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Imperative Need for Parallel Programming 
Education

“To put it quite bluntly: as long as there were no 
machines, programming was no problem at all; 
when we had a few weak computers, 
programming became a mild problem, and now 
we have gigantic computers, programming has 
become an equally gigantic problem."

-- E. Dijkstra, 1972 Turing Award Lecture

The “Software Crisis”
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Teaching Parallel Programming 

● Prof. Saman Amarasinghe (MIT) and Dr. Rodric Rabbah (IBM)
Month long intensive course 
http://cag.csail.mit.edu/ps3 for lectures, recitations, and labs
Sponsored by Sony, Toshiba and IBM 
Technical support from Sony, IBM, Terra Soft

● Course outcomes
Know fundamental concepts of parallel programming (both 
hardware and software)
Understand issues of parallel performance 
Able to synthesize a fairly complex parallel program
Hands-on experience with the Cell processor
– Sony PS3 consoles running YDL (Yellow Dog Linux)
– IBM Cell SDK from developerWorks
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Learning From Student Perspective 

Fun and challenging context attracted many students
Using PS3s as the platform for student projects
Programming the new Cell processor

"PS3 attracted me but hearing about the future of parallel 
programming kept me around." – student quote
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Class Project Competition

● 7 ambitious projects
Ray Tracer
Global Illumination
Linear Algebra Pack
Molecular Dynamics Simulator
Speech Synthesizer
Soft Radio
Backgammon Tutor

● Presentation, including performance results 
available online

http://cag.csail.mit.edu/ps3/competition.shtml
Some source code will also be published 
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Our Project: Ray-Tracer

Blue-Steel
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The Idea: Realistic Graphics

A Solution to the rendering equation
Triangle Rasterization
– Fast – possible in real time on a single core
– Inaccurate or tedious for global effects such as shadows, 

reflection, refraction, or global illumination
– “Start with speed, try to get realism”
Ray Tracing
– Slow – unless done on multiple cores
– Accurate and natural shadows, reflection, and refraction
– “Start with realism, try to get speed”
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The Idea: Realistic Graphics

● Real time rasterization is done all the time!
Instead, build a fast ray tracer from the ground up to take 
advantage of multiple cores.
PS3 is perfect
– 6 accessible cores for rendering
– Fast XDR ram for transferring scene data / frames 
– Practically a GPU on its own – no need for additional hardware
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Ray Tracing

● Shoot a ray through each pixel on the screen
● Check for intersections with each object in the scene
● Keep the closest intersection
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Ray Tracing

● Shade each point according to the material of the 
object, as well as the lights in the scene

Stopping at this level achieves traditional scan-line 
rasterization quality
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Ray Tracing

● Cast rays for shadows, reflection, and refraction
Recursive rays are processed identically to primary rays
Framework for global effects is built into ray tracing by 
design
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Ray Tracing on the PS3

● Design Challenges
Bandwidth & latency of PPE / SPE communication
– Mailboxes can only hold 128 bits at a time
Limited size of local store
– 256 KB for program, execution stack, scene, and frame data
DMA latency
– Two orders of magnitude slower than local store
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Ray Tracing on the PS3

● Design Challenges
Inherent SIMD architecture of SPE
– Scalar code – like most code today – is expensive
No Branch Prediction
– 'if' statements and loops are costly
Load-Balancing
– Splitting up computation so as to minimize communication / 

computation overhead
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Ray Tracing on the PS3

● High level design
Clump a set of SPEs together as one rendering engine
– Each SPE holds a full set of scene data
– Each SPE renders only part of the scene
– Run a full ray tracer on every SPE
– Engine has a set of instructions just like any processor

• Instructions are sent to this engine using SPE mailboxes
SPE-centric framework
– Each SPE has knowledge of what work it must do, PPE tells it 

what to render only at the start of the process
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Ray Tracing on the PS3

● Tackling the Challenges
Bandwidth & latency of PPE / SPE communication
– SPE-centric framework

• No need for communication during the rendering process
Limited size of local store
– Pack data efficiently in vectors
– Split scene into chunks that can be stored one at a time
DMA latency
– Hide latency through double-buffering
– Work on one type of object while transferring another
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Ray Tracing on the PS3

● Tackling the Challenges
No branch prediction
– Only 3 explicit 'if' statements in code
– Have compiler unroll loops
Inherent SIMD architecture of SPE
– View everything as packets, work on 4 at a time
Load Balancing
– Have each SPE render every sixth line of the screen
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Issues During Implementation

● Heterogeneous architecture
SPU and PPU have different instruction sets
– Two versions of many objects needed to be implemented: one 

optimized for the PPU and one for the SPU
Lack of effective debugging tools
– Many threads running on different cores – no convenient means 

of viewing everything
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Issues During Implementation

● Physics Engine
Third-party ODE used
– Peculiarities in representation of object positions
– Difficult to kill built-in OpenGL visualization
Integration
– Physics representation vs. rendering representation
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Issues During Implementation

● Time!
4 weeks dedicated to project
– 1 week for planning

• Streaming computation or full computation on each SPE?
• Scene fitting in local store – Software cache, or other means?
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Issues During Implementation

● Time!
4 weeks dedicated to project
– 3 weeks for coding

• Many options could not be explored in-depth
• Simple algorithms chosen over more complex, yet faster ones
• Dropping parts of initial plan to meet deadline

• Static, rather than dynamic load balancing
• Spatial index structure
• Full scale game with real-time physics done on PPU
• Other primitives: cylinder, box
• Larger packets to reduce data dependency stalls
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Performance Analysis

● Exact linear speed increase in number of SPEs
Test scenes
– Textured crystal ball: stresses bump mapping / global effects
– Spotlight: Stresses scene/shading complexity, scene visibility
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Performance Analysis

● Scalability in object complexity
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Performance Analysis

● Scalability in shader complexity
Small, constant performance hit for simple shading
~20 ms, constant performance hit for procedural shaders
OpenGL-like graphics at ~50 fps

none simple shadows 1 bounce 2 bounces
0

5

10

15

20

25

30

35

40

45

Time Scaling in Shader Complexity

Pong

R
en

de
r T

im
e 

(m
s)



25http://cag.csail.mit.edu/ps3 Student Presentation 6.189 IAP 2007 MIT

Performance Analysis

● Optimizations
Hand-tuning C code to eliminate dependencies
– Despite compiler optimizations, hand-tuned triangle intersection 

routine saved ~20ms on complex scenes
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Performance Analysis

● Optimizations
AOS packing for storage, SOA for computation
– Goal: Fit as many objects in 16KB (one DMA transfer) as 

possible
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Performance Analysis

● Optimizations
SOA for packets
– Utilizes full space of four element vector register
– Perform 3 operations on data, rather than 4
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Performance Analysis

● Optimizations
Approximations
– No recursion if past threshold depth
– Assume a shadow if light contribution is less than threshold
“Dummy Functions” to assure shaders aren't run twice for 
the same ray
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Questions?


