Mir
MIT 6.189 IAP 2007
Student Project

Blue-Steel Ray Tracer

Natalia Chernenko
Michael D'Ambrosio
Scott Fisher

Russel Ryan

Brian Sweatt
Leevar Williams

Game Developers Conference
March 7 2007

http://cag.csail.mit.edu/ps3 1 Student Presentation 6.189 IAP 2007 MIT

Imperative Need for Parallel Programming v

Education

The “Software Crisis”

“To put it quite bluntly: as long as there were no
machines, programming was no problem at all;
when we had a few weak computers,
programming became a mild problem, and now
we have gigantic computers, programming has
become an equally gigantic problem.”

-- E. Dijkstra, 1972 Turing Award Lecture

http://cag.csail.mit.edu/ps3 2 Student Presentation 6.189 IAP 2007 MIT

Multicores are Here

512

256

Picochip Ambric
PC102 AA AM2045

128

Cisco
CSR—lA
Intel
Tflops
A
Raza Cavium
Raw XLR Octeon
A Al

Niagara 4 A Cell

Opteron 4P
A“ Xeon-MP-

Boardcom 1480

Xbox360A
PA-8800 Opteron Tanglewood

POWETA A B Aol

PExtreme Power6
4004 8080 8086 286 386 486 Pentium P2 P3 Itanium '°"2
1}a-&a A Y V— A A A AMPAA-&
8008 Athlon Itanium 2
1970 1975 1980 1985 1990 1995 2000 2005 207?7?
http://cag.csail.mit.edu/ps3 3 Student Presentation 6.189 |IAP 2007 MIT

Mir
Teaching Parallel Programming

e Prof. Saman Amarasinghe (MIT) and Dr. Rodric Rabbah (IBM)
= Month long intensive course
= http://cag.csail.mit.edu/ps3 for lectures, recitations, and labs
= Sponsored by Sony, Toshiba and IBM
= Technical support from Sony, IBM, Terra Soft

e Course outcomes

= Know fundamental concepts of parallel programming (both
hardware and software)

= Understand issues of parallel performance
= Able to synthesize a fairly complex parallel program

= Hands-on experience with the Cell processor
— Sony PS3 consoles running YDL (Yellow Dog Linux)
—- IBM Cell SDK from developerWorks

http://cag.csail.mit.edu/ps3 4 Student Presentation 6.189 IAP 2007 MIT

i
Learning From Student Perspective

Fun and challenging context attracted many students
= Using PS3s as the platform for student projects
= Programming the new Cell processor

"PS3 attracted me but hearing about the future of parallel
programming kept me around." — student quote

http://cag.csail.mit.edu/ps3 5 Student Presentation 6.189 IAP 2007 MIT

Class Project Competition

e / ambitious projects

Ray Tracer

Global lllumination

Linear Algebra Pack
Molecular Dynamics Simulator
Speech Synthesizer

Soft Radio

Backgammon Tutor

22006 Sony Computer Entertainment inc. All ights reserved.
Design and specifications are subject to change withaout natice.

e Presentation, including performance results
available online

= http://cag.csail.mit.edu/ps3/competition.shtml
= Some source code will also be published

http://cag.csail.mit.edu/ps3 6

Student Presentation 6.189 |AP 2007 MIT

Our Project: Ray-Tracer

Blue-Steel

http://cag.csail.mit.edu/ps3 7 Student Presentation 6.189 IAP 2007 MIT

i
The ldea: Realistic Graphics

A Solution to the rendering equation

= [riangle Rasterization
~ Fast — possible in real time on a single core

— Inaccurate or tedious for global effects such as shadows,
reflection, refraction, or global illumination

— “Start with speed, try to get realism”
= Ray Tracing
~ Slow — unless done on multiple cores
— Accurate and natural shadows, reflection, and refraction
— “Start with realism, try to get speed”

http://cag.csail.mit.edu/ps3 8 Student Presentation 6.189 IAP 2007 MIT

i
The Idea: Realistic Graphics

e Real time rasterization is done all the time!

= Instead, build a fast ray tracer from the ground up to take
advantage of multiple cores.

s PS3is perfect
— 6 accessible cores for rendering
— Fast XDR ram for transferring scene data / frames
— Practically a GPU on its own — no need for additional hardware

CP
U
Modern graphics w/ GPU Without GPU, using Blue-Steel

http://cag.csail.mit.edu/ps3 9 Student Presentation 6.189 IAP 2007 MIT

Ray Tracing

e Shoot a ray through each pixel on the screen
e Check for intersections with each object in the scene
e Keep the closest intersection

http://cag.csail.mit.edu/ps3 10 Student Presentation 6.189 IAP 2007 MIT

Ray Tracing

e Shade each point according to the material of the
object, as well as the lights in the scene

= Stopping at this level achieves traditional scan-line
rasterization quality

http://cag.csail.mit.edu/ps3 11 Student Presentation 6.189 IAP 2007 MIT

Ray Tracing

e Cast rays for shadows, reflection, and refraction
= Recursive rays are processed identically to primary rays

= Framework for global effects is built into ray tracing by
design

http://cag.csail.mit.edu/ps3 12 Student Presentation 6.189 IAP 2007 MIT

Ray Tracing on the PS3

e Design Challenges

= Bandwidth & latency of PPE / SPE communication
~ Mailboxes can only hold 128 bits at a time

= Limited size of local store
— 256 KB for program, execution stack, scene, and frame data

= DMA latency
~ Two orders of magnitude slower than local store

http://cag.csail.mit.edu/ps3 13 Student Presentation 6.189 |IAP 2007 MIT

Ray Tracing on the PS3

e Design Challenges
= Inherent SIMD architecture of SPE
— Scalar code — like most code today — is expensive
= No Branch Prediction
- 'if statements and loops are costly

= Load-Balancing

— Splitting up computation so as to minimize communication /
computation overhead

http://cag.csail.mit.edu/ps3 14 Student Presentation 6.189 IAP 2007 MIT

Ray Tracing on the PS3

e High level design

= Clump a set of SPEs together as one rendering engine
—~ Each SPE holds a full set of scene data
- Each SPE renders only part of the scene
— Run a full ray tracer on every SPE
- Engine has a set of instructions just like any processor
Instructions are sent to this engine using SPE mailboxes
= SPE-centric framework

- Each SPE has knowledge of what work it must do, PPE tells it
what to render only at the start of the process

http://cag.csail.mit.edu/ps3 15 Student Presentation 6.189 IAP 2007 MIT

Ray Tracing on the PS3

e Tackling the Challenges

= Bandwidth & latency of PPE / SPE communication

- SPE-centric framework
No need for communication during the rendering process

= Limited size of local store
—- Pack data efficiently in vectors
— Split scene into chunks that can be stored one at a time

= DMA latency
— Hide latency through double-buffering
— Work on one type of object while transferring another

http://cag.csail.mit.edu/ps3 16 Student Presentation 6.189 IAP 2007 MIT

Ray Tracing on the PS3

e Tackling the Challenges

= No branch prediction
— Only 3 explicit 'if statements in code
—~ Have compiler unroll loops

= |Inherent SIMD architecture of SPE
— View everything as packets, work on 4 at a time

= Load Balancing
- Have each SPE render every sixth line of the screen

http://cag.csail.mit.edu/ps3 17 Student Presentation 6.189 IAP 2007 MIT

i
Issues During Implementation

e Heterogeneous architecture

s SPU and PPU have different instruction sets

— Two versions of many objects needed to be implemented: one
optimized for the PPU and one for the SPU

= Lack of effective debugging tools

— Many threads running on different cores — no convenient means
of viewing everything

http://cag.csail.mit.edu/ps3 18 Student Presentation 6.189 IAP 2007 MIT

i
Issues During Implementation

e Physics Engine
= Third-party ODE used

— Peculiarities in representation of object positions
— Difficult to kill built-in OpenGL visualization

= Integration
—- Physics representation vs. rendering representation

http://cag.csail.mit.edu/ps3 19 Student Presentation 6.189 IAP 2007 MIT

i
Issues During Implementation

e Timel

= 4 weeks dedicated to project

~ 1 week for planning
Streaming computation or full computation on each SPE?
Scene fitting in local store — Software cache, or other means?

http://cag.csail.mit.edu/ps3 20 Student Presentation 6.189 IAP 2007 MIT

i
Issues During Implementation

e Timel

= 4 weeks dedicated to project
~ 3 weeks for coding

Many options could not be explored in-depth

Simple algorithms chosen over more complex, yet faster ones

Dropping parts of initial plan to meet deadline
Static, rather than dynamic load balancing
Spatial index structure
Full scale game with real-time physics done on PPU
Other primitives: cylinder, box
Larger packets to reduce data dependency stalls

http://cag.csail.mit.edu/ps3 21 Student Presentation 6.189 IAP 2007 MIT

i
Performance Analysis

e Exact linear speed increase in number of SPEs

)

N

Speed (fp

10

O -~ DNWPH OO N O

= [est scenes
— Textured crystal ball: stresses bump mapping / global effects
- Spotlight: Stresses scene/shading complexity, scene visibility

Time Scaling With # of SPEs

B Textured
& Spotlight

Be
\

N
N

Number of SPEs

22 Student Presentation 6.189 |AP 2007 MIT

http://cag.csail.mit.edu/ps3

i
Performance Analysis

e Scalability in object complexity

Time Scaling in Object Complexity

)
c 45 o No Shading
= 10 e ¢ W/Shading

o 35
T g /
C

5 25 45 65 85 105

http://cag.csail.mit.edu/ps3 23 Student Presentation 6.189 IAP 2007 MIT

i
Performance Analysis

e Scalability in shader complexity
= Small, constant performance hit for simple shading
= ~20 ms, constant performance hit for procedural shaders
= OpenGL-like graphics at ~50 fps

Time Scaling in Shader Complexity

I
o

o
o

w
(@)}

w
o

o

o

Render Time (ms)
N N

RN
(@]

RN
o

5,

0 |
none simple shadows 1 bounce 2 bounces

http://cag.csail.mit.edu/ps3 24 Student Presentation 6.189 IAP 2007 MIT

i
Performance Analysis

e Optimizations

= Hand-tuning C code to eliminate dependencies

— Despite compiler optimizations, hand-tuned triangle intersection
routine saved ~20ms on complex scenes

vector unsigned int valid = spu and(spu_and{spu_cmpgtih £, t),
1sqreaterequalfd (one v, spu_addiu, w)))
spu_and(spu_and (1sqreaterequalfd (v, zero v)

1sqreaterequalfd (v, zero v]lfl
spu_cmpgb(t, tmin w)));

vector unsigned int wugbld = i1sgreaterequalfd{u, =zero w);
vector float vPlusvy = spu_addiu, «);
vector unsigned int wgbld = isgreaterequalfd (v, =zero w);

vector unsigned int oldotnew = spu_cmpgtih. £, t);

wector unsigned int wPluswltl 1sgreaterequalfd (one w, uPluswv);
vector unsigned int newgttmin spu_cmpgkt(t, tmin) ;

ugtl = spu and{ugtl, wgtl) ;

oldgtnew = spu_and{oldgtnew, uvPluswltl);

ugtl = spu and{ugtl, newgbtmin) ;

vector unsigned int walid = spu and{oldgtnew, wgtl];

http://cag.csail.mit.edu/ps3 25 Student Presentation 6.189 IAP 2007 MIT

Performance Analysis

e Optimizations
= AOS packing for storage, SOA for computation

— Goal: Fit as many objects in 16KB (one DMA transfer) as
possible

vector unsigned char splatll =

(vector unsigned chac){0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, &, 0, 1, 2, 3};
vector unsigned char splatl =

(vector unsigned charc){d, 5 6, 7, 4, 5 6, 7, 4, 5 6, 7, 4, 5 6, T},
vector unsigned char splatl =

(vector unsigned char){8, 9,10,11, 8, 9,10,11, &, 9,10,11, &8, 9,10,11%;

vector
vector
vector
vector
vector
vector
vector
vector
vector

float m acx =
float m acy
float m acz
float m abx
float m_aby
float m_abz

spu_shuffle(m ac, m ac,
spu_shuffle(m ac, n ac,
spu_shuffle(m ac, m ac,
spu_shuffle (m m_ah,
spu_shuffle(m ah, m_ah,

ac,
ak,
ak,
spu_shuffle(m ah, m_ah,

float n =x = spu_shuffle(m a, m a, splatl);

float n_ay
float n az

http://cag.csail.mit.edu/ps3

spu_shuffle(m a, m a, splatl);
spu_shuffle(m a, m a, splatl);

26 Student Presentation 6.189 |AP 2007 MIT

Performance Analysis

e Optimizations

= SOA for packets

— Ultilizes full space of four element vector register
— Perform 3 operations on data, rather than 4

struct RayPacket {

http://cag.csail.mit.edu/ps3

vectar
vectaor
vectaor
vector
vector
vector
vector
vector

float
float
float
float
float
float
float
float

r1l;
r2l;
ral;
rdll;
rld;
rad;
r3d;
rdd;

struct RayPacket |
vector float x=[;
vector float vyl;
vector float zl;

E:> vector float dix;
vector float dy;
vector float dz;

27 Student Presentation 6.189 |AP 2007 MIT

i
Performance Analysis

e Optimizations
= Approximations

— No recursion if past threshold depth
—- Assume a shadow if light contribution is less than threshold

= "‘Dummy Functions” to assure shaders aren't run twice for
the same ray

vector unsigned int thisID;
th1sID = spu_cmpeq(matTypes, spu_splatsimatl type));

(*f1) (materials, rgbp, hp, p % pv. pz. spu and(shadeBits, thisID));
functions = spu_sel(functions, dummy, thisID);

http://cag.csail.mit.edu/ps3 28 Student Presentation 6.189 IAP 2007 MIT

Questions?

http://cag.csail.mit.edu/ps3 29 Student Presentation 6.189 IAP 2007 MIT

