
Radix Sort and Hash-Join for
Vector Computers

Ripal Nathuji
6.893: Advanced VLSI Computer Architecture

10/12/00

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

What is Radix Sorting?

• Sort by least significant digit instead of most significant digit

• Better than sorting by most significant digit since it saves
having to keep track of multiple sort jobs

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Properties of Radix Sorting Algorithms

• Treat keys as multidigit numbers, where each digit is an
integer from <0… (m-1)> where m is the radix

• The radix m is variable, and chosen to minimize running
time

Example:
32-bit key as 4 digit number
m is equal to the number of distinct

digits so m =

• Performance: Runs in O(n)
Other comparison based sorts such as

quicksort run in O(n log n) time
***Not advantageous for machines w/cache

25622 84/32 ==

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Serial Radix Sort
• N = # of keys to sort

K = array of keys
D = array of r-bit digits

Values of Bucket[] after each phase:
• Histogram-Keys:

Bucket[i] contains the number
of digits having value i

• Scan-Buckets:
Bucket[i] contains the number
of digits with values < i

• Rank-And-Permute:
Each key of value i is placed
in its final location by getting
the offset from Bucket[i] and
incrementing the bucket

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

How Can We Parallelize the Serial Radix Sort?
Problem:
• Loop dependencies in all three phases
Solution:
• Use a separate set of buckets for each processor

Each processor takes care of N/P keys where P is
number of processors.

This resolves the data dependencies, but creates a new
problem with Scan-Buckets: How can we sort the
digits globally instead of just within the scope of each
individual processor.

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Fully Parallelizing Scan-Buckets

Instead of having each processor simply scan its own
buckets, after doing Scan-Buckets we would like the
value of Buckets[i,j] to be:

The sum can be calculated by flattening the matrix
and executing a Scan-Buckets on the flattened matrix

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Techniques Used In the Data-Parallel Radix Sort

• Virtual Processors

• Loop Rakings

• Processor Memory Layout

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Virtual Processors
• Vector multiprocessors offer two levels of parallelism:

multiprocessor facilities and vector facilities.

• To take advantage of this, view each element of a vector
register as a virtual processor. So a machine with register
length L and P processors has L x P virtual processors.

• Now the total number of keys can be divided into L x P
sets.

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Loop Raking
• Usually operations on arrays are vectorized using strip

mining. In strip mining an element of a vector register
handles every Lth-element

• Unfortunately using strip mining each virtual processor
will have to handle a strided set of keys instead of a
contiguous block as required by the parallel algorithm

• Using a technique called loop raking, each virtual processor
handles a contiguous block of keys. Loop raking uses a
constant stride of N/L to access elements

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Processor Memory Layout
• A memory location X is contained in bank (X mod B)

where B is the number of banks
• Simultaneous accesses to the same bank result in delay

There are two possible ways to lay out the buckets in memory:
• Place the buckets for each virtual processor in contiguous

memory locations:
This approach could cause multiple virtual processors to
access the same bank simultaneously.

• Place the buckets so that the buckets used by each virtual
processor are in separate memory banks (i.e. Place all the
buckets of a certain value from all virtual processors in
contiguous memory locations):

This approach keeps multiple virtual processors from
accessing the same bank simultaneously

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Processor Memory Layout: Example

0 x 0 0 0 0

0 x 0 0 0 1

0 x 0 0 0 2

0 x 0 0 0 3

0 x 0 0 0 4

0 x 0 0 0 5

0 x 0 0 0 6

0 x 0 0 0 7

Bank 0

Bank 1

Bank 2

Bank 3

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Implementation of Radix Sort on 8-processor CRAY Y-MP
Four Routines:
1. Extract Digit:

• Extracts current digit from keys and computes an index
into the array of buckets

• Uses loop raking
• Time for routine: TExtract-Digit=1.2.N/P

2. Histogram Keys:
• Uses loop raking
• Time for routine: 2 steps

TClear-Buckets=1.1. 2r.L
THistogram-Keys=2.4.N/P

3. Scan Buckets:
• Uses loop raking
• Time for routing: TScan-Buckets=2.5.2r.L.P/P= 2.5.2r.L

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Implementation of Radix Sort on 8-processor CRAY Y-MP

4. Permute Keys:
• Uses loop raking
• Time to permute a vector ranges from 1.3 cycles/element

to 5.5 cycles/element
• Time for routine: TRank-And-Permute=3.5.N/p

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Performance Analysis

Total sorting times:
• TCounting-Sort=L.2r.Tbucket+N/P.Tkey
• TRadix-Sort=b/r(L.2r.Tbucket+N/P.Tkey)

Choice of Radix:
• The optimal value for r increases with the number of

elements per processor
• Choosing r below the optimal value puts too much

work on keys, choosing r above the optimal value puts
too much work on buckets

• Value for r and approximation of total sort time:

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Choosing a Value for r

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Predicted vs. Measured Performance

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Other Factors of Performance

• Vector Length

• Multiple Processors

• Space

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Varying Vector Length

• Decreasing the vector length decreases the number of virtual
processors

• Advantage: decreases the time for cleaning and scanning
buckets

• Disadvantage: increases the cost per element for performing the
histogram, Tkey

• Conclusion: Reducing the vector length is only beneficial if
(N/P < 9000)

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Change in Performance with Number of Processors

• If N/P is held constant, speedup is linear with increase
in P

• If N is fixed, speedup is not linear with increase in P
due to changes in the optimal r

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Memory Issues

Memory needed for Radix Sort:
• Temporary array of size N to extract current digit +

an array of size N for destination of permute +
array of size L.2r.P for the buckets ≈ 2.5N

Possible ways to conserve memory:
• Extract digit as needed instead of using temporary

array
• Lower radix (i.e. 2r term)
• Reduce vector length (L)

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Conclusions on Vectorized Radix Sort

• Radix sort can be Vectorized using three major techniques
1. Virtual processors
2. Loop raking
3. Efficient memory allocation

• Overall performance can be optimized by adjusting
1. The radix r
2. The vector length L
3. Number of processors
4. Memory considerations

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Introduction to Hash-Join

• The join operation is one of the most time-consuming
and data-intensive operations performed in databases

• The join operation is frequently executed and used

• Idea: vectorize the computational aspects of the hash
and join phases

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Equijoin

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Naive Approach

This approach is too expensive and runs in O(n2)

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Reduction of Loads by Hashing

By hashing the tuples of each relation into buckets, we
change from having to compare the entire area to just
the areas in which keys hash to the same bucket (shaded
areas).

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Grace-Hash Join

Two Phases:

1. Relations are hashed into buckets so that each bucket
is small enough to fit into main memory

2. A bucket from one relation is brought into memory
and hashed. Then every key of the second relation is
hashed and compared to ever key of the first relation
which hashed to the same bucket.

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Phases of Sequential Hash

• Extract-Buckets and Histogram Phases

• Scan Phase

• Rank and Permute Phase

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Extract-Buckets and Histogram Phase

Hash function used is key mod (number of buckets)

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Scan Phase

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Rank and Permute Phase

After this phase the result and buckets arrays form a hash table

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Sequential Join Algorithm

• The disk bucket Ri is brought into memory

• Each record of Si is hashed and compared to every
record in Ri

• Any matches that are found are concatenated and
written to final output file

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Vectorized Algorithm

Use two techniques:

1. Virtual processors

2. Loop raking

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Join

Mask vector is generated by a scalar-vector comparison

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Problems that Occurred

Compiler exhibited problems vectorizing certain parts of the code:

• Getting the compiler to vectorize certain loops in the
code

• The compiler would not vectorize compress in the Join
phase

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Results (using CRAY C90)

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Results

Scalar:

Vector:

6.893 Ripal NathujiRadix Sort and Hash-Join for Vector Computers

Results

