
The Raw Architecture
A Concrete Perspective

Michael Bedford Taylor

Raw Architecture Group
Laboratory for Computer Science

Massachusetts Institute of Technology

Raw Architectural Overview

Compute Processor

On-chip networks

Raw exploration avenues

Outline

Architectural Usage hints

The Raw Architecture

Divide the silicon
into an array of
identical, programmable
tiles.

Prototype: 4x4
Arch, Sim & Fabric: {4,8,16,32} x {4,8,16,32}

The Raw Tile

8 stage 32b
MIPS-style
single-issue
in-order
compute
processor

Tile

4-stage 32b
pipelined FPU

32 KB DCache

32 KB IMem

Routers and wires for three
on-chip mesh networks

Raw’s four on-chip mesh networks

Compute
Pipeline

Registered at input
longest wire = length of tile

8 32-bit channels

Raw’s I/O and Memory System

Raw
chipset

DRAM

DRAM

DRAM

DRAM

D
R

A
M

D
R

A
M

D
R

A
M

PCI x 2

PCI x 2

DRAM

D/A

Routes on any network off
the edge of the chip
appear on the pins.

14 7.2 Gb/s channels
(201 Gb/s @ 225 Mhz)

Direct connection
of computation to
I/O and DRAM
Streams

Raw Architectural Overview

Compute Processor

On-chip networks

Raw exploration avenues

Outline

Architectural Usage hints

Raw compute processor ISA

MIPS-flavour
-- similar instructions, with improvements
-- all but divide instructions are fully pipelined

ALU 1 cycles

MUL 2 cycles

LOAD 3 cycles

FPU 4 cycles

Similar latencies as Pentium-3

Bit-oriented instructions

PopCount
Count Leading Zero

Rotate and Mask / Rotate, Mask and Insert
- Like PowerPC, but more flexible masks
Bit-smashing swiss army knife

inputs

sample outputs after 1 cycle

Branches & Divides

1 branch per cycle
no delay slots
static branch prediction bit (e.g., bne+ bne-)
3 cycle mispredict penalty

Integer Divide 42 cycles
Floating Point Divide 12 cycles

The only non-pipelined instructions in the ISA.
Uses FD and HI/LO registers with full/empty bits.

Proc, IntDiv, FPDiv State Machines run independently
Processor will only stall if you read MFFD, MFLO, MFHI

before dividers have finished.

Bnea
bnea $2,$3, addr

branch not equal, meanwhile, add SPR BR_INCR
minor tweak reduces some loop overheads by %50

tagswi $0,$5, 3
tagswi $0,$5, 2

tagswi $0,$5, 1
tagswi $0,$5, 0

li $4, kCacheSize - (kCacheLineSize << 2)

mtsri BR_INCR, (kCacheLineSize << 2)

bnea+ $5, $4, ___cache_invalidate_loop

___cache_invalidate_loop:

li $5, 0

BR_INCR is callee-saved

Data Cache
Data Cache

32KB per tile, 2-way set associative
allocate-on-write, write-back
tile caches are not coherent

- user manages coherence

Extensive collection of cache management instrs
for coherence management
• tag-index-based for wide address range ops
• address-based for short ranges

More Instructions
Many other instructions including:

writing to instruction and switch memories
packaging messages
managing interrupts
managing I/O and off-chip memory
adding an immediate value to top 16 bits of word

(useful for $gp-relative calculations)

See the Raw Spec, available off of Raw website.

Raw Architectural Overview

Compute Processor

On-chip networks

Raw exploration avenues

Outline

Architectural Usage hints

Raw’s four on-chip networks

Memory Dynamic Network “mdn”

General Dynamic Network “gdn”

Static Network x 2

Raw’s Static Network
Highest performance solution

For predictable communication patterns

Use it:
To route operands

among local and remote ALUs

To route data streams
among tiles, DRAM, I/O ports

Raw’s Static Network
Consists of two tightly-coupled sub-networks:

• Tile interconnection network

For operands & streams between tiles

Controlled by the 16 tiles’ static router processors

• Local bypass network

For operands & streams within a tile

Between tile operand transport
The routes programmed into the static router ICache
guarantee in-order delivery of operands between tiles at
a rate of 2 words/direction/cycle.

Compute Pipeline

static
router
crossbar

static
router
crossbar

Compute Pipeline

Static Router ICache
JZ P, label route P->E,S

FIFO

FIFO

FIFO

FIFO

FI
FO

Static Router ICache
JZ W, label route W->P

FI
FO

IF RFD
A TL

M1 M2

F P

E

U

TV

F4 WB

r26

r27

r25

r24

Input
FIFOs
from
Static
Router

r26

r27

r25

r24

Output
FIFOs
to
Static
Router

Ex: lb r25, 0x341(r26)

0-cycle
“local bypass
network”

Operand Transport among functional units
and the static router

Raw static router ISA

Branches, nops, and up to 13 routes per cycle
Routes support multicast.

move $1, $csto route $csto->$cWo, $csto->$cEo

beqzd- $1,$1, cleanup route $csto->$cWo

bnezd+ $1,$1, cleanup route $csto->$cWo, $cWi->$cNo

tmp3 = (seed*6+2)/3
v2 = (tmp1 - tmp3)*5
v1 = (tmp1 + tmp2)*3
v0 = tmp0 - v1
….

pval5=seed.0*6.0

pval4=pval5+2.0

tmp3.6=pval4/3.0

tmp3=tmp3.6

v3.10=tmp3.6-v2.7

v3=v3.10

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5

pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

v2=v2.7

seed.0=seed

pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

tmp0=tmp0.1

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0

tmp1=tmp1.3

pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8
v0.9=tmp0.1-v1.8

v0=v0.9

pval5=seed.0*6.0

pval4=pval5+2.0

tmp3.6=pval4/3.0

tmp3=tmp3.6

v3.10=tmp3.6-v2.7

v3=v3.10

v2.4=v2

pval3=seed.o*v2.4

tmp2.5=pval3+2.0

tmp2=tmp2.5

pval6=tmp1.3-tmp2.5

v2.7=pval6*5.0

v2=v2.7

seed.0=seed

pval1=seed.0*3.0

pval0=pval1+2.0

tmp0.1=pval0/2.0

tmp0=tmp0.1

v1.2=v1

pval2=seed.0*v1.2

tmp1.3=pval2+2.0

tmp1=tmp1.3

pval7=tmp1.3+tmp2.5

v1.8=pval7*3.0

v1=v1.8
v0.9=tmp0.1-v1.8

v0=v0.9

Assign instructions to the tiles,
maximizing locality.
Generate the static router
instructions to transfer
Operands & streams tiles.

Compilation

Raw’s Memory Network
• Dynamic, dimension-ordered wormhole-routed

Insert header, and < 32 data words.
Worms through network.
Inter-message ordering not guaranteed.

• Trusted clients, stringent usage rules
Cache misses
I/O Devices <-> Memory DMA traffic
Operating System
Expert users

• Talk to us if you’d like to use it.

Raw’s General Network
• Dynamic, dimension-ordered wormhole-routed

Insert header, and < 32 data words.
Worms through network.
Inter-message ordering not guaranteed.

• User-level messaging
Can interrupt tile when message arrives

• Lower performance; for coarse-grained apps

• For non-compile time predictable communication
- among tiles
- possibly with I/O devices

A Raw System in Action

httpd

4-way
automatically
parallelized
C program

2-thread
MPI app

Direct
I/O
streams
into
Static
Network

mem

mem

mem

Zzz...

Note that an application uses only as many tiles as needed
to exploit the parallelism intrinsic to that application.

Raw Architectural Overview

Compute Processor

On-chip networks

Raw exploration avenues

Outline

Architectural Usage hints

Usage hint #1

If a program operates on linear arrays of data and
spends many cycles pulling them in through cache
misses:

Stream data in/out of DRAMs
via the static network instead of through cache.

Usage hint #2

If the tiles are all stalled, and the DRAM ports are busy.

Use more DRAM ports!
Up to 16 DRAM banks in,16 DRAM banks out.

Usage hint #3

If the computation is fine-grained and the code does
not use the static network:

The static network is the lowest latency, lowest
occupancy communication mechanism on Raw.
Using it will greatly reduce communication
overhead.

Usage hint #4

If tiles receive data from the static network, and store it
to the local data memory before using it:

The static network guarantees in-order arrival of
data. Use the data directly as it comes off the
network, to save the latency and occupancy
overhead.

Raw Architectural Overview

Compute Processor

On-chip networks

Raw exploration avenues

Outline

Architectural Usage hints

1 cycle
180 nm 90 nm

Looking into the future

16-issue 64-issue

Just stamp out more tiles!

Longest wire, frequency, design and verification complexity
all independent of issue width.

Architecture is backwards compatible.

Exploration Avenues
for External Users
Prototype

Raw
Prototype

18.2 mm x 18.2 mm

16 Flops/ops per cycle

208 Operand Routes / cycle

2048 KB L1 SRAM

1657 Pin CCGA Package

1080 HSTL core-speed
signal I/O

Raw ASIC
IBM SA-27E .15u 6L Cu

3.6 Peak GFLOPS (without FMAC)
230 Gb/s on-chip bisection bandwidth
201 Gb/s off-chip I/O bandwidth

@ 225 MHz Worst Case

(Temp, Vdd, process):

Prototype + real world experience, fast
+ practical apps
- static configuration

tiles, I/O & memory ratio

Simulator

Exploration Avenues
for External Users

Raw Fabric

Prototype + real world experience, fast
+ practical apps
- static configuration

tiles, I/O & memory ratio

Simulator - “magic”, slow simulation speed
+ scalability exploration
(64 tiles is feasible in 90nm)
lots of flexibility in
I/O and memory experimentation

Exploration Avenues
for External Users

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

Raw
Chip

This 16 chip array
would approximate
a 256 tile Raw from a
45 nm process.

Raw chips gluelessly
connect to form
larger virtual chips
up to 32x32 tiles.

Raw Fabric + positive aspects of both
- not exact simulation of future
- $$$, not avail. yet

Prototype + real world experience, fast
+ practical apps
- static configuration

tiles, I/O & memory ratio

Simulator - “magic”, slow simulation speed
+ scalability exploration
(64 tiles is feasible in 90nm)
lots of flexibility in
I/O and memory experimentation

Exploration Avenues
for External Users

Raw Architectural Overview

Compute Processor

On-chip networks

Raw exploration avenues

Outline

Architectural Usage hints

End comments

Ultimate Guide: Raw Specification
Definitely need to read it to get the best performance.

Chapters 1-14 “Raw Architecture Manual”

Chapters 15 “Prototype Specific Data”

Updated continuously.
Ultra dense presentation of constants and
implementation.

Read this to understand Raw’s components,
how they work, and how to program them.

In a few cases, later sections supercede earlier ones.
Ignore the constants – they’ve changed over time.

