
SoftwareBasedInstruction Caching for the RAW Ar chitecture

by

JasonEric Miller

Submittedto theDepartmentof ElectricalEngineeringandComputerScience
in partialfulfillment of therequirementsfor thedegreesof

Bachelorof Sciencein ComputerScienceandEngineering

and

Masterof Engineeringin ElectricalEngineeringandComputerScience

at the

MASSACHUSETTSINSTITUTE OF TECHNOLOGY

May 21,1999

Copyright 1999MassachusettsInstituteof Technology. All rightsreserved.

Author .
Departmentof ElectricalEngineeringandComputerScience

May 20,1999

Certifiedby. .
AnantAgarwal

Professorof ComputerScience
ThesisSupervisor

Acceptedby .
Arthur C. Smith

Chairman,DepartmentCommitteeonGraduateTheses

Software BasedInstruction Caching for the RAW Ar chitecture

by

JasonEric Miller

Submittedto theDepartmentof ElectricalEngineeringandComputerScience
on May 20,1999,in partialfulfillment of the

requirementsfor thedegreesof
Bachelorof Sciencein ComputerScienceandEngineering

and
Masterof Engineeringin ElectricalEngineeringandComputerScience

Abstract

This thesisaddressesthedesignandimplementationof asoftwarebasedinstructioncachingsystem
for theRAW architecture.This systemis necessaryto allow largeprogramsto berun in thelimited
on-chipmemoryavailablefor eachRAW tile. Similar systemswereexaminedandvariousdesign
issueswereexaminedin detail.A partialsystemwasimplementedin theRAW compilerin orderto
gaugethe feasibility of sucha system.Performancedatawascollectedfrom variousbenchmarks.
Theimplicationsof thisdataanddirectionsfor furtherresearcharediscussed.

ThesisSupervisor:AnantAgarwal
Title: Professorof ComputerScience

2

Contents

1 Intr oduction 9
1.1 TheRAW Architecture . 9
1.2 CachingOverview . 10

1.2.1 Similar Systems . 11
1.2.2 BasicOperation. 12

2 Major DesignIssues 15
2.1 Block Size . 15

2.1.1 BasicBlock . 16
2.1.2 ExtendedBasicBlock . 17
2.1.3 Clustersof BasicBlocks . 17
2.1.4 FixedSizeBlocks . 18

2.2 InstructionMemoryOrganization . 18
2.2.1 Associative Cache . 18
2.2.2 Heap . 19
2.2.3 SegmentedHeap . 20

2.3 DataStructures . 20
2.3.1 Array . 20
2.3.2 HashTable . 21

2.4 Chaining. 22

3 SystemImplementation 25
3.1 Design. 25

3.1.1 MemoryOrganization . 25
3.1.2 Block Size . 26
3.1.3 DataStructures. 27

3.2 Implementation. 27
3.2.1 ProgramCodeModifications. 28
3.2.2 DispatchCode . 30

3.3 Results. 31

4 Conclusions 35
4.1 FutureWork . 35
4.2 Conclusion . 36

A Dispatch Code 37

3

4

List of Figures

1-1 RAW Architecture . 10

2-1 Block SizeAlternatives . 16

2-2 Chaining. 22

3-1 Branch/JumpInstructionReplacements . 29

5

6

List of Tables

3.1 CachingPerformanceResults. 32

3.2 CachingMemoryResults. 32

7

8

Chapter 1

Intr oduction

TheRAW architectureis an exampleof an exposed,parallelarchitecture.Thedetailsof themul-

tiple executionunits andtheir interconnectionareexposedto the compilerso that it canmanage

resourcesefficiently. Complex featuressuchasvirtual memory, out-of-orderexecutionandcaching

areimplementedin softwareto allow for customizationon aprogramby programbasis.

The remainderof this chapterdescribesthe RAW architecturein moredetail andoutlinesthe

basicissuesinvolved in implementingasoftwarebasedcachingsystem.

Chaptertwo examinesthemajor designvariablesin moredetail anddiscussestheadvantages

anddisadvantagesof severaloptionsfor each.

Chapterthreedescribesthesystemwhichwasimplementedandreportsontheresultsof adding

softwarebasedinstructioncachingto aprogram.

Chapterfour discussespossiblefuturework andprovidessomeconcludingcomments.

1.1 The RAW Ar chitecture

TheRAW architectureis basedon two mainideas:providing many resourcesto beusedin parallel

andexposingthedetailsof thearchitectureto allow flexibility in theway theseresourcesareused

[1, 9]. A RAW processorconsistsof many small,replicatedcomputationaltiles,eachwith it’s own

instructionstream.Eachtile is composedof asimplepipelinedRISCcore(with aMIPS instruction

set[6]), separatedataandinstructionmemoriesanda programmableswitch to communicatewith

othertiles. Many of thecomplicatedfeaturesfoundin modernmicroprocessorsarenot implemented

in hardwarein aRAW system.This is doneto allow thecompilerto implementandcustomizethese

featuresasneededfor aspecificprogram.

9

Tile
RAW

Core
RISC

Dmem
Imem

Switch

Figure1-1: Diagramshowing interconnectionof RAW tilesandcompositionof eachtile.

Thetiles areinterconnectedin a 2D mesh(seeFigure1-1), allowing eachtile to communicate

directly with the four tiles adjacentto it. Communicationcaneitheroccurstaticallyby producing

instructionstreamsfor theswitchesatcompiletime,or dynamicallyby sendingdataoveraseparate

network with a destinationtile address.Dynamicmessagesareroutedto their destinationsby the

switchesbetweenthe two nodes. Data is only ableto move to an adjacentswitch on eachclock

cyclesocommunicationwith distanttiles requiresextra clockcycles.

In orderto allow for themaximumnumberof tilesonaprocessor, thedataandinstructionmem-

oriesarekeptsmall.Typicalsizesmightbein the16to 32kbyterange.Sincemany applicationsare

likely to requiremorestoragethanthis,somemechanismis neededto loadthesememorieswith new

datafrom a largerexternalmemory. In effect, thetile memorieswill beusedascaches.In keeping

with theRAW philosophy, this cachingbehavior shouldbeaddedto aprogramby thecompiler.

1.2 CachingOverview

Dueto thedifferencesin theway dataandinstructionsmemoriesareused,it makessenseto devise

separate,customstrategiesfor cachingeach.This thesisaddressestheproblemof implementinga

cachingsystemfor instructionmemories.

Codeexecutionis, by its very nature,dynamic. Loopsandconditionalsmake it possiblefor

somecodeto beexecutedthousandsof timeswhile othercodeis never executedatall in away that

is impossibleto predictat compiletime. A compilercanonly determinewhereflow of controlcan

pass,notwhereit will pass.Thesameprogramcanbehaveverydifferentlyondifferentsetsof input

data. Therefore,instructioncachingmustbe implementedasa runtimesystem. Loadingof new

10

codecannotbescheduledat compiletime but mustinsteadbeperformedon demand.

Implementingcachingin softwareasopposedto hardwarehasbothadvantagesanddisadvan-

tages.Themostobviousdisadvantageis thatthecomparisonsandlookupsneededto determineif a

certainpieceof datais in thecacherequiremultiple processorinstructionsin a softwaremanaged

cachebut canbeperformedin parallelin a hardwarecache.On theotherhand,a softwareimple-

mentationhasanadvantagein beingableto changethecachingschemeat will. It alsoallows the

compilerto get involved. Thus,thecompilercanuseits knowledgeof a programto customizethe

cachingfor thatprogram.For example,if thecompilercandeterminethat theentireprogramwill

fit within theinstructionmemory, it canremove thesoftwarecachingall together.

1.2.1 Similar Systems

Softwarecachesmustdo things like searchesandcomparisonsin a serialmannerinsteadof the

parallel mannerusedin hardware caches. For example,a fully associative hardware cachecan

comparethe tagsof all the cachelines to the desiredaddresssimultaneously[10, p. 482] while

a software basedcachemust checkeachtag sequentially. Therefore,it is not very practical to

simply imitateahardwarecachein software.Instead,we shouldlook to othersoftwaresystemsfor

inspiration.Simulation/profilinganddynamiccodegenerationsystemsbothfacesituationssimilar

to instructioncaching.

Simulationprogramshave the taskof imitating a certaincomputersystemby translatingma-

chine codeinto the machinecodeof the host computer. Thesetypesof programsalso tend to

includesupportfor insertingextra codeto collectstatistics(profiling) or provide debugginginfor-

mation. Thesesystemstypically do their translationat runtimesothat thedatato becollectedcan

bealteredon thefly [11, 3] andsothattime is notwastedtranslatingcodethatdoesnotactuallyget

executed.

Dynamic codegenerationsystems[5] operatein a very similar manner. They typically im-

plementsomevirtual machineby translatingan intermediatelanguage(e.g., Java bytecode)into

machinecodeat runtime. This is doneso that thesameprogramcanberun on any systemwhich

implementstheappropriatevirtual machine,without requiringaseparatetranslationpass.Sincethe

whole point of this type of systemis avoiding an extra compilationpass,the translationmustbe

doneat runtime. To avoid performingthis expensive translationon codewhich is never executed,

thesesystemsusuallydo translationondemand.

Both of thesetypesof systemsarefrequentlyimplementedusinga translation cache [3, 11].

11

As codeis translated,it is placedinto the cacheto be reusedif that codeis executedagain. The

translationcacheis, in essence,an instructioncache.In an instructioncache,codeis loadedfrom

mainmemoryinto thecachememoryandkept thereaslong aspossiblein caseit is neededin the

future.

However, thereareseveral importantdifferencesbetweenthesesystemsanda softwarebased

instructioncache. First, the translationcacheis typically storedin the main memoryof the host

computerandthereforecanbevery large [2]. A translationcacheof 4 or 8 MB is largeenoughto

hold all of thecodefor many programs.With today’s workstationsfrequentlyhaving between128

and512MB of RAM, thereis no reasonwhy thetranslationcachecouldnot beevenlarger than8

MB sothatit couldaccommodateall but thevery largestprograms.Becauseof this,simulationand

dynamiccodegenerationsystemsonly needto dealwith theircachesbecomingfull onaninfrequent

basis.This allows themto useexpensive but simplemethodsto copewhenit doesoccur. However,

with aninstructionmemoryof only 16kbytes,ourcachewill constantlybefull andspacewill need

to beclearedfor eachnew pieceof codeto beloaded.Thismeansthatdeallocationneedsto bejust

asfastandefficientasallocation.

Thesecondbig differenceis thataninstructioncacheonly loadsthecodeintomemoryinsteadof

translatingit. Sincethesimulationprogramsspendmostof theiroverheadtimedoingthetranslation

or collectingstatistics,themechanismusedto implementthecachingcanbemorecomplex without

incurringa noticeablepenalty. Instructioncachingcodemustbevery efficient in orderto maintain

performancecomparableto asystemwhichdoesnotneedcaching.

1.2.2 BasicOperation

At themostbasiclevel, aninstructioncachedividesaninstructionstreaminto sometypeof pieces

(calledblocks) andthenloadsthoseblocksfrom a large, distant(slow) memoryto a small, close

(fast) memorywhen they are needed. Hopefully, theseblocks will be neededmore than once,

allowing themto beretrievedfrom thesmall,closememoryafterthefirst use.In ahardwarecache,

theblockschosenareusuallya contiguousblock of two to four instructionschosenbasedon their

alignmentin memory. In a softwarebasedcache,thereis an opportunityto usethe compiler to

createamoreintelligentscheme.

In theRAW system,thesoftwarecachingcodewill beintegratedinto theprogramby thecom-

piler. The compilerwill adda pieceof code(calledthe dispatch code)which checksto seeif a

certainpieceof codeis residentin thecache,loadsit if it is not andthentransferscontrol to that

12

code.This is very similar to the tagchecksanddatafetchperformedby a hardwarecache.How-

ever, ratherthanperformingthis checkfor every instructionthat is executed(aswould bedonein

hardware)thecompilerwill only insertjumpsto ourdispatchcodeatpointswhereit thinkstheup-

comingcodemight notberesidentin thecache.In placeswhereit knows thecodewill beresident,

theprogramcansimply continuewithout thecheck.

Thedispatchcodewill loadanentireblock into thecacheat a time. As long astheprocessor

is executingcodewithin this block, the programdoesnot needto checkto seeif the next code

is present.The programwill only needto jump to the dispatchcodewhenexecutionmovesto a

differentblock. Althoughit initially seemslike it might behardto detectwhentheprogramenters

or exits ablock, thecompilercanleverageits knowledgeof controlflow to greatlysimplify this.

13

14

Chapter 2

Major DesignIssues

In orderto implementthebasicstructureoutlinedabove, severalmechanismsareneeded.It must

bepossibleto find out if a block is in thecache.This shouldbe fastsinceit will needto bedone

frequently. If theblock thatis neededis alreadypresentin thecache,thedispatchcodewill simply

transfercontrol to it. Otherwise,it will needto be able to load a block from memoryinto the

cache.This canbe slower sinceit shouldoccurlessfrequently. Finally, a block may needto be

removedfrom thecachein orderto make roomfor theblock which is beingloading.Eachof these

mechanismswill be affectedby several designchoicesincluding how blocksof codeareformed,

how instructionmemoryis organized(e.g., heapvs. directmappedcache),whetherblockscanmove

oncethey have beenloadedandwhetheror not blocksof codecanbe modifiedfor optimization

purposes.

2.1 Block Size

Thewayin whichaprogramis brokenupinto blockshasaverylargeeffectonall thecomponentsof

thesystem.Ideally, blocksshouldbelargesothatjumpsto thedispatchcodewould beinfrequent.

It might alsobegoodto have a fixedsizefor blocksso that it is not necessaryto keeptrackof the

sizeof eachblock andsothatorganizationof theinstructionmemorycanbesimplified. However,

breakinga programinto arbitraryblockscancreatemoreproblems. For example,if a block has

more thanoneentry point
�

, then it will be harderto keeptrack of which entry pointsare in the

cache.Also, loadinga largeblock of codemaywastespacein thecacheby loadingcodethatwill

�

An entry point is aplacethatthedispatchcodemightberequiredto transfercontrolto, i.e., a branchdestination.

15

C

A

B
D

F

E

A

C

E

F

B

D

F

(b) (c)(a)

C

E

B

D

A

Figure2-1: Control flow graphsdemonstrating(a) basicblocks, (b) basicblocks joined into ex-
tendedbasicblocksand(c) clustersof basicblocks(shown with dashedboxes).

beskippedover by aconditionalbranch.

2.1.1 BasicBlock

Fortunately, compilersalreadybreakprogramsup into blockswhich have a lot of goodproperties.

A basic block is asequenceof instructionswhoseonly entrypoint is thefirst instructionandwhose

only exit point is thelast instruction.Oncecontrolentersa basicblock every instructionwithin the

block is executedandcontrolflow within theblock is sequential.This is theblock sizewhich was

chosenfor oursystem.

Usingabasicblockfor acacheblockhasseveralbenefits.First,all instructionswhichareloaded

will beexecuted,thuswastingtheminimumamountof space.Second,keepingtrackof entrypoints

is equivalentto keepingtrackof blocks,thussimplifying bookkeeping.Third, becausebasicblocks

endwhenever achangein flow canoccur, every branchinstructionwill endablock andevery label

will startanew one.Therefore,makingtheprogramjumpto thedispatchcodewhenleaving ablock

is assimpleasreplacingall thebrancheswith jumpsto thedispatchcodeandinsertingjumpsbefore

eachlabel.

However, therearealsosomenegative aspectsto usingbasicblocksfor a cacheblock. First,

basicblocksarefairly small. Most programshave averagebasicblock sizesaround6 or 7 instruc-

tions[11]. This meansthat jumpsto thedispatchcodewill befrequentandoverheadwill behigh.

In additionto beingsmall,basicblocksarealsohighly variablein size. Somemaybeonly a sin-

16

gle instructionwhile othersmaybedozensof instructions.This makesarrangingthemin memory

morecomplicated.If theblocksareplacedat fixedlocationsin memory(e.g., a hashof thestarting

addressof theblock) thenspacemaybewastedbetweenblocksif they aretoo shortor blocksmay

overlapif they aretoo long. If blocksarepacked denselyinto memory, thenit is muchharderto

deallocatethembecausetheholesthatarecreatedmaynotfit thenew block thatneedsto beplaced

there.

2.1.2 ExtendedBasicBlock

Onealternative to usingbasicblocksis usingextended basicblocks.Extendedbasicblockshave a

singleentry point but might have multiple exit points. In termsof cachebehavior, they would be

very similar to basicblocksexceptthatthey would tendto bebigger. This couldpotentiallyreduce

thetime spenttransferringdatafrom externalmemorybecauselarger, moreefficient “burst” reads

couldbeused.However, this alsoincreasesthe likelihoodof loadingcodewhich will not actually

beexecutedbecausethebranchesin themiddleof theextendedbasicblock might alwaysskip the

codeat the endof it. Brancheswhich occurin the middle of a block would needto be modified

sothat the“taken” casewould jump to thedispatchcodebut the“f all-through”casewould simply

fall-through.Branchesat theendof blockswould needto bemodifiedaswith basicblocks.Using

extendedbasicblockswill reducethenumberof callsto thedispatchcodebut only slightly.

2.1.3 Clustersof BasicBlocks

Using groupsof basicblockswith internalbranchesmight producelarger blocksandalsoreduce

thenumberof jumpsto thedispatchcode.Theclusterswould have asingleentrypointandone(or

maybemany) exit pointsbut may alsohave internalbrancheswhich have destinationswithin the

cluster. Theseinternalbranchescouldbeleft as-iswhile thebrancheswith destinationsoutsidethe

clusterwould be translatedinto jumpsto thedispatchcode.Clusterswereinspiredby the macro-

instructions of [8]. As longastheclusterhasonly oneentrypoint,bookkeepingwill bejustaseasy

asit would beusingbasicblocks.However, codemaybeloadedthatis never executedanda more

complex compilerwill berequiredto find theseclustersandchangeonly theappropriatebranches.

17

2.1.4 Fixed SizeBlocks

In orderto avoid thecomplexity and/orwastefulnessof placingvariablesizedblocksinto thecache

memory, a systemcouldbedesignedusingfixedsizeblocks.Thecodecouldbedividedinto fixed

sizesegmentswhile still maintainingproperflow of controlby insertinga jump instructionat the

endof eachsegmentwhich jumpsto the beginning of the next segment. Sincetherecannow be

multiple entrypointswithin a block, it will beharderto determinewhetheror not a specificentry

point is in the cachewhenit is needed.Ratherthansimply assumingthat thereis only oneentry

point in a cacheblock andit is at the beginning,a methodfor finding out which entry pointsare

within a cacheblock will berequired.Also, this methodof forming blocksmayloadquitea bit of

codeinto thecachethatis neverexecuted.Finally, theinsertionof all theextra jumpswill adversely

impactperformance.

2.2 Instruction Memory Organization

Instructionmemoryorganizationis justasimportantto cacheperformanceasblocksize.A balance

mustbefoundbetweenspaceutilization efficiency andspeedof allocationanddeallocation.Space

efficiency will influencethecachehit ratesincewastedspacecouldhave beenusedto hold useful

code.However, amorecomplex schemewhichis ableto moreefficiently managememorymaytake

longerto placenew blocksandfind old blocksto throw out. For simplicity andflexibilty reasons,

oursystemusesa heaporganizationasdescribedbelow.

2.2.1 AssociativeCache

Traditional hardware cachesgenerallyusefixed size blocks and somedegreeof associativity to

determinewhereto put thoseblocks.Thecacheis conceptuallyacollectionof numberedslots.The

physicalstartingaddressof a block is hashedsomehow to producea numberwhich correspondsto

a specificslot. In a direct-mappedcache(equivalentto 1-way associativity) eachslot canhold one

block. In a 2-way associative cache,eachslot canhold two blocksto avoid thrashingin the case

thattwo blockswhichmapto thesameslotareusedalternately. Thiscanbeextendedto any degree

of associativity desired.

This techniquehastheadvantageof it beingrelatively fastto determinewherea block should

beplacedin thecache.It is alsoeasyto determinewhichblocksshouldbethrown out becauseit is

simplywhateverblock is alreadyin theslot. However, it hasthepotentialto bevery inefficient in its

18

memoryusage.First, a block maybethrown out becauseof anoverlapin hashvalueseventhough

thereis plenty of spacesomewhereelsein the cachefor that code. Second,it canbe difficult to

reconcileavariableblocksizewith thisscheme.Sincetheslotsarefixedsize,spacewill bewasted

if a block is loadedthat is not asbig astheslot andlargeblockswill needto bebroken up sothat

they will fit into theslots.

2.2.2 Heap

The oppositeextremeto the highly structuredassociative cachemodel is the unstructuredheap.

Blocks aresimply loadedinto the heapstartingat the first available addressandusing as much

spaceasthey need.The resultwill be that all of theblockswill be denselypacked into memory.

If basicblocksareusedasthecacheblocks,this will resultin perfectefficiency of memoryusage.

Therewill beno wastedspaceandno unnecessarycodewill be loaded.Insteadof usinga hashto

placeblocks,theemptyspacein theheapmustbekepttrackof. However, this schemecanbecome

very complex whendeallocationof blocksis allowed.

If thesystemallows any block to bedeallocated,it will becomevery hardto keeptrackof the

freespace.Memorywill becomefragmentedasblocksareloadedthatdonotperfectlyfit thespace

that wasclearedfor them. A systemwhich operatesthis way will probablyneedto compactthe

heapperiodicallyto remove thewastedspace.This is generallyaveryexpensive operationandwill

severelyimpactperformance.

Alternatively, the instructionmemorycould be treatedmorelike a stackor a FIFO, i.e., allo-

cationanddeallocationcanonly occurat the endsof the alreadyloadedblocks. A stack imple-

mentationwould requireblocksto be allocatedanddeallocatedfrom the sameend. This hasthe

undesirablepropertythatthemostrecentlyallocatedblocksaretheonly onesallowedto bedeallo-

cated,thuspreventingusfrom reusingthosenewly allocatedblocks.A FIFO implementationwould

bebetter. Blockswould beallocatedfrom oneendanddeallocatedfrom theotherendandthe in-

structionmemorywouldbetreatedin acircularmanner. Thismeansthattheoldestblockswouldbe

deallocatedto make roomfor thenew ones.Sincetheoldest block is anapproximationto the least

recently used block, this is a muchbetterreplacementstrategy. While a FIFO replacementstrategy

is frequentlyconsideredmediocrefor randomaccessdatacaches[7], it shouldperformbetterin an

instructioncachewheretheaccesspatternis mostlysequential.Also, thebenefitof beingableto

densepackvariablesizedblocksmayoutweighthedisadvantageof aslightly increasedmissrate.

Most of the simulationand dynamiccodegenerationsystemsusea heapbut have a greatly

19

simplifieddeallocationscheme.Whenthecachefills up, they flush theentirething andstartover.

This is a good strategy if your cacheis large and fills infrequentlybut is not likely to produce

acceptableperformancefor asmallcache.

2.2.3 SegmentedHeap

Onepossiblecompromisebetweentheassociative andheapstructureswouldbea segmented heap.

In essence,thecacheis anassociative cachewith a smallnumberof slotswhereeachslot is aheap

ratherthanholding a fixed numberof blocks. The associativity of this systemwould be variable.

A hashwould beusedto assigneachblock to a slot andthenemptyspacewould be foundwithin

thatslot for theblock. Ideally, blockswould bepackeddensely. In this system,it maybepractical

to simply flushall thecodewithin a slot whenit fills up. Sincea slot is only a smallportionof the

cache,only asmallportionof thepreviously loadedcodewouldbethrown out.

Alternatively, blockscouldbeassignedto slotsin adifferentway. Initially, all blockswouldbe

placedin thefirst slot. Whenit becomesfull, blockswould beplacedin thesecondslot andsoon,

until theentirecacheis full. Whenthis occurs,all of thecodewould beflushedfrom thefirst slot

andit would begin refilling. This hastheadvantagethatit is alwaystheoldestcodewhich is being

flushedratherthatjust thecodewhichhappenedto collidewith thecurrentblock. Again, thisFIFO

replacementstrategy is likely to performwell in aninstructioncache.

2.3 Data Structures

Any practicalsystemmustalsoconsiderthespeedandfootprint of thedatastructuresnecessaryto

maintainthecache.Themostobviousdatastructureto usewouldbealist or tablewhichcontainsan

entryfor everyblockwhichis presentin thecache.Eachentrywouldcontainthevirtual address(the

addressin theexternalmemory)andthe physical address(theaddressin the instructionmemory)

of theblock. Unfortunately, this is a horribly slow datastructuresinceit will requirea full search

of thetableto find out if a cacheblock is present.Sincethis is theoperationwhich mostneedsto

befast,this is notanacceptablesolution.

2.3.1 Array

To avoid doingafull searchonthetable,theentriesfor eachblockcouldbestoredin anarraywhich

is indexed by the virtual addressof the block. Finding the entry for a block no longerrequiresa

20

search.However, this arraywill be very sparsesinceonly the entry pointsof eachblock needto

berecorded.Thearrayindicescorrespondingto instructionswhich arenot entrypointswould be

empty. To eliminatethe sparsity, a new virtual addressspacecould be createdwhereeachblock

is assigneda numberandthis numberis usedto requestblocks. Now thereis oneentryperblock

in theprogram.This is fastbut requiresthata tablebekept in memorywhosesizeis proportional

to thetotal numberof blocksin a program,not thenumberof blockscurrentlyin thecache.Since

programscouldconceivablegrow very large,this approachis not scalablebecausethetablewould

consumeall of a tile’s memory. In addition,thearraycouldstill becomesparsebecausetheentries

for blockswhich arenot currentlyin thecachewould beempty. However, this maystill bea very

goodsolutionfor programsthataretoobig to fit in theinstructionmemorybut arenothuge.Hereis

wheretheflexibility of a softwarebasedschemepaysoff. Thecompilercouldusethis fastmethod

for fairly smallprogramsbut useaslower, morescalablemethodfor very largeprograms.

2.3.2 HashTable

Anothermethodfor eliminatingthe sparsityof an array is to convert the array into a hashtable.

Insteadof indexing thearrayby thevirtual addressof theblock, it is indexedby somehashof the

virtual address.Thisprovidesalookupthatis almostasfastasastandardarraybut thehashfunction

is chosensothatthetableis afixedsizeandis reasonablydense.

Theproblemwith ahashtableis thatit is possiblefor two virtual addressesto hashto thesame

value. This canbeminimizedby picking a goodhashfunctionanda largeenoughtablesizebut it

canstill happenandmustbeplannedfor. A commonmethodfor dealingwith collisionsis chaining

[4, p. 223]. In a hashtable,chainingmeansthat eachtableentry pointsto a linked list of values

which hashto thatslot. After finding theappropriateslot in thehashtable,the linked list mustbe

searchedsequentiallyto determineif thedesireddatais there.This makesthesizeof eachentryin

thetablevariableandgreatlycomplicatesall operationson thetable.

Anothermethodfor dealingwith collisionsis calledopen addressing [4, p. 232-6].Thismethod

usesamorecomplicatedhashto produceaseriesof valuesinsteadof justone.If thedesireddatais

not found in thefirst slot, thenthesecondvaluein theseriesis computedandthatslot is checked.

This continuesuntil thedatais foundor anemptyslot is reached.This methodmaintainsall of the

datawithin a fixedsizetablebut it makesdeletingvaluesfrom thetableextremelydifficult. Since

aninstructioncachehashtablewill needto have entriesremovedwhenblocksaredeallocated,this

makesopenaddressingapoorchoice.

21

Block
A

Block
C

Block
D

Block
BDispatch

Code

(a)

Block
A

Block
C

Block
D

Block
BDispatch

Code

(b)

Figure2-2: Exampleof jumpsbetweenblocks(a) without chainingand(b) with chaining.

Both of the previous solutionsassumedthat every pieceof datain the table is precious,i.e.,

onceinserted,anentrymustremainin thetableuntil it is explicitly removed. An instructioncache

doesnot requiresucha strict rule. If an entry is lost from the table, it meansthat the cachehas

“forgotten” that it hasa certainblock loaded. If that block is needed,it will simply be reloaded,

incurringa performancepenaltybut maintainingcorrectfunctionality. This suggestsa strategy for

conflict resolutionwherethe old entry is simply thrown away. As long asthe hashtable is large

enoughandthehashfunctionis fairly uniform, this shouldoccurinfrequentlyandtheperformance

degradationwill below. This is themethodwhichwaschosenfor oursystem.

A slight modificationof this schemecould provide spacefor two entriesin eachtable slot.

Conflictswould behandledusinga chainingstrategy but with a maximumchainof two elements.

If moreentrieswerehashedto that slot, the older oneswould fall out of the chain. This strategy

providesmoreflexibility for thesameamountof memoryastheprevioussolutionbut it alsoincursa

higheroverheadfor mostcacheoperationswhichmustnow checkbothslotsin thehashtableentry.

2.4 Chaining

In a systemwith a complex cachingscheme,thedispatchcodecould becomea major bottleneck.

Even if the dispatchcodeis fast,a small block sizewould causejumpsto it very frequently. Al-

thoughthe dispatchcodeis designedto be as fastandefficient aspossible,it will still introduce

overheadwhichmaynotbenecessary. For blockswhichareknown to bein thecache,theprogram

couldbranchdirectly to thedesiredblock insteadof jumpingto thedispatchcode.This canbeac-

complishedusinga techniquecalledchaining whichhasbeenshown to producesignificantbenefits

in thesimulationsystemsmentionedabove [11, 2]. Thisshouldnotbeconfusedwith thehashtable

22

conflict strategy called“chaining” whichwasdiscussedabove.

Chainingcutsout unnecessaryjumpsto thedispatchcodeby modifying thecodein thecache.

Whenthe dispatchcodeloadsa block into the cache,it goesbackandreplacesthe jump which

requestedthatblock with a jump directly to theblock. Now thenext time thatcodeis executed,it

will skip thedispatchcode(seeFigure2-2). This procedurewill payespeciallybig in thingslike

loopswherethe entire loop canbe residentin the cacheandexecutemany iterationswithout the

dispatchcodeslowing it down. Chainingcanbeperformed,not only whena new block is loaded,

but alsowhenablock is requestedthatis alreadypresentin thecache.In fact,thedispatchcodecan

chainevery time it is executedexceptwhentheoriginal jump wasanindirect jump (i.e., the target

addresswasstoredin a register)[3].

The problemwith chainingis that it greatlycomplicatesdeallocation.Whena block that has

beenchainedto is deallocated,the jump(s)thatwasmodifiedmustbe changedbackto a jump to

thedispatchcode.This is necessaryto allow reloadingof theblock in caseit is neededagainlater.

This dechaining canbedifficult sincethenormalchainingschemedoesnot keeptrackof who has

chainedto acertainblock.

A blockcanbeaugmentedwith alist of thejumpsthathavebeenchainedto it or aseparatetable

of thesechainedjumpscouldbekept. However, thelists of chainedjumpsmaybevariablein size.

It would be very difficult to allow theselists to changein sizedynamically. The solutionmay be

to allocatea fixedsizelist whentheblock is loadedandonly allow new chainingsto beperformed

if thereis spacein this list [2, p. 29]. This restrictsthe amountof chainingthat canbe donebut

simplifiesthetaskof deallocationsincethereis now afixedmaximumnumberof chainsto undo.

If a FIFO replacementstrategy is being used,then anothersolution is possible. If an older

block chainsto a newer block thenthatchainwill never have to beundonebecausetheolderblock

will alwaysbe deallocatedfirst [2, p. 29]. In otherwords, it is not possiblefor the newer block

to be deallocateduntil the older block hasalreadybeenremoved thusmakingdechaininga moot

point. Therefore,correctnesscanbepreservedwithoutthebookkeepingandoverheadof dechaining

by only allowing chainsfrom older blocks to newer blocks. Thesetwo solutionscould also be

combinedby modifying thefirst solutionto only trackandundochainsfrom newer blocksto older

blocks.

23

24

Chapter 3

SystemImplementation

The goal of this thesiswasto designandimplementa working softwarebasedinstructioncache

system.Theinitial designwasto besimpleandprovideaframework onwhichfuturework couldbe

based.This chapterdescribesthedesignwhich waschosenanddiscusseshow it wasimplemented

in theRAW compilerwhich is beingdeveloped.

3.1 Design

Thesystemwhich hasbeendesignedattemptsto compromisebetweenthedifferentdesignoptions

discussedearlier. Whenever possible,block sizeandmemoryorganizationchoicesweremadeon

thesideof simplicity. Considerableeffort wasput into trying to designefficient datastructuresfor

maintainingthecachestatebut in theend,astraightforwardyetpotentiallysub-optimalschemewas

used.

3.1.1 Memory Organization

The first decisionmadewasthat the initial systemwould not dealwith denselypackingvariable

sizedblocks.Therefore,memoryis dividedup into anumberof fixedsizeslotswhicharemanaged

asa heap.Becausetheblocksarefixedsize,this is roughlyequivalentto a fully associative cache

with a FIFO replacementpolicy. A FIFO policy approximatesLRU in an instructioncachebut is

far easierto implementsinceit is only necessaryto keeptrack of the headandtail of the heap.

Managingthecacheasa heapmakesthetransitionto variablesizedblockseasierif that is deemed

importantin thefuture. On theotherhand,usingfixedsizeblocksmeansthat it is not too difficult

25

to switchto aset-associative schemeeither. Therefore,thisarrangementmakesagoodbasesystem

thatcanbeeasilymodifiedfor futureresearch.

3.1.2 Block Size

Arbitrarily createdfixed sizedblocks were ruled out as a cacheblock size due to the increased

difficulty of keepingtrackof entrypointsin theblocks. A basicblock, on theotherhand,hasthe

desirablepropertiesthatthereis only oneentrypointandnounneededcodewill beloaded.It is also

reasonablyeasyto find basicblockswithin a program. It wasthereforedecidedthat basicblocks

would be usedfor thecacheblocks. Sinceextendedbasicblocksandclustersof basicblocksare

really extensionsof abasicblock, this choiceallows for astraightforward transitionto oneof these

otherblocksizesin thefuture.

However, thevariablesizeof basicblocksconflictswith memoryorganizationwhich wascho-

sen.Smallblockswill not fill theslotswhile largeblocksmaybetoo big for oneslot. Blocksthat

aresmallerthanaslotwill wastespacein thecachebut will not impedethecorrectoperationof the

cache.Theseblockscanbepaddedwith NOP instructionsto makethemfill aslotor they cansimply

beloadedinto thebeginningof theslot. Sinceall blockswill endwith a jump to thedispatchcode,

theremaininginstructionsin theslot arenot important.

Basicblocksthataretoo largeto fit within aslotwill overwritethenext slot if we blindly try to

loadthem.Therefore,largeblocksmustbebrokenup into smallerones.Sincea changein control

flow (i.e., abranchor jump) endsabasicblock,a largeblockcanbedividedup by insertinga jump

into it whichsimply jumpsto thenext instruction.Thiswill degradeperformanceby forcing jumps

to thedispatchcodeevenwhenthecompilerknows that thecodewill beexecutedsequentiallybut

it is necessaryto preserve correctness.

A slotsizeof 16words(equalto 16 instructions)waschosenfor this systemin orderto balance

thespacewastedby smallblockswith theextra overheadof breakingup largeblocks. Translating

a branchinto a jump to thedispatchcode(discussedlater)adds5 instructionsto a block, meaning

thata typical 16 word block canhold no morethan11 instructionsfrom theoriginal program.The

next smallestlogicalslotsizewouldhavebeen8 wordsbut sincethiswouldonly haveallowedfor 3

original instructionsperblock, it wasdeemedtoo small. Sixteenwordsis alsoconvenientbecause

it is thelargestblock transferwhichcanoccurover thedynamiccommunicationnetwork in RAW.

26

3.1.3 Data Structures

A hashtablewaschosento keeptrackof loadedblocksandtheir locationsin thecache(physical

addresses).This methodwaschosenover thearraystructurementionedin Section2.3.1becauseit

will work for any program,regardlessof size. Thearraymethodis viewedasanoptimizationfor

smallprogramsto beexploredin thefuture.

Conflictsin thehashtablewill beresolvedby discardingthedatawhich is currentlyoccupying

the desiredslot. This is not only the fastestmethodof resolvingconflicts, it alsoavoids adding

overheadto critical operationssuchas lookups. Even a limited form of chainingwould require

extrachecksduringmostoperations.Thememorywhichwouldhavebeenusedto allow two entries

in eachslotwill beusedto addmoreslotsto thetable,thusdecreasingthefrequency of conflicts.

3.2 Implementation

Usingthedesignoutlinedabove,acompilerpasswaswritten to implementpartof asoftwarebased

instructioncachingsystem. This compilerpassis part of the rawcc compilerbeingdeveloped

usingthe SUIF compilersystem.Becauseinstructioncachingmustdealwith the actualmachine

instructionsof a program,the passis written for the machsuif back-endof the compilerand is

designedto bethefinal compilerpass.In orderfor thepassto have accurateinformationaboutthe

sizeof variousbasicblocks,all optimizationpassesandassemblylanguagemacroexpansionpasses

musthave alreadybeenrunon theprogram.

Thesystemhasbeenimplementedto thepoint whereit runsasif all of theblocksfit andhave

alreadybeenloadedinto theinstructionmemoryof a singletile. Theprogramis dividedinto basic

blocksno biggerthan16 instructionsandthecodeis modifiedto jump to thedispatchcodeat the

endof eachblock. Thevirtual addressof theblock to transfercontrol to is passedto thedispatch

codeduringthis jump. Thedispatchcodelooksupthevirtual addressin thehashtableandtransfers

control to thephysicaladdresswhich is storedthere.Althoughthedispatchcodedoesperformthe

checkto seeif therequestedblock is in thecache,it doesnot currentlyhandlethecasewhenit is

not. Therefore,thecacheworkswhenall of theblocksfor aprogramhavealreadybeenloadedinto

theinstructionmemory.

Theportionof thesystemwhich handlescachemisseshasnot beenimplementedbecausethe

simulatoris not currentlyaccurateenough. When the simulatoris completedthe portion of the

systemwhich dealswith loadingcodefrom an externalmemorycanbe addedin. In the current

27

simulator, theentireprogramis placedin instructionmemory(by thesimulator)andthenexecuted.

Therefore,theportionof thecachesystemwhichhasbeenimplementedcanbetestedby arranging

the programso that, when it is placedin the instructionmemory, it appearsas thoughall of the

program’s blockshave beenloadedinto slotsalready. For thesetests,thevirtual addressesof the

blocksand their physicaladdressesin the instructionmemoryare the same. The missingcache

functionalityhasbeendesignedandwill bediscussedlater.

3.2.1 Program CodeModifications

The compilerpassbegins by modifying the existing branchesandjumpsto jump to the dispatch

codeinsteadof their targets. Sinceblockscouldbe loadedanywherein the instructionmemory, a

jumpwith anabsolute(ratherthanrelative)addressis neededto getto thedispatchcode.If arelative

addresswereused,it would have to bemodifiedwhentheblock wasloadedto reflectthedistance

from the block to thedispatchcode. On the otherhand,if the dispatchcodeis alwayspresentin

the instructionmemoryat a predictablelocation,thena jump to thatabsoluteaddresswill always

work, regardlessof wherethe block wasplaced. In the MIPS instructionset,absolutejumpsare

performedwith thevariousj (for “jump”) instructionswhile relative jumpsareperformedwith the

b (for “branch”) instructions.SincetheRAW instructionsetis basedon theMIPS instructionset

[6], j instructionswill needto beusedto jump to thedispatchcode.

Thevirtual addresswhich controlshouldbetransferredto is passedto thedispatchcodein the

assemblertemporaryregister($at). This registeris normallyreservedfor usewhentheassembler

needsa temporaryregister in its expansionof a macroinstruction. Sincethe instructioncaching

passwill berun afterall expansionshave finished,it hasfull knowledgeof when$at is usedand

canavoid any conflicts.

Thesimplestjumpsto replacearejr instructions.Insteadof jumpingto thevaluestoredin the

register, that valueis moved to $at anda jump is madeto thedispatchcode(seeFigure3-1(a)).

Almost assimplearej instructions. The jump is replacedwith a load of the jump addressinto

$at followedby a jump to dispatch(seeFigure3-1(b)). By makinguseof thedelayslot whereit

previously wasnot, the jump to dispatchtakesonly onecycle morethantheoriginal jump. Jump-

and-linkinstructionsarehandledsimilarly exceptthatthelink registermustalsobeloadedwith the

addressof theinstructionfollowing themodifiedjump.

Conditionalbranchesareprobablythemostcomplicatedjump to replace.A conditionalbranch

cantransfercontrol to oneof two differentlocations.Therefore,thecodewhich replacesonemust

28

bne $1,$2,Label1
add $0,$0,$0

Label2:

ori $at,$at,Label2&0xFFFF

ori $at,$at,Label1&0xFFFF

lui $at,Label2>>16
bne $1,$2,New_label

j dispatch

New_label:
lui $at,Label1>>16
j dispatch

Label2:

j Label
add $0,$0,$0

ori $at,$at,Label&0xFFFF

lui $at,Label>>16
j dispatch

j dispatch
add $at,$0,$5

add $0,$0,$0
jr $5

(c)(b)(a)

Figure3-1: Examplereplacementsof (a) ajr instruction,(b) aj instructionand(c) a conditional
branchinstruction.

loadoneof two differentvirtual addressesinto $at andthenjump to thedispatchroutine. Since

only branchescanbe conditionalandsincewe mustusea jump to get to the dispatchcode,this

replacementwill needto useboth b andj instructions. Figure 3-1(c) shows an exampleof a

conditionalbranchreplacement.This codemakes useof delay slots to perform the call to the

dispatchcodein anextra3 cycleswhenthebranchis takenandanextra2 cycleswhenit is not.

After all of thebranchesandjumpshavebeenmodified,jumpsto thedispatchcodeareinserted

at the end of eachblock which would normally fall-throughto the next block (like block A in

Figure 2-1(a)). This is donewith a simple 3 instructionsequencelike the one in Figure 3-1(b)

exceptthatthelabelusedis thelabelat thebeginningof thenext block.

Thefinal stepin modifying theprogramcodeis to checkblock sizesandbreakup largeblocks

into smallerones
�

. All blocksaremadeexactlysixteeninstructionslong. Blocksthatarelargerthan

sixteeninstructionshave jumps(threeinstructions)insertedeverythirteeninstructions.Whendoing

this,caremustbetakennot to inserta jump into themiddleof oneof thesequencescreatedduring

thepreviousmodifications.If a jumpwouldbeplacedinto oneof thesesequences,thenthejump is

placedright beforethesequenceinstead.Whenall largeblockshavebeenbrokenup,theblocksthat

aresmallerthansixteeninstructionsarepaddedwith NOP instructions.This is notstrictly necessary

in this systembut wasdonesothat theblockswould bealignedasif they hadbeenloadedinto the

instructionmemoryby thedispatchcode.

�

Although it is conceptuallyclearerto do this stepfirst, from a practicalstandpoint,it is easierto do it lastbecause
theothermodificationsaddextra instructions.

29

3.2.2 DispatchCode

The dispatchcodeis written in RAW machinelanguage(seeAppendix A) and is addedto the

programandtheendof thecompilerpass.Thefirst actionthat thedispatchcodemustperformis

a checkto seeif the requestedblock is in thecache.This involves looking up thevirtual address

of the block’s entry point (passedto the dispatchcodein $at) in the hashtable. Although hash

functionswhich merelyselectsomeof thebits of theaddressarecommonin caseswherespeedis

crucial,thismethoddoesnotalwaysleadto auniformdistribution of hashvalues.Becauseconflicts

causeinformationto belost in this system,a functionwhich hasa betterdistribution of valueswas

needed.Thehashfunctionchosenis amultiplicative functionthathasgoodperformanceyet is still

reasonablyeasyto calculate.The key is multiplied by 2654435769andthenbits 23 to 31 of the

resultareusedasthehashvalue.See[4, pp. 228-9]for aderivationof this function.

Ninebitsareselectedin orderto get512possiblehashvalues.This is roughlytwice thenumber

of sixteeninstructionblockswhichwill fit in a16kbyteinstructionmemory(minussomespacefor

the dispatchcode)giving a load factorof about0.5 for the table. Sincecollisionsarecostly, it is

importantto keeptheloadfactoraslow aspossible.This loadfactorwaschosenarbitrarilyandmay

bemodifiedin thefutureif it is foundto beinappropriate.However, thedesirefor a low loadfactor

mustbebalancedwith thehashtable’s footprint. With eachentryin thetableneedingtwo wordsof

memory(onefor thevirtual addressandonefor thephysicaladdress),a 512entry tableconsumes

4 kbytesof memory. This is a sizableportionof the32 kbyte datamemoryandit is importantto

rememberthatincreasingthis tablesizemayactuallydecreaseoverall performanceby reducingthe

amountof memoryavailableto cachedataor instructions.

Oncethevirtual addresshasbeenhashedto giveanindex into thehashtable,thedispatchcode

mustcheckthathashtableentryto seeif thedesiredblock is in thecache.It doesthisby comparing

the desiredvirtual addresswith thevirtual addressstoredin the table. If they do not match,then

eitherthatblock hasnot beenloadedyet or anotherblock thathashedto thesamevaluehasbeen

loaded.The tableis initialized to an impossiblevaluefor the virtual addressesso that the lookup

will fail thefirst time eachentry is checked. If they match,thenthe desiredblock is availableso

thephysicaladdressis readfrom thetableandajr instructionis usedto transfercontrolto it. The

processrepeatswhenexecutionreachestheendof thatblock andanothercall to thedispatchcode

is made.

If the virtual addressesfail to matchthen the cachemiss routine is executed. In the current

30

implementationthis routineis merelya stub. Sincethevirtual andphysicaladdressesarethesame

in thesimulatorandsinceeveryblockis presentin memory, thestubwritesthevirtual addressof the

desiredblock into thehashtablefor boththevirtual andphysicaladdresses.Thestubthentransfers

controlto therequestedblockvia ajr instruction.

In thefinal implementation,thecachemissroutinewill have the job of requestingthemissing

block from externalmemory, placingtheblock into theinstructionmemoryandupdatingthehash

tableto reflectits location.Becausecodeexecutionis dynamicin nature,thedynamiccommunica-

tion network will needto beusedfor requestingdatafrom off-chip. Thetiles aroundtheperimeter

of thechip will have anI/O interfaceto externalDRAM sorequestingdatafrom off-chip involves

sendingamessageto oneof theseperimetertiles. Therequestmessagewill simplybecomposedof

thestartingaddressof theblock in externalmemory, theamountof dataneeded(sixteenwords)and

thetile numberto returnthedatato. Themissroutinemustnow wait for thedatato besentbackto

it. Duringthistime, it canselectthelocationfor thenew dataandupdatethehashtableandpointers

for thebeginningandendof theFIFO queueof blocks.Whenthedataactuallyarrives,it is simply

copiedinto theselectedspacein theinstructionmemoryandcontrolis transferredto it.

3.3 Results

Theinstructioncachingcompilerpasswasrun on severalbenchmarkprogramsto evaluateperfor-

mance.Becausetheimplementationhandlesonly thecachehit cases,benchmarkswhichfit entirely

within the instructionmemorywerechosen
�

. Therefore,theperformancenumberscollectedindi-

catetheminimumamountof overheadneededduringtheexecutionof theseprogramswith software

instructioncaching.Additional overheadwill beincurreddueto cachemissesin thefinal system.

Becausethebenchmarksusedall fit within theinstructionmemory, they donotactuallyneedto

usecachingat all. Normally thecompilerwould detectthis andomit instructioncachingfrom the

program. The resultsof runningthe programswithout cachingaddedaregiven as“uncached”in

Table3.1andTable3.2. In orderto evaluatetheimpactof cachingon programs,thecompilerwas

thenforcedto addthecachingcodeto thesebenchmarks.Theresultsof runningwith thecurrently

implementedsystemarereportedas“fix edsize.”

As a beneficialside-effect of the incompleteimplementation,onemorecasecould be tested.

�

In reality, thecurrentsimulatordoesnot limit theamountof instructionmemoryavailable.Therefore,any program
will fit entirelywithin instructionmemory.

31

uncached variablesize fixedsize
benchmark cycles change cycles change cycles change

life 1,302,132 1.0x 3,665,808 2.8x 4,938,266 3.8x
jacobi 1,485,328 1.0x 2,589,359 1.7x 4,636,892 3.1x
vpenta 15,173,695 1.0x 18,035,420 1.2x 36,275,951 2.4x

cholesky 24,879,626 1.0x 47,243,774 1.9x 77,263,030 3.1x
tomcatv 63,847,647 1.0x 94,787,869 1.5x 164,020,150 2.6x

btrix 111,014,163 1.0x 134,755,597 1.2x 269,574,949 2.4x

Table3.1: Runtime for variousbenchmarks(in processorcycles)without any caching,usingvari-
ablesizedblocksandusingfixed sizeblocks. The “change”column is relative to the uncached
version.

uncached variablesize fixedsize
benchmark memory change memory change memory change

jacobi 604 1.0x 960 1.6x 1664 2.8x
life 1248 1.0x 2064 1.7x 8392 6.7x

cholesky 2544 1.0x 4292 1.7x 7572 3.0x
vpenta 3780 1.0x 4436 1.2x 6364 1.7x
tomcatv 4624 1.0x 6220 1.3x 9756 2.1x

btrix 15128 1.0x 16504 1.1x 21884 1.4x

Table3.2: Bytesof instructionmemoryusedby theprogram,excludingthedispatchcodeandhash
table.The“change”columnis relative to theuncachedversion.

Becauseall of the codefor theseprogramsis alreadyin memoryand becauseblocks are never

deallocatedfrom the cache,it is possibleto simulateusingdenselypacked variablesizedblocks.

By notbreakinglargeblocksup into sixteeninstructionblocks,theexecutiontime of acacheusing

variablesizedblocks can be measured.The amountof memory that would be consumedby a

variablesizedblock systemcanbe determinedby neitherbreakingup nor paddingblocks. The

numbersfrom simulatedvariablesizedblock cachesaregivenas“variablesize” in thetables.

Looking at the data,addinginstructioncachingto a programclearly hasa significantimpact

on bothperformanceandmemoryusage.However, thepenaltyis substantiallylessfor thevariable

sizedblocksthanit is for thecurrentimplementation’s fixedsizeblocks.It shouldalsobenotedthat

thepenaltiesfor bothschemestendto belessfor theprogramswhicharelargeror run longer.

The most surprisingresult found was the tremendousdifferencebetweenthe variablesized

blockandfixedsizeblockschemes.Bothperformanceandmemoryusageweresignificantlyworse

whenusinga fixed sizeblock. The differencein memoryusageis primarily dueto small blocks

32

which wastespacewhenloadedin sixteeninstructionslots. However, thereis alsosomememory

lost to theextra jumpswhich areinsertedto breakup largeblocks. Theperformancedifferenceis

explainedby the extra calls to the dispatchcodewhich arecreatedwhenlarge blocksarebroken

into smallerones.In thebenchmarksused,thelargestblockstendto occurin themiddleof nested

loops. Unfortunately, this meansthat theextra overheadis greatlyamplifiedby the fact that those

blocksareexecutedmany times.

Althoughtheimpactonprogramperformancecanbequitelarge,it is importantto rememberthat

this systemis designedto beusedonly on programsthatdo not fit within the instructionmemory.

For theseprograms,the performanceusingcachingwould be infinitely betterthanwithout since

they cannotbe run at all without instructioncaching. Even so, it is importantto minimize the

overheadof cachingin orderto competewith hardwarebasedcaches.

33

34

Chapter 4

Conclusions

Althoughthissystemis astartingpoint ratherthanafinal solutionfor all softwarebasedinstruction

cachingneeds,it is possibleto draw someconclusionsaboutsoftwarebasedinstructioncachingand

make suggestionsfor futurework.

4.1 Futur e Work

Clearly the next stepfor this systemwould be the additionof the cachemisshandler. With that

in place,hashtableperformanceshouldbe carefully examined. If collisionsoccur frequently, it

may be desirableto modify the hashtable sizeor the collision handlingstrategy. It might even

be necessaryto develop a new hashfunction which is morespecificto the accesspatternsof this

system.In addition,usingotherdatastructureswhich incur lessoverheadfor smallerprograms(as

describedin Section2.3.1)is key to taking full advantageof thecompilerandwill definitelyneed

to bepursued.

Basedon the resultsgiven in Section3.3 it is apparentthat a variablesizedblock schemeis

highly advantageous.Not only doesit immediatelyincreaseperformance,but thereducedmemory

footprintwill alsoallow moreblocksto fit into memory, thusincreasingthecachehit rate.Sincethe

benefitfor thecommoncase(wherethedesiredblock is presentin thecache)is sogreat,it seems

likely that it would beworth theextra overheadassociatedwith a variablesizedblock system.In

fact, theextra overheadof sucha systemwould occurin thecachemisshandlerwhich is likely to

spendlarge amountsof time waiting for new datato arrive. It may turn out that the extra over-

headcanbeoverlappedwith this waiting, thusmakingit free. Sucha systemshoulddefinitelybe

implementedto exploreits feasibility.

35

Sincethe amountof time it takesdatato be fetchedfrom externalDRAM andreturnedto a

tile may be large, complex schemesfor placing and deallocatingblocks could be usedwithout

impactingoverall performance.Dependingon how much time a fetch takes, it may actuallybe

possibleto implementa replacementstrategy whichapproximatesLRU. Of course,reconcilingthis

with avariableblocksizewouldstill bedifficult. Evenso,thepossibilityshouldbeexplored.

Evenusingavariableblocksize,performancewassignificantlyaffected.Sincethis resultis the

minimumoverheadof thecompletesystem,this suggeststhatchainingmaybea worthwhileopti-

mization.Again, theextra overheadwould beaddedwhile waiting for datafrom externalmemory

sotheimpactcouldbenegligible. Themostlylikely implementationof chainingwould includeone

or two backpointersfor eachblock andwouldonly keeptrackof backwardschainsasdiscussedin

Section2.4.

The last variablewhich probablywarrantsexploration is block size. Given that the frequent

jumpsto thedispatchcodedosignificantlydecreaseperformance,it is probablywiseto usea larger

block size.Of theoptionsdiscussedin Section2.1,clustersof basicblocksshow themostpromise

for increasingperformance.However, becauseclustersof basicblockscanloadcodewhich is never

used,the cachehit ratewill be lower. It will be necessaryto determinewhethertheextra perfor-

manceoffsetsthereductionin cachehit rate. In addition,thereis work to bedonein developinga

compilerto find optimalclusters.

4.2 Conclusion

This work suggeststhatsoftwarebasedinstructioncachingmaybeaviablealternative to hardware

instructioncaching.Even in this naive implementation,theaddedoverheadfor thecommoncase

is not prohibitive. Explorationof the many optimizationsandalterationswhich arepossiblewill

undoubtedlyyield systemswith evenbetterperformance.

SoftwarebasedcachingprovidesRAW with the ability adaptto differentworkloads. The re-

sourcesdevotedto cachingcanbevariedto fit therequirementsof aspecificapplication.However,

softwarebasedcachingis alsoapplicableto low-costor low-powerembeddedprocessorswherethe

costof cachinghardwareis prohibitive. With furtherresearchandtime,softwarebasedcachesmay

becomecommon-place,evenreplacinghardwarecachesin generalpurposemicroprocessors.

36

Appendix A

DispatchCode

dispatch:
sw $9,save_t1
lui $9,40503 # Load the hash constant into $9
ori $9,$9,31161
multu $9,$at # Multiply the key by the hash constant
sw $10,save_t2
mflo $9 # Select bits <31:23> of the result
srl $9,$9,23
sll $9,$9,3 # Scale for the size of each table entry
lw $10,hash_table($9)
bne $at,$10,dispatch.miss # Compare virtual addresses
add $0,$0,$0
addi $9,$9,4 # Cache hit!
lw $at,hash_table($9) # Read physical address from table
lw $9,save_t1
jr $at # Jump to the requested block
lw $10,save_t2

dispatch.miss:
This is a stub which fixes up the hash table. It will
be replaced by code to load a new block into the cache.
sw $at,hash_table($9) # Enter virtual address in table
addi $9,$9,4
sw $at,hash_table($9) # Physical address is the same
lw $9,save_t1
jr $at
lw $10,save_t2
.end dispatch

37

38

References

[1] A. Agarwal, S. Amarasinghe,R. Barua,M. Frank,W. Lee, V. Sarkar, S. Devabhaktuni,and
M. Taylor, “The Raw CompilerProject”,Proceedings of the Second SUIF Compiler Workshop,
Aug. 1997.

[2] R. F. CmelikandD. Keppel,“Shade:A FastInstruction-SetSimulatorfor ExecutionProfiling,”
SMLI 93-12,UWCSE93-06-06,SunMicrosystemsLaboratories,Inc., andthe University of
Washington,1993.

[3] R. F. CmelikandD. Keppel,“Shade:A FastInstruction-SetSimulatorfor ExecutionProfiling,”
Proceedings of the Sigmetrics Conference on Measurement and Modeling of Computer Systems,
pp.128-137,May 1994.

[4] T. Cormen,C.LeisersonandR.Rivest,Introduction to Algorithms, TheMIT Press,Cambridge,
Massachusetts,1996.

[5] D. R. Engler, “VCODE: A Retargetable,Extensible,Very FastDynamicCodeGenerationSys-
tem”, Proceedings of the ACM SIGPLAN ’96 Conference on Programming Language Design
and Implementation, pp.160-170,May 1996.

[6] J.Heinrich,MIPS R4000 Microprocessor User’s Manual, MIPSTechnologies,MountainView,
California,1994.

[7] J.HennessyandD. Patterson,Computer Architecture: A Quantitative Approach, MorganKauf-
mannPublishers,SanFrancisco,California,1996.

[8] W. Lee,R.Barua,M. Frank,D. Srikrishna,J.Babb,V. SarkarandS.Amarasinghe,“Space-Time
Schedulingof Instruction-Level Parallelismon a Raw Machine”, Proceedings of the Eighth
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII), Oct.1998.

[9] E. Waingold,M. Taylor, V. Sarkar, W. Lee,V. Lee,J. Kim, M. Frank,P. Finch,S. Devabhak-
tuni, R. Barua,J.Babb,S. AmarasingheandAnantAgarwal, “Baring It All To Software: Raw
Machines”,IEEE Computer, pp.86-93,Sept.1997.

[10] S.WardandR.Halstead,Computation Structures, TheMIT Press,Cambridge,Massachusetts,
1990.

[11] E. Witchel andM. Rosenblum,“Embra: FastandFlexible MachineSimulation,” Proceedings
of the ACM SIGMETRICS International Conference on Measurement and Modeling of Com-
puter Systems, pp.68-79,May 1996.

39

