
   
Abstract—A growing need for computational power in mobile 
devices has spawned increased interest in low-power 
microprocessors. Some low-power applications require very 
high performance, such as real-time video decoding on 
Personal Digital Assistants. A growing body of work has 
examined how to provide this high performance when 
needed, while throttling performance so that power 
consumption can drop to very low levels when performance is 
not required.  Observing that the issue logic in an out-of-
order microprocessor consumes a significant amount of 
power, several groups have attempted to modify this part of 
the processor so that it can dynamically enter a low-power 
mode. We have revisited these topics and our work shows 
that simple approaches to modifying issue logic fail to reduce 
the average energy per instruction.   We also look at the 
possibility of including a low-power single-issue processor on 
the same die as a high-performance multiple-issue processor.  
Swapping between these two processors allows a dynamic 
tradeoff between power and performance. 
 
Index terms—Issue Window, Issue Logic, Out-of-Order, Low 
Power, Power/Performance Throttling 
 

I. INTRODUCTION 

 
Much of the thrust of recent computer architecture work 
has been in search of increased performance.  As transistor 
budgets increased, more and more technologies from 
mainframes were incorporated in microprocessor designs. 
The product of this evolution was high performance 
microprocessors that sacrificed power consumption for 
performance. With the emergence of low-power markets, 
these speed demons have been retrofitted to consume less 
power by incorporating clock gating, voltage scaling, and 
more recently, dynamic resizing of key architectural 
features such as the issue window.  
 
Many existing techniques for reducing power are well 
established and extremely effective, including dynamically 
reconfiguring the cache[1] and voltage scaling.[8] 
Reducing the supply voltage of a microprocessor has a 
roughly linear effect on performance (due to weaker 
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electric fields) but a squared effect on power dissipation 
(since power consumption is proportional to 
½*frequency*CV2). 
 
When comparing two architectures for power efficiency, it 
is tempting to use a metric such as energy/instruction or 
the power delay product. However, one must take into 
account the required performance level. A processor with 
seemingly poor energy/instruction characteristics that has 
more performance than required can be run at a lower 
voltage thus reducing performance and energy/instruction. 
This processor might then be much more attractive. 
 
While voltage scaling is a very good way of providing 
additional power/performance modes, it has its limits. 
When operating voltage approaches the threshold voltage 
of the transistors, the performance of the transistors begins 
dropping off much faster than linearly. As threshold 
voltages are reduced, leakage currents increase, which, in 
turn, increases power consumption. The Semiconductor 
Industry Association predicts that in the year 2005, supply 
voltages for low power applications will be 0.9-1.2V, 
compared to a typical modern supply of 1.8V [17]. Even 
while this reduction implies significant power 
consumption, the SIA predicts a net increase in total power 
requirements for battery-operated devices of 70%. Clearly 
there is a need for additional power/performance throttling 
mechanisms. 
 
It has been observed that one major power drain in modern 
out-of-order processors is the issue logic; every clock cycle, 
each instruction in the issue queue must be checked to see 
if it can be dispatched.  Retired instructions broadcast the 
availability of new operands on long bit lines across the 
entire issue window. Some processors, such as the Alpha 
21264, compact the issue queue in order to implement an 
oldest-first priority algorithm, and this process requires 
even more energy. In the 21264, between 18 and 46 
percent of the total power of the processor is consumed by 
the issue logic [6]. 
 
 
Thus, methods of scaling back the size of the issue window 
and the number of instructions issued each cycle have been 
proposed in order to minimize this source of power 
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consumption at the cost of reduced performance.  These 
methods are compatible with cache disabling and voltage 
scaling; for maximum reduction in power consumption the 
power management software could simultaneously reduce 
the voltage to the lowest possible level, disable parts of the 
cache, and reduce the issue window size, or it could find 
intermediate power/performance points by doing only one 
or two of these optimizations.  We also consider an 
alternate scheme of bypassing complex issue logic 
completely.  We propose to do this by placing an in-order, 
single-issue core alongside the out-of-order multiple-issue 
core, with the OS able to swap between them, thus 
avoiding the issue logic altogether when necessary .  In this 
paper we do not have a required performance level that the 
chip must achieve. Instead consider the metric of power 
consumed per instruction per cycle. 
 
Several studies have shown that relatively simple 
modifications can allow an operating system to do 
performance throttling without spending an excessive 
amount of time profiling the code being executed, [11] and 
that relatively simple hardware structures can also monitor 
performance needs.[13] 

II. METHODOLOGY 

 
In order to conduct our study, we needed to measure the 
impact of changing architectural resource sizes, such as the 
number of slots in the issue window, on both power and 
performance. The SimpleScalar toolset provides detailed 
performance simulators [4]. SimpleScalar provides a 
performance simulator using a relatively unique 
microarchitecture built around a “Register Update Unit”, 
an architectural resource combining the functions of the 
issue window and the register renaming unit. This is 
somewhat unfortunate, since it does not correlate well to 
actual chips.  
 
However, the results we receive from these studies can still 
yield insight into the effects of scaling architectural 
features, and the relative results are still meaningful. Many 
other architectural studies have also used SimpleScalar, so 
our results can be directly compared with those. Future 
work may involve repeating our studies with a model more 
closely resembling commercially successful architectures. 
 
SimpleScalar does not provide a mechanism for measuring 
power. However, several research groups have added 
power models to SimpleScalar, such as David Brooks' 
Wattch tool  
[3] and the Cai-Lim models [9].  Wattch's models are 
better suited to our study because its models are heavily 
parameterized and are therefore capable of reflecting 
various changes in configuration without needing to create 
SPICE models for each variation. We used version 1.02 of 
the Wattch power.c model. 
 

Power estimation tools like Wattch and the Cai-Lim 
models have recently been the subject of considerable 
scrutiny.[10]. Ghiasi, Grunwald and others have shown 
that not only are direct comparisons of energy 
measurements hopeless due to disagreement, but even 
relative comparisons often fail to agree. A key problem 
rests in the fact that an architectural description simply 
doesn't contain an adequate amount of information to 
properly estimate power, and even reasonable 
parameterized models quickly become unrealistic when the 
parameters are adjusted beyond a limited range. For 
example, the Wattch CAM model used for the RUU 
structure is a reasonable model for a 16 entry structure, but 
if the structure had 256 entries, it would have been 
implemented in a completely different way such as being 
banked. Therefore, we have limited our study to modifying 
parameters by only small factors. 
 
We consider 4 issue and 8 issue processors with varying 
RUU sizes. The other characteristics of our processors are 
listed in Table 1. SimpleScalar allows many parameters to 
be adjusted, but we only changed a handful. Table 1 is 
primarily a list of non-default settings. 
 
Table 1. 
 4 issue 8 issue 
Decode Width 4 8 
Commit Width 4 8 
Load Store Queue Size 8 8 
Integer ALUs 4 6 

Integer Multipliers 1 2 
FP ALUs 4 4 
FP Mul/Div 1 2 
Memory Ports 2 4 
 
 
Our benchmarks are derived from the SpecInt95 suite. Due 
to the limited speed of the SimpleScalar simulator (about 
90k instructions per second), it was impractical to run the 
entire suite, or even an entire single benchmark. Instead, as 
is the common practice in the simulator field, reduced 
input sets were used. These input sets take substantially 
less time to test, but still exercise the processor in ways 
similar to the official input sets. Therefore, the 
performance data we generated cannot be compared to 
actual SpecInt scores, but we are primarily interested in the 
relative performances of our various models. 
 
 
Table 2. 
Benchmark Input 
Li nqueens 6 
Perl test.in 
compress95 5000 q 2131 
 



For all of these benchmarks, the kernel of the program, 
rather than initialization code, dominated the runtime. In 
addition, the simulator is completely deterministic, so there 
is no need to repeat simulations and average scores. 
  

III. DETERMINING OPTIMAL RUU CAPACITY 

 
Understanding the optimal size for the Register Update 
Unit is extremely important when determining its actual 
capacity. Several factors influence this optimal size. The 
goal of the RUU is to always have enough instructions 
ready to feed the available functional units. As the number 
of functional units increases, the size of the RUU should 
intuitively increase to provide more candidate instructions. 
However, due to data dependencies, it is often the case that 
the number of instructions that can be fetched is greater 
than the number that can be issued. We want the RUU to 
hold a certain “surplus” of instructions so that when an 
instruction miss occurs and fetch rate drops to zero, the 
functional units can be kept busy, but there’s no reason to 
make the RUU unreasonably large.  
 

A. Bounds on RUU Usage 

Our first experiment’s goal was to determine an absolute 
upper bound on the size of the RUU. We configured 
SimpleScalar to use an extremely large RUU and made 
modifications to SimpleScalar to collect statistics on the 
size of the RUU every cycle. The resulting structure could 
hold enough instructions to keep the functional units busy 
for dozens of cycles, and is therefore excessive. However, it 
does provide an upper bound on the size of the RUU from 
which to work from. 
 
Figure 1. 
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Figure 2. 

RUU Usage for 8 issue

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 16 32 48 64
RUU Occupancy

C
yc

le
s

li

perl

compress

 
 
 
Figure 1 shows that for all three benchmarks, the RUU 
almost never contains more than 32 instructions at either  
issue width. Making an RUU any larger than 32 would 
serve no function; the entries would be empty almost all 
the time. 
 
When the RUU’s physical size is bounded, the RUU usage 
closely mirrors the unlimited case, except the RUU 
“saturates”. In figure 3, we see that a 16 entry RUU has 
almost exactly the same occupancy characteristics when 
occupancy is between 0 and 15. The 16 entry RUU is fully 
occupied about as often as the unlimited RUU has 16 or 
more entries. This is as would be expected, and though 
Figure 3 uses the li benchmark, the other benchmarks have 
the same behavior. 
 
Figure 3. 

RUU Usage for li
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B. IPC vs. RUU size 

 
The important question now is: if the RUU capacity is 
limited beyond the ideal case, what happens to 
performance? We measured performance in terms of 
Instructions Per Cycle (IPC), since we cannot accurately 



determine changes in clock period from within 
SimpleScalar. 
 
Figure 4. 

IPC vs RUU size for 4-issue
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Figure 5. 

IPC vs RUU size for 8-issue
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Figure 4 shows the performance of the processor, in terms 
of IPC, versus the capacity of the RUU. We notice 
immediately that the performance of the processor for 
compress and perl is very similar for RUU capacities of 16 
and 32 for a 4-issue processor. There’s a small increase for 
li. As we expected, there is almost no benefit in scaling the 
RUU beyond 32. 
 
If we consider an 8-issue machine, we would expect the 
performance of the processor to drop off more rapidly than 
the 4-issue with decreasing RUU capacity. This is because 
the RUU could be depleted (potentially) twice as quickly, 
and the processor is therefore more likely to be unable to 
keep its functional units busy. We see precisely this 
behavior in Figure 5; there is a noticeable performance 
difference for both li and perl between RUU capacities of 
16 and 32.  
 

Some research groups have proposed dynamically varying 
the issue window capacity. [14] It is obvious that a 
parameterized model of an RUU is likely to predict 
substantially greater power consumption for a 32-entry 
RUU than a 16-entry RUU. We must resist the temptation 
to declare this to be an efficient mechanism for throttling 
power/performance. While performance is affected, a 
power-conscious architect is unlikely to make the RUU so 
much larger for such a miniscule return. This is an 
uninteresting regime since the IPC vs  RUU size curve is 
essentially flat. 
 

C. Relationship between energy and RUU size 

 
However, an interesting question still remains. What 
happens to energy per instruction statistics as we decrease 
the RUU well into the region of decreased performance? It 
might be a good idea to allow a processor to dynamically 
decrease its RUU size, for example from 16 to 8, if the 
decrease in power offsets the decrease in performance. 
 
Using the Wattch tool, we measured the power 
consumption of the processors and calculated the average 
energy per instruction assuming optimal clock gating 
(Wattch’s cc3 models). 
 
Table 3. 
Structure 4x4 4x8 4x16 4x32 4x64 
Energy/Ins
t (li) 

15.8 13.0 11.8 12.8 14.1 

Energy/Ins
t (perl) 

16.5 14.3 13.6 14.7 16.1 
 

Energy/inst 
(compress) 

14.4 11.5 10.6 11.3 12.5 

 
Table 3 shows the average energy per instruction for each 
benchmark, for various RUU capacities of a 4-issue 
processor.  We already expected the 4x32 and 4x64 
configurations to be suboptimal, since the RUU is 
essentially oversized. It’s interesting, however, that the 
cost of executing instructions actually increases when the 
RUU is shrunk below 16 entries. While the power 
consumption of the issue logic is going down with 
decreasing RUU capacity, the performance is dropping 
super-linearly. 
 
We can also see that we’re spending more energy per 
instruction on codes with less inherent parallelism (perl in 
particular). This makes sense since there are a lot of 
hardware resources in an out-of-order superscalar 
processor looking for parallelism to exploit, but there’s 
simply very little parallelism to be found. This overhead 
cost is being amortized over very few issued instructions 
every cycle, and thus the average energy per instruction is 
higher. 
 



We’ll also note that we don’t trust the power numbers for 
the extreme configurations of RUU (x4 and x64) since they 
comprise a significant factor of deviation from Wattch’s 
baseline capacity.   
 
The breakdown of power consumption is shown in figure 
6. The patterns of power consumption are similar for all 
three benchmarks, so we show only the li case. One 
component that is consuming conspicuously more power as 
the RUU size is increased is the RUU itself (denoted as 
‘window’). Somewhat unexpected are the increases in 
energy in other areas of the chip. As discussed earlier, 
when the RUU size is increased, the total number of 
instructions (committed + speculated) executed increases 
12-23%, depending on the benchmark. This causes 
increased activity in almost all of the major functional 
blocks. In addition to the window energy, we see 
significant increases in the clocking energy, the load store 
queue, and the result bus.    
 
Figure 6. 
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In Table 4, we have energy per instruction statistics for an 
8 issue processor. We see very similar trends as in the 4-
issue processor.  As with the 4-issue case, we observe that 
the 16-entry RUU is the minimum energy per instruction 
point. 
 
 
Table 4. 
Structure 8x8 8x16 8x32 8x64 
Energy/Ins
t (li) 

13.8 12.5 13.4 14.9 

Energy/Ins
t (perl) 

15.1 14.7 15.8 17.6 

Energy/inst 
(compress) 

12.4 11.4 11.9 13.3 

 

IV. OTHER LOW-POWER MODIFICATIONS TO COMPLEX 

PROCESSORS 

 

It seems as though scaling a processor’s issue window will 
not provide the power/performance throttling we would 
like. There are many potential functional units that can be 
targeted for energy reduction, but other difficulties arise. 
  
We see from Figure 6 that the register file consumes a 
significant percentage of power. SimpleScalar’s RUU 
structure works in its favor for minimizing the complexity 
of the register file by incorporating the renamed registers 
within the issue window and maintaining a separate (and 
smaller) architectural register file, whereas in a 
mainstream design the register file often contains both the 
renaming and architectural registers. In the latter case, the 
register file is both physically larger and may have 
additional ports, consuming even more power. 

V. LOBOTOMIZING AN OUT-OF-ORDER PROCESSOR 

Our group considered several mechanisms for dynamically 
“lobotomizing” an out-of-order processor in order to 
provide new power/performance points. Our initial 
approaches mirrored those of other groups—dynamically 
resizing issue logic, but our study of the effects of RUU 
sizing discussed previously in this paper made this seem 
problematic. 
 
Our second idea was to disable most of the logic 
accompanying the out-of-order issue logic, essentially 
causing instructions to be issued in-order. We modeled this 
in SimpleScalar by disabling out of order execution and 
speculative execution, then reducing the size of the RUU to 
one.  We expected extremely poor performance based on 
our previous experiments in RUU sizing. We measured an 
effective IPC of 0.57. The power numbers returned by 
Wattch are not reported here since their accuracy with the 
oddly-sized models cannot be relied upon. The major cause 
of the poor performance is the very high latency of an out-
of-order processor (compared to a simple pipelined 
machine) which causes many stalls when dependent series 
of instructions are run. An out-of-order machine spends a 
lot of time in order to find and exploit parallelism, and 
dramatically reducing the RUU’s capacity causes most of 
this work to be wasted since it eliminates the possibility of 
having many instructions executing simultaneously. 
 
One idea that our group considered was completely 
bypassing the complicated issue logic of a complex 
microprocessor.  If the renaming logic and issue window 
were bypassed completely—if a single instruction was 
passed immediately from the instruction fetch stage to the 
register file read stage—the latency of instructions would 
be substantially shorter and the performance would 
increase substantially. It would be tempting to use a banked 
register file as well, so that when register renaming was 
turned off, access to the register file would all come from a 
smaller “architectural register” register file. However, 
unless a completely separate register file was used for the 
low-power mode of operation, each bank of the register file 



would likely have far more ports than would be necessary 
for a single-issue processor, and this would put a bound on 
the amount of power savings that could be achieved. It 
would be worthwhile to build a model of this and simulate 
it in detail in the future.  

VI.  USING A COMPLETELY SEPARATE CORE 

Since simply scaling back the size of the issue window 
does not seem to be an obvious win, we also considered 
eliminating it altogether.  A large, complex, out-of-order 
core could be used when high performance was required, 
or a small, simple, in-order pipelined core could be used 
when low-power operation was needed. Our intuition 
suggested that a simpler core would likely have much 
lower energy/instruction given the same technology. Also, 
since the cores are completely separate, each can be 
optimized separately. If the on-die caches and other 
circuits could be used for both cores, the overhead in die 
area for a small in-order core would be very small.  
 
We wished to get the most accurate data possible, so rather 
than using Wattch and SimpleScalar, we opted to conduct 
a survey of commercially available processors, looking for 
processor families where there is both an in-order and an 
out-of-order implementation of the same ISA in the same 
technology, and of processors that support some form of 
voltage scaling, for a comparison.   
 
IBM’s PowerPC line includes the model 440 CPU, a dual-
issue, 7-stage pipeline machine, and the 405 CPU, a 
single-issue, 5-stage pipeline machine, both implemented 
in the same .18 micron copper process [15,16].  The 440, 
operating at 550MHz, consumes approximately 1.0W of 
power, and performs at 1000mips on the Dhrystone 2.1 
benchmark, while the 405 operating at 266MHz consumes 
approximately 0.5W of power while performing 375mips 
on the same benchmark.  Thus, the energy used per 
instruction on the 440 is approximately 1mj, while on the 
405 it is approximately 1.3mj.  This is a very disappointing 
result; the faster processor is actually using less energy per 
instruction, so clearly you would benefit more from an 
approach like voltage scaling to reduce total energy used 
across a calculation, or just use the faster processor until 
the calculation is finished and then put it into a sleep 
mode, both of which also avoid the significant area 
overhead of the dual processor approach. 
 
The Intel Pentium III mobile versions utilize voltage 
scaling from 1.6V to 1.3V to achieve a more than 50% 
reduction in power consumption while still achieving 70% 
of the performance.  Intel’s Xscale line of StrongARM-
compatable chips uses voltage scaling at a much finer 
granularity to go from consuming 450mW at 800MHz to 
only 40mW at 150MHz[17].  The Transmeta corporation’s 
Crusoe line of chips use dynamic voltage and frequency 
scaling from 600 MHz at 1.6V to 300MHz at 1.2V, 
achieving a significantly better than linear drop in power 

consumption for a linear drop in speed [18].  Each of these 
chips manages a significantly better than linear 
power/performance tradeoff, and most new chips aimed at 
mobile computing feature a low-power sleep mode, and 
even the relatively simple throttling mechanism of cycling 
the processor into and out of this mode achieves a nearly 
linear power/performance tradeoff.   
 
This demonstrates that in mainstream processors with 
today’s technology, voltage scaling is still the best 
approach to power/performance throttling. 

VII. CONCLUSIONS 

 
 
While the bulk of recent computer architecture research 
has focused on increasing performance, many modern 
applications require both high performance and low power.  
Techniques such as voltage scaling and clock gating are 
well established as ways to reduce power consumption 
without adversely affecting performance.  In this paper, we 
considered two techniques for switching between a high-
performance mode and a lower-power, low-performance 
mode.  Dynamically changing the processor's issue width 
seemed promising initially but yielded poor results when 
considering the power consumed per instruction. Installing 
a small in-order core alongside the out-of-order core also 
fails to yield an overall benefit in terms of power used. 
 
On a high-performance processor such as the Digital 
Alpha 21264, between 18 and 46 percent of the total power 
consumed by the processor goes to the issue logic.  This 
suggests bypassing or reducing the issue logic as a route to 
minimizing power consumption if performance is not a 
concern.  Using Wattch and SimpleScalar, we first 
determined that there is a maximum size for the 
SimpleScalar register update unit, or RUU.  Increasing the 
size of this structure, roughly analagous to a real 
microprocessor's register renaming logic and issue 
window, yields no performance gains if this maximum size 
is exceeded.  We then examined the power used by the 
RUU, and found that the performance of the processor 
drops faster than its power requirements when the RUU 
size is decreased.  Thus, the power per instruction is 
optimal when the RUU is at this maximum size, about 16 
instructions for either a 4- or 8-issue processor. 
 
Because of this result, changing the size of the issue 
window on an actual microprocessor would not be 
beneficial in terms of power consumed.  Real-time 
applications require a certain number of instructions to be 
executed in a particular time frame.  Our results show that 
the minimal power is used by doing this computation using 
the full power of the microprocessor, and then switching to 
a very low power sleep mode in which no instructions are 
executed for the remainder of the time period.  Attempting 
to change the issue width would result in more power 



being used per instruction; since in this scenario the 
number of instructions executed per unit time is constant, 
this results in more power used per unit time. 
 
Given these discouraging results, we also considered the 
possibility of including a completely separate in-order core 
on the die of a larger microprocessor.  We hoped that the 
in-order core would be small enough to fit into a modern 
superscalar machine without significantly impacting the 
layout.  While the in-order machine would have much 
lower performance, it ideally would have had a much lower 
power usage since it lacked the expensive register 
renaming and instruction reordering logic present on the 
out-of-order machine. 
 
A survey of real processors suggests that this unfortunately 
is not the case.  In the PowerPC family, the in-order 405 
chip consumes 30% more power than the superscalar 440.  
Intel's microprocessors have also avoided these techniques, 
relying instead on traditional techniques to obtain a 50% 
power savings in mobile versions of their CPUs. 
 
In this paper, we have shown that neither modifying a 
processor's issue width nor adding a separate in-order core 
offers a possibility for a low-power mode as an alternative 
to a high-performance mode.  We hope to be able to use 
better simulation tools to examine some of the options 
presented here, including completely bypassing the issue 
logic, using a separate register file for in-order execution, 
and including a separate in-order core on chip.  However, 
current widely-used techniques, such as voltage scaling 
and clock gating, appear to offer the best power savings 
currently available for low-power applications. 
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