

Abstract—A growing need for computational power in mobile
devices has spawned increased interest in low-power
microprocessors. Some low-power applications require very
high performance, such as real-time video decoding on
Personal Digital Assistants. A growing body of work has
examined how to provide this high performance when
needed, while throttling performance so that power
consumption can drop to very low levels when performance is
not required. Observing that the issue logic in an out-of-
order microprocessor consumes a significant amount of
power, several groups have attempted to modify this part of
the processor so that it can dynamically enter a low-power
mode. We have revisited these topics and our work shows
that simple approaches to modifying issue logic fail to reduce
the average energy per instruction. We also look at the
possibility of including a low-power single-issue processor on
the same die as a high-performance multiple-issue processor.
Swapping between these two processors allows a dynamic
tradeoff between power and performance.

Index terms—Issue Window, Issue Logic, Out-of-Order, Low
Power, Power/Performance Throttling

I. INTRODUCTION

Much of the thrust of recent computer architecture work
has been in search of increased performance. As transistor
budgets increased, more and more technologies from
mainframes were incorporated in microprocessor designs.
The product of this evolution was high performance
microprocessors that sacrificed power consumption for
performance. With the emergence of low-power markets,
these speed demons have been retrofitted to consume less
power by incorporating clock gating, voltage scaling, and
more recently, dynamic resizing of key architectural
features such as the issue window.

Many existing techniques for reducing power are well
established and extremely effective, including dynamically
reconfiguring the cache[1] and voltage scaling.[8]
Reducing the supply voltage of a microprocessor has a
roughly linear effect on performance (due to weaker

 The authors are graduate students at the Massachusetts Institute of
Technology, Cambridge, MA.

electric fields) but a squared effect on power dissipation
(since power consumption is proportional to
½*frequency*CV2).

When comparing two architectures for power efficiency, it
is tempting to use a metric such as energy/instruction or
the power delay product. However, one must take into
account the required performance level. A processor with
seemingly poor energy/instruction characteristics that has
more performance than required can be run at a lower
voltage thus reducing performance and energy/instruction.
This processor might then be much more attractive.

While voltage scaling is a very good way of providing
additional power/performance modes, it has its limits.
When operating voltage approaches the threshold voltage
of the transistors, the performance of the transistors begins
dropping off much faster than linearly. As threshold
voltages are reduced, leakage currents increase, which, in
turn, increases power consumption. The Semiconductor
Industry Association predicts that in the year 2005, supply
voltages for low power applications will be 0.9-1.2V,
compared to a typical modern supply of 1.8V [17]. Even
while this reduction implies significant power
consumption, the SIA predicts a net increase in total power
requirements for battery-operated devices of 70%. Clearly
there is a need for additional power/performance throttling
mechanisms.

It has been observed that one major power drain in modern
out-of-order processors is the issue logic; every clock cycle,
each instruction in the issue queue must be checked to see
if it can be dispatched. Retired instructions broadcast the
availability of new operands on long bit lines across the
entire issue window. Some processors, such as the Alpha
21264, compact the issue queue in order to implement an
oldest-first priority algorithm, and this process requires
even more energy. In the 21264, between 18 and 46
percent of the total power of the processor is consumed by
the issue logic [6].

Thus, methods of scaling back the size of the issue window
and the number of instructions issued each cycle have been
proposed in order to minimize this source of power

Reconfiguring Issue Logic for Microprocessor
Power/Performance Throttling

Edwin Olson eolson@mit.edu, Andrew Menard armenard@mit.edu

consumption at the cost of reduced performance. These
methods are compatible with cache disabling and voltage
scaling; for maximum reduction in power consumption the
power management software could simultaneously reduce
the voltage to the lowest possible level, disable parts of the
cache, and reduce the issue window size, or it could find
intermediate power/performance points by doing only one
or two of these optimizations. We also consider an
alternate scheme of bypassing complex issue logic
completely. We propose to do this by placing an in-order,
single-issue core alongside the out-of-order multiple-issue
core, with the OS able to swap between them, thus
avoiding the issue logic altogether when necessary . In this
paper we do not have a required performance level that the
chip must achieve. Instead consider the metric of power
consumed per instruction per cycle.

Several studies have shown that relatively simple
modifications can allow an operating system to do
performance throttling without spending an excessive
amount of time profiling the code being executed, [11] and
that relatively simple hardware structures can also monitor
performance needs.[13]

II. METHODOLOGY

In order to conduct our study, we needed to measure the
impact of changing architectural resource sizes, such as the
number of slots in the issue window, on both power and
performance. The SimpleScalar toolset provides detailed
performance simulators [4]. SimpleScalar provides a
performance simulator using a relatively unique
microarchitecture built around a “Register Update Unit”,
an architectural resource combining the functions of the
issue window and the register renaming unit. This is
somewhat unfortunate, since it does not correlate well to
actual chips.

However, the results we receive from these studies can still
yield insight into the effects of scaling architectural
features, and the relative results are still meaningful. Many
other architectural studies have also used SimpleScalar, so
our results can be directly compared with those. Future
work may involve repeating our studies with a model more
closely resembling commercially successful architectures.

SimpleScalar does not provide a mechanism for measuring
power. However, several research groups have added
power models to SimpleScalar, such as David Brooks'
Wattch tool
[3] and the Cai-Lim models [9]. Wattch's models are
better suited to our study because its models are heavily
parameterized and are therefore capable of reflecting
various changes in configuration without needing to create
SPICE models for each variation. We used version 1.02 of
the Wattch power.c model.

Power estimation tools like Wattch and the Cai-Lim
models have recently been the subject of considerable
scrutiny.[10]. Ghiasi, Grunwald and others have shown
that not only are direct comparisons of energy
measurements hopeless due to disagreement, but even
relative comparisons often fail to agree. A key problem
rests in the fact that an architectural description simply
doesn't contain an adequate amount of information to
properly estimate power, and even reasonable
parameterized models quickly become unrealistic when the
parameters are adjusted beyond a limited range. For
example, the Wattch CAM model used for the RUU
structure is a reasonable model for a 16 entry structure, but
if the structure had 256 entries, it would have been
implemented in a completely different way such as being
banked. Therefore, we have limited our study to modifying
parameters by only small factors.

We consider 4 issue and 8 issue processors with varying
RUU sizes. The other characteristics of our processors are
listed in Table 1. SimpleScalar allows many parameters to
be adjusted, but we only changed a handful. Table 1 is
primarily a list of non-default settings.

Table 1.
 4 issue 8 issue
Decode Width 4 8
Commit Width 4 8
Load Store Queue Size 8 8
Integer ALUs 4 6

Integer Multipliers 1 2
FP ALUs 4 4
FP Mul/Div 1 2
Memory Ports 2 4

Our benchmarks are derived from the SpecInt95 suite. Due
to the limited speed of the SimpleScalar simulator (about
90k instructions per second), it was impractical to run the
entire suite, or even an entire single benchmark. Instead, as
is the common practice in the simulator field, reduced
input sets were used. These input sets take substantially
less time to test, but still exercise the processor in ways
similar to the official input sets. Therefore, the
performance data we generated cannot be compared to
actual SpecInt scores, but we are primarily interested in the
relative performances of our various models.

Table 2.
Benchmark Input
Li nqueens 6
Perl test.in
compress95 5000 q 2131

For all of these benchmarks, the kernel of the program,
rather than initialization code, dominated the runtime. In
addition, the simulator is completely deterministic, so there
is no need to repeat simulations and average scores.

III. DETERMINING OPTIMAL RUU CAPACITY

Understanding the optimal size for the Register Update
Unit is extremely important when determining its actual
capacity. Several factors influence this optimal size. The
goal of the RUU is to always have enough instructions
ready to feed the available functional units. As the number
of functional units increases, the size of the RUU should
intuitively increase to provide more candidate instructions.
However, due to data dependencies, it is often the case that
the number of instructions that can be fetched is greater
than the number that can be issued. We want the RUU to
hold a certain “surplus” of instructions so that when an
instruction miss occurs and fetch rate drops to zero, the
functional units can be kept busy, but there’s no reason to
make the RUU unreasonably large.

A. Bounds on RUU Usage

Our first experiment’s goal was to determine an absolute
upper bound on the size of the RUU. We configured
SimpleScalar to use an extremely large RUU and made
modifications to SimpleScalar to collect statistics on the
size of the RUU every cycle. The resulting structure could
hold enough instructions to keep the functional units busy
for dozens of cycles, and is therefore excessive. However, it
does provide an upper bound on the size of the RUU from
which to work from.

Figure 1.

RUU Usage for 4 issue

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 16 32 48 64
RUU Occupancy

C
yc

le
s

li

perl

compress

Figure 2.

RUU Usage for 8 issue

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 16 32 48 64
RUU Occupancy

C
yc

le
s

li

perl

compress

Figure 1 shows that for all three benchmarks, the RUU
almost never contains more than 32 instructions at either
issue width. Making an RUU any larger than 32 would
serve no function; the entries would be empty almost all
the time.

When the RUU’s physical size is bounded, the RUU usage
closely mirrors the unlimited case, except the RUU
“saturates”. In figure 3, we see that a 16 entry RUU has
almost exactly the same occupancy characteristics when
occupancy is between 0 and 15. The 16 entry RUU is fully
occupied about as often as the unlimited RUU has 16 or
more entries. This is as would be expected, and though
Figure 3 uses the li benchmark, the other benchmarks have
the same behavior.

Figure 3.

RUU Usage for li

0

1000000

2000000

3000000

4000000

5000000

6000000

0 4 8 12 16 20 24 28 32
RUU Occupancy

C
yc

le
s

16 Entry RUU

Unlimited RUU

B. IPC vs. RUU size

The important question now is: if the RUU capacity is
limited beyond the ideal case, what happens to
performance? We measured performance in terms of
Instructions Per Cycle (IPC), since we cannot accurately

determine changes in clock period from within
SimpleScalar.

Figure 4.

IPC vs RUU size for 4-issue

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 8 16 24 32 40 48 56 64

R U U C ap acity

li

perl

com press

Figure 5.

IPC vs RUU size for 8-issue

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 8 16 24 32 40 48 56 64

RUU Capacity

IP
C

li

perl

compress

Figure 4 shows the performance of the processor, in terms
of IPC, versus the capacity of the RUU. We notice
immediately that the performance of the processor for
compress and perl is very similar for RUU capacities of 16
and 32 for a 4-issue processor. There’s a small increase for
li. As we expected, there is almost no benefit in scaling the
RUU beyond 32.

If we consider an 8-issue machine, we would expect the
performance of the processor to drop off more rapidly than
the 4-issue with decreasing RUU capacity. This is because
the RUU could be depleted (potentially) twice as quickly,
and the processor is therefore more likely to be unable to
keep its functional units busy. We see precisely this
behavior in Figure 5; there is a noticeable performance
difference for both li and perl between RUU capacities of
16 and 32.

Some research groups have proposed dynamically varying
the issue window capacity. [14] It is obvious that a
parameterized model of an RUU is likely to predict
substantially greater power consumption for a 32-entry
RUU than a 16-entry RUU. We must resist the temptation
to declare this to be an efficient mechanism for throttling
power/performance. While performance is affected, a
power-conscious architect is unlikely to make the RUU so
much larger for such a miniscule return. This is an
uninteresting regime since the IPC vs RUU size curve is
essentially flat.

C. Relationship between energy and RUU size

However, an interesting question still remains. What
happens to energy per instruction statistics as we decrease
the RUU well into the region of decreased performance? It
might be a good idea to allow a processor to dynamically
decrease its RUU size, for example from 16 to 8, if the
decrease in power offsets the decrease in performance.

Using the Wattch tool, we measured the power
consumption of the processors and calculated the average
energy per instruction assuming optimal clock gating
(Wattch’s cc3 models).

Table 3.
Structure 4x4 4x8 4x16 4x32 4x64
Energy/Ins
t (li)

15.8 13.0 11.8 12.8 14.1

Energy/Ins
t (perl)

16.5 14.3 13.6 14.7 16.1

Energy/inst
(compress)

14.4 11.5 10.6 11.3 12.5

Table 3 shows the average energy per instruction for each
benchmark, for various RUU capacities of a 4-issue
processor. We already expected the 4x32 and 4x64
configurations to be suboptimal, since the RUU is
essentially oversized. It’s interesting, however, that the
cost of executing instructions actually increases when the
RUU is shrunk below 16 entries. While the power
consumption of the issue logic is going down with
decreasing RUU capacity, the performance is dropping
super-linearly.

We can also see that we’re spending more energy per
instruction on codes with less inherent parallelism (perl in
particular). This makes sense since there are a lot of
hardware resources in an out-of-order superscalar
processor looking for parallelism to exploit, but there’s
simply very little parallelism to be found. This overhead
cost is being amortized over very few issued instructions
every cycle, and thus the average energy per instruction is
higher.

We’ll also note that we don’t trust the power numbers for
the extreme configurations of RUU (x4 and x64) since they
comprise a significant factor of deviation from Wattch’s
baseline capacity.

The breakdown of power consumption is shown in figure
6. The patterns of power consumption are similar for all
three benchmarks, so we show only the li case. One
component that is consuming conspicuously more power as
the RUU size is increased is the RUU itself (denoted as
‘window’). Somewhat unexpected are the increases in
energy in other areas of the chip. As discussed earlier,
when the RUU size is increased, the total number of
instructions (committed + speculated) executed increases
12-23%, depending on the benchmark. This causes
increased activity in almost all of the major functional
blocks. In addition to the window energy, we see
significant increases in the clocking energy, the load store
queue, and the result bus.

Figure 6.

Power Consumption Breakdowns for 4 issue on
li

0

5

10

15

20

25

30

4x4 li 4x8 li 4x16 li 4x32 li 4x64 li

Configuration

P
ow

er
 (

W
)

clock

resultbus

alu

dcache2

dcache

icache

regfile

lsq

window

bpred

rename

In Table 4, we have energy per instruction statistics for an
8 issue processor. We see very similar trends as in the 4-
issue processor. As with the 4-issue case, we observe that
the 16-entry RUU is the minimum energy per instruction
point.

Table 4.
Structure 8x8 8x16 8x32 8x64
Energy/Ins
t (li)

13.8 12.5 13.4 14.9

Energy/Ins
t (perl)

15.1 14.7 15.8 17.6

Energy/inst
(compress)

12.4 11.4 11.9 13.3

IV. OTHER LOW-POWER MODIFICATIONS TO COMPLEX

PROCESSORS

It seems as though scaling a processor’s issue window will
not provide the power/performance throttling we would
like. There are many potential functional units that can be
targeted for energy reduction, but other difficulties arise.

We see from Figure 6 that the register file consumes a
significant percentage of power. SimpleScalar’s RUU
structure works in its favor for minimizing the complexity
of the register file by incorporating the renamed registers
within the issue window and maintaining a separate (and
smaller) architectural register file, whereas in a
mainstream design the register file often contains both the
renaming and architectural registers. In the latter case, the
register file is both physically larger and may have
additional ports, consuming even more power.

V. LOBOTOMIZING AN OUT-OF-ORDER PROCESSOR

Our group considered several mechanisms for dynamically
“lobotomizing” an out-of-order processor in order to
provide new power/performance points. Our initial
approaches mirrored those of other groups—dynamically
resizing issue logic, but our study of the effects of RUU
sizing discussed previously in this paper made this seem
problematic.

Our second idea was to disable most of the logic
accompanying the out-of-order issue logic, essentially
causing instructions to be issued in-order. We modeled this
in SimpleScalar by disabling out of order execution and
speculative execution, then reducing the size of the RUU to
one. We expected extremely poor performance based on
our previous experiments in RUU sizing. We measured an
effective IPC of 0.57. The power numbers returned by
Wattch are not reported here since their accuracy with the
oddly-sized models cannot be relied upon. The major cause
of the poor performance is the very high latency of an out-
of-order processor (compared to a simple pipelined
machine) which causes many stalls when dependent series
of instructions are run. An out-of-order machine spends a
lot of time in order to find and exploit parallelism, and
dramatically reducing the RUU’s capacity causes most of
this work to be wasted since it eliminates the possibility of
having many instructions executing simultaneously.

One idea that our group considered was completely
bypassing the complicated issue logic of a complex
microprocessor. If the renaming logic and issue window
were bypassed completely—if a single instruction was
passed immediately from the instruction fetch stage to the
register file read stage—the latency of instructions would
be substantially shorter and the performance would
increase substantially. It would be tempting to use a banked
register file as well, so that when register renaming was
turned off, access to the register file would all come from a
smaller “architectural register” register file. However,
unless a completely separate register file was used for the
low-power mode of operation, each bank of the register file

would likely have far more ports than would be necessary
for a single-issue processor, and this would put a bound on
the amount of power savings that could be achieved. It
would be worthwhile to build a model of this and simulate
it in detail in the future.

VI. USING A COMPLETELY SEPARATE CORE

Since simply scaling back the size of the issue window
does not seem to be an obvious win, we also considered
eliminating it altogether. A large, complex, out-of-order
core could be used when high performance was required,
or a small, simple, in-order pipelined core could be used
when low-power operation was needed. Our intuition
suggested that a simpler core would likely have much
lower energy/instruction given the same technology. Also,
since the cores are completely separate, each can be
optimized separately. If the on-die caches and other
circuits could be used for both cores, the overhead in die
area for a small in-order core would be very small.

We wished to get the most accurate data possible, so rather
than using Wattch and SimpleScalar, we opted to conduct
a survey of commercially available processors, looking for
processor families where there is both an in-order and an
out-of-order implementation of the same ISA in the same
technology, and of processors that support some form of
voltage scaling, for a comparison.

IBM’s PowerPC line includes the model 440 CPU, a dual-
issue, 7-stage pipeline machine, and the 405 CPU, a
single-issue, 5-stage pipeline machine, both implemented
in the same .18 micron copper process [15,16]. The 440,
operating at 550MHz, consumes approximately 1.0W of
power, and performs at 1000mips on the Dhrystone 2.1
benchmark, while the 405 operating at 266MHz consumes
approximately 0.5W of power while performing 375mips
on the same benchmark. Thus, the energy used per
instruction on the 440 is approximately 1mj, while on the
405 it is approximately 1.3mj. This is a very disappointing
result; the faster processor is actually using less energy per
instruction, so clearly you would benefit more from an
approach like voltage scaling to reduce total energy used
across a calculation, or just use the faster processor until
the calculation is finished and then put it into a sleep
mode, both of which also avoid the significant area
overhead of the dual processor approach.

The Intel Pentium III mobile versions utilize voltage
scaling from 1.6V to 1.3V to achieve a more than 50%
reduction in power consumption while still achieving 70%
of the performance. Intel’s Xscale line of StrongARM-
compatable chips uses voltage scaling at a much finer
granularity to go from consuming 450mW at 800MHz to
only 40mW at 150MHz[17]. The Transmeta corporation’s
Crusoe line of chips use dynamic voltage and frequency
scaling from 600 MHz at 1.6V to 300MHz at 1.2V,
achieving a significantly better than linear drop in power

consumption for a linear drop in speed [18]. Each of these
chips manages a significantly better than linear
power/performance tradeoff, and most new chips aimed at
mobile computing feature a low-power sleep mode, and
even the relatively simple throttling mechanism of cycling
the processor into and out of this mode achieves a nearly
linear power/performance tradeoff.

This demonstrates that in mainstream processors with
today’s technology, voltage scaling is still the best
approach to power/performance throttling.

VII. CONCLUSIONS

While the bulk of recent computer architecture research
has focused on increasing performance, many modern
applications require both high performance and low power.
Techniques such as voltage scaling and clock gating are
well established as ways to reduce power consumption
without adversely affecting performance. In this paper, we
considered two techniques for switching between a high-
performance mode and a lower-power, low-performance
mode. Dynamically changing the processor's issue width
seemed promising initially but yielded poor results when
considering the power consumed per instruction. Installing
a small in-order core alongside the out-of-order core also
fails to yield an overall benefit in terms of power used.

On a high-performance processor such as the Digital
Alpha 21264, between 18 and 46 percent of the total power
consumed by the processor goes to the issue logic. This
suggests bypassing or reducing the issue logic as a route to
minimizing power consumption if performance is not a
concern. Using Wattch and SimpleScalar, we first
determined that there is a maximum size for the
SimpleScalar register update unit, or RUU. Increasing the
size of this structure, roughly analagous to a real
microprocessor's register renaming logic and issue
window, yields no performance gains if this maximum size
is exceeded. We then examined the power used by the
RUU, and found that the performance of the processor
drops faster than its power requirements when the RUU
size is decreased. Thus, the power per instruction is
optimal when the RUU is at this maximum size, about 16
instructions for either a 4- or 8-issue processor.

Because of this result, changing the size of the issue
window on an actual microprocessor would not be
beneficial in terms of power consumed. Real-time
applications require a certain number of instructions to be
executed in a particular time frame. Our results show that
the minimal power is used by doing this computation using
the full power of the microprocessor, and then switching to
a very low power sleep mode in which no instructions are
executed for the remainder of the time period. Attempting
to change the issue width would result in more power

being used per instruction; since in this scenario the
number of instructions executed per unit time is constant,
this results in more power used per unit time.

Given these discouraging results, we also considered the
possibility of including a completely separate in-order core
on the die of a larger microprocessor. We hoped that the
in-order core would be small enough to fit into a modern
superscalar machine without significantly impacting the
layout. While the in-order machine would have much
lower performance, it ideally would have had a much lower
power usage since it lacked the expensive register
renaming and instruction reordering logic present on the
out-of-order machine.

A survey of real processors suggests that this unfortunately
is not the case. In the PowerPC family, the in-order 405
chip consumes 30% more power than the superscalar 440.
Intel's microprocessors have also avoided these techniques,
relying instead on traditional techniques to obtain a 50%
power savings in mobile versions of their CPUs.

In this paper, we have shown that neither modifying a
processor's issue width nor adding a separate in-order core
offers a possibility for a low-power mode as an alternative
to a high-performance mode. We hope to be able to use
better simulation tools to examine some of the options
presented here, including completely bypassing the issue
logic, using a separate register file for in-order execution,
and including a separate in-order core on chip. However,
current widely-used techniques, such as voltage scaling
and clock gating, appear to offer the best power savings
currently available for low-power applications.

VIII. REFERENCES
[1] David H. Albonesi, “Dynamic IPC/Clock Rate Optimization,” 25th

International Symposium on Computer Architecture, 282--292, June,
1998

[2] W. Ye and N. Vijaykrishnan and M. Kandemir and M. J. Irwin,
“The Design and Use of SimplePower: A Cycle-Accurate Energy
Estimation Tool,” 37th Design Automation Conference, 340--345,
June 2000

[3] David Brooks and Vivek Tewari and Margaret Martonosi, “Wattch:
a framework for architectural-level power analysis and optimizations,”
27th Annual International Symposium on Computer Architecture, 83--
94, June, 2000

[4] Doug Berger and Todd M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” June, 1997},

[5] David H. Albonesi, “The Inherent Energy Efficiency of
Complexity-Adaptive Processors,” 1998 Power-Driven
Microarchitecture Workshop, held at the 25th International Symposium
on Computer Architecture, 107--112}, June, 1998

[6] Michael K. Gowan and Larry L. Biro and Daniel B. Jackson,
“Power considerations in the design of the {Alpha} 21264
microprocessor, “35th Annual Conference on Design Automation”,
726--731, June, 1998

[7] R. Y. Chen and M. J. Irwin, “An Architectural Level Power
Simulator,” 25th International Symposium on Computer
Architecture,” June, 1998

[8] T. Pering and T. Burd and R. Broderson, “Dynamic Voltage Scaling
and the Design of a Low-Power Microprocessor System,” 1998 Power-
Driven Microarchitecture Workshop, held at the 25th International
Symposium on Computer Architecture, 107--112, June, 1998

[9] G. Cai and C. H. Lim, “Architectural level power/performance
optimization and dynamic power estimation,” MICRO32, November,
1999

[10] Soraya Ghiasi and Dirk Grunwald, “A Comparison of Two
Architectural Power Models,” Ninth International Conference on
Architectural Support for Programming Languages and Operating
Systems, November, 2000

[11] L. Benini and A. Bogliolo and S. Cavallucci and B. Ricco,
“Monitoring System Activity for OS-Directed Dynamic Power
Management,” International Symposium on Low Power Electronics
and Design, August, 1998

[12] Vivek Tiwari and Deo Singh and Suresh Rajgopal and Gaurav
Mehta and Rakes Patel and Franklin Baez, “Reducing Power in High-
performance Microprocessors,” 35th Annual Conference on Design
Automation, June, 1998

[13] Roberto Maro, Yu Bai, and R. Iris Bahar, “Dynamically
Reconfiguring Processor Resources to Reduce Power Consumption in
High-Performance Processors”

[14] Alper Buyutosunoglu, Stanley Schuster, David Brooks, Pradip
Bose, Peter Cook, and David Albonesi, “An Adaptive Issue Queue for
Reduced Power at High Performance”.

[15] IBM Product Datasheet for the PowerPC 440 Core
[16] IBM Product Datasheet for the PowerPC 405 Core
[17] Silicon Industry Association, “International Technology Roadmap

for Semiconductors, 1999 Edition”,
http://public.irirs.net/files/1999_SIA_Roadmap/Home.htm

[18] Intel Xscale Microarchitecture Technical Summary
http://developer.intel.com/design/intelxscale/XScaleDatasheet4.htm

[19] Marc Fleishmann, “Crusoe Power Management,” HotChips 12

