
Signal Processing on Raw

Hank Hoffmann

MIT LCS/LL

hank@mit.edu

joint work with

Volker Strumpen, Anant Agarwal, and the Raw Team

March 2003

Outline

1. Running Example: Matrix Multiplication

2. From streams to systolic arrays

(a) streaming inner product

(b) connecting streams

3. From systolic arrays to the moon

(a) Drawbacks of systolic arrays

(b) How to do better

Matrix Multiplication

C = AB, all N × N matrices

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0, c[i][j]=0.0; k<N; k++)

c[i][j] += a[i][k]*b[k][j];

Computational complexity: Θ(N3)

N2 inner products: cij =
N−1∑
k=0

aik · bkj

Focus on computing inner products

Inner Product Streams

Heart of matrix multiply is inner product:

for (k=0, c=0.0; k<N; k++)

c += a[i][k]*b[k][j];

Use streams to compute the inner product of a and b:

c += a*b

a

b

Store c locally in a register

a and b stream through the switch

We now have a 100 % efficient inner product

Connecting Streams

To compute C = AB requires N2 inner products

Each row of A and column of B used N times

Communicate each row and column while computing

c += a*b

a

b
Switch code:
nop route $cEi->$csti,

$cEi->$cWo,

$cNi2->$csti2,

$cNi2->$cSo2

Now we can form a systolic array for matrix multiplication.

Raw’s networks allow “free” corner-turns

Systolic Matrix Multiplication

We stream the row vectors of A and the column vectors of B
through N2 inner product tiles. (here: N = 2)

A(0,:)

A(1,:)

B(:,0) B(:,1)

Size of inner dimension does not matter...

Systolic Matrix Multiplication

Here individual elements stream through the array.

c 11
b11

a11

c 01

c 10

a01

b01
a10

b10

a11

b11

(6)(5)(4)

a10a11

01a a00

b00

b10 b01

b11

01a

a11 a10

b00
a00

b10 b01

b11

a11 a10

b00

01a
b10

00a
b01

b11

c 00

(1) (2) (3)

Systolic Array Summary

1. Systolic matrix multiplication is 100 % efficient

2. What if N > 4 (we can’t fit the problem onto Raw)?

(a) Simulate a larger raw fabric/larger array

(b) Use 1 Raw tile to simulate many virtual tiles

(c) Use local memory to store intermediate results

3. Problem: Cost of load’s and store’s for inner product
Data Type FLOPs Memory Ops Total Ops Max Efficiency
Real 2 4 6 33 %
Complex 8 8 16 50 %

Need to move loads and stores off critical path...

Improving our Matrix Multiplication
We want the efficiency of a systolic array on large problems

1. Partition into (N/R)2 problems by recursively applying:

C11 C12
C21 C22

 =

A11
A21

(
B11 B12

)

2. Each submatrix of A is R × N , those of B are N × R

(a) Each submatrix of C is computed on R × R tiles

(b) No simulation required!

3. Decouple memory access - store Aij, Bkl until necessary

(a) R processors store rows of A

(b) R processors store columns of B

(c) 2R memory processors

Decoupled Matrix Multiplication

Memory tiles implement the data access to stream the rows
and columns into the systolic array of compute tiles.

01 02

121110

20 21 22

Memory

Tiles

(systolic array)
Compute Tiles

Decoupled Systolic Matrix Multiplication

(1)

B(:,2)
B(:,0)

B(:,3)
B(:,1)

A(0,:)
A(2,:)

A(1,:)
A(3,:)

Decoupled Systolic Matrix Multiplication

(2)

A(0,:)
A(2,:)

A(1,:)
A(3,:)

B(:,2)
B(:,0)

B(:,3)
B(:,1)

b00
a00

Decoupled Systolic Matrix Multiplication

(3)

B(:,2)
B(:,0)

B(:,3)
B(:,1)

A(0,:)
A(2,:)

A(1,:)
A(3,:)

b10

01a
b00

a10

00a
b01

Decoupled Systolic Matrix Multiplication

(4)

B(:,2)
B(:,0)

B(:,3)
B(:,1)

A(0,:)
A(2,:)

A(1,:)
A(3,:)

b20
a02

b11

a01

b01
a10

b10

a11

Decoupled Systolic Matrix Multiplication

00c

(5)

B(:,2)
B(:,0)

B(:,3)
B(:,1)

A(0,:)
A(2,:)

A(1,:)
A(3,:)

b30

b20

03a

12a a11

b11

a
b21

02

• We have reached steady state

• Systolic array tiles executing one op per clock cycle

Decoupled Systolic Matrix Multiplication

c 01

10c

(6)

B(:,2)
B(:,0)

B(:,3)
B(:,1)

A(0,:)
A(2,:)

A(1,:)
A(3,:) 13a 12a

a00

b02 b31

b21b30

03a

• Starting second submatrix multiplication

Calculating Matrix Multiply Efficiency

FLOPs, F = 2N3

Cycles, C = 2(N/R)3R + 6R

Tiles, T = R2 + 2R
ratio of N to R, σ = N/R

E(N, R) =
F

C · T
Emm(N, R) =

2N3

(2(N/R)3R + 6) · (R2 + 2R)

Emm(σ, R) =
σ3

σ3 + 3
· R

R + 2

limσ,R→∞E(σ, R) = 1, Emm(∞, 2) = 50 %

Efficiency has gone from 33 % to 50 %.
Design is scalable - more processors gives more efficiency!

What just happened?

We now can increase efficiency as we increase tiles

How? Move load’s and store’s off critical path

We made use of:

1. Systolic algorithms [Kung and Leiserson, 1978]

(a) provide solution when Problem Size(N) = Network Size(R)

2. Decoupled Access Execute Architectures [Jim Smith, 1982]

(a) separate memory accesses from computation

3. Out of Core Algorithms [Sivan Toledo, 1999]

(a) work on large problems with limited space

4. Fewer memory tiles than compute tiles

Stream Algorithms

We call an algorithm that meets these four criteria a
Stream Algorithm

1. Stream algorithms are efficient on small Raw fabrics

2. Stream algorithms scale as Raw fabric scales

3. Stream algorithms approach 100 % efficiency

Existing Stream Algorithms:

Convolution DFT
Matrix Multiplication Triangular Solver
LU Factorization QR Factorization

Conclusion

1. We converted streams into efficient matrix multiplication

2. We derived a 4 step method to convert other algorithms

3. Using this method we write DSP code for Raw that is:

(a) Efficient

(b) Scalable

4. Stream algorithms tech report out soon...

5. Ask me about complex data

