
Raw Programming

101

Volker Strumpen

strumpen@lcs.mit.edu

MIT Lab for Computer Science, Mar’03

Outline

1. Architectural Overview

(a) The Raw Architecture

(b) The Programmer’s Perspective of Raw

2. Assembly Programming

(a) c = a + b

(b) Streaming Data

3. Inlining Assembly in C

Raw: A Tiled Architecture

We use Raw tiles to assemble 2-dimensional computational
fabrics such as a 4x4 chip and multi-chip grids.

SWMEM

Switch Processor

Dynamic Switch

Static Networks

Dynamic Networks

IMEM DMEM

CPU

RAW
TILE

Features of MIT’s 4x4 Raw Prototype

• 122M Transistors on 0.15µm ASIC (IBM) at 250MHz

• 4x4 Tiles

– Single-issue, in-order, 8-stage pipeline (MIPS R4000)

– Independent Switch Processor (VLIW)

–On-Chip-Memory: 2MByte (32K I, 32K D, 64K SW)

– Peak Performance: 4GIPS.

• Four Register-Mapped Networks

– 32-bit wide, full-duplex networks

– Aggregate On-Chip Bandwidth: 2Tb/s

–Next-Neighbor Latency: 3 clock cycles

– I/O Bandwidth: 200Gb/s (14 channels, 1080 pins)

Programming Challenge

Compute the sum c = a + b across four tiles:

+a

b

c

1. Where are the data paths?

2. How do we program the processor and the switch?

Data Paths: Zoom 1

Stateful hardware: local data memory (a,c), registers (b),
and both static networks (snet1,snet2).

a

proc

dmem

$csto

$csto
$csti

proc
$csti2

proc$csto

$8b

+

proc

dmem
c

$csti

snet1

snet2

snet2snet1

Zoom 2: Processor Datapaths

$csti2$csti

File

Register

F
P

U
M

U
L

A
LU

(from switch)

A

B

$csto

(to switch)

8

Note: Divider datapath omitted

Zoom 2: Switch Datapaths

$0
$1
$2
$3

$sw
i

$s
w

i2

$s
w

o

$sw
o2

$c
E

i
$c

S
i

$cW
i2

$cS
i2

$cE
i2

$cN
i2

$c
W

i

$cW
o2

$cS
o2

$cE
o2

$cN
o2

$csti2$csti

$c
W

o
$c

S
o

$c
E

o
$c

N
o

$c
N

i

(from processor)$csto

(to processor)

Raw Assembly

a-tile processor: lw $csto,0(&a)

switch: nop route $csto->$cEo

b-tile processor: move $csto,$8

switch: nop route $csto->$cNo2

c-tile processor: sw $csti,0(&c)

switch: nop route $cWi->$csti

+-tile processor: addu $csto,$csti,$csti2

switch:

nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

Switch Assembly

Deadlocks!nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

Correct solution requires two switch instructions:

nop route $cWi->$csti, $cSi2->$csti2

nop route $csto->$cEo

Note: Switch instructions block until all operands are ready!

Streaming on Raw

Element-wise sum of two vectors:

for (i=0; i<N; i++)

c[i] = a[i] + b[i];

With two switch instructions per addition, the upper bound
for efficiency is to 50%!

Loop overhead is the other source of inefficiency:

for (i=0; i<6; i++) { li $2, 5

__asm__("addu $csto,$csti,$csti2"); $L0: addu $csto, $csti, $csti2

} addu $2, $2, -1

bgez $2, $L0

Due to index decrement and branching, the upper bound for
efficiency is 33%! (25% if ub is not constant)

Streaming Cont’d

Key Techniques for Efficiency:

1. pipeline startup/drainage (avoid deadlock)

2. loop unrolling (avoid loop overhead)

Completely unrolled loop with one startup step:

Processor Switch

addu $csto,$csti,$csti2 nop route $cWi->$csti, $cSi2->$csti2

addu $csto,$csti,$csti2 nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

addu $csto,$csti,$csti2 nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

addu $csto,$csti,$csti2 nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

addu $csto,$csti,$csti2 nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

addu $csto,$csti,$csti2 nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

nop route $csto->$cEo

Abstract Adder Pipeline

5-stage Pipeline

$csti

File

Register

$csto

A/B

$csti/2

snet

snet

F
P

U
M

U
L

A
LU

A

B

$csto

8

$csti2

switch

Execution Chart of Adder Pipeline

(2) $csto−>$cEo, $cWi−>$csti, $cSi2−>$csti2

(3) stalled on $csto

(1) $cWi−>$csti, $cSi2−>$csti2

(6) stalled on $csto(5) $csto−>$cEo, $cWi−>$csti, $cSi2−>$csti2

(8) $csto−>$cEo, $cWi−>$csti, $cSi2−>$csti2

(4) executes

(7) executes

A
/B

$c
st

o

A
/B

$c
st

o

A
/B

$c
st

o

$c
st

i/2

$c
st

i/2

$c
st

i/2

$c
st

i/2

Streaming Cont’d

Magic number of startup steps for 100% efficiency: 3 steps

Processor Switch

addu $csto,$csti,$csti2 nop route $cWi->$csti, $cSi2->$csti2

addu $csto,$csti,$csti2 nop route $cWi->$csti, $cSi2->$csti2

addu $csto,$csti,$csti2 nop route $cWi->$csti, $cSi2->$csti2

addu $csto,$csti,$csti2 nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

addu $csto,$csti,$csti2 nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

addu $csto,$csti,$csti2 nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

nop route $csto->$cEo

nop route $csto->$cEo

nop route $csto->$cEo

Execution Chart of Adder Pipeline

(1) $cWi−>$csti, $cSi2−>$csti2 (2) $cWi−>$csti, $cSi2−>$csti2

(3) $cWi−>$csti, $cSi2−>$csti2 (4) $csto−>$cEo, $cWi−>$csti, $cSi2−>$csti2

(5) $csto−>$cEo, $cWi−>$csti, $cSi2−>$csti2 (6) $csto−>$cEo, $cWi−>$csti, $cSi2−>$csti2

(7) $csto−>$cEo (8) $csto−>$cEo

A
/B

$c
st

o

A
/B

$c
st

o

A
/B

A
/B

$c
st

o

$c
st

o

A
/B

A
/B

$c
st

o

$c
st

i/2

$c
st

i/2

$c
st

i/2
$c

st
i/2

$c
st

i/2

$c
st

i/2
$c

st
i/2

$c
st

o

A
/B

Inlining with rgcc

Consult gcc info topic: C extensions / extended Asm

Processor code: file “p.c”

extern void myroute(void);

void main(void)

{

int i;

__asm__ volatile("mtsr SW_PC,%0" : : "r" (myroute));

for (i=0; i<8; i+=4) {

__asm__ volatile("addu $csto,$csti,$csti2");

__asm__ volatile("addu $csto,$csti,$csti2");

__asm__ volatile("addu $csto,$csti,$csti2");

__asm__ volatile("addu $csto,$csti,$csti2");

}

}

Switch Assembly with rgcc

Switch code: file “sw.S”

.swtext

.global myroute

myroute:

nop $cWi->$csti, $cSi2->$csti2

nop $cWi->$csti, $cSi2->$csti2

nop $cWi->$csti, $cSi2->$csti2

nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

nop route $csto->$cEo, $cWi->$csti, $cSi2->$csti2

nop route $csto->$cEo

nop route $csto->$cEo

nop route $csto->$cEo

j .

Conclusion

1. Introduced Raw programming

2. Demonstrated potential for deadlock and inefficient pro-
gramming

3. Illustrated how to achieve 100% efficiency by

(a) loop unrolling

(b) pipeline startup/drainage

4. Showed how inlining in C supports assembly wimps

