Parallel Architectures Overview

Krste Asanovic
krste@cs.nt. edu
http://ww. cag. |l cs. mt.edu/6.893-f2000/

Parallelism is the “Ketchup* of Computer Architecture”

Apply parallelism to a hardware
problem and it usually tastes better

m Long latencies in off-chip memory and on-chip
interconnect?? Interleave parallel operations to hide
latencies

m High power consumption?? Use parallelism to increase
throughput and use voltage scaling to reduce
energy/operation

m Problem is finding and exploiting application parallelism
m Biggest problem is software

[*substitute condiment of choice...]

Little’s Law

Throughput per Cycle

+—>

One Operation

Latency in Cycles

Parallelism = Throughput * Latency

m To maintain throughput T/cycle when each operation has latency
L cycles, need T*L independent operations
m For fixed parallelism:
O decreased latency allows increased throughput
O decreased throughput allows increased latency tolerance

Types of Parallelism

Time

li AAAAAAAA
— [0 B0 G 0 63 00 6 [
_ﬁ 0000000

Pipelining

Time

Data-Level Parallelism (DLP)

Time

EISISE
<[[O]
SEE
»[E[C[O

i
AlA|

olm|

Thread-Level Parallelism (TLP) Instruction-Level Parallelism (ILP)

Dual Processor Pentium-Ill Desktop

m Pipelined
ominimum of 11 stages for any instruction

m Data Parallel Instructions
O MMX (64-bit) and SSE (128-bit) extensions provide short vector
support
m Instruction-Level Parallel Core
o Can execute up to 3 x86 instructions per cycle

m Thread-Level Parallelism at System Level
O Bus architecture supports shared memory multiprocessing

Translating Parallelism Types

Data
Parallel

Pipelining

Thread

Instruction

Parallel Parallel

Speculation and Parallelism

m Speculation can increase effective parallelism by
avoiding true dependencies
o branch prediction for control flow speculation
O address prediction for memory access reordering
ovalue prediction to avoid operation latency

m Requires mechanism to recover on mispredict

Issues in Parallel Machine Design

m Communication
o how do parallel operations communicate data results?

m Synchronization
ohow are parallel operations coordinated?

m Resource Management
ohow are alarge number of parallel tasks scheduled onto finite
hardware?
m Scalability
o how large a machine can be built?

Flynn’s Classification (1966)

Broad classification of parallel computing systems based on
number of instruction and data streams

m SISD: Single Instruction, Single Data
O conventional uniprocessor

m SIMD: Single Instruction, Multiple Data
ooneinstruction stream, multiple data paths
odistributed memory SIMD (MPP, DAP, CM-1&2, Maspar)
oshared memory SIMD (STARAN, vector computers)

m MIMD: Multiple Instruction, Multiple Data
O message passing machines (Transputers, nCube, CM-5)
onon-cache-coherent shared memory machines (BBN Butterfly, T3D)
o cache-coherent shared memory machines (Sequent, Sun Starfire,
SGI Origin)
m MISD: Multiple Instruction, Single Data
ono commercial examples

SIMD Architecture

m Central controller broadcasts instructions to multiple
processing elements (PESs)

Array Inter-PE Connection Network ‘

Controller % % % % % % % %
Data € M M M M M M M
e
m m m m m m m m

» Only requires one controller for whole array

<

]
]
0]
(0]
0]
]
(0]

» Only requires storage for one copy of program

* All computations fully synchronized

SIMD Machines

llliac IV (1972)
0O 64 64-bit PEs, 16KB/PE, 2D network

Goodyear STARAN (1972)

O 256 bit-serial associative PEs, 32B/PE, multistage network
ICL DAP (Distributed Array Processor) (1980)

O 4K bit-serial PEs, 512B/PE, 2D network
Goodyear MPP (Massively Parallel Processor) (1982)

O 16K bit-serial PEs, 128B/PE, 2D network
Thinking Machines Connection Machine CM-1 (1985)

O 64K bit-serial PEs, 512B/PE, 2D + hypercube router

O CM-2: 2048B/PE, plus 2,048 32-bit floating-point units
Maspar MP-1 (1989)

O 16K 4-bit processors, 16-64KB/PE, 2D + Xnet router
O MP-2: 16K 32-bit processors, 64KB/PE

Vector Register Machine

Scalar Registers

rls

Vector Registers

v15

(o [[z
Vector Length Register

[VLRMAX-1]

\

. . Vl' I I T T T 1
Vector Arithmetic V2 e —f———5
} g Yy V¥ Y¥v Y¥ ¥
Instructions @
VADD v3, vl, v2 v3r w I w I I 1

a Vector Load and

Store Instructions
VLD v1,rl,r2 ///////f:::::::j:::;//”///ﬂ

\ Base ri

Memory

Strlde r2

Cray-1 (1976)
]
P 64 Etement x; VJ
) \ector Regaisters V4 Vy
Single Port = v
Memory VT FP Add
_ S0 s, > FP Mul
16 banks of ((Ap) +jkm) o5t i
. > s2 Sy FP Recip
64-bit words N S, sa
A > sS4 S,
+ 0. N g i Int Add
b "| T Regsle Ti |55« R -
8-bit SECDED 25— »>| Int Logic
— Int Shift
A0
80MW/sec (A +ikm) A Pop Cnt
data load/store ~ > A2 A
(A |64 B' o V) A, | Addr Add
320MW/sec [T Regsfe—t———h 1 A | addr mul
instruction A
buffer refill | Y4
‘ i P = NP _F—> ciP]
=
4 Instruction Buffers Lip
memory bank cycle50 ns processor cycle 12.5 ns (80MHz)
6.8 omputer Archite e, Octobe 000 e e ide OK

Vector Instruction Execution

VADD C A B

Execution using
four pipelined
functional units

Execution using
one pipelined
functional unit

24] B[24] A[25] B[25] A
A[20] B[20] A[21] B[21] A

[[26] B[26] A[27] B[27]
[[

A[16] B[16] A[17
[[

[

22] B[22] A[23] BJ

B[18] A[19] B[19]
[

]]
A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
\ el f \ o] f ‘\C[lo] f ‘\0[11] f

\T/ T ¢ T T ¢ T T ¢ T

Clo] 1] cl2] Cl3]

Vector Unit Structure

Functional Unit
P

-
.
Vector \ 3 3 3 3
Registers
Memory Subsystem
Sequential ISA Bottleneck
Sequential Superscalar compiler Sequential
source code machine code
a=f00(b); | — —_—
for (i=0, i< /O
Find independent Schedule
operations operations

Superscalar processor

e

Check instruction SCheque
dependencies execution

VLIW: Very Long Instruction Word

[Int op 1 [Int op 2| Mem Op 1 |Mem Op 2| FPOp 1 | FP Op 2 |
Il v

! ! ! !
Two Integer Units, @ @
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency
Two Floating-Point Units,
Four Cycle Latency

m Compiler schedules parallel execution

m Multiple parallel operations packed into one long
instruction word

m Compiler must avoid data hazards (no interlocks)

ILP Datapath Hardware Scaling

. . m Replicating functional units and cache/memory
‘ Register File ‘ banks is straightforward and scales linearly
Multiol m Register file ports and bypass logic for N
ultiple functional units scale quadratically (N*N)
Functional]))
Units m Memory interconnection among N functional
G P units and memory banks also scales
guadratically
m (For large N, could try O(N logN) interconnect
schemes)
m Technology scaling: Wires are getting even
‘ Memory Interconnect ‘ slower relative to gate delays
m Complex interconnect adds latency as well as
* [RN l> area
Multiple => Need greater parallelism to hide latencies
Cache/Memory

Banks

Clustered VLIW

Cluster
Interconnect

L1

Local Local Cluster
Regfile Regfile

sls

‘ Memory Interconnect ‘

S

Multiple
Cache/Memory
Banks

m Divide machine into clusters of local
register files and local functional units

m Lower bandwidth/higher latency
interconnect between clusters

m Software responsible for mapping
computations to minimize
communication overhead

MIMD Machines

m Message passing
e Thinking Machines CM-5
e Intel Paragon
e Meiko CS-2
e many cluster systems (e.g., IBM SP-2, Linux Beowulfs)

m Shared memory

ono hardware cache coherence
e IBM RP3
e BBN Butterfly
e Cray T3D/T3E
e Parallel vector supercomputers (Cray T90, NEC SX-5)
o hardware cache coherence
e many small-scale SMPs (e.g. Quad Pentium Xeon systems)
e large scale bus/crossbar-based SMPs (Sun Starfire)
e large scale directory-based SMPs (SGI Origin)

Message Passing MPPs

(Massively Parallel Processors)

m Initial Research Projects
o Caltech Cosmic Cube (early 1980s) using custom Mosaic processors

m Commercial Microprocessors including MPP Support
o Transputer (1985)
onCube-1(1986) /nCube-2 (1990)

m Standard Microprocessors + Network Interfaces
o Intel Paragon (i860)
o TMC CM-5 (SPARC)
o Meiko CS-2 (SPARC)
o IBM SP-2 (RS/6000)

Interconnect Network

P

m MPP Vector Supers
o Fujitsu VPP series

Designs scale to 100s or

1000s of nodes

Mem Mem Mem Mem Mem Mem Mem Mem

-. _:
B
O
=
{EHEE
=
L EE
> =
B
=
L EE
=
LR
> =
L EE

Message Passing MPP Problems

m All data layout must be handled by software
O cannot retrieve remote data except with message request/reply

m Message passing has high software overhead

oearly machines had to invoke OS on each message (100us-
1ms/message)

o even user level access to network interface has dozens of
cycles overhead (NI might be on I/O bus)

osending messages can be cheap (just like stores)
Oreceiving messages is expensive, need to poll or interrupt

Shared Memory Multiprocessors

m Will work with any data placement (but might be slow)
O can choose to optimize only critical portions of code

m Load and store instructions used to communicate data between
processes
o no OSinvolvement
O low software overhead

m Usually some special synchronization primitives
O fetch&op
O load linked/store conditional

m In large scale systems, the logically shared memory is
implemented as physically distributed memory modules

m Two main categories
o non cache coherent
O hardware cache coherent

Cray T3E

* Up to 2048 600MHz Alpha 21164
processors connected in 3D torus

Each node has 256MB-2GB local DRAM memory
Load and stores access global memory over network
Only local memory cached by on-chip caches

Alpha microprocessor surrounded by custom “shell” circuitry to make it
into effective MPP node. Shell provides:
O multiple stream buffers instead of board-level (L3) cache

O external copy of on-chip cache tags to check against remote writes to local
memory, generates on-chip invalidates on match

0 512 external E registers (asynchronous vector load/store engine)

O address management to allow all of external physical memory to be addressed
O atomic memory operations (fetch&op)

O support for hardware barriers/eureka to synchronize parallel tasks

Bus-Based Cache-Coherent SMPs

oo [ve]| e

N0
.

Central
Memory

m Small scale (<=4 processors) bus-based SMPs by far the most
common parallel processing platform today

m Bus provides broadcast and serialization point for simple snooping
cache coherence protocol

m Modern microprocessors integrate support for this protocol

Sun Starfire (UE10000)

e Up to 64-way SMP using bus-based snooping protocol

pP pP pP pP

e

R E1ET K}

uP uP uP uP

Ghnn

R E1E1 R}

‘ Board Interconnect ‘
FVVVY

‘ Board Interconnect ‘
FV Y

4 processors +
memory module per
system board

-~

Uses 4 interleaved address
busses to scale snooping
protocol

/

=

A 4

vell
Vl.*

16x16 Data Crossbar

Memory
Module

I

Memory
Module

\ Separate data

transfer over

high bandwidth
crossbar

SGI Origin 2000

Node contains:
* Two MIPS R10000 processors plus

caches

« Memory module including directory
« Connection to global network

« Connection to I/O

e Large scale distributed directory SMP

e Scales from 2 processor workstation
to 512 processor supercomputer

Hy

L]

Doraciarg!
s
Marorp

=
w DSTE
Wbmmorrmol

U|II

=

Scalable hypercube switching network
supports up to 64 two-processor nodes (128
processors total)

(Some installations up to 512 processors)

7

Pt

=

I/0

Bulk SRAM/
Embedded DRAM

......

Control Net

Data
Unit

SRAM/cache

Portable Parallel Programming?

m Most large scale commercial installations emphasize
throughput
O database servers, web servers, file servers
oindependent transactions

m Wide variety of parallel systems
O message passing
oshared memory
oshared memory within node, message passing between nodes

0 Little commercial software support for portable parallel
programming

Message Passing Interface (MPI) standard widely used for
portability
- lowest common denominator
- “assembly” language level of parallel programming

