Signal Processing on Raw

Hank Hoffmann

MIT LCS/LL

hank@mit.edu

joint work with

Volker Strumpen, Anant Agarwal, and the Raw Team

- 1. Running Example: Matrix Multiplication
- 2. From streams to systolic arrays(a) streaming inner product(b) connecting streams
- 3. From systolic arrays to the moon(a) Drawbacks of systolic arrays(b) How to do better

Matrix Multiplication

C = AB, all $N \times N$ matrices

Computational complexity: $\Theta(N^3)$

$$N^2$$
 inner products: $c_{ij} = \sum_{k=0}^{N-1} a_{ik} \cdot b_{kj}$

Focus on computing inner products

Inner Product Streams

Heart of matrix multiply is inner product:

Use streams to compute the inner product of *a* and *b*:

Store *c* **locally in a register** *a* **and** *b* **stream through the switch**

а

We now have a $100\,\%$ efficient inner product

Connecting Streams

To compute C = AB requires N^2 inner products Each row of A and column of B used N times

Communicate each row and column while computing

Now we can form a systolic array for matrix multiplication.

Raw's networks allow "free" corner-turns

Systolic Matrix Multiplication

We stream the row vectors of A and the column vectors of B through N^2 inner product tiles. (here: N = 2)

Size of inner dimension does not matter...

Systolic Matrix Multiplication

Here individual elements stream through the array.

1. Systolic matrix multiplication is 100% efficient

2. What if N > 4 (we can't fit the problem onto Raw)?
(a) Simulate a larger raw fabric/larger array
(b) Use 1 Raw tile to simulate many virtual tiles
(c) Use local memory to store intermediate results

3.	Problem: C	Cost of	load's and st	ore's for in	nner product
	Data Type	FLOPs	Memory Ops	Total Ops	Max Efficiency
	Real	2	4	6	33%
	Complex	8	8	16	50%

Need to move loads and stores off critical path...

Improving our Matrix Multiplication

We want the efficiency of a systolic array on large problems

- **1. Partition into** $(N/R)^2$ problems by recursively applying: $\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \end{pmatrix}$
- 2. Each submatrix of A is R × N, those of B are N × R
 (a) Each submatrix of C is computed on R × R tiles
 (b) No simulation required!
- **3.** Decouple memory access store A_{ij} , B_{kl} until necessary
 - (a) R processors store rows of A
 - (b) R processors store columns of B
 - (c) 2R memory processors

Decoupled Matrix Multiplication

Memory tiles implement the data access to stream the rows and columns into the systolic array of compute tiles.

	B(:,2) B(:,0)	B(:,3) B(:,1)
A(0,:)		
A(2,:)		
A(1,:)		
A(3,:)		

(1)

	B(:,2) B(:,0)	B(:,3) B(:,1)
A(0,:) A(2,:)	b ₀₀ a ₀₀	
A(1,:) A(3,:)		

(2)

	B(:,2)	B(:,3)
A(0,:)	b ₁₀	b ₀₁
A(2,:)	a ₀₁	a ₀₀
A(1,:)	b ₀₀	
A(3,:)	a ₁₀	

(3)

	B(:,2)	B(:,3)
	B(:,0)	B(:,1)
A(0,:)	b ₂₀	b ₁₁
$\Lambda(2, \cdot)$	2	ล
A(Z,.)	a ₀₂	∽ 01
A(2,.) A(1,:)	b ₁₀	b ₀₁

(4)

(5)

- We have reached steady state
- Systolic array tiles executing one op per clock cycle

(6)

• Starting second submatrix multiplication

Calculating Matrix Multiply Efficiency

FLOPs,
$$F = 2N^3$$

Cycles, $C = 2(N/R)^3R + 6R$
Tiles, $T = R^2 + 2R$

ratio of N to R, $\sigma = N/R$

$$E(N,R) = \frac{F}{C \cdot T}$$

$$E_{mm}(N,R) = \frac{2N^3}{(2(N/R)^3R + 6) \cdot (R^2 + 2R)}$$

$$E_{mm}(\sigma,R) = \frac{\sigma^3}{\sigma^3 + 3} \cdot \frac{R}{R + 2}$$

$$\lim_{\sigma,R \to \infty} E(\sigma,R) = 1, \quad E_{mm}(\infty,2) = 50\%$$

Efficiency has gone from 33% to 50%. Design is scalable - more processors gives more efficiency!

What just happened?

We now can increase efficiency as we increase tiles

How? Move load's and store's off critical path

We made use of:

- 1. Systolic algorithms [Kung and Leiserson, 1978]
 (a) provide solution when Problem Size(N) = Network Size(R)
- 2. Decoupled Access Execute Architectures [Jim Smith, 1982](a) separate memory accesses from computation
- 3. Out of Core Algorithms [Sivan Toledo, 1999](a) work on large problems with limited space
- 4. Fewer memory tiles than compute tiles

We call an algorithm that meets these four criteria a Stream Algorithm

- 1. Stream algorithms are efficient on small Raw fabrics
- 2. Stream algorithms scale as Raw fabric scales
- **3. Stream algorithms approach 100\% efficiency**
- **Existing Stream Algorithms:**
 - **Convolution** Matrix Multiplication LU Factorization

DFT Triangular Solver QR Factorization

- 1. We converted streams into efficient matrix multiplication
- 2. We derived a 4 step method to convert other algorithms
- 3. Using this method we write DSP code for Raw that is:(a) Efficient(b) Scalable
- 4. Stream algorithms tech report out soon...
- 5. Ask me about complex data