Issue Logic and Power/Performance Tradeoffs

Edwin Olson Andrew Menard

December 5, 2000

The need for low-power architectures

- Low performance PIMs
- High performance video decoding/MP3 playback
- And increasingly, both.
 - How do you design an architecture that can do both?

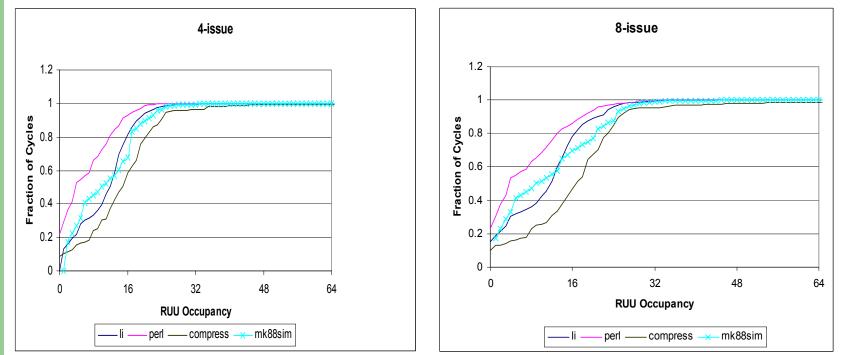
A couple alternatives

- High performance processor that can be lobotomized
 - Modify Issue Logic
 - Change structure sizes
- Two separate cores
 - A high performance/high-power core
 - A low performance/low-power core

Other power throttling mechanisms

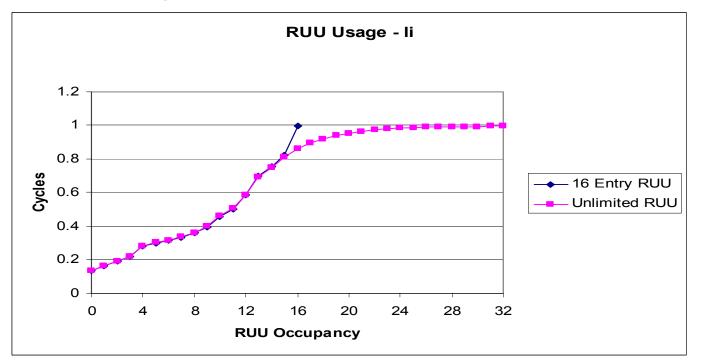
- Voltage scaling
 - Huge power savings
 - There's a limit & high performance designs are pushing towards low voltage— which doesn't leave much room for throttling.
- Burn & Coast
 - Compute at full speed, and then go into a sleep mode.
 - Simple linear power/performance throttling.

Methodology

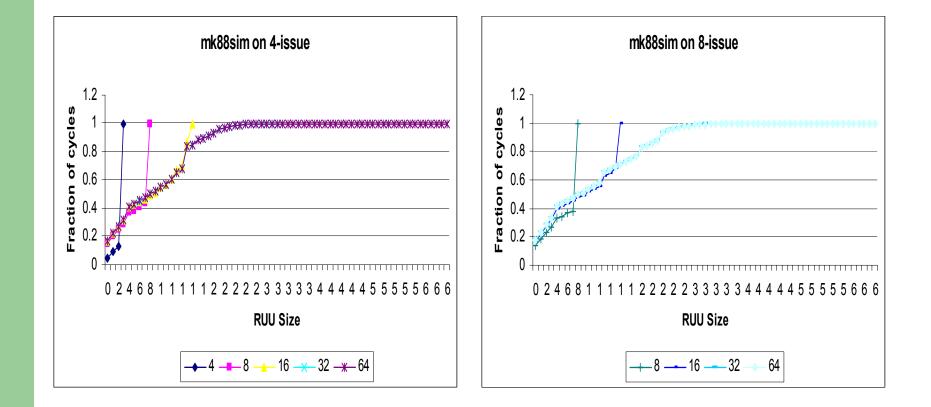

- SimpleScalar/Wattch
 - Widely used but little/no verification. Several power models available, but very large margins of error.
 - Still, the size of structures is correlated to power consumption.
- Industry survey
 - Look at real-world processors with the range of characteristics of interest.
- SpecInt95
 - Substantially reduced input sets to make simulation feasible.

Issue Window Scaling

- Popular idea- it's a highly active chip structure. Window responsible for 20% of non-clock power (Alpha 21264 & Wattch agree)
- Does it work?
 - Let's look at RUU usage
 - What's an upper bound on the useful size?
 - How do smaller sizes impact performance and power?

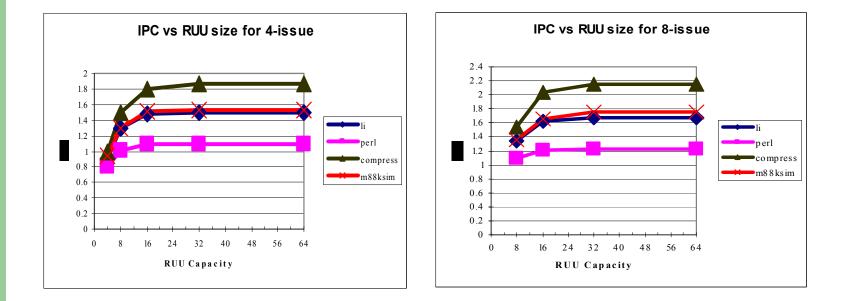

RUU size upper bounds

• Modified SimpleScalar, let RUU be arbitrarily big.

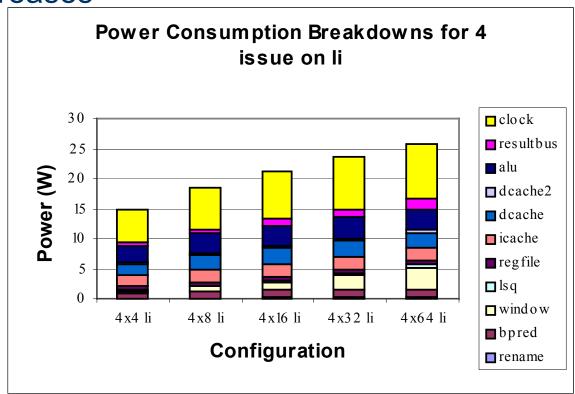


Effect of bounded RUU size

• The RUU's occupancy "saturates" as one would expect.



Effect of Bounded RUU Size


Bounded RUU Impact on Performance

- Performance rapidly approaches maximum.
- 8-issue needs a slightly larger RUU, as expected.

Bounded RUU impact on Power

 Power consumption increased in RUU as size increases

Power/Performance

• There's a minimum! And it's pretty much where maximum performance is. Hmmm.

Structure	8x8	8x16	8x32	8x64
Energy/Inst (li)	13.8	12.5	13.4	14.9
Energy/Inst (perl)	15.1	14.7	15.8	17.6
Energy/inst (compress)	12.4	11.4	11.9	13.3
Energy/inst (m88ksim)	13.0	12.1	12.9	14.4

Analysis

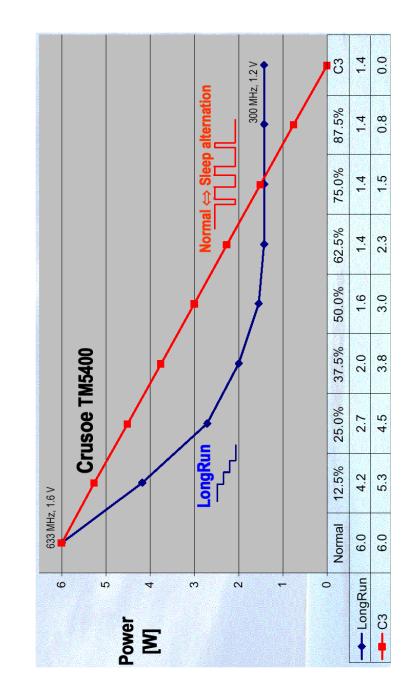
- Some groups have advocated a variable 16-32 capacity RUU. Even if scaling is perfect, there's little to be gained.
- A power-conscious architect is likely to be cornered into just one reasonable RUU size.

Adding a separate core

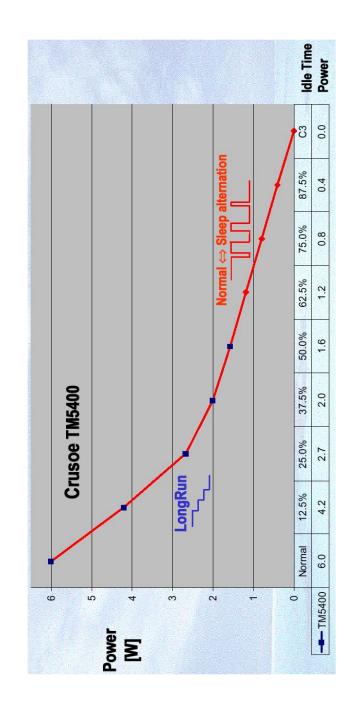
- If we can't lobotomize, perhaps we can add a completely separate CPU.
- Sounds like a good idea
 - Intuition: a simple in-order processor should have lower energy/instruction than a complex out-of-order one.
 - Small area overhead, around 1mm².
- Opportunity for more energy savings
 - Smaller register file
 - No issue window
 - Separate low-power caches (though this increases area)

Methodology

- SimpleScalar/Wattch is all but useless
 - Availability of only one parameterizable power model (Wattch) and we don't know what trade-offs the designer made.
 - Wattch doesn't support sim-inorder
 - E.g., Cacti cache model uses 10x greater energy than Krste.
- Industry Survey


PowerPC Statistics

- PPC440 is 2-issue, out of order
- PPC405 is single issue, in-order
- Both use same technology
- The 440 is twice as fast, but uses only 1.66 times the power!


AM5x86 vs. K6

- 5x86 is in-order
- K6 is out-of-order, 6 issue, 24 entry window
- K6 has slightly better power/performance
 - But it's on a newer process (0.25um rather than 0.35)

Crusoe's Voltage Scaling & Coast and Burn

Crusoe's Voltage Scaling & Coast and Burn

Big Proviso

- CPUs available today, even the "low power" ones, are still after speed.
 - Low power IA32 is just a slower, high-power IA32.
- If you designed your simple core for super-low power (without very little regard for speed), how might this change?

Conclusion

- Smaller issue windows are not a win on power; they lower the amount of ILP found by too much.
- Multiple cores are not a win on power; the faster core tends to be more energy efficient.