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Computers Defined by Watts not MIPS
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Definitions

n Energy measured in Joules

n Power is rate of energy consumption measured in 
Watts (Joules/second)

n Instantaneous power is Vdd * Idd
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Power Impacts on System Design

n Energy consumed per task determines battery life
o Second order effect is that higher current draws decrease 

effective battery energy capacity

n Current draw causes IR drops in power supply voltage
oRequires more power/ground pins to reduce resistance R
oRequires thick&wide on-chip metal wires or dedicated metal 

layers

n Switching current (dI/dT) causes inductive power 
supply voltage bounce ∝ LdI/dT
oRequires more pins/shorter pins to reduce inductance L
oRequires on-chip/on-package decoupling capacitance to help 

bypass pins during switching transients

n Power dissipated as heat, higher temps reduce speed 
and reliability
oRequires more expensive packaging and cooling systems
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Power Dissipation in CMOS

Primary Components:

n Capacitor Charging (85-90% of active power)
o Energy is ½ CV 2 per transition

n Short-Circuit Current (10-15% of active power)
oWhen both p and n transistors turn on during signal transition

n Subthreshold Leakage (dominates when inactive)
o Transistors don’t turn off completely

n Diode Leakage (negligible)
o Parasitic source and drain diodes leak to substrate

CL
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Reducing Power

n Switching power ∝ activity*½ CV 2*frequency
o (Ignoring short-circuit and leakage currents)

n Reduce activity
o Clock and function gating
o Reduce spurious logic glitches

n Reduce switched capacitance C
o Different logic styles (logic, pass transistor, dynamic)
o Careful transistor sizing
o Tighter layout
o Segmented structures

n Reduce supply voltage V
o Quadratic savings in energy per transition – BIG effect
o But circuit delay is reduced

n Reduce frequency
o Doesn’t save energy just reduces rate at which it is consumed
o Some saving in battery life from reduction in current draw
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Run-Time/O.S.

Instruction Set

Source Code
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Algorithm
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Application

Fabrication Technology

System Levels for Energy Management

Just-in-time scheduling

Energy-exposed architectures

Improved code structure

Energy-conscious compiler

Variable resolution processing

Clock gating

Low voltage-swing circuits

Export computation to server

SOI, Low-k dielectrics

Can usually combine savings at different levels

6.893: Advanced VLSI Computer Architecture, September 28, 2000, Lecture 4, Slide 8. © Krste Asanovic

Voltage Scaling for Reduced Energy

n Reducing supply voltage by 0.5 improves energy per 
transition by 0.25

n Performance is reduced – need to use slower clock

n Can regain performance through parallel architecture

n Alternatively, can trade surplus performance for lower 
energy by reducing supply voltage until “just enough” 
performance
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Parallel Architectures for Reduced 
Energy at Constant Throughput

n 8-bit adder/comparator
o 40MHz at 5V, area = 530 kµ2

oBase power Pref

n Two parallel interleaved adder/compare units
o 20MHz at 2.9V, area = 1,800 kµ2 (3.4x)
o Power = 0.36 Pref

n One pipelined adder/compare unit
o 40MHz at 2.9V, area = 690 kµ2 (1.3x)
o Power = 0.39 Pref

n Pipelined and parallel
o 20MHz at 2.0V, area = 1,961 kµ2 (3.7x)
o Power = 0.2 Pref

n Chandrakasan et. al. “Low-Power CMOS Digital Design”, IEEE JSSC 
27(4), April 1992
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System Operating Modes

n Fixed throughput
o e.g., MP3 player
owant to minimize energy at fixed throughput (equivalent to 

minimizing power)

n Maximum throughput
o e.g., spreadsheet update
owant to run “ as fast as possible”??

n How do we trade performance and energy/operation?
o energy-delay product gives equal weighting
o ED2 gives greater weight to delay term



6.893: Advanced VLSI Computer Architecture, September 28, 2000, Lecture 4, Slide 11. © Krste Asanovic

How do architectural ideas impact
energy-efficiency?

n Instruction encoding

n Pipeline depth

n CISC versus RISC

n Register file size

n In-order versus out-of-order Superscalar

n VLIW

n Vector

n Cache hierarchy

n Branch prediction

n Multiprocessors

n Reconfigurable


