
6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 1. © Krste Asanovic

Krste Asanovic

krste@lcs.mit.edu

http://www.cag.lcs.mit.edu/6.893-f2000/

Parallel Architectures Overview

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 2. © Krste Asanovic

Parallelism is the “Ketchup* of Computer Architecture”

n Long latencies in off-chip memory and on-chip
interconnect?? Interleave parallel operations to hide
latencies

n High power consumption?? Use parallelism to increase
throughput and use voltage scaling to reduce
energy/operation

n Problem is finding and exploiting application parallelism

n Biggest problem is software

Apply parallelism to a hardware
problem and it usually tastes better

[*substitute condiment of choice…]

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 3. © Krste Asanovic

Little’s Law

Latency in Cycles

Throughput per Cycle

One Operation

Parallelism = Throughput * Latency
n To maintain throughput T/cycle when each operation has latency

L cycles, need T*L independent operations

n For fixed parallelism:
o decreased latency allows increased throughput
o decreased throughput allows increased latency tolerance

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 4. © Krste Asanovic

Types of Parallelism

Data-Level Parallelism (DLP)

T
im

e

T
im

e

Thread-Level Parallelism (TLP)

T
im

e

Instruction-Level Parallelism (ILP)

Pipelining

T
im

e

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 5. © Krste Asanovic

n Pipelined
ominimum of 11 stages for any instruction

n Data Parallel Instructions
oMMX (64-bit) and SSE (128-bit) extensions provide short vector

support

n Instruction-Level Parallel Core
oCan execute up to 3 x86 instructions per cycle

n Thread-Level Parallelism at System Level
oBus architecture supports shared memory multiprocessing

Dual Processor Pentium-III Desktop

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 6. © Krste Asanovic

Translating Parallelism Types

Data
Parallel

Pipelining

Thread
Parallel

Instruction
Parallel

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 7. © Krste Asanovic

Speculation and Parallelism

n Speculation can increase effective parallelism by
avoiding true dependencies
o branch prediction for control flow speculation
o address prediction for memory access reordering
o value prediction to avoid operation latency

n Requires mechanism to recover on mispredict

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 8. © Krste Asanovic

Issues in Parallel Machine Design

n Communication
o how do parallel operations communicate data results?

n Synchronization
o how are parallel operations coordinated?

n Resource Management
o how are a large number of parallel tasks scheduled onto finite

hardware?

n Scalability
o how large a machine can be built?

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 9. © Krste Asanovic

Flynn’s Classification (1966)

Broad classification of parallel computing systems based on
number of instruction and data streams

n SISD: Single Instruction, Single Data
o conventional uniprocessor

n SIMD: Single Instruction, Multiple Data
o one instruction stream, multiple data paths
o distributed memory SIMD (MPP, DAP, CM-1&2, Maspar)
o shared memory SIMD (STARAN, vector computers)

n MIMD: Multiple Instruction, Multiple Data
omessage passing machines (Transputers, nCube, CM-5)
o non-cache-coherent shared memory machines (BBN Butterfly, T3D)
o cache-coherent shared memory machines (Sequent, Sun Starfire,

SGI Origin)

n MISD: Multiple Instruction, Single Data
o no commercial examples

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 10. © Krste Asanovic

SIMD Architecture

n Central controller broadcasts instructions to multiple
processing elements (PEs)

Array
Controller

Inter-PE Connection Network

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

P
E

M
e
m

Control

Data

• Only requires one controller for whole array

• Only requires storage for one copy of program

• All computations fully synchronized

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 11. © Krste Asanovic

SIMD Machines

n Illiac IV (1972)
o 64 64-bit PEs, 16KB/PE, 2D network

n Goodyear STARAN (1972)
o 256 bit-serial associative PEs, 32B/PE, multistage network

n ICL DAP (Distributed Array Processor) (1980)
o 4K bit-serial PEs, 512B/PE, 2D network

n Goodyear MPP (Massively Parallel Processor) (1982)
o 16K bit-serial PEs, 128B/PE, 2D network

n Thinking Machines Connection Machine CM-1 (1985)
o 64K bit-serial PEs, 512B/PE, 2D + hypercube router
o CM-2: 2048B/PE, plus 2,048 32-bit floating-point units

n Maspar MP-1 (1989)
o 16K 4-bit processors, 16-64KB/PE, 2D + Xnet router
o MP-2: 16K 32-bit processors, 64KB/PE

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 12. © Krste Asanovic

Vector Register Machine

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

VADD v3, v1, v2 v3

v2
v1

v1
Vector Load and

Store Instructions
VLD v1, r1, r2

Base, r1 Stride, r2

Vector Length Register

Memory

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 13. © Krste Asanovic

Cray-1 (1976)

Single Port
Memory

16 banks of
64-bit words

+
8-bit SECDED

80MW/sec
data load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
T Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element
Vector Registers

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 14. © Krste Asanovic

Vector Instruction Execution

VADD C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
one pipelined
functional unit

Execution using
four pipelined

functional units

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 15. © Krste Asanovic

Vector Unit Structure

Lane

Functional Unit

Vector
Registers

Memory Subsystem

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 16. © Krste Asanovic

Sequential ISA Bottleneck

a = foo(b);

for (i=0, i<

Superscalar compilerSequential
source code

Find independent
operations

Schedule
operations

Sequential
machine code

Check instruction
dependencies

Schedule
execution

Superscalar processor

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 17. © Krste Asanovic

VLIW: Very Long Instruction Word

n Compiler schedules parallel execution

n Multiple parallel operations packed into one long
instruction word

n Compiler must avoid data hazards (no interlocks)

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency

Two Floating-Point Units,
Four Cycle Latency

Int Op 1 Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 18. © Krste Asanovic

ILP Datapath Hardware Scaling

n Replicating functional units and cache/memory
banks is straightforward and scales linearly

n Register file ports and bypass logic for N
functional units scale quadratically (N*N)

n Memory interconnection among N functional
units and memory banks also scales
quadratically

n (For large N, could try O(N logN) interconnect
schemes)

n Technology scaling: Wires are getting even
slower relative to gate delays

n Complex interconnect adds latency as well as
area

=> Need greater parallelism to hide latencies

Register File

Memory Interconnect

Multiple
Functional

Units

Multiple
Cache/Memory

Banks

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 19. © Krste Asanovic

Clustered VLIW

n Divide machine into clusters of local
register files and local functional units

n Lower bandwidth/higher latency
interconnect between clusters

n Software responsible for mapping
computations to minimize
communication overhead

Cluster
Interconnect

Local
Regfile

Local
Regfile

Memory Interconnect

Multiple
Cache/Memory

Banks

Cluster

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 20. © Krste Asanovic

MIMD Machines

n Message passing
l Thinking Machines CM-5
l Intel Paragon
l Meiko CS-2
l many cluster systems (e.g., IBM SP-2, Linux Beowulfs)

n Shared memory
o no hardware cache coherence

l IBM RP3
l BBN Butterfly
l Cray T3D/T3E
l Parallel vector supercomputers (Cray T90, NEC SX-5)

o hardware cache coherence
l many small-scale SMPs (e.g. Quad Pentium Xeon systems)
l large scale bus/crossbar-based SMPs (Sun Starfire)
l large scale directory-based SMPs (SGI Origin)

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 21. © Krste Asanovic

Message Passing MPPs
(Massively Parallel Processors)

n Initial Research Projects
oCaltech Cosmic Cube (early 1980s) using custom Mosaic processors

n Commercial Microprocessors including MPP Support
o Transputer (1985)
o nCube-1(1986) /nCube-2 (1990)

n Standard Microprocessors + Network Interfaces
o Intel Paragon (i860)
o TMC CM-5 (SPARC)
oMeiko CS-2 (SPARC)
o IBM SP-2 (RS/6000)

n MPP Vector Supers
o Fujitsu VPP series

µP

Mem

NI

Interconnect Network

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

µP

Mem

NI

Designs scale to 100s or
1000s of nodes

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 22. © Krste Asanovic

Message Passing MPP Problems

n All data layout must be handled by software
o cannot retrieve remote data except with message request/reply

n Message passing has high software overhead
o early machines had to invoke OS on each message (100µs-

1ms/message)
o even user level access to network interface has dozens of

cycles overhead (NI might be on I/O bus)
o sending messages can be cheap (just like stores)
o receiving messages is expensive, need to poll or interrupt

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 23. © Krste Asanovic

Shared Memory Multiprocessors

n Will work with any data placement (but might be slow)
o can choose to optimize only critical portions of code

n Load and store instructions used to communicate data between
processes
o no OS involvement
o low software overhead

n Usually some special synchronization primitives
o fetch&op
o load linked/store conditional

n In large scale systems, the logically shared memory is
implemented as physically distributed memory modules

n Two main categories
o non cache coherent
o hardware cache coherent

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 24. © Krste Asanovic

Cray T3E

n Each node has 256MB-2GB local DRAM memory

n Load and stores access global memory over network

n Only local memory cached by on-chip caches

n Alpha microprocessor surrounded by custom “shell” circuitry to make it
into effective MPP node. Shell provides:
o multiple stream buffers instead of board-level (L3) cache
o external copy of on-chip cache tags to check against remote writes to local

memory, generates on-chip invalidates on match
o 512 external E registers (asynchronous vector load/store engine)
o address management to allow all of external physical memory to be addressed
o atomic memory operations (fetch&op)
o support for hardware barriers/eureka to synchronize parallel tasks

• Up to 2048 600MHz Alpha 21164
processors connected in 3D torus

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 25. © Krste Asanovic

Bus-Based Cache-Coherent SMPs

n Small scale (<= 4 processors) bus-based SMPs by far the most
common parallel processing platform today

n Bus provides broadcast and serialization point for simple snooping
cache coherence protocol

n Modern microprocessors integrate support for this protocol

µP

$

µP

$

µP

$

µP

$

Central
Memory

Bus

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 26. © Krste Asanovic

Sun Starfire (UE10000)

Uses 4 interleaved address
busses to scale snooping
protocol

16x16 Data Crossbar

Memory
Module

Board Interconnect

µP

$

µP

$

µP

$

µP

$

Memory
Module

Board Interconnect

µP

$

µP

$

µP

$

µP

$

4 processors +
memory module per

system board

• Up to 64-way SMP using bus-based snooping protocol

Separate data
transfer over

high bandwidth
crossbar

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 27. © Krste Asanovic

SGI Origin 2000

Scalable hypercube switching network
supports up to 64 two-processor nodes (128

processors total)

(Some installations up to 512 processors)

• Large scale distributed directory SMP

• Scales from 2 processor workstation
to 512 processor supercomputer

Node contains:
• Two MIPS R10000 processors plus
caches
• Memory module including directory
• Connection to global network
• Connection to I/O

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 28. © Krste Asanovic

Convergence in Parallel VLSI Architectures?

I/O

Tile

Bulk SRAM/
Embedded DRAM

Off-chip
DRAM

Addr.
Unit

Data
Unit

Cntl.
Unit

SRAM/cache

Data Net

Control Net

6.893: Advanced VLSI Computer Architecture, October 3, 2000, Lecture 5, Slide 29. © Krste Asanovic

Portable Parallel Programming?

n Most large scale commercial installations emphasize
throughput
o database servers, web servers, file servers
o independent transactions

n Wide variety of parallel systems
omessage passing
o shared memory
o shared memory within node, message passing between nodes

⇒ Little commercial software support for portable parallel
programming

Message Passing Interface (MPI) standard widely used for
portability

– lowest common denominator
– “assembly” language level of parallel programming

