Software BasedInstruction Cachingfor the RAW Ar chitecture
by
JasorEkric Miller

Submittedto the Departmenbf ElectricalEngineeringandComputerScience
in partialfulfillment of therequirementgor the degreesof

Bachelorof Sciencein ComputerScienceandEngineering
and
Masterof Engineeringn ElectricalEngineeringandComputerScience
atthe
MASSACHUSETTSINSTITUTE OF TECHNOLOGY
May 21,1999

Copyright 1999Massachusettsistituteof Technology All rightsresened.

AUTNOT .« . oo
Departmenbf ElectricalEngineeringandComputerScience
May 20,1999
Certifledby . ..o
AnantAgarwal
Professonf ComputerScience
ThesisSupervisor
ACCEPIEADY . ..t e

Arthur C. Smith
ChairmanDepartmentCommitteeon Graduatel heses

Software BasedInstruction Caching for the RAW Ar chitecture

by
JasorEric Miller

Submittedto the Departmenof ElectricalEngineeringandComputerScience
onMay 20,1999,in partialfulfilment of the
requirementsor the degreesof
Bachelorof Sciencan ComputerScienceandEngineering
and
Masterof Engineeringn ElectricalEngineeringandComputerScience

Abstract

Thisthesisaddressethe designandimplementatiorof a softwarebasednstructioncachingsystem
for the RAW architecture This systemis necessaryo allow large programgo berunin thelimited
on-chipmemoryavailablefor eachRAW tile. Similar systemsvere examinedandvariousdesign
issueswvereexaminedin detail. A partialsystemwasimplementedn theRAW compilerin orderto
gaugethe feasibility of sucha system.Performancealatawas collectedfrom variousbenchmarks.
Theimplicationsof this dataanddirectionsfor furtherresearctarediscussed.

ThesisSupervisorAnantAgarwal
Title: Professoonf ComputerScience

Contents

1 Intr oduction

1.1 TheRAW Architecture e
1.2 CachingOvervien e e e e e
1.21 SimilarSystems
1.2.2 BasicOperation.

2.1 BlockSize.

Major Designlssues

2.1.1 BasicBlock.
2.1.2 ExtendedBasicBlock,
2.1.3 Clustersof BasicBlocks
2.1.4 FixedSizeBlocks
2.2 InstructionMemoryOrganization
2.2.1 AssociatveCache 0.
222 Heap e
223 SagmentedHeap
2.3 DataStructures. e e e e e
231 ArTay . .o e
2.3.2 HashTable

2.4 Chaining. .

3.1 Design. . .

Systemlmplementation

3.1.1 MemoryOrganization
3.1.2 BlockSize
3.1.3 DataStructures. e
3.2 Implementation. e e
3.2.1 ProgramCodeModifications.
3.2.2 DispatchCode e

3.3 Results. . .

4 Conclusions
4.1 FutureWork
4.2 Conclusion

A Dispatch Code

©

10
11
12

15
15
16
17
17
18
18
18
19
20
20
20
21
22

25
25
25
26
27
27
28
30
31

35
35
36

37

List of Figures

1-1 RAW Architecture e e 10
2-1 Block SizeAlternatives e 16
2-2 Chaining. e e e 22
3-1 Branch/JumpnstructionReplacements. 29

List of Tables

3.1 CachingPerformancdesults.

3.2 CachingMemoryResults

Chapter 1

Intr oduction

The RAW architecturds an exampleof an exposed parallelarchitecture.The detailsof the mul-
tiple executionunits andtheir interconnectiorare exposedto the compilerso thatit canmanage
resourceefficiently. Comple featuresuchasvirtual memory out-of-orderexecutionandcaching
areimplementedn softwareto allow for customizatioron a programby programbasis.

The remainderof this chapterdescribegshe RAW architecturan more detail andoutlinesthe
basicissuesnvolvedin implementinga softwarebasedcachingsystem.

Chaptertwo examinesthe major designvariablesin more detail and discusseshe advantages
anddisadwantage®f seseraloptionsfor each.

Chaptetthreedescribeshe systemwhich wasimplementedandreportson theresultsof adding
softwarebasednstructioncachingto a program.

Chapterfour discussepossiblefuturework andprovidessomeconcludingcomments.

1.1 The RAW Architecture

The RAW architecturds basedon two mainideas:providing mary resourceso be usedin parallel
andexposingthe detailsof the architectureto allow flexibility in theway theseresourcesreused
[1, 9]. A RAW processoconsistof mary small,replicatedcomputationatiles, eachwith it's own

instructionstream Eachtile is composef a simplepipelinedRISC core(with aMIPS instruction
set[6]), separatalataandinstructionmemoriesanda programmableswitchto communicatewith

othertiles. Many of thecomplicatedeaturedoundin modernmicroprocessorarenotimplemented
in hardwarein aRAW system.Thisis doneto allow the compilerto implementandcustomizehese

featuresasneededor a specificprogram.

() () () (]
RAW Imem
|| | Tile || Dmem I
() () () (1 = RISC
Core
(o (I 1 Switch

Figurel-1: Diagramshaving interconnectiorof RAW tiles andcompositionof eachtile.

Thetiles areinterconnectedh a 2D mesh(seeFigure 1-1), allowing eachtile to communicate
directly with the four tiles adjacento it. Communicatiorcaneitheroccurstaticallyby producing
instructionstreamdor the switchesat compiletime, or dynamicallyby sendingdataover aseparate
network with a destinatiortile address.Dynamic messageareroutedto their destinationgy the
switchesbetweenthe two nodes. Datais only ableto move to an adjacentswitch on eachclock
cycle socommunicatiorwith distanttiles requiresextra clock cycles.

In orderto allow for themaximumnumberof tiles ona processqrthedataandinstructionmem-
oriesarekeptsmall. Typical sizesmightbein the 16 to 32 kbyterange.Sincemary applicationsare
likely to requiremorestoragehanthis,somemechanisnis neededo loadthesememorieswith new
datafrom alarger externalmemory In effect, thetile memorieswill be usedascachesin keeping

with the RAW philosophythis cachingbehaior shouldbe addedto a programby the compiler

1.2 CachingOverview

Dueto thedifferencesn theway dataandinstructionsmemoriesareused,it makessensdo devise
separategcustomstratgiesfor cachingeach. This thesisaddressethe problemof implementinga
cachingsystemfor instructionmemories.

Codeexecutionis, by its very nature,dynamic. Loops and conditionalsmake it possiblefor
somecodeto be executedthousand®f timeswhile othercodeis never executedatall in away that
is impossibleto predictat compiletime. A compilercanonly determinevhereflow of controlcan
passnotwhereit will pass.Thesameprogramcanbehae very differently on differentsetsof input

data. Therefore,instructioncachingmustbe implementedas a runtime system. Loading of new

10

codecannotbe scheduledit compiletime but mustinsteadbe performedon demand.
Implementingcachingin softwareasopposedo hardware hasboth advantagesanddisadan-
tages.Themostobviousdisadwantagds thatthe comparisongndlookupsneededo determindf a
certainpieceof datais in the cacherequiremultiple processoinstructionsin a software managed
cachebut canbe performedin parallelin a hardware cache.On the otherhand,a softwareimple-
mentationhasan advantagein beingableto changethe cachingschemeat will. It alsoallows the
compilerto getinvolved. Thus,the compilercanuseits knowledgeof a programto customizethe
cachingfor thatprogram.For example,if the compilercandeterminethatthe entireprogramwill

fit within theinstructionmemory it canremove the software cachingall together

1.2.1 Similar Systems

Software cachesmustdo thingslike searchesind comparisonsn a serial mannerinsteadof the
parallel mannerusedin hardware caches. For example,a fully associatie hardware cachecan
comparethe tagsof all the cachelines to the desiredaddresssimultaneously10, p. 482] while
a software basedcachemust checkeachtag sequentially Therefore,it is not very practicalto
simply imitate a hardware cachen software. Instead we shouldlook to othersoftwaresystemdor
inspiration. Simulation/profilinganddynamiccodegeneratiorsystemsoth facesituationssimilar
to instructioncaching.

Simulationprogramshave the task of imitating a certaincomputersystemby translatingma-
chine codeinto the machinecode of the hostcomputer Thesetypesof programsalso tendto
includesupportfor insertingextra codeto collectstatistics(profiling) or provide detugginginfor-
mation. Thesesystemaypically do their translationat runtimesothatthe datato be collectedcan
bealteredonthefly [11, 3] andsothattime is notwastedranslatingcodethatdoesnot actuallyget
executed.

Dynamic codegenerationsystemg5] operatein a very similar manner They typically im-
plementsomevirtual machineby translatingan intermediatdanguage(e.g., Java bytecode)into
machinecodeat runtime. This is doneso thatthe sameprogramcanbe run on ary systemwhich
implementgheappropriatevirtual machinewithoutrequiringa separatéranslatiorpass.Sincethe
whole point of this type of systemis avoiding an extra compilationpass,the translationmustbe
doneatruntime. To avoid performingthis expensve translationon codewhich is never executed,
thesesystemasisuallydo translationon demand.

Both of thesetypesof systemsarefrequentlyimplementedusinga translation cache [3, 11].

11

As codeis translatedit is placedinto the cacheto be reusedif that codeis executedagain. The
translationcacheis, in essenceaninstructioncache.In aninstructioncache codeis loadedfrom
main memoryinto the cachememoryandkeptthereaslong aspossiblein caseit is neededn the
future.

However, thereare severalimportantdifferenceshetweenthesesystemsand a software based
instructioncache. First, the translationcacheis typically storedin the main memoryof the host
computerandthereforecanbevery large [2]. A translationcacheof 4 or 8 MB is large enoughto
hold all of the codefor mary programs.With todays workstationsdrequentlyhaving betweenl28
and512MB of RAM, thereis no reasorwhy the translationcachecould not be evenlargerthan8
MB sothatit couldaccommodatall but thevery largestprograms Becausef this, simulationand
dynamiccodegeneratiorsystem®nly needto dealwith theircachedbecomindull onaninfrequent
basis.This allows themto useexpensve but simplemethodgo copewhenit doesoccur However,
with aninstructionmemoryof only 16 kbytes,our cachewill constantlybefull andspacewill need
to beclearedor eachnew pieceof codeto beloaded.This meanghatdeallocatiomeedgo bejust
asfastandefficientasallocation.

Thesecondig differenceds thataninstructioncacheonly loadsthecodeinto memoryinsteacbf
translatingt. Sincethesimulationprogramsspendnostof theiroverheadime doingthetranslation
or collectingstatisticsthemechanisnusedto implementthe cachingcanbe morecomplex without
incurringa noticeablegpenalty Instructioncachingcodemustbevery efficientin orderto maintain

performance&omparabldo a systemwhich doesnot needcaching.

1.2.2 BasicOperation

At themostbasiclevel, aninstructioncachedividesaninstructionstreaminto sometype of pieces
(calledblocks) andthenloadsthoseblocksfrom a large, distant(slow) memoryto a small, close
(fast) memorywhenthey are needed. Hopefully, theseblocks will be neededmore than once,
allowing themto beretrievedfrom thesmall,closememoryafterthefirst use.ln ahardwarecache,
the blockschoserareusuallya contiguousblock of two to four instructionschoserbasedon their
alignmentin memory In a software basedcache,thereis an opportunityto usethe compilerto
createamoreintelligentscheme.

In the RAW system the software cachingcodewill beintegratedinto the programby thecom-
piler. The compilerwill adda pieceof code(calledthe dispatch code)which checksto seeif a

certainpieceof codeis residentin the cache loadsit if it is not andthentransferscontrol to that

12

code. This is very similar to the tag checksanddatafetch performedby a hardware cache.How-

ever, ratherthanperformingthis checkfor every instructionthatis executed(aswould be donein

hardware)the compilerwill only insertjumpsto our dispatchcodeat pointswhereit thinksthe up-

comingcodemight notberesidentin thecache.ln placeswvhereit knows the codewill beresident,
the programcansimply continuewithoutthe check.

Thedispatchcodewill load anentireblock into the cacheat atime. As long asthe processor
is executingcodewithin this block, the programdoesnot needto checkto seeif the next code
is present. The programwill only needto jump to the dispatchcodewhen executionmovesto a
differentblock. Althoughit initially seemdike it might be hardto detectwhenthe programenters

or exits a block, the compilercanleverageits knowvledgeof controlflow to greatlysimplify this.

13

14

Chapter 2

Major Designlssues

In orderto implementthe basicstructureoutlinedabove, several mechanismsre needed.lt must
be possibleto find outif a blockis in the cache.This shouldbe fastsinceit will needto be done
frequently If theblock thatis neededs alreadypresenin the cache thedispatchcodewill simply
transfercontrol to it. Otherwise,it will needto be able to load a block from memoryinto the
cache. This canbe slower sinceit shouldoccurlessfrequently Finally, a block may needto be
removedfrom the cachen orderto make roomfor theblock whichis beingloading. Eachof these
mechanismsvill be affectedby several designchoicesincluding how blocksof codeareformed,
how instructionmemoryis organizede.g., heapvs. directmappedcache)whethemblockscanmove
oncethey have beenloadedand whetheror not blocks of codecanbe modifiedfor optimization

purposes.

2.1 Block Size

Thewayin whichaprogramis brokenupinto blockshasaverylargeeffectonall thecomponentsf
the system.ldeally, blocksshouldbe large sothatjumpsto the dispatchcodewould be infrequent.
It might alsobe goodto have afixedsizefor blockssothatit is not necessaryo keeptrack of the
sizeof eachblock andsothat organizationof the instructionmemorycanbe simplified. However,
breakinga programinto arbitrary blocks can createmore problems. For example,if a block has
morethanone entry point!, thenit will be harderto keeptrack of which entry pointsarein the

cache.Also, loadinga large block of codemay wastespacen the cacheby loadingcodethatwill

L An entry point is a placethatthe dispatchcodemight berequiredto transfercontrolto, i.e., abranchdestination.

15

A A O A
by, TR
C/ \D 5 C/ \D
C | |

</ <) / L / |
E E A\ LB
F L o —_ |- _ !

(@) (b) ©)

Figure 2-1: Control flow graphsdemonstratinda) basicblocks, (b) basicblocksjoined into ex-
tendedbasicblocksand(c) clustersof basicblocks(shavn with dashedoxes).

be skippedover by a conditionalbranch.

2.1.1 BasicBlock

Fortunately compilersalreadybreakprogramsup into blockswhich have a lot of goodproperties.
A basic block is asequencef instructionswhoseonly entry pointis thefirst instructionandwhose
only exit pointis thelastinstruction.Oncecontrol entersa basicblock every instructionwithin the
block is executedandcontrolflow within the block is sequential . This is the block sizewhich was
choserfor our system.

Usingabasicblockfor acacheblock hasseveralbenefits First, all instructionswhichareloaded
will beexecutedthuswastingthe minimumamountof space Secondkeepingtrackof entrypoints
is equivalentto keepingtrackof blocks,thussimplifying bookkeeping.Third, becausédasicblocks
endwheneer achangean flow canoccut every branchinstructionwill endablock andevery label
will startanew one.Thereforemakingtheprogramjumpto thedispatchcodewhenleaving ablock
is assimpleasreplacingall thebranchesvith jumpsto thedispatchcodeandinsertingjumpshbefore
eachlabel.

However, thereare also somenegative aspectgo usingbasicblocksfor a cacheblock. First,
basicblocksarefairly small. Most programshave averagebasicblock sizesaround6 or 7 instruc-
tions[11]. This meanghatjumpsto the dispatchcodewill be frequentandoverheadwill be high.

In additionto beingsmall, basicblocksarealsohighly variablein size. Somemay be only a sin-

16

gleinstructionwhile othersmay be dozensof instructions.This makesarrangingthemin memory
morecomplicatedIf theblocksareplacedatfixedlocationsin memory(e.g., a hashof the starting
addres®f the block) thenspacemaybe wastedbetweerblocksif they aretoo shortor blocksmay
overlapif they aretoo long. If blocksarepacled denselyinto memory thenit is muchharderto
deallocatedhembecausehe holesthatarecreatedmay notfit the new block thatneedgo beplaced

there.

2.1.2 ExtendedBasicBlock

Onealternatve to usingbasicblocksis usingextended basicblocks. Extendedbasicblockshave a
single entry point but might have multiple exit points. In termsof cachebehaior, they would be
very similar to basicblocksexceptthatthey would tendto bebigger This could potentiallyreduce
thetime spenttransferringdatafrom externalmemorybecausdarger, moreefficient “burst” reads
could be used.However, this alsoincreaseshe likelihoodof loadingcodewhich will not actually
be executedbecausehe branchesn the middle of the extendedbasicblock might alwaysskip the
codeat the endof it. Brancheswhich occurin the middle of a block would needto be modified
sothatthe “taken” casewould jump to the dispatchcodebut the “f all-through” casewould simply
fall-through.Branchesat the endof blockswould needto be modifiedaswith basicblocks. Using

extendedbasicblockswill reducethe numberof callsto the dispatchcodebut only slightly.

2.1.3 Clustersof BasicBlocks

Using groupsof basicblockswith internalbranchesnight producelarger blocksandalsoreduce
the numberof jumpsto thedispatchcode.The clusterswould have a singleentry pointandone(or

maybemary) exit pointsbut may alsohave internalbranchesvhich have destinationswithin the
cluster Theseinternalbranchegouldbeleft as-iswhile the branchesith destination®utsidethe
clusterwould be translatednto jumpsto the dispatchcode. Clusterswereinspiredby the macro-

instructions of [8]. As long astheclusterhasonly oneentrypoint, bookleepingwill bejustaseasy
asit would be usingbasicblocks. However, codemay beloadedthatis never executedanda more

comple compilerwill berequiredto find theseclustersandchangeonly the appropriatéoranches.

17

2.1.4 Fixed SizeBlocks

In orderto avoid the compl«ity and/orwastefulnessf placingvariablesizedblocksinto thecache
memory a systemcould be designedisingfixedsizeblocks. The codecould be divided into fixed

size sggmentswhile still maintainingproperflow of control by insertinga jump instructionat the
end of eachsegmentwhich jumpsto the beginning of the next segment. Sincetherecannow be
multiple entry pointswithin a block, it will be harderto determinewhetheror not a specificentry
pointis in the cachewhenit is needed.Ratherthansimply assuminghatthereis only oneentry
point in a cacheblock andit is at the beginning, a methodfor finding out which entry pointsare
within a cacheblock will berequired.Also, this methodof forming blocksmay load quite a bit of

codeinto the cachethatis never executed.Finally, theinsertionof all theextrajumpswill adwersely

impactperformance.

2.2 Instruction Memory Organization

Instructionmemoryorganizations justasimportantto cacheperformancesblock size. A balance
mustbe found betweerspacautilization efficiency andspeedof allocationanddeallocation Space
efficiengy will influencethe cachehit ratesincewastedspacecould have beenusedto hold useful
code.However, amorecomplex schemavhichis ableto moreefficiently managenemorymaytake
longerto placenew blocksandfind old blocksto throw out. For simplicity andflexibilty reasons,

our systemusesa heaporganizationasdescribeelow.

2.2.1 Associative Cache

Traditional hardware cachesgenerallyusefixed size blocks and somedegree of associatiity to
determinenhereto putthoseblocks. Thecaches conceptuallya collectionof numberedlots. The
physicalstartingaddressf a block is hashedsomehwa to producea numberwhich correspondso
a specificslot. In adirect-mappedache(equivalentto 1-way associatiity) eachslot canhold one
block. In a 2-way associatie cache,eachslot canhold two blocksto avoid thrashingin the case
thattwo blockswhich mapto the sameslot areusedalternately This canbe extendedto ary degree
of associatiity desired.

This techniquehasthe adwantageof it beingrelatively fastto determinewherea block should
beplacedin thecache.lt is alsoeasyto determinewhich blocksshouldbethrowvn out becausét is

simplywhateverblockis alreadyin theslot. However, it hasthe potentialto beveryinefficientin its

18

memoryusage First, a block may bethrovn out becausef anoverlapin hashvalueseventhough
thereis plenty of spacesomavhereelsein the cachefor that code. Second,t canbe difficult to

reconcileavariableblock sizewith this schemeSincetheslotsarefixedsize,spacewill bewasted
if ablockis loadedthatis not asbig asthe slot andlarge blockswill needto be broken up sothat

they will fit into theslots.

2.2.2 Heap

The oppositeextremeto the highly structuredassociatie cachemodelis the unstructurecheap.
Blocks are simply loadedinto the heapstartingat the first available addressand using as much
spaceasthey need. Theresultwill bethatall of the blockswill be denselypacled into memory
If basicblocksareusedasthe cacheblocks,thiswill resultin perfectefficiengy of memoryusage.
Therewill be nowastedspaceandno unnecessargodewill beloaded.Insteadof usinga hashto
placeblocks,the emptyspacen the heapmustbekepttrack of. However, this schemecanbecome
very complex whendeallocatiorof blocksis allowed.

If the systemallows any block to be deallocatedit will becomevery hardto keeptrack of the
freespace Memorywill become&ragmentedasblocksareloadedthatdo not perfectlyfit thespace
thatwas clearedfor them. A systemwhich operateghis way will probablyneedto compactthe
heapperiodicallyto remove thewastedspace Thisis generallyavery expensve operatiorandwill
severelyimpactperformance.

Alternatiely, the instructionmemorycould be treatedmorelike a stackor a FIFO, i.e., allo-
cationanddeallocationcanonly occurat the endsof the alreadyloadedblocks. A stack imple-
mentationwould requireblocksto be allocatedand deallocatedrom the sameend. This hasthe
undesirablgropertythatthe mostrecentlyallocatedblocksarethe only onesallowedto be deallo-
catedthuspreventingusfrom reusingthosenewly allocatedblocks.A FIFO implementatiorwould
be better Blockswould be allocatedfrom oneendanddeallocatedrom the otherendandthein-
structionmemorywould betreatedn acircularmanner This meanghatthe oldestblockswould be
deallocatedo make roomfor the new ones.Sincethe oldest block is anapproximatiorto theleast
recently used block, thisis a muchbetterreplacemenstratgy. While a FIFO replacemenstrategy
is frequentlyconsiderednediocrefor randomaccesslatacacheg7], it shouldperformbetterin an
instructioncachewherethe accesgatternis mostly sequential.Also, the benefitof beingableto
densepackvariablesizedblocksmay outweighthe disadwantageof a slightly increasednissrate.

Most of the simulationand dynamic code generationsystemsusea heapbut have a greatly

19

simplified deallocationscheme .Whenthe cachefills up, they flushthe entirething andstartover.
This is a good stratgy if your cacheis large andfills infrequentlybut is not likely to produce

acceptabl@erformancdor a smallcache.

2.2.3 SegmentedHeap

Onepossiblecompromisebetweerthe associatie andheapstructuresvould be a segmented heap.
In essencethe cacheis anassociatie cachewith a smallnumberof slotswhereeachslotis aheap
ratherthanholding a fixed numberof blocks. The associatiity of this systemwould be variable.
A hashwould be usedto assigneachblock to a slot andthenemptyspacewould be found within
thatslot for the block. Ideally, blockswould be pacled densely In this system jt maybe practical
to simply flushall the codewithin a slot whenit fills up. Sinceaslotis only a small portionof the
cachepnly asmallportionof the previously loadedcodewould bethrown out.

Alternatively, blockscouldbe assignedo slotsin adifferentway. Initially, all blockswould be
placedin thefirst slot. Whenit becomedull, blockswould be placedin the secondslotandsoon,
until the entirecacheis full. Whenthis occurs,all of the codewould be flushedfrom thefirst slot
andit would begin refilling. This hastheadwantagehatit is alwaysthe oldestcodewhichis being
flushedratherthatjustthe codewhich happenedo collide with the currentblock. Again, this FIFO

replacemenstratgy is likely to performwell in aninstructioncache.

2.3 Data Structures

Any practicalsystemmustalsoconsiderthe speedandfootprint of the datastructuresnecessaryo
maintainthecache Themostobviousdatastructurego usewould bealist or tablewhich containsan
entryfor everyblockwhichis presentn thecache Eachentrywould containthevirtual addresgthe
addressn the externalmemory)andthe physical addresgthe addressn the instructionmemory)
of the block. Unfortunately this is a horribly slov datastructuresinceit will requirea full search
of thetableto find outif a cacheblock is present.Sincethis is the operationwhich mostneedso

befast,thisis notanacceptableolution.

2.3.1 Array

To avoid doingafull searclonthetable,theentriesfor eachblock couldbestoredin anarraywhich

is indexed by the virtual addressf the block. Finding the entry for a block no longerrequiresa

20

search.However, this arraywill be very sparsesinceonly the entry pointsof eachblock needto
berecorded.The arrayindicescorrespondingdo instructionswhich are not entry pointswould be
empty To eliminatethe sparsity a new virtual addressspacecould be createdwhereeachblock
is assigneda numberandthis numberis usedto requestblocks. Now thereis oneentry per block
in the program.This is fastbut requiresthata tablebe keptin memorywhosesizeis proportional
to the total numberof blocksin a program,not the numberof blockscurrentlyin the cache.Since
programscould concevablegrow very large, this approachis not scalablebecausdhe tablewould
consumaall of atile’s memory In addition,the arraycouldstill becomesparsebecauséhe entries
for blockswhich arenot currentlyin the cachewould be empty However, this may still be avery
goodsolutionfor programghataretoo big to fit in theinstructionmemorybut arenothuge.Hereis
wheretheflexibility of asoftwarebasedschemepaysoff. Thecompilercould usethisfastmethod

for fairly smallprogramsbut usea slover, morescalablemethodfor very large programs.

2.3.2 HashTable

Another methodfor eliminatingthe sparsityof an arrayis to corvert the arrayinto a hashtable.
Insteadof indexing the arrayby the virtual addresof the block, it is indexed by somehashof the
virtual addressThis providesalookupthatis almostasfastasa standardrraybut thehashfunction
is chosersothatthetableis afixedsizeandis reasonablylense.

Theproblemwith ahashtableis thatit is possiblefor two virtual addresset hashto the same
value. This canbe minimizedby picking a goodhashfunctionanda large enoughtablesizebut it
canstill happerandmustbeplannedor. A commonmethodfor dealingwith collisionsis chaining
[4, p. 223]. In a hashtable,chainingmeansthat eachtable entry pointsto a linked list of values
which hashto thatslot. After finding the appropriateslotin the hashtable,the linked list mustbe
searchedequentiallyto determingf the desireddatais there. This makesthe sizeof eachentryin
thetablevariableandgreatlycomplicatesall operationsonthetable.

Anothermethodfor dealingwith collisionsis calledopen addressing [4, p. 232-6]. Thismethod
usesa morecomplicatechashto producea seriesof valuesinsteadof justone. If the desireddatais
not foundin thefirst slot, thenthe secondvaluein the seriesis computedandthatslotis checled.
This continueauntil the datais found or anemptyslotis reached.This methodmaintainsall of the
datawithin afixedsizetablebut it makesdeletingvaluesfrom the tableextremelydifficult. Since
aninstructioncachehashtablewill needto have entriesremoredwhenblocksaredeallocatedthis

makesopenaddressing poorchoice.

21

Block Block
A A
\ 4 /'
Dispatch , N Blng Dispatch / Blng
Code o Code !
7\]
. | Block ,' Block
| C ! C
\ \
\ \
| Block \ Block
@ | D (b) S)

Figure2-2: Exampleof jumpsbetweerblocks(a) without chainingand(b) with chaining.

Both of the previous solutionsassumedhat every pieceof datain the tableis precious,i.e.,
onceinserted anentry mustremainin thetableuntil it is explicitly remaoved. An instructioncache
doesnot requiresucha strict rule. If anentryis lost from the table,it meansthatthe cachehas
“forgotten” thatit hasa certainblock loaded. If thatblock is neededjt will simply be reloaded,
incurring a performancepenaltybut maintainingcorrectfunctionality This suggesta stratgy for
conflict resolutionwherethe old entry is simply throvn away. As long asthe hashtableis large
enoughandthe hashfunctionis fairly uniform, this shouldoccurinfrequentlyandthe performance
degradationwill below. Thisis themethodwhich waschoserfor our system.

A slight modificationof this schemecould provide spacefor two entriesin eachtable slot.
Conflictswould be handledusinga chainingstratgy but with a maximumchainof two elements.
If moreentrieswere hashedo that slot, the older oneswould fall out of the chain. This stratey
providesmoreflexibility for thesameamountof memoryasthe previoussolutionbutit alsoincursa

higheroverheador mostcacheoperationsvhich mustnow checkbothslotsin the hashtableentry

2.4 Chaining

In a systemwith a complex cachingschemethe dispatchcodecould becomea major bottleneck.
Evenif the dispatchcodeis fast,a small block sizewould causgumpsto it very frequently Al-

thoughthe dispatchcodeis designedo be asfastandefficient aspossible,it will still introduce
overheadvhich maynot be necessaryor blockswhich areknown to bein the cachethe program
couldbranchdirectly to the desiredblock insteadof jumpingto the dispatchcode. This canbe ac-
complishedusingatechniquecalledchaining which hasbeenshavn to producesignificantbenefits

in thesimulationsystemsmentionedabore [11, 2]. This shouldnot beconfusedwith thehashtable

22

conflict stratgy called“chaining” which wasdiscusse@bove.

Chainingcutsout unnecessarjumpsto the dispatchcodeby modifying the codein the cache.
Whenthe dispatchcodeloadsa block into the cache,it goesback andreplaceshe jump which
requestedhatblock with a jump directly to the block. Now the next time thatcodeis executed,t
will skip the dispatchcode(seeFigure2-2). This procedurewill pay especiallybig in thingslike
loopswherethe entireloop canbe residentin the cacheand executemary iterationswithout the
dispatchcodeslowing it down. Chainingcanbe performednot only whena new block is loaded,
but alsowhenablockis requestedhatis alreadypresenin thecache.In fact,thedispatchcodecan
chaineverytimeit is executedexceptwhenthe original jump wasanindirectjump (i.e., thetarget
addressvasstoredin aregister)[3].

The problemwith chainingis thatit greatlycomplicatesdeallocation.Whena block that has
beenchainedto is deallocatedthe jump(s)that was modifiedmustbe changedackto a jump to
thedispatchcode. Thisis necessaryo allow reloadingof theblockin caseit is needechgainlater
This dechaining canbe difficult sincethe normalchainingschemedoesnot keeptrack of who has
chainedo a certainblock.

A block canbeaugmentedvith alist of thejumpsthathave beenchainedo it or aseparatéable
of thesechainedumpscouldbe kept. However, thelists of chainedumpsmaybevariablein size.
It would be very difficult to allow theselists to changein sizedynamically The solutionmay be
to allocatea fixed sizelist whenthe block is loadedandonly allow new chainingsto be performed
if thereis spacein thislist [2, p. 29]. This restrictsthe amountof chainingthat canbe donebut
simplifiesthetaskof deallocatiorsincethereis now afixed maximumnumberof chainsto undo.

If a FIFO replacemenstratgy is being used,thenanothersolutionis possible. If an older
block chainsto a newer block thenthatchainwill never have to be undonebecausehe olderblock
will alwaysbe deallocatedirst [2, p. 29]. In otherwords,it is not possiblefor the newer block
to be deallocateduntil the older block hasalreadybeenremored thus making dechaininga moot
point. Thereforecorrectnessanbepreseredwithoutthebookleepingandoverheadf dechaining
by only allowing chainsfrom older blocksto newer blocks. Thesetwo solutionscould also be
combinedby modifying thefirst solutionto only trackandundochainsfrom newer blocksto older

blocks.

23

24

Chapter 3

Systemimplementation

The goal of this thesiswasto designandimplementa working software basedinstructioncache
system.Theinitial designwasto besimpleandprovide aframevork onwhich futurework couldbe
based.This chapterdescribegshe designwhich waschosemanddiscussefiow it wasimplemented

in the RAW compilerwhichis beingdeveloped.

3.1 Design

The systemwhich hasbeendesignedattemptso compromisebetweenthe differentdesignoptions
discusseakarlier Wheneer possible block sizeandmemoryorganizationchoiceswere madeon
the sideof simplicity. Considerableffort wasputinto trying to designefficient datastructuredor
maintainingthe cachestatebut in theend,a straightforvard yet potentiallysub-optimakchemeavas

used.

3.1.1 Memory Organization

The first decisionmadewasthat the initial systemwould not dealwith denselypackingvariable
sizedblocks. Thereforememoryis dividedup into a numberof fixedsizeslotswhich aremanaged
asa heap.Becausdhe blocksarefixedsize,this is roughly equvalentto a fully associatie cache
with a FIFO replacemenpolicy. A FIFO policy approximated.RU in aninstructioncachebut is

far easierto implementsinceit is only necessaryo keeptrack of the headandtail of the heap.
Managingthe cacheasa heapmakesthetransitionto variablesizedblockseasielif thatis deemed

importantin the future. Onthe otherhand,usingfixed sizeblocksmeanghatit is not too difficult

25

to switchto a set-associate schemeeither Thereforethis arrangementnakesa goodbasesystem

thatcanbe easilymodifiedfor futureresearch.

3.1.2 Block Size

Arbitrarily createdfixed sizedblockswere ruled out as a cacheblock size due to the increased
difficulty of keepingtrack of entry pointsin the blocks. A basicblock, on the otherhand,hasthe
desirablepropertieghatthereis only oneentrypointandno unneededodewill beloaded.lt is also
reasonablyeasyto find basicblockswithin a program. It wasthereforedecidedthat basicblocks
would be usedfor the cacheblocks. Sinceextendedbasicblocksand clustersof basicblocksare
really extensionsof a basicblock, this choiceallows for a straightforvard transitionto oneof these

otherblock sizesin thefuture.

However, the variablesize of basicblocksconflictswith memoryorganizationwhich wascho-
sen.Smallblockswill notfill the slotswhile large blocksmaybetoo big for oneslot. Blocksthat
aresmallerthanaslotwill wastespacdn the cachebut will notimpedethe correctoperationof the
cache.Theseblockscanbepaddedvith NOP instructiongo make themfill aslotorthey cansimply
beloadedinto the beginning of the slot. Sinceall blockswill endwith ajump to the dispatchcode,

theremaininginstructionsn theslotarenotimportant.

Basicblocksthataretoo largeto fit within aslotwill overwritethenext slotif we blindly try to
loadthem. Therefore Jarge blocksmustbe broken up into smallerones.Sincea changean control
flow (i.e., abranchor jump) endsabasicblock, alarge block canbedivided up by insertinga jump
into it which simply jumpsto the next instruction. Thiswill degradeperformancey forcing jumps
to the dispatchcodeevenwhenthe compilerknows thatthe codewill be executedsequentiallybut

it is necessaryo presere correctness.

A slotsizeof 16 words(equalto 16 instructionsWwaschoserfor this systemin orderto balance
the spacewastedby smallblockswith the extra overheadof breakingup large blocks. Translating
a branchinto ajump to the dispatchcode(discussedater) addsb instructionsto a block, meaning
thatatypical 16 word block canhold no morethan11 instructionsfrom the original program.The
next smallestogical slotsizewould have been8 wordshut sincethiswould only have allowedfor 3
original instructionsper block, it wasdeemedoo small. Sixteenwordsis alsocorvenientbecause

it is thelargestblock transferwhich canoccurover the dynamiccommunicatiometwork in RAW.

26

3.1.3 Data Structures

A hashtablewaschosento keeptrack of loadedblocksandtheir locationsin the cache(physical
addresses)This methodwaschoserover the arraystructurementionedn Section2.3.1becausét
will work for ary program,regardlesof size. The arraymethodis viewed asan optimizationfor
smallprogramdo be exploredin thefuture.

Conflictsin the hashtablewill beresolhedby discardingthe datawhichis currentlyoccupying
the desiredslot. This is not only the fastestmethodof resolvingconflicts, it alsoavoids adding
overheadto critical operationssuchaslookups. Even a limited form of chainingwould require
extrachecksduringmostoperationsThe memorywhichwould have beenusedto allow two entries

in eachslotwill beusedto addmoreslotsto thetable,thusdecreasinghefrequeng of conflicts.

3.2 Implementation

Usingthedesignoutlinedaborve, a compilerpasswvaswritten to implementpartof a softwarebased
instructioncachingsystem. This compiler passis part of the r awcc compiler being developed
usingthe SUIF compilersystem. Becausenstructioncachingmustdealwith the actualmachine
instructionsof a program,the passis written for the machsuif back-endof the compilerandis
designedo bethefinal compilerpass.In orderfor the passto have accuraténformationaboutthe
sizeof variousbasicblocks,all optimizationpassesndassemblyanguagemacroexpansiornpasses
musthave alreadybeenrun on the program.

The systemhasbeenimplementedo the point whereit runsasif all of the blocksfit andhave
alreadybeenloadedinto theinstructionmemoryof a singletile. The programis dividedinto basic
blocksno biggerthan 16 instructionsandthe codeis modifiedto jump to the dispatchcodeat the
endof eachblock. The virtual addresof the block to transfercontrolto is passedo the dispatch
codeduringthisjump. Thedispatchcodelooksupthevirtual addressn the hashtableandtransfers
controlto the physicaladdressvhich is storedthere. Althoughthe dispatchcodedoesperformthe
checkto seeif therequestedlockis in the cache it doesnot currentlyhandlethe casewhenit is
not. Thereforethe cacheworkswhenall of theblocksfor a programhave alreadybeenloadedinto
theinstructionmemory

The portion of the systemwhich handlescachemisseshasnot beenimplementechecausehe
simulatoris not currently accurateenough. Whenthe simulatoris completedthe portion of the

systemwhich dealswith loading codefrom an externalmemorycanbe addedin. In the current

27

simulator the entireprogramis placedin instructionmemory(by the simulator)andthenexecuted.
Thereforetheportion of the cachesystemwhich hasbeenimplementedtanbetestedoy arranging
the programso that, whenit is placedin the instructionmemory it appearsasthoughall of the
programs blocks have beenloadedinto slotsalready For thesetests,the virtual addressesf the
blocks andtheir physicaladdresses the instructionmemoryare the same. The missingcache

functionality hasbeendesignedandwill bediscussedater

3.2.1 Program Code Modifications

The compiler passbegins by modifying the existing branchesand jumpsto jump to the dispatch
codeinsteadof their targets. Sinceblockscould be loadedanywherein theinstructionmemory a
jumpwith anabsolutgratherthanrelative) addresss neededo getto thedispatchcode.If arelative
addressvereused,it would have to be modifiedwhenthe block wasloadedto reflectthe distance
from the block to the dispatchcode. On the otherhand,if the dispatchcodeis alwayspresentin
the instructionmemoryat a predictabldocation,thena jump to that absoluteaddresswill always
work, regardlessof wherethe block wasplaced. In the MIPS instructionset, absolutgumpsare
performedwith thevariousj (for “jump”) instructionswhile relative jumpsareperformedwith the
b (for “branch”) instructions.Sincethe RAW instructionsetis basedon the MIPS instructionset
[6],) instructionswill needto beusedto jump to thedispatchcode.

Thevirtual addressvhich controlshouldbe transferredo is passedo the dispatchcodein the
assembletemporaryregister($at). This registeris normally resered for usewhentheassembler
needsa temporaryregisterin its expansionof a macroinstruction. Sincethe instructioncaching
passwill berun afterall expansionshave finished,it hasfull knowledgeof when$at is usedand
canavoid ary conflicts.

Thesimplestumpsto replacearej r instructions.nsteadof jumpingto thevaluestoredin the
register thatvalueis movedto $at anda jump is madeto the dispatchcode(seeFigure 3-1(a)).
Almost assimpleare] instructions. The jump is replacedwith a load of the jump addressnto
$at followed by ajump to dispatch(seeFigure3-1(b)). By makinguseof the delayslot whereit
previously wasnot, the jump to dispatchtakesonly onecycle morethanthe original jump. Jump-
and-linkinstructionsarehandledsimilarly exceptthatthelink registermustalsobeloadedwith the
addres®f theinstructionfollowing the modifiedjump.

Conditionalbranchesreprobablythe mostcomplicatequmpto replace A conditionalbranch

cantransfercontrolto oneof two differentlocations.Therefore the codewhich replacesonemust

28

bne $1, $2, Label 1
add $0, $0, $0

Label 2:
jr $5 i Label
add 30,30, $0 add $0, $0, $0 $
i bne $1, $2, New | abe
| ui $at , Label 2>>16
j di spat ch | ui $at, Label >>16 j di spat ch
add $at , $0, $5 j di spat ch ori $at , $at , Label 28&0xFFFF
ori $at, $at, Label &0xFFFF New_| abel
I ui $at, Label 1>>16
I di spat ch
ori $at, $at, Label 1&0xFFFF
Label 2:

@ (b) (©)

Figure3-1: Examplereplacementsf (a)aj r instruction,(b) aj instructionand(c) a conditional
branchinstruction.

load one of two differentvirtual addressesmto $at andthenjump to the dispatchroutine. Since
only branchesanbe conditionaland sincewe mustusea jump to getto the dispatchcode, this
replacementwill needto useboth b andj instructions. Figure 3-1(c) shavs an example of a
conditionalbranchreplacement. This code makes use of delay slots to performthe call to the

dispatchcodein anextra 3 cycleswhenthebranchis takenandanextra 2 cycleswhenit is not.

After all of thebranchesndjumpshave beenmodified,jumpsto thedispatchcodeareinserted
at the end of eachblock which would normally fall-throughto the next block (like block A in
Figure 2-1(a)). This is donewith a simple 3 instructionsequencdike the onein Figure 3-1(b)

exceptthatthelabelusedis thelabelatthe beginning of the next block.

Thefinal stepin modifying the programcodeis to checkblock sizesandbreakup large blocks
into smallerones. All blocksaremadeexactly sixteeninstructiondong. Blocksthatarelargerthan
sixteeninstructionshave jumps(threeinstructionslnsertedevery thirteeninstructions. Whendoing
this, caremustbetakennotto inserta jump into the middle of oneof the sequencesreatedduring
the previous modifications.If ajumpwould beplacedinto oneof thesesequenceshenthejumpis
placedright beforethe sequencinstead Whenall large blockshave beenbrokenup, theblocksthat
aresmallerthansixteeninstructionsarepaddedvith NOP instructions.Thisis not strictly necessary
in this systembut wasdonesothatthe blockswould be alignedasif they hadbeenloadedinto the

instructionmemoryby thedispatchcode.

! Althoughit is conceptuallyclearerto do this stepfirst, from a practicalstandpointit is easierto do it lastbecause
theothermodificationsaddextrainstructions

29

3.2.2 DispatchCode

The dispatchcodeis written in RAW machinelanguage(see Appendix A) andis addedto the
programandthe endof the compilerpass.Thefirst actionthatthe dispatchcodemustperformis
a checkto seeif therequestedlock is in the cache. This involveslooking up the virtual address
of the block’s entry point (passedo the dispatchcodein $at) in the hashtable. Although hash
functionswhich merelyselectsomeof the bits of the addressarecommonin casesvherespeeds
crucial,this methoddoesnotalwaysleadto auniformdistribution of hashvalues.Becauseonflicts
causdnformationto belostin this systemafunctionwhich hasa betterdistribution of valueswas
neededThehashfunctionchoseris a multiplicative functionthathasgoodperformanceyetis still
reasonablyeasyto calculate. The key is multiplied by 265443576%ndthenbits 23 to 31 of the

resultareusedasthe hashvalue.Seeg[4, pp. 228-9]for a derwvation of this function.

Nine bits areselectedn orderto get512possiblehashvalues.Thisis roughlytwice thenumber
of sixteeninstructionblockswhichwill fit in a 16 kbyte instructionmemory(minussomespacefor
the dispatchcode)giving a load factorof about0.5 for thetable. Sincecollisionsarecostly; it is
importantto keeptheloadfactoraslow aspossible.Thisloadfactorwaschoserarbitrarilyandmay
bemodifiedin thefutureif it is foundto beinappropriate However, thedesirefor alow loadfactor
mustbe balancedvith the hashtables footprint. With eachentryin thetableneedingwo wordsof
memory(onefor thevirtual addressandonefor the physicaladdress)a 512 entry tableconsumes
4 kbytesof memory This is a sizableportion of the 32 kbyte datamemoryandit is importantto
remembethatincreasinghis tablesizemayactuallydecreaseverall performancdy reducingthe

amountof memoryavailableto cachedataor instructions.

Oncethevirtual addres$asbeenhashedo give anindex into the hashtable,the dispatchcode
mustcheckthathashtableentryto seeif thedesiredblockis in thecache.lt doesthis by comparing
the desiredvirtual addresswith the virtual addressstoredin the table. If they do not match,then
eitherthat block hasnot beenloadedyet or anotherblock that hashedo the samevalue hasbeen
loaded. The tableis initialized to animpossiblevaluefor the virtual addresseso that the lookup
will fail thefirst time eachentryis checled. If they match,thenthe desiredblock is available so
the physicaladdresss readfrom thetableanda] r instructionis usedto transfercontrolto it. The
procesgepeatavhenexecutionreacheghe endof thatblock andanothercall to the dispatchcode

is made.

If the virtual addressesail to matchthenthe cachemissroutineis executed. In the current

30

implementatiorthis routineis merelya stub Sincethevirtual andphysicaladdressearethe same
in thesimulatorandsinceevery blockis presentn memory thestubwritesthevirtual addressf the
desiredblockinto the hashtablefor boththevirtual andphysicaladdressesThe stubthentransfers
controlto therequestedblockvia aj r instruction.

In the final implementationthe cachemissroutinewill have the job of requestinghe missing
block from externalmemory placingthe block into the instructionmemoryandupdatingthe hash
tableto reflectits location. Becausaodeexecutionis dynamicin nature the dynamiccommunica-
tion network will needto be usedfor requestinglatafrom off-chip. Thetiles aroundthe perimeter
of thechipwill have anl/O interfaceto externalDRAM sorequestingdatafrom off-chip involves
sendingamessagéo oneof theseperimetettiles. Therequesimessagevill simply becomposeaf
thestartingaddres®f theblockin externalmemory theamountof dataneededsixteernwords)and
thetile numberto returnthe datato. The missroutinemustnow wait for the datato be sentbackto
it. Duringthistime, it canselectthelocationfor thenew dataandupdatehehashtableandpointers
for the beginningandendof the FIFO queueof blocks. Whenthe dataactuallyarrives,it is simply

copiedinto the selectedspacan theinstructionmemoryandcontrolis transferredo it.

3.3 Results

Theinstructioncachingcompilerpasswasrun on several benchmarkprogramso evaluateperfor
mance Becauseheimplementatiorhandlenly the cachehit casesbenchmarksvhichfit entirely
within the instructionmemorywerechosen. Therefore the performancenumberscollectedindi-
catetheminimumamountof overheacheededluringtheexecutionof theseprogramswith software
instructioncaching.Additional overheadwill beincurreddueto cachemissedn thefinal system.

Becausdhe benchmarksisedall fit within theinstructionmemory they do notactuallyneedto
usecachingat all. Normally the compilerwould detectthis andomit instructioncachingfrom the
program. The resultsof runningthe programswithout cachingaddedare given as“uncached”in
Table3.1andTable3.2. In orderto evaluatethe impactof cachingon programsthe compilerwas
thenforcedto addthe cachingcodeto thesebenchmarksTheresultsof runningwith the currently
implementedsystemarereportedas“fix edsize’

As a beneficialside-efect of the incompleteimplementationpne more casecould be tested.

2In reality, the currentsimulatordoesnot limit the amountof instructionmemoryavailable. Therefore ary program
will fit entirelywithin instructionmemory

31

uncached variablesize fixedsize
benchmark| cycles change cycles change cycles change
life 1,302,132 1.0x 3,665,808 2.8x 4,938,266 3.8x
jacobi 1,485,328 1.0x 2,589,359 1.7x 4,636,892 3.1x
vpenta 15,173,695 1.0x 18,035,420 1.2x 36,275,951 2.4x%
cholesly 24,879,626/ 1.0x || 47,243,774 1.9x| 77,263,030 3.1x
tomcatv 63,847,647, 1.0x|| 94,787,869 1.5x | 164,020,150 2.6x
btrix 111,014,163 1.0x | 134,755,597, 1.2x || 269,574,949 2.4x

Table3.1: Runtime for variousbenchmarkgin processocycles)without ary caching,usingvari-
able sizedblocks and using fixed size blocks. The “change” columnis relative to the uncached
version.

uncached variablesize fixedsize
benchmark| memory| change| memory| change| memory| change
jacobi 604 1.0x 960 1.6x 1664 2.8x
life 1248 1.0x 2064 1.7x 8392 6.7x
cholesly 2544 1.0x 4292 1.7x 7572 3.0x
vpenta 3780 1.0x 4436 1.2x 6364 1.7x
tomcatv 4624 1.0x 6220 1.3x 9756 2.1x
btrix 15128 1.0x 16504 1.1x 21884 1.4x

Table3.2: Bytesof instructionmemoryusedby the program excludingthe dispatchcodeandhash
table. The“change”columnis relatve to theuncachedersion.

Becauseall of the codefor theseprogramsis alreadyin memoryand becauséblocks are never
deallocatedrom the cache,it is possibleto simulateusingdenselypacled variablesizedblocks.
By notbreakinglarge blocksup into sixteeninstructionblocks,the executiontime of a cacheusing
variable sized blocks can be measured. The amountof memorythat would be consumedby a
variablesizedblock systemcan be determinedby neitherbreakingup nor paddingblocks. The

numberdrom simulatedvariablesizedblock cachesaregivenas*“variablesize” in thetables.

Looking at the data,addinginstructioncachingto a programclearly hasa significantimpact
on both performanceandmemoryusage However, the penaltyis substantiallyjessfor thevariable
sizedblocksthanit is for thecurrentimplementatiors fixedsizeblocks. It shouldalsobenotedthat

the penaltiedor bothschemesendto belessfor the programswhich arelargeror runlonget

The most surprisingresult found was the tremendoudifferencebetweenthe variable sized
block andfixedsizeblock schemesBoth performancendmemoryusageweresignificantlyworse

whenusinga fixed size block. The differencein memoryusageis primarily dueto small blocks

32

which wastespacewhenloadedin sixteeninstructionslots. However, thereis alsosomememory
lost to the extrajumpswhich areinsertedto breakup large blocks. The performancaifferenceis
explainedby the extra calls to the dispatchcodewhich are createdwhenlarge blocks are broken
into smallerones.In the benchmarksised,thelargestblockstendto occurin the middle of nested
loops. Unfortunately this meanghatthe extra overheads greatlyamplifiedby the factthatthose
blocksareexecutedmary times.

Althoughtheimpacton programperformanceanbequitelarge, it isimportantto remembethat
this systemis designedo be usedonly on programsthatdo not fit within the instructionmemory
For theseprograms the performanceausing cachingwould be infinitely betterthanwithout since
they cannotbe run at all without instructioncaching. Even so, it is importantto minimize the

overheacbf cachingin orderto competewith hardwarebasedcaches.

33

34

Chapter 4

Conclusions

Althoughthis systemis a startingpointratherthanafinal solutionfor all softwarebasednstruction
cachingneedsit is possibleto drav someconclusionsaboutsoftwarebasednstructioncachingand

make suggestionsor futurework.

4.1 FutureWork

Clearly the next stepfor this systemwould be the addition of the cachemisshandler With that
in place,hashtable performanceshouldbe carefully examined. If collisionsoccurfrequently it

may be desirableto modify the hashtable size or the collision handlingstratgy. It might even
be necessaryo develop a newv hashfunction which is more specificto the accesgatternsof this
system.In addition,usingotherdatastructureswvhich incur lessoverheador smallerprogramgas
describedn Section2.3.1)is key to taking full adwantageof the compilerandwill definitely need
to bepursued.

Basedon the resultsgivenin Section3.3 it is apparenthat a variablesizedblock schemeds
highly advantageousiNot only doesit immediatelyincreaseperformancebut the reducednemory
footprintwill alsoallow moreblocksto fit into memory thusincreasinghecachehit rate. Sincethe
benefitfor the commoncase(wherethe desiredblock is presenin the cache)is so great,it seems
likely thatit would be worth the extra overheadassociatedvith a variablesizedblock system.In
fact, the extra overheadof sucha systemwould occurin the cachemisshandlerwhichis likely to
spendlarge amountsof time waiting for new datato arrive. It may turn out that the extra over
headcanbe overlappedwith this waiting, thusmakingit free. Sucha systemshoulddefinitely be

implementedo exploreits feasibility.

35

Sincethe amountof time it takesdatato be fetchedfrom external DRAM andreturnedto a
tile may be large, complex schemedor placing and deallocatingblocks could be usedwithout
impactingoverall performance.Dependingon how muchtime a fetch takes, it may actually be
possibleto implementareplacemenstratgy which approximate$ RU. Of coursereconcilingthis
with avariableblock sizewould still bedifficult. Evenso,the possibility shouldbe explored.

Evenusingavariableblock size,performanceavassignificantlyaffected.Sincethis resultis the
minimum overheadof the completesystem this suggestshat chainingmay be a worthwhile opti-
mization. Again, the extra overheadwvould be addedwhile waiting for datafrom externalmemory
sotheimpactcouldbengyligible. Themostlylikely implementatiorof chainingwouldincludeone
or two backpointersfor eachblock andwould only keeptrack of backwardschainsasdiscussedn
Section2.4.

The last variablewhich probablywarrantsexplorationis block size. Given that the frequent
jumpsto thedispatchcodedo significantlydecreas@erformanceit is probablywiseto usealarger
block size. Of the optionsdiscussedn Section2.1, clustersof basicblocksshav the mostpromise
for increasingperformanceHowever, becauselustersof basicblockscanloadcodewhichis never
used,the cachehit ratewill belower. It will be necessaryo determinewhetherthe extra perfor
manceoffsetsthereductionin cachehit rate. In addition,thereis work to be donein developinga

compilerto find optimal clusters.

4.2 Conclusion

This work suggestshatsoftwarebasednstructioncachingmaybeaviable alternatve to hardware
instructioncaching. Evenin this naive implementationthe addedoverheador the commoncase
is not prohibitive. Explorationof the mary optimizationsand alterationswhich are possiblewill
undoubtedlyyield systemswith evenbetterperformance.

Software basedcachingprovides RAW with the ability adaptto differentworkloads. The re-
sourceglevotedto cachingcanbevariedto fit therequirement®f a specificapplication.However,
softwarebasedcachingis alsoapplicableto low-costor low-power embeddegbrocessorsvherethe
costof cachinghardwareis prohibitive. With furtherresearclandtime, softwarebaseccachesnay

becomecommon-placeevenreplacinghardwarecachesn generaburposanicroprocessors.

36

Appendix A

Dispatch Code

di spat ch:
SW
| ui
ori
mul tu
SW
nflo
srl
sl |
| w
bne
add
addi
| w
| w
jr
| w

di spat ch. mi ss:

$9, save t1
$9, 40503
$9, $9, 31161
$9, $at

$10, save_t 2
$9

$9, $9, 23
$9, $9, 3

$10, hash_t abl e($9)
$at, $10, di spat ch. m ss # Conpare virtual addresses

$0, $0, $0
$9, $9, 4

$at , hash_t abl e($9)

$9, save_t 1
$at
$10, save_t 2

Load the hash constant into $9
Multiply the key by the hash constant
Select bits <31:23> of the result

Scale for the size of each table entry

Cache hit!
Read physical address fromtable

Junp to the requested bl ock

This is a stub which fixes up the hash table. It wll
be replaced by code to load a new bl ock into the cache.
$at , hash_t abl e($9)

SW
addi
SW
| w
jr
| w
.end

$9, $9, 4

$at , hash_t abl e($9)

$9, save t1
$at

$10, save_t 2
di spat ch

37

Enter virtual address in table

Physical address is the sane

38

References

[1] A. Agarwal, S. AmarasingheR. Barua,M. Frank,W. Lee, V. Sarkar S. Devabhaktuni,and
M. Taylor, “The Rav CompilerProject”, Proceedings of the Second SUIF Compiler Workshop,
Aug. 1997.

[2] R.F. CmelikandD. Keppel,“Shade:A Fastlnstruction-SeSimulatorfor ExecutionProfiling;
SMLI 93-12,UWCSE 93-06-06,Sun Microsystemd.aboratories)nc., andthe University of
Washington,1993.

[3] R.F. CmelikandD. Keppel,“"Shade:A Fastinstruction-SeSimulatorfor ExecutionProfiling;
Proceedings of the Sgmetrics Conference on Measurement and Modeling of Computer Systems,
pp.128-137 May 1994.

[4] T.Cormen(C. LeisersorandR. Rivest,Introduction to Algorithms, TheMIT PressCambridge,
Massachusett4,996.

[5] D.R.Engler “VCODE: A Retagetable Extensible Very FastDynamicCodeGeneratiorSys-
tem”, Proceedings of the ACM S GPLAN '96 Conference on Programming Language Design
and Implementation, pp.160-170May 1996.

[6] J.Heinrich,MIPSR4000 Microprocessor User’'s Manual, MIPS TechnologiesMountainView,
California, 1994.

[7] J.HennesswndD. PattersonComputer Architecture: A Quantitative Approach, MorganKauf-
mannPublishersSanFranciscoCalifornia, 1996.

[8] W.Lee,R.BaruaM. Frank,D. SrikrishnaJ.Babb,V. SarkarandS. Amarasinghe,Space-Tme
Schedulingof Instruction-Le&el Parallelismon a Rav Machine”, Proceedings of the Eighth
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII), Oct. 1998.

[9] E.Waingold,M. Taylor, V. Sarkar W. Lee, V. Lee, J. Kim, M. Frank,P. Finch, S. Devabhak-
tuni, R. Barua,J.Babb,S. Amarasinghend Anant Agarwal, “Baring It All To Software: Raw
Machines”,|EEE Computer, pp.86-93,Sept.1997.

[10] S.WardandR. HalsteadComputation Sructures, TheMIT PressCambridgeMassachusetts,
1990.

[11] E.WitchelandM. Rosenblum;Embra: FastandFlexible MachineSimulation, Proceedings
of the ACM SGMETRICS International Conference on Measurement and Modeling of Com
puter Systems, pp.68-79,May 1996.

39

