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AbstractÐThe semiconductor industry roadmap projects that advances in VLSI technology will permit more than one billion

transistors on a chip by the year 2010. The MIT Raw microprocessor is a proposed architecture that strives to exploit these chip-level

resources by implementing thousands of tiles, each comprising a processing element and a small amount of memory, coupled by a

static two-dimensional interconnect. A compiler partitions fine-grain instruction-level parallelism across the tiles and statically

schedules intertile communication over the interconnect. Because Raw microprocessors fully expose their internal hardware structure

to the software, they can be viewed as a gigantic FPGA with coarse-grained tiles in which software orchestrates communication over

static interconnections. One open challenge in Raw architectures is to determine their optimal grain size and balance. The grain size is

the area of each tile and the balance is the proportion of area in each tile devoted to memory, processing, communication, and off-chip

global I/O. If the total chip area is fixed, higher processing power per tile requires large tiles and hence reduces the total number of tiles

on the chip. This paper presents SimpleFit, a novel analytical framework that designers can use to reason about the design space of

Raw microprocessors. Our model is also generalizable to multiprocessors on a chip. Based on an architectural model, an application

model, and a VLSI cost analysis, the framework computes the performance of applications and uses an optimization process to identify

designs that will execute these applications most cost-effectively. Although the optimal machine configurations obtained vary for

different applications, problem sizes, and budgets, the general trends for various applications are similar. Accordingly, for the

applications studied, assuming a onr billion logic transistor equivalent area, we recommend building a Raw chip with

approximately 1,000 tiles, 30 words/cycle global I/O, 20 Kbytes of local memory per tile, three to four words/cycle local

communication bandwidth, and single-issue processors. This configuration will give performance near the global optimum for most

applications.

Index TermsÐMultiprocessors, microprocessors, modeling, architecture.

æ

1 INTRODUCTION

ADVANCES in semiconductor technology have made
possible the integration of multiple functional units,

large cache memories, reconfigurable logic arrays, and
peripheral functions into single-chip microprocessors.
Unfortunately, increases in the performance of contem-
porary microprocessors have come at the cost of
increasing inefficiencies in silicon area usage. The
inefficiencies arise from the complexity of designs that
use hardware support to exploit more instruction level
parallelism.

Maintaining a rapid increase in microprocessor perfor-

mance will require a cost efficient utilization of silicon area.

The MIT Raw microprocessor is a proposed architecture

that exposes its internal hardware structure to the compiler

so that the compiler can determine and orchestrate the best

mapping of an application to the hardware. A Raw

microprocessor [1] is reminiscent of a coarse-grained FPGA

and comprises a replicated set of tiles coupled together by a

set of compiler orchestrated, pipelined, switches (Fig. 1).
Each tile contains a simple RISC-like processing core and
SRAM memories for instructions and data. Instruction
memory allows the multiplexing of the compute logic on a
cycle by cycle basis. SRAM memory distributed across
the tiles eliminates the memory bandwidth bottleneck,
provides low latency to each memory module, and
prevents off-chip I/O latency from limiting effective
computational throughput.

The tiles are interconnected by a high-speed 2D mesh
network, allowing intertile communications that are
statically scheduled to occur with register-like latencies.
The switches themselves contain some amount of SRAM
so that the compiler can load into the switch a program
that multiplexes the interconnect in a cycle by cycle
fashion, just as in a virtual wires-based multi-FPGA
system [4].

A typical Raw system includes a Raw microprocessor
coupled with off-chip RDRAM (RamBus DRAM) through
multiple high bandwidth paths. The two level memory
hierarchy, namely a local SRAM memory attached to
each tile inside the Raw chip and a large external
RDRAM memory, is necessary to be able to solve large
problems that exceed the size of the on-chip memory.

Raw architectures achieve the performance of
FPGA-based custom computing engines by exploiting
fine-grained parallelism and fast static communication,
and by exposing the low-level hardware details to
facilitate compiler orchestration. Unlike FPGA systems,
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however, Raw machines support instruction sequencing
and are more flexible because the execution of a new
operation can be accomplished merely by pointing to a
new instruction. Compilation in Raw is faster than in
FPGA systems because it binds into hardware commonly
used to compute mechanisms, such as ALUs and memory
paths, thereby eliminating repeated low-level compilations
of these macro units. Binding of common mechanisms into
hardware also yields better execution speed, lower area,
and better power efficiency than FPGA systems.

The designer of an FPGA device or a Raw micro-
processor is faced with the challenge of determining the
best division of VLSI resources among computing,
memory, and communication. This challenge is termed
the balance problem. Furthermore the designers of both an
FPGA and a Raw device must address the grain size issueÐin
other words, whether to implement a few powerful tiles or
whether to use many small tiles, each with lower
processing power.

This paper presents SimpleFit, an analytical framework
that designers can use to reason about the division of
resources in a VLSI chip. Although our analysis in this
paper is focused on the Raw microprocessor, the analysis
generalizes other chip multiprocessor architectures. Our
objective in this paper is to gain more insight into cost-
performance optimal designs given a fixed amount of
resources.

The framework presented in this paper focuses on the
performance requirements of applications, introduces an
architecture model, a cost model, and a performance model for
applications, and defines an optimization process to search
for performance optimal designs given a cost constraint.

The architecture model defines an architecture based on
parameters that include the number of tiles P, the
processing power of each tile p, the amount of memory in
each tile m, the communication bandwidth out of each tile c,
and a few other parameters, as shown in Section 2. The cost
model estimates the cost in terms of chip area of realizing
the given architecture with the specified set of parameters.

The performance model estimates the runtime of each
application as a function of the problem size. Performance
estimation is based on both 1) a characterization of the
application and its algorithms in terms of its requirements,
including processing steps, memory, and communication
volumes and 2) the architecture model.

Together with a cost constraint defined in terms of the
cost model, our performance model allows us to perform a
constrained optimization on the independent architectural
variables. We can, for example, compute the points or
contours in the architectural space that correspond to the
best performance for a given cost, lowest cost for a given
level of performance, or best efficiency defined by
performance/cost.

The algorithms used in this study have been adapted to
the Raw system architecture illustrated in Fig. 1 by first
partitioning them into subproblems that can fit within the
Raw chip. Each subproblem is loaded from the external
global RDRAM memory into the set of local memories in
the tiles. Computation occurs on the subproblem and the
results are stored back into external RDRAM. All the
subproblems are visited (possibly multiple times) in se-
quence. The algorithmic slowdown due to blocking the
problem in this manner is accurately modeled. Each sub-
problem is solved in parallel with a blocking algorithm.
Applications studied in this paper include Jacobi Relaxation,
Dense Matrix Multiply, Nbody, FFT, and Largest Common
Subsequence.

The specific contributions of this paper include:

. a general framework for reasoning about the design
space of VLSI-based parallel architectures, including
models for cost and performance,

. insights on optimal grain size and balance in
Raw microprocessors.

The remainder of this paper is organized as follows:
Section 2 describes the three models developed in this
paper: the performance model, the cost model, and the
application model, and gives a qualitative analysis of cost
and performance. Section 2.7 formulates the optimization
process based on previous model assumptions. Section 3
gives our experimental results and Section 4 discusses
related work. Section 5 concludes the paper.

2 FRAMEWORK

This section presents the analytical framework used in
analyzing candidate designs in terms of their grain size and
balance. We first start with a motivation for a study of grain
size issues.

2.1 Motivation

Two key questions in the design of a Raw microprocessor
involve the grain size of its tiles and their balance. The grain
size reflects the sizes of various components inside the tiles
such as memory, processing, and communication. A very
coarse grain design would involve multiple issue super-
scalars for processing and large local memories. Very fine
grain designs would be similar to contemporary FPGAs and
include a few bits worth of logic and memory within each
tile and a few wires connecting the individual tiles. Designs
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Fig. 1. Raw system composition. A typical Raw system includes a Raw
microprocessor coupled with off-chip DRAM and stream I/O devices.
Each Raw tile contains a simple RISC-like processor, an SRAM memory
for instructions and data, and a switch. The tiles are interconnected in a
2D mesh network that is orchestrated by the compiler. The switches
themselves contain some amount of SRAM so that the compiler can
load into the switch a program that multiplexes the interconnect in a
cycle by cycle fashion, just as in a virtual wires-based multi-FPGA
system.



with a moderate grain size would involve very simple
single-issue processors in each node.

Grain size and balance play a large part in determining
the efficiency or performance per unit cost of a machine
assuming a fixed total budget. If an engineer builds a small
number of very large (coarse grain) nodes, a point of
diminishing returns is reached where node performance
increases very slowly (if at all) as node size is increased. On
the other hand, building a large number of very
small (fine grain) nodes will also result in diminishing
returns as the communication costs dominate. The
highest efficiency occurs at an optimal point between
the two extremes. Similarly, as observed by Kung and
Yeung et al. [18], [12], there is an optimal balance of
resources between the processor, memory, and the
communication components within a node.

While there has been much debate on this topic, few
concrete results have been reported. Machine balance and
grain size continues to be determined more by convenience
and market forces than by engineering analysis. Our
primary motivation in undertaking this study is to provide
an analytical framework to enable engineers to obtain
insights into the trade-offs in choosing various machine
parameters.

Let us first provide an overview of the framework.
Throughout the paper, execution times are measured in
machine cycles, information in units of machine words, and
cost in SRAM bit equivalents (Sbe). As discussed in
Section 2.4, an Sbe is the area occupied by one bit of
SRAM memory.

2.2 Overview of the Framework

Let us overview our analytical framework, illustrated in
Fig. 2, by considering a simple machine model. In its
simplest form, a parallel machine can be characterized by
the number of tiles or nodes, P, the processing power of
each node, p (operations per cycle), communication
bandwidth of each node, c (words per cycle), and the
amount of local memory per node, m (words).

For a given problem size and partitioning strategy, an
application can be described by its processing, communica-
tion, and memory requirements per node or Rp (opera-
tions to be performed), Rc (words to be communicated),
and Rm (words). The model used in the paper is not
complex and is discussed in Section 2.3.

The performance of the application in terms of its
runtime T is derived from the application requirements
and the architectural model. If the processing time Tp � Rp

p

and the communication time Tc � Rc

c , then, if processing
and communication are fully overlapped, the runtime is
given by T � max�Tp; Tc�.

We use cost models Kp�p�, Kc�c�, Km�m� to map the
machine parameters P; p; c;m into costs. In other words, the
processor cost model Kp�p� provides the area cost of
implementing a processor that can perform p operations
per cycle. The total machine cost for a P processor machine
is then K � P �Kp �Kc �Km�.

Given an application with a fixed problem size N and an
area budget B, a constrained optimization problem is
defined with the objective of finding the optimal machine
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Fig. 2. Analytical framework. The key components of the framework are the models and the optimization process. Given an application with an

associated problem size and a fixed silicon area budget, the constraint equations are derived for the optimization. The nonlinear optimization process

searches the machine configuration space that gives the minimal runtime for the application.



configuration that gives the smallest runtime for that

budget. In other words, the framework finds the set of

architectural parameters P; p; c;m that yield a minimum

value for T given that the cost K cannot exceed the available

budget B. Or, more formally:

find P; p; c;m

to minimize T � max�Tp; Tc�,
subject to B � K.

As discussed in more detail later, the optimization

process is sped up by a set of balance constraints. The

balance constraints state that, for the optimal solution, the

computation time and communication time must be equal

and that the physical memory should fit the problem. The

balance constraints greatly reduce the size of the search

space and thus the complexity of the optimization

procedure.
The following sections discuss each of the components of

the framework and the optimization process in more detail.

2.3 Architecture Model

This section discusses parameters necessary for architecture

characterization. Although several approaches to modeling

the performance of a parallel computer have been proposed

in the literature [2], [3], none are completely suited to

modeling fine-grain parallel systems built on a chip. Fig. 3

shows our characterization of a Raw system using the

parameters described below. Our machine characterization

differs from previous ones in the sense that it captures both

local and global communication performance and includes

software overheads.
We choose as independent parameters the number of

nodes, P, the processing power per node in operations per

cycle, p, the memory per node m in words, the local

communication bandwidth per node in words per cycle, c,

the software overhead for communication in cycles, o, the

single hop latency of the network, l, the global off-chip

communication bandwidth per chip in words per cycl, bg,
and the RDRAM latency expressed in cycles, lg.

As an example, sending a local intertile message of
length L words first involves spending o cycles in launching
the message. The message header word travels, on average,
a distance of kd hops in the network using l cycles per hop.
Because the bandwidth out of a node is c words per cycle,
subsequent message words take 1

c to enter the network. The
receiving tile would also spend o cycles receiving the
message. Thus, the communication time per message is:

Tc � 2o� kdl� �Lÿ 1� 1
c
: �1�

Writing a block of data to the off-chip RDRAM memory
first involves an overhead o associated with starting up
global communication. The latency of accessing the DRAM
will be the sum of the latency of traversing the interconnec-
tion network in one dimension (kdl=2) plus lg, the
DRAM latency. (We divide by two to indicate that
RDRAM memory messages do not have to traverse both
the X and Y network dimensions). The transfer rate of
subsequent words will be the minimum of the local
communication bandwidth and the global communication
bandwidth per tile (since multiple tiles might be writing
external memory). Thus the time for writing a block of
size L to memory is:

Tg � o� kd
2
l� lg � �Lÿ 1�max 1

c
;
P

bg

� �
: �2�

Communication locality can be captured at the applica-
tion level by accounting for it in the average distance,
that messages travel (kd). We ignore contention effects
(e.g., resource and network contention) also because we
assume that the compiler can statically orchestrate
communication events much as in a virtual wires system.
We also use a conservative approach in defining applica-
tions' communication requirements.

2.4 Cost Model

We use silicon area as a measure of cost. Silicon area
reflects the fundamental cost of building a component
and is a good basis for comparing alternatives as opposed
to market price which includes many artificial factors.
The cost model is based on CMOS microprocessors,
SRAM and DRAM memories, and a mesh interconnection
technology. For simplicity, we consider the off-chip
RDRAM memory-free. Although our assumptions may
change specific numerical results, the methodology for
determining balance and grain size remains the same.

We normalize cost to units of SRAM bits, viz. one bit of
SRAM takes one unit of area and, therefore, one unit of cost.
We express the cost of all other components in terms of
SRAM bit equivalents (Sbe).

We use the notion of relative density to enable the
normalization of logic, memory, and communication areas
into units of SRAM bit equivalents. Relative density
captures the area impact of wires and more irregular
structures, such as logic areas versus the more regular
memory arrays. Although an SRAM bit comprises typically
four to six transistors, we observe that the area it occupies is
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Fig. 3. A four node illustrative Raw system characterized by the
parameters < P; p;m; c; l; o; bg; lg > , where the processing power per
node in operations per cycle is p, the amount of SRAM memory per
node is m, the local communication bandwidth per node in words per
cycle is c, the software overhead for a communication event in cycles is
o, the single hop communication latency is l, the global off-chip
communication bandwidth per Raw chip in words per cycle is bg, and
the RDRAM latency expressed in cycles is lg.



similar to the area of a logic transistor in a CPU die because
of its regular structure and, therefore, its higher relative
density. Thus, the chip size expressed in Sbe units is

equivalent to the total number of transistors for logic areas
(Table 1).

A DRAM bit is realized with one transistor and the area
it occupies is 10-16 times smaller than an SRAM bit area. We

arrived at this conclusion as the typical SRAM cell requires
a wire grid of dimension 3� 4 compared to a DRAM cell
implemented on the intersection of two wires. Factors such
as the number of metal layers may change the relative
density relations as more layers increase the density of logic

areas. The logic area density is also reduced because of the
greater amount of area devoted to wiring.

The following cost functions are based on empirical
observations and statistics gathered on current implemen-

tations of superscalars and router chips:
Processor Cost KKp. The processor cost model computes

the area cost as a function of p. We find it convenient to
relate p to cost Kp using an intermediate parameter i, which
is the number of issue units i in the processor. Thus, i � 4

implies a 4-way superscalar with a maximum of four
operations per cycle.

We model the relationship between processing cost
and instruction issue structure as a quadratic curve,
which captures the cost increase due to multiple issue

superscalars:

Kp�i� � Bp �Kps�iÿ 1�2: �3�
In the above, a cost of Bp is required to achieve a single

issue processor with i � 1.
We relate processing power p and the number of issue

units i using:

p �
��
i
p
; �4�

This model captures the relationship between perfor-
mance and cost due to more aggressive clock rates of lower
issue processors. Typically, single issue designs obtain 1.6
to 2 times faster clock rates than corresponding high-issue

rate processors. It also captures the fact that it is easier to
obtain performance close to the theoretical maximum
cycles per instruction in lower-issue processors as they
require a smaller amount of instruction-level parallelism

in applications.
Studying the layout of some simple RISC processors [13],

[21], [20], [15] leads to a base cost ofBp � 2:5� 105 transistor.
That is, a minimal single issue 64-bit processor can be built in
the area of 250K SRAM bits or with 250K logic transistors. A

cost constant of Kps � 4� 105 Sbe was arrived at from the
study of some high-end processors [29], [27], [28], [15].

For validation, Fig. 4 compares the number of transistors
dedicated to logic in several superscalar microprocessors
with our cost model for Kp�i�. We observe that, for higher-
issue superscalars, the variation in the number of transistors
dedicated to logic areas is large. This variation is caused by
important differences in implementation of components
like issue structure, scheduling, and memory interfaces. A
more detailed cost model for superscalars may also deal
with the cost impact of dynamic or static issue structures,
scheduling, and memory interfacing.

Memory Cost. We approximate memory cost as a linear
function of capacity m:

Km�m� � Bm �Wm: �5�
Here, m is the memory size in words, Kms is the cost per
word of memory, and Bm is the fixed overhead cost of the
memory. This overhead includes logic for translation,
address decode, data multiplexing, and memory periph-
eral circuitry. For our calculations, we assume that
W�wordsize� � 64 and the overhead, Bm, is 5� 104.

Communication Cost. The main components of a typical
router comprise a routing module, a crossbar arbiter, and
input output modules, often including large FIFOs. We
observe that most of the area in current router chips is
taken up by FIFOs and pad frames (circa 20 percent).
Crossbar logic usually occupies a small part of the total
area.

The amount of FIFOs depends on such factors as the
number of virtual channels. The area of queues reflects the
size of message flits and a length which is typically
16-20 flits. A flit is the number of bits transferred in one
cycle and, therefore, it also equals c expressed in bits. One
word per cycle communication bandwidth thus requires a
flit size of one word. Although not necessary, we also
assume the flitsize is equal to the physical channel width.
We denote the dimension of the network as n. The total
number of bidirectional channels is then 2n. Our results
focus on two-dimensional networks, so n � 2 for most of
this paper. We have found that the area of routers is
proportional with the number of queue sets used in
implementing virtual channels, the flit size, the dimension
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TABLE 1
Relative Densities of Constituent VLSI Components

Fig. 4. Comparison between the processor cost function Kp�i� and cost

of logic areas in current superscalar microprocessors. Cache memory

areas are factored out.



of the network, and the length of the FIFOs. The cost
function for the routers is described in the following
equation:

Kc�c� � Bc �KcsW � Fl � 2n�Q� c: �6�
In the equation above, Fl is the length of the FIFOs and Q

is the number of queue sets due to virtual channels. Our
results use Q � 1. The communication cost factor, Kcs, is
derived by fitting the cost function equation with the areas
of routing chips shown in Table 2.

For our calculations, we use Kcs � 25. For example, a
router with a 64 bit flit size and with one set of queues, each
with length 16 flits, takes approximately a 125,000 logic
transistor area in our model.

The base area for a router, Bc, is estimated at 2:5� 104.
We arrive at this from a study of simple routers [17], [16],
[13], [22]. Examples of routers with the number of
transistors used in current implementations are shown
in Table 2. The estimates using our communication cost
model are also shown. The comparison indicates that our
cost model reflects relatively accurately the area occupied
by these routers except the RDT [14] router chip that has
more than half of its area devoted to a multicast mechanism
module and a bit-map generator.

Global Communication Cost. We approximate global
communication cost as a linear function of global off-chip
communication capacity. The base area for global I/O,
Bbg � 104, is estimated to be somewhat smaller than a
simple router area as no routing functions are necessary.
The global communication bandwidth is limited by the
maximum number of pins a packaging technology will
allow. As current microprocessor packaging technologies
use from 100 to several hundred pins, we assume that, in
10-12 years, packaging will allow no more than roughly
2,000 pins. The maximum possible global bandwidth is then
bmax � 2; 000=W . The global communication cost factor,
Kbs � 105, multiplied with the wordsize is approximately
the cost in SRAM bit equivalents of one word per cycle of
global I/O bandwidth:

Kbg�bg� � 1 if bg > bmax
Bbg �KbsgWbg otherwise:

�
�7�

Global Latency Cost. For simplicity, we assume this cost
as a constant reflecting the more or less constant speed of
DRAM access over time. Blg is estimated at 105:

Klg�lg� � Blg: �8�

Total Cost of the System. The total cost of the system is
equal to the sum of its components:

K�x� � P �Kp�p� �Kc�c� �Km�m�� �Kbg�bg� �Klg�lg�: �9�
2.5 Application Model

The application model contains functions and parameters
that are necessary for application performance character-
ization. To predict the performance of an application with a
particular machine configuration, we assume that the
resource demands are uniform over time and that
processing, local, and global communication can be
completely overlapped. Some algorithms, such as those
used in dynamic programming, also require the estimation
of the algorithmic imbalance or the idle time due to
synchronization overhead. Applications with several
phases can be handled by dividing the application into its
phases and characterizing each phase separately. Our
assumption that processing, local, and global communica-
tion are overlapped imposes constraints on how the
problem is partitioned and on the total amount of memory
required. As we will show later, besides the memory
needed to hold the problem, local and global communica-
tion buffers are required in order to be able to overlap
communication times.

Our application model does not distinguish between
different forms of parallelism and types of functional units,
i.e., we assume that the parallelism available in the
application can be utilized equally well in a multiple issue
or in a multitile design.

We will exemplify the concepts of this section by
analyzing the Jacobi relaxation problem. The requirements
of the other applications considered in this paper are
presented in Table 6. The Jacobi Relaxation problem is an
iterative algorithm which, given a set of boundary
conditions, finds discretized solutions to differential
equations of the form r2A�B � 0. Each step of the
algorithm replaces the value at each node of a grid with the
average of the values of its nearest neighbors.

The original Jacobi problem defined by a grid of size N is
partitioned in subgrids of size N 0, as illustrated in Fig. 5.
Each subgrid or subproblem is solved by storing the
subproblem of size N 0 in the internal memory of a
Raw microprocessor and running a blocking relaxation
algorithm. After a given number of phases, the subgrid is
stored in external RDRAM and the next subgrid is loaded.
Clearly, a given subgrid has to be loaded and operated
upon multiple times to reflect the effect of synchronization
with the values computed in neighboring subgrids.

Because values from neighboring subgrids do not impact
the relaxations on a given subgrid stored in the micro-
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TABLE 2
Important Cost Factors for Router Chips

In the Type column, we give the number of virtual channels where necessary, e.g., 2v means two virtual channels. The second and third columns
compare the actual number and the estimated number of transistors. With Flits, we show the flit size or the number of bits transferred in one cycle. Fl
shows the length of FIFOs in flits and Q shows the set of queues in the design often reflecting the number of virtual channels.



processor, the number of iterations needed for convergence

increases. We choose is �
������
N 0
p

=2 as the number of iterations

after which resynchronizations must occur between

subproblems. Starting with some boundary conditions,

this means propagating border values to all points in a

subproblem. We chose the total number of iterations as

being it � N2, giving an error reduction factor of 10.
Let us analyze the requirements of this application.
Required Processing per Node RRp. This requirement

reflects the total amount of computation required per

Jacobi node given the algorithmic assumptions described

above. The total number of operations for each point is

three additions and one multiplication:

Rp � it4N
P
� 4

N3

P
: P 2 �1; N�: �10�

Required Amount of Memory Words per Node RRm. The

required memory is comprised of the memory required to

solve the subblock of size N 0 and also the memory buffers

needed to overlap local and global communication:

Rm � N
0

P
� 4

������
N 0

P

r
� 2

N 0

P
� 3

N 0

P
� 4

������
N 0

P

r
: �11�

Required Number of Words of Local Communication

per Node RRc. The required local communications is the total

amount of data sent or received during the whole execution

time. For any iteration, each processor requires the

bordering points from its neighbor processors:

Rc � it � 8

������
N 0

P

r
� N

N 0
� 8

N3����������
N 0P
p : �12�

Required Local Communication Events RRo. These

events incur a software penalty for initiating a communica-

tion step. It reflects the total number of times a local send or

receive is issued:

Ro � Rc � 1����
N 0
P

q : �13�

Required Latency of Events RRl. Reflects the total

number of times a local send is issued:

Rl � Rc � 1

2
����
N 0
P

q : �14�

Required Global Communication RRbg. Reflects the total
amount of words of global communication per chip:

Rbg � it
is

2N � 4
N3������
N 0
p : �15�

Required Global Communication Events RRlg. Reflects
the total times global sends or reads are initiated per chip:

Rlg � Rbg

N 0
: �16�

2.6 Performance Functions

The performance functions estimate the running time of an
application in terms of application requirements and
architecture parameters.

Runtimes <<T; Tp; Tc; Tg > . Let the times for processing,
local communication, and global communication be Tp; Tc;
and Tg, respectively. Under the assumptions that local and
global communication time are overlapped with computa-
tion, the parallel runtime is defined as the maximum of
these times:

T � max�Tp; Tc; Tg�;
Tp � Rp

p
�Roo�Rlgo;

Tc � Rc

c
�Rlkdl;

Tg � Rbg

bg
�Rlg

kd
2
l�Rlglg:

�17�

As an example, if the number of operations that must be
performed is Rp and the processing power is p operations
per cycle, then the processing time is simply Rp=p.
Similarly, if the number of events incurring the message
overhead (o cycles) is Ro, then the time wasted in message
overhead activity is Roo.

2.7 The Optimization Problem

In this section, we describe in more detail the optimization
procedure. The problem solved is the following constrained
based nonlinear optimization problem:

Given: A fixed chip area or budget B and a problem size N.

Objective:

min T �N;N 0; x�� � �18�
is subject to the constraints given below, where x is a
specific machine configuration < p; P ;m; c; o; l; bg; lg > .
The solution of this optimization is the optimal machine
configuration: xopt �< p; P ;m; c; o; l; bg; lg >opt and the
optimal subproblem size: N 0opt.

Constraints.

1. Budget B must be greater than or equal to the total
cost. The total cost of the system is computed as the
sum of its components:

B � P �Kp �Kc �Km� �Kbg �Klg: �19�
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Fig. 5. Jacobi Relaxation. The problem of size N is first partitioned
in subproblems of size N 0. Each subproblem is solved with blocking
on P processors. Each processor receives bordering data from its
four neighbors and sends its data along borders to its neighbors.
Subproblems are resynchronized after a number of iterations.



It is expedient to use an additional set of balance

constraints, as given below, when the communica-

tion and computation are overlapped. The balance
constraints focus the search for the optimal solution

to balanced machine configurations. In other words,
the second and third equations state that commu-

nication and computation times should be equal. If
they are not equal, we can take resources from the

faster component and give them to the slower
component to improve runtime. The last balance

constraint states that the memory should fit the

problem. If the memory is larger than this amount, it
can be reduced without impacting performance.

When local and global communication times are
equal and memory fits the problem, the machine

configuration is balanced for the application. In a
balanced machine, each resource is utilized to its

fullest. The balance constraints greatly reduce the
search space and, thus, the complexity of the

optimization procedure.
2. Balanced local communication with computation:

Tp � Tc: �20�

3. Balanced global communication and computation:

Tg � Tp: �21�

4. Memory on a processor element must fit the
memory required for a block. Besides the memory
required for actual computations, Ra

m, buffers for
local and global communications, Rl

m;R
b
m, are

allocated because of overlapping conditions:

m � Rm � Ra
m �Rl

m �Rg
m: �22�

3 ANALYSIS

In this section, we study a set of applications in the context

of the framework presented. The applications are: Jacobi

Relaxation, Dense Matrix Multiply, Nbody, FFT, Largest
Common Subsequence. We chose these applications be-
couse they are diverse and require conflicting machine
performances to run efficiently. The optimization procedure
has been implemented in Mathematica. We use a three cycle
software overhead, a 100 cycle DRAM access latency, and
assume an MIPS R2000 ISA for instruction latencies. We
also counted an 8 Kbyte SRAM-based instruction and data
cache per node.

In all the experiments, we used a budget of one billion
SRAM bit equivalents or the area required for one billion
logic transistors. This budget is achievable in 10-12 years as
projected by the Semiconductor Industry Association (SIA)
given a 10-20 percent growth rate per year of die areas and a
growth rate in transistor counts of between 60 and 80
percent per year due to increasing densities.

3.1 Application Specific Results

Fig. 6 shows the optimal division of chip resources for the
various applications as a function of problem size. The
optimal amount of each resource is shown in greater detail
in Fig. 7, Fig. 8, Fig. 9, Fig. 10, and Fig. 11.

Perhaps the most important result from Fig. 6 is that the
amount of area devoted to processing and local commu-
nication is more or less constant at about 75 percent for all
the applications and problem sizes. There is a variance,
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Fig. 6. Breakdown of chip areas for processing, memory, local communication and global communication that give optimal machine configurations

for a budget of one billion logic transistor equivalent area.

Fig. 7. Number of processors in optimal machine configurations for

different problem sizes.



however, across the programs in terms of how much of
this area should be devoted to computation versus
communication. These two components could be traded,
for example, at runtime in true FPGA systems. Although
the 25 percent area dedicated to memory is less than what
we have in today's microprocessors, it is still a significant
portion of the chip. Future applications, such as media
and streaming applications will likely require even less
memory because fast local and global communication can
eliminate the need for buffering an intermediate state.

The global communication bandwidth of 30 words per
cycle is the maximum achievable given a packaging
technology allowing 2,000 pins. The only application that
is I/O limited and requires this bandwidth is FFT. All the
other applications have a negligible area allocated to global
communication. The total chip area for global communica-
tion is relatively small, even for FFT. Therefore, providing
the maximum possible global bandwidth is not a bad idea
in a final configuration.

As we can see, the relative communication area required
is small in applications such as Jacobi and LCS as they also
show good spatial locality. These applications can use most
of the resources for processing. FFT and Nbody require the
largest communication area with an optimal communica-
tion bandwidth between four and five words per cycle. The
division between processing and memory areas is uniform.

The matrix multiplication based on Connor's memory
efficient blocking algorithm gives the most uniformly
divided configuration. For this application, memory, local

communication, and processing areas are approximately
equal.

The amount of memory per node obtained is relatively
small compared to modern day multiprocessors in all
applications. The reason is twofold. First, the total amount
of memory in the entire Raw chip is still quite large since it
is the product of P and m. Second, fast local communication
obviates the need for huge amounts of local memory. The
matrix multiplication required the largest amount of
memory giving a total of 24 Kbytes per node. The smallest
memory is required for Nbody.

For all the applications, the optimal processing power
obtained is equivalent to a single-issue processor. The total
number of processors P varied between 1,100 to 2,310 for
large problem sizes.

Although the optimal machine configurations obtained
vary for different applications, problem sizes, and budgets,
the general trends for various applications are similar.
Accordingly, for the applications studied, assuming a one
billion logic transistor equivalent area, we recommend
building a Raw chip with approximately 1,000 tiles,
30 words/cycle global I/O, 20 Kbytes of local memory
per node, three to four words/cycle local communication
bandwidth, and single-issue processors. This configuration
will give performance near the global optimum for
applications studied.

3.2 Sensitivity of Grain Size

The framework helps answer many other questions about
machine configurations. Let us study the sensitivity of
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Fig. 8. Global I/O bandwidth bg in optimal machine configurations for

different problem sizes.

Fig. 9. Local SRAM data memory m per node in optimal machine

configurations.

Fig. 10. Local communication bandwidth c in optimal machine

configurations for different problem sizes.

Fig. 11. Processing power p in optimal machine configurations for

different problem sizes.



performance to the machine configuration near the opti-

mum machine configuration point. This study is useful to

determine a machine configuration that is robust across

many applications. As an example, let us determine the

machine configuration with the smallest number of nodes

whose performance is within 25 percent of the optimal

configuration.
Results are shown in Table 3. For each application, the

first row gives the optimal configuration. The second row

gives the configuration with the smallest number of nodes

under the condition that the performance is no worse than

25 percent of the optimal. As we can see, balanced

machine configurations with fewer nodes usually take

advantage of the parallelism available in superscalar

processors. However, for all the applications studied,

the configuration that gave best performance used nodes

based on 2-way superscalars at most.

3.3 Sensitivity to Different Processor Cost Model
Assumptions

In the analysis presented in this section, we used a

quadratic cost model for the processors. In the following,

we analyze the sensitivity of optimal machine configura-

tions to a slightly different processor cost model.
Table 4 compares machine configurations obtained with

two processor cost models. For each application and each

parameter, two experimental values are shown. The first

value corresponds to the case when the quadratic processor

model is used; the values in the parentheses correspond

to a processor cost function Kp�i� � Bp �Kps�iÿ 1�3=2 or

assume a less dramatic impact on chip area with multiple

issue designs. As we can notice from Table 4, the

variations in the optimal balanced machine configurations

are very small. The framework suggests simple processors

even in the case of the less expensive processor model. The

explanation is that the applications used in this study are

highly parallel, the cost of local communication is very low

in applications with good locality, and adding more

functional units is still expensive (the processor cost

function is nonlinear). Additionally, the impact of commu-

nication latency is further reduced if it is overlapped with

computation.
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TABLE 3
Solutions that Come within 25 Percent of the Optimal for a Problem Size of 108 with the Smallest Number of Nodes P

The first row of each application shows the global optimum and the second row shows the solution with the minimum number of processors and
performance within 25 percent of the optimal. The numbers in parentheses show the performance degradation compared to the global optimum for
the configurations with the minimum processors. The first columns between P to bg represent the optimal machine configuration and the columns
from PKp to Klg are the chip sizes in percent of the total cost.

TABLE 4
Sensitivity of Optimal Machine Configuration to Processor Cost Model Assumptions

Breakdown of optimal machine configurations for three problem sizes and two processor cost models. The first model corresponds to a quadratic
curve between processor costs and issue rate Kp�i� � Bp �Kps�iÿ 1�2. The numbers in the parentheses are for a processor cost function
Kp�i� � Bp �Kps�iÿ 1�3=2 assuming a less dramatic impact on chip area with multiple issue designs. Columns P to bg represent the optimal machine
configuration.



3.4 Sensitivity to Communication Overlapping
Asssumptions

In the analysis presented in this section, we assumed that
communication time can be completely overlapped with
computation. We used this assumption because it has
significantly reduced the complexity of the optimization
problem and it is a reasonable assumption for many regular
applications (especially if they are statically scheduled).
However, it is possible to extend the model with an extra
parameter, the overlapping factor, to account for the situation
when complete overlapping is not possible. We define the
overlapping factor as the ratio between the overlapped and
total communication times. As an example, to study the
sensitivity of optimal resource partitioning to the over-
lapping factor, we determined the machine configuration
assuming that only half of the communication time can be
overlapped with computation.

Results for two machine configurations are shown in

Table 5. For each application and each parameter, two

experimental values are given. The first value corre-

sponds to the completely overlapped case, the values in

the parentheses correspond to an overlapping factor equal

to 0:5. As we can notice, the variations in the optimal

balanced machine configurations are very small. The

explanation is that none of the applications are memory

bound, meaning that the extra memory required for local

and global communication buffering in the overlapped

case is not very significant. Similarly, the added commu-

nication cost when only half of the communication times

are overlapped is not significantly impacting the execution
time and thus the optimal partitioning of resources.

3.5 Design Comparisons

The framework also allows us to compare competing
designs for the same budget. As an example, let us compare
the two designs: 1) using on-chip SRAM and routers
with 16-flit FIFOs and 2) using only a small SRAM cache
and the rest of the memory in on-chip DRAM as well as
small 2-flit FIFOs. We derive the performance/cost
optimal configurations and look to application perfor-
mance for different problem sizes.

Since DRAM densities are much higher than SRAM
densities we can have more memory per node in
alternative (2). One problem in using DRAMs is that the
access latency is higher than corresponding SRAMs. To
reduce the impact of the latency, we include a small
SRAM cache in each node and assume that the SRAM
cache results in a near perfect hit rate (this assumption
can be made because the total amount of SRAM per Raw
chip is very large even for a small SRAM per Raw tile).
Case 2 also has small FIFOsÐwith good static scheduling
of the communication channels, the need for deep FIFO's
is reduced.

The question is: How much do these changes impact
the performance of applications given performance/cost
optimal partitioning of resources in both cases? Fig. 12
shows the performance ratio between the second and the
first designs. It is easy to see that the larger amount of
on-chip memory in Case 2 results in significantly higher
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TABLE 5
Sensitivity of Optimal Resource Partitioning to Communication Overlapping Assumptions

Breakdown of optimal machine configurations for three problem sizes and two overlapping models. The first overlapping model corresponds to the
case when all communication latencies can be overlapped with computations. The numbers in the parentheses correspond to the case when only
half of the communication time can be overlapped with computation. Columns P to bg represent the optimal machine configuration.

TABLE 6
Overview Application Requirements



performance. Assuming a fairly large 10 percent local
miss rate (between the local SRAM and local DRAM), an
on-chip DRAM latency of 10 cycles, one cycle SRAM
latency, 25 percent memory instructions, the performance
improvement in Case 2 is reduced by 25 percent to a
speedup of 1.12 to 2.62 for the applications studied.

4 RELATED WORK

There are several research efforts that have defined a set of
analytical models that allow estimation of system perfor-
mance metrics. In this section, we briefly mention a few of
these research works.

One of the first works incorporating technology, architec-

ture, and packaging models in a framework is SUSPENS [7].

SUSPENS is a generic systems-level approach, covering

the circuit and systems level of abstraction. The GENESYS

framework [5] assimilates the entire hierarchical descrip-

tion of a microprocessor chip through a concise set of input

parameters and projects its key performance metrics by

engaging a set of interrelated models, incorporating both

physical and empirical knowledge. SimpleFit is a much

higher level framework than GENESYS and it has no

physical models incorporated. In contrast, SimpleFit

incorporates an analytical model for application runtime

behavior, enabling optimization of architectures for dif-

ferent applications.
The LogP model [2] is a simple parallel machine model

intended to serve as a basis for developing portable parallel
algorithms. Alexandrov et al. defined the LogGP [11] model
as an extension of LogP to capture the large bandwidth
requirements of applications using long message primi-
tives. LoGPC [9] leverages the performance parameters of
LogP and LogGP and extends the analysis with a more
detailed model of the DMA pipeline and a network
contention component. The LoPC model [8] extended the
LogP model with a resource contention model. The
performance model in SimpleFit is using a similar set of
parameters for modeling the most important performance
aspects of a tiled single chip system.

There has also been a lot of interest in analytical models
for caching. Some of the earliest work in cache area

modeling has been done by Mulder et al. [6]. The area for

a simple single-ported SRAM cell has been empirically

found to be 0.6 register bit equivalents (RBE). This is

comparable to the empirical estimation done in SimpleFit

where an SRAM bit area is assumed to be equivalent with a

CPU logic bit.
Another direction where analytical modeling is used is

for estimating and optimizing microprocessor power

dissipation at the architectural level. Wattch [10], for

example, is a recent architectural simulator that estimates

CPU power consumption by using parameterizable power

models.
SimpleFit leverages some aspects of the early work on

grain size for multiprocessor systems by Yeung et al. [12]. It

goes, however, to a greater level of detail and focuses on

single-chip tiled architectures as opposed to multiprocessor

systems.

5 CONCLUSIONS

This paper describes SimpleFit, a novel framework for

reasoning about single chip tiled microprocessors, such as

Raw, with replicated, fine-grain processing elements. The

framework uses a machine characterization that considers

processing, memory, local and global communication, and

latency as separate machine resources. This is a unique

characterization of machine space since it captures the

effects of locality by treating local and global communica-

tion separately. The framework incorporates a cost model

based on empirical observations and statistics gathered on

current implementations of superscalars and router chips.
The framework recognizes the importance of balance in

good design and integrates this idea with a cost and

performance model to provide a useful design tool. Having

provided this framework, this paper chooses a diverse

application suite in order to exercise the framework and to

address some general questions in parallel computer design

in general. More specifically, it addresses the questions of

on-chip resource division in the MIT Raw microprocessor.

Although the optimal machine configurations vary for

different applications, problem sizes, and budgets, the

general trends are consistent. The framework further

suggested that, for the applications studied and assuming

a one billion logic transistor equivalent area, designers

should build a system with about 1,000 nodes, 30 words/

cycle of global I/O, 20 Kbytes of local memory per node,

three to four words/cycle local communication bandwidth,

and single-issue processors for optimal performance.
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Fig. 12. Performance comparison between two cost optimal designs
each with a budget of one billion logic transistor area. In the first
design, we use SRAM and routers with 16 flit FIFOs, while in the
second design we use on-chip DRAM with a 1 Kbyte SRAM cache
per node and 2-flit FIFOs.
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