to ahipdata register.
latch header Output from FSM. Enable signal to header register.
latch mode Indicates a write to the mode register. Enable signal to mode register.
mode Internal register. Indicates the current mode of operation. Bit 0 is high if in a test mode, bit 1 is high

if in an 8 bit mode.
nreset Global reset. Used to reset all registers.
req Output from FSM to daughtercard. One of two control signal used in the AHIP protocol.
w nr Input from decode module. Indicates whether a memory access is a write or a read.

Table 22: AHIP module wire descriptions.
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latch enables
state da done req header ahipdata ahip data sel bus sel ahip dir count go error byte
IDLE go 1 0 1 go & w nr go & w nr 0 1 0 0 0

ISSUE 0 0 1 0 0 - 0 1 1 - 0
R GETDATA 0 0 0 0 1 0 - 0 1 0 0

R ACK 1 0 1 0 0 - - 0 1 - 0
R DONE 1 0 0 0 0 - 0 1 1 - 0

W SENDDATA 1 0 0 0 0 - 1 1 1 - 0
ISSUE1 0 0 1 0 0 - 0 1 1 - 0
ISSUE2 0 0 0 0 0 - 0 1 1 - 1
ISSUE3 0 0 1 0 0 - 0 1 1 - 2
ISSUE4 0 0 0 0 0 - 0 1 1 - 3

R8 GETDATA1 0 0 1 0 1 0 - 0 1 0 0
R8 GETDATA2 0 0 0 0 1 0 - 0 1 0 1
R8 GETDATA3 0 0 1 0 1 0 - 0 1 0 2
R8 GETDATA4 0 0 0 0 1 0 - 0 1 0 3

W8 SENDDATA1 1 0 1 0 0 - 1 1 1 - 0
W8 SENDDATA2 1 0 0 0 0 - 1 1 1 - 1
W8 SENDDATA3 1 0 1 0 0 - 1 1 1 - 2
W8 SENDDATA4 1 0 0 0 0 - 1 1 1 - 3

TIMEOUT 0 0 0 0 1 0 - 0 0 1 0

Table 23: AHIP module state definitions.

State Next State
IDLE go ? mode[1] ? ISSUE1 : ISSUE : IDLE
ISSUE ack ? header[28] ? R GETDATA : W SENDDATA : ISSUE
R GETDATA ack ? R GETDATA : R ACK
R ACK ack ? R DONE : R ACK
RDONE ack ? R DONE : IDLE
W SENDDATA ack ? W SENDDATA : IDLE
ISSUE1 ack ? ISSUE2 : ISSUE1
ISSUE2 ack ? ISSUE2 : ISSUE3
ISSUE3 ack ? ISSUE4 : ISSUE3
ISSUE4 ack ? ISSUE4 : header[28] ? R8 GETDATA1 : W8 SENDDATA1
R8 GETDATA1 ack ? R8 GETDATA2 : R8 GETDATA1
R8 GETDATA2 ack ? R8 GETDATA2 : R8 GETDATA3
R8 GETDATA3 ack ? R8 GETDATA4 : R8 GETDATA3
R8 GETDATA4 ack ? R8 GETDATA4 : R ACK
W8 SENDDATA1 ack ? W8 SENDDATA2 : W8 SENDDATA1
W8 SENDDATA2 ack ? W8 SENDDATA2 : W8 SENDDATA3
W8 SENDDATA3 ack ? W8 SENDDATA4 : W8 SENDDATA3
W8 SENDDATA4 ack ? W8 SENDDATA4 : IDLE
TIMEOUT IDLE

Table 24: AHIP module state transitions.
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outdata sel goes high and the contents of the mode register are latched onto the data out register to send the
current mode back to the user. Again, the FSM remains idle.

While in the IDLE state, ahip dir is high to drive the ahip bus with header because the host is responsible
for driving the AHIP bus when no transactions are taking place. When the user reads or writes to an address
within the AHIP daughtercard address space, address[24] is high, so when the decode module raises the
enable signal, go goes high and the FSM begins processing the transaction. First the header is created using
w nr and mode[0] to create the correct opcode, the bmc field is set to zero, and the low 24 bits of address
are used for the address. This all happens on the cycle enable goes high, while the FSM is idle by raising
latch header, latch ahipdata and ahip data sel are also raised if the operation is a write to save the data to
write that is on data in. The FSM then moves to the ISSUE state where it raises req and waits for ack to go
high. Once the AHIP operation has been issued, bit 28 is checked to see if the operation is a write or a read
(w nr may not be valid any more). If the operation is a write, the FSM goes to the W SENDDATA state. If
the operation is a read, the FSM goes to R GETDATA state.

In the W SENDATA state, req is dropped, ahip dir remains high to drive ahip bus, and bus sel is also
raised high to send ahipdata to the ahip bus. The FSM waits for ack to be dropped to indicate the slave
received the data and then returns to the IDLE state.

In the R GETDATA state, req is dropped, latch ahipdata is raised with ahip data sel 0 to latch the data
coming in on ahip bus into ahipdata, and ahip dir is dropped to allow the slave to drive ahip bus. Some
invalid value may be latched onto ahipdata during this state, but in the cycle that ack is dropped by the slave,
the correct value will be latched into ahipdata and the FSM can move onto the R ACK state where it raises
req to inform the slave that it received the data. During this state, ahip dir is still low because the slave is
still driving the bus. The FSM waits in R ACK until the slave raises ack once again to indicate it is no longer
driving the bus, the FSM then move to the R DONE state where it drops req, starts driving the bus again and
waits for ack to be dropped to signal the end of the transaction, it then returns to the IDLE state.

During each of the states, besides IDLE, the counter is going. If the counter ever reaches its maximum
value, the FSM goes to the TIMEOUT state where it raises error to return 0xdeadbeef to the user if a read
was in progress. The maximum value of the counter is used because we want the timeout to be very long,
if the operation was a read and the controller stops waiting for a response too soon, the AHIP client on
the daughtercard could get stuck waiting for the controller to acknowledge receiving the data, which would
never happen.

If the module is in an 8 bit mode, the ISSUE, R GETDATA, and W SENDDATA states are split into
4 seperate states that perform the necessary action on a single byte. When in these stages, a change in ack
moves the FSM to the next state and req is switched from state to state. A read if finished the same way
whether it was done using an 8 bit bus or a 32 bit bus.

Figures 9, 10, and 11 in Section 2.3.2 show timing diagrams for all AHIP transactions.

3.12 LGALED module

The LGALED module is simply a register that latches its input when enable and w nr are high. It always
drives both its data out signal to the PLX and the LED and LGA signals to the baseboard with the contents
of the register. Its da and done signals are tied high.
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A Pinout listings

Pin DTX# ATB0 Xilinx J1 J2 ATC0 ATC0 LA∗ ADB0 Xilinx ADB0 LA
ahip bus0 52 215 55 69 1/0/7 AN4 1/11/51
ahip bus1 53 214 56 71 1/1/11 AP6 2/11/52
ahip bus2 50 217 57 72 1/2/15 AN5 1/10/47
ahip bus3 51 216 58 74 1/3/19 AP7 2/10/48
ahip bus4 48 220 59 75 1/4/23 AJ9 1/9/43
ahip bus5 49 218 60 77 1/5/27 AK11 2/9/44
ahip bus6 46 223 63 78 1/6/31 AJ10 1/8/39
ahip bus7 47 221 64 80 1/7/35 AK10 2/8/40
ahip bus8 44 225 65 81 1/8/39 AM2 1/7/35
ahip bus9 45 224 66 83 1/9/43 AL9 2/7/36

ahip bus10 34 236 79 53 1/10/47 AK9 1/2/15
ahip bus11 35 235 80 51 1/11/51 AG11 2/2/16
ahip bus12 32 238 81 50 1/12/55 AM6 1/1/11
ahip bus13 33 237 82 48 1/13/59 AP4 2/1/12
ahip bus14 30 3 83 47 1/14/63 AL6 1/0/7
ahip bus15 31 239 84 45 1/15/67 AP5 2/0/8
ahip bus16 28 51 84 44 4/0/8 AP12 4/0/8
ahip bus17 29 50 83 42 4/1/12 AP9 3/0/7
ahip bus18 26 53 82 41 4/2/16 AP11 4/1/12
ahip bus19 27 52 81 39 4/3/20 AN8 3/1/11
ahip bus20 18 71 72 24 4/4/24 AP13 4/5/28
ahip bus21 19 70 71 23 4/5/28 AL11 3/5/27
ahip bus22 16 73 68 21 4/6/32 AD16 4/6/32
ahip bus23 17 72 67 20 4/7/36 AN12 3/6/31
ahip bus24 14 76 66 18 4/8/40 AD17 4/7/36
ahip bus25 15 74 65 17 4/9/44 AN11 3/7/35
ahip bus26 12 78 64 15 4/10/48 AK14 4/8/40
ahip bus27 13 77 63 14 4/11/52 AJ13 3/8/39
ahip bus28 10 81 60 12 4/12/56 AK13 4/9/44
ahip bus29 11 79 59 11 4/13/60 AJ14 3/9/43
ahip bus30 8 84 58 9 4/14/64 AL16 4/10/48
ahip bus31 9 82 57 8 4/15/68 AL13 3/10/47

ahip req 0 95 48 104 1/clk/79 AM15 4/14/64
ahip ack 1 94 47 106 1/clk/80 AM13 3/14/63

user0 56 209 49 93 (IO39) 2/1/12 AE13 1/13/59
user1 57 208 50 90 (IO40) 2/2/16 AH12 2/13/60
user2 54 213 51 89 (IO41) 2/3/20 AE12 1/12/55
user3 55 210 52 87 (IO42) 2/4/24 AH13 2/12/56
user4 42 228 67 68 (fsel0) 2/6/32 AN3 1/6/31
user5 43 226 68 65 (IO43) 2/7/36 AL10 2/6/32
user6 40 230 71 63 (IO44) 2/8/40 AM7 1/5/27
user7 41 229 72 62 (IO45) 2/9/44 AN6 2/5/28
user8 38 232 73 60 (IO46) 2/10/48 AM8 1/4/23
user9 39 231 74 59 (IO47) 2/11/52 AN7 2/4/24

user10 36 234 75 57 (IO48) 2/12/56 AJ8 1/3/19
user11 37 233 76 54 (fsel1) 2/13/60 AG12 2/3/20
user12 24 55 80 38 (ext rst) 3/0/7 AN14 4/2/16
user13 25 54 79 35 (IO49) 3/3/19 AG13 3/2/15
user14 22 66 76 33 (IO50) 3/4/23 AN13 4/3/20
user15 23 65 75 30 (IO51) 3/5/27 AG14 3/3/19
user16 20 69 74 29 (IO52) 3/6/31 AP14 4/4/24
user17 21 67 73 27 (IO53) 3/7/35 AM11 3/4/23
user18 6 86 56 3 (IO54) 3/10/47 AL17 4/11/52
user19 7 85 55 120 (IO37) 3/11/51 AL12 3/11/51
user20 4 88 52 117 (IO38) 3/12/55 AJ17 4/12/56
user21 5 87 51 AF14 3/12/55
user22 2 93 50 AJ16 4/13/60
user23 3 92 49 AF15 3/13/59
user24 59 206 48 AJ11 2/14/64
user25 58 207 47 AM9 1/14/63

∗Logic analyzer pins are given in the format Pod/Bit/Pin. For example, ahip bus4 is the 9th bit on the Odd side of Logic
Analyzer 0 (or pod 1) of ADB0 which is pin 43 of the Logic Analyzer connection, therefore it reads 1/9/43.


