
6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 1. © Krste Asanovic

Krste Asanovic

krste@lcs.mit.edu

http://www.cag.lcs.mit.edu/6.893-f2000/

Occam and Transputers

6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 2. © Krste Asanovic

Occam: An Explicitly Parallel Language

n Occam based on Communicating Sequential
Processes (CSP) formalism developed by Tony Hoare,
Oxford, UK, and an experimental language by David
May, Bristol, UK

n Designed to have a formal semantics suitable for
automatic program transformations

n Many groups investigated direct translation of Occam
into hardware

6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 3. © Krste Asanovic

Transputers

n The transputer architecture was designed as an Occam
engine
o Transputer C compiler didn’t appear until much later, and

initially produced inferior code compared with Occam compiler

n Original target for transputer was embedded control
(robots) where interfacing to hardware directly was
important

n Designed to allow large arrays of transputers to be
connected easily

n Almost no glue logic required for minimal transputer
node

6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 4. © Krste Asanovic

Occam Basics

n Occam primitive is a process, five kinds:
o Assignment x := y + 2

o Input keyboard ? char

oOutput screen ! Char
o Skip SKIP -- NOP that terminates

o Stop STOP –- NOP that never terminates

n Channels provide communication between processes
oUnbuffered, point-to-point synchronous communication
oChannels have declared protocol types

c ? yc ! x
Channel c

6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 5. © Krste Asanovic

Composing Sequential Processes

n SEQ executes sub-processes sequentially

SEQ
keyboard ? char –- read char from keyboard

screen ! char -- write char to screen

n Can do replicated SEQ

SEQ i = 0 FOR array.size

stream ! data.array[i]

-- equivalent to

SEQ

stream ! data.array[0]
stream ! data.array[1]

...

6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 6. © Krste Asanovic

Composing Parallel Processes

n PAR executes sub-processes in parallel
PAR

keyboard(kbd.to.ed)
editor(kbd.to.ed,ed.to.screen)

screen(ed.to.screen)

screen

editor

ed.to.screen

keyboardkbd.to.ed

6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 7. © Krste Asanovic

PAR for parallel execution

WHILE next <> EOF

SEQ

x := next

PAR

in ? next

out ! x * x

Restrictions on parallel data access
o variables modified in one arm of PAR cannot be read or written in

other parts of PAR, e.g.,

PAR -- this PAR is invalid

SEQ

mice := 42 -- assigns to mice

c ! 42
c ? mice -- assigns to mice

6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 8. © Krste Asanovic

Replicated PAR

n Can use replicated PAR to build array of parallel
processes

PAR

farmer()
PAR i = 0 FOR 4 -- count must be constant

worker(i)

array of channels used to
connect processes (not shown

in code snippet)

worker(1) worker(2)worker(0) worker(3)

farmer()

6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 9. © Krste Asanovic

Alternation

n ALT combines a number of processes only one of which is
executed

n Each process has a guard:
o input on channel
o wait on timer
o can be predicated with boolean expression

ALT

left ? packet -- guard input statement

stream ! packet

right ? packet –- guard input statement

stream ! packet

n PRI ALT prioritizes sub-processes in textual order

ALT

left

right

stream

6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 10. © Krste Asanovic

Channel Protocols

n All channels have set of legal message types, the
channel protocol. Compiler checks all uses of
channels to ensure all communications are compatible
with type of channel.
o CHAN OF [36]BYTE message : -- explicit array type
o CHAN OF COMPLEX32 imp : -- named record (struct)
o CHAN OF INT::[]BYTE link: -- length + vector

omessage ! “Hello, World!”
o link ! len::[buffer FROM start]

n Also supports tagged type channels, and sequential
message channels

n Goal is type-safe communication

6.893: Advanced VLSI Computer Architecture, November 7, 2000, Lecture 7, Slide 11. © Krste Asanovic

Configuration

n Occam application written as network of
communicating processes

n Configuration step maps parallel process components
onto available physical processors and maps channels
to hardware links

n Configuration should not change correctness

