
SUDS: Software Based Memory Speculation for Raw Microprocessors

Matt Frank MFRANK@LCS.MIT.EDU

MIT-LCSComputerArchitectureGroup

1. Introduction1

Programminga parallel computeris hardwork. Oneso-
lution to this problemis to allow theprogrammerto write
sequentialprogramsandthenlet thesystemspeculatethat
theprogramis parallel. At runtime,thesystemexecutesa
chunkof theprogramin parallel. Next, thesystemchecks
whethertheparallelexecutionproduceda resultconsistent
with sequentialsemantics. If the parallel executionwas
correctthesystemmoveson to thenext chunkof thepro-
gramandrepeatsthe process.Otherwise,theexecutionis
rolled backto thestateat thebeginningof the chunk,and
thechunkis rerunsequentially.

SUDS (SoftwareUn-Do System)is a memoryspeculation
systemfor Raw microprocessors.The SUDS systemin-
cludesbotha softwareruntimesystemfor managingspec-
ulative parallelismanda compilerthat finds opportunities
for renaming.Becausethecompilereliminatesmostof the
work of renaming,thesoftwareruntimesystemis efficient
enoughto achieveparallelspeedups.

SUDSis designedto run on Raw microprocessors. A Raw
microprocessoris asinglechipVLSI architecture,madeup
of an interconnectedsetof tiles. Eachtile containsa sim-
ple RISC-like pipeline,instructionanddatamemoriesand
is interconnectedwith other tiles over a pipelined,point-
to-pointmeshnetwork. Thenetwork interfaceis integrated
directlyinto theprocessorpipeline,sothatthecompilercan
placecommunicationinstructionsdirectly into the code.
The software can then transferdatabetweenthe register
files on two neighboringtiles in just 4 cycles(Lee et al.,
1998).

2. Example

Figure 1 shows an example of a simple loop with non-
trivial dependences.SUDSpartitionsRaw’s tiles into two
groups. Someportion of the tiles are designatedworker
nodes,the restaredesignatedmemory nodes.SUDSpar-
allelizesloopsby cyclically distributing theloop iterations
acrosstheworker nodes.We call thesetof iterationsrun-

1Presentedat the MIT StudentOxygenWorkshop,July 16,
2001

for (i = 0; i<N; i++)
 u = A[b[x]]
 A[c[x]] = u
 x = g(x)

Figure1. An exampleloop.

 u = A[b[x]]
 A[c[x]] = u
 x = g(x)

 u = A[b[x]]
 A[c[x]] = u
 x = g(x)

true-

anti-
may-

worker 0

worker 1time

Figure2. SUDS runs one iteration of the loop on eachworker
node. In this casethe dependencesbetweeniterationslimit the
availableparallelism.

ning in parallel,oneiterationperworkernode,a chunk.

Figure2 shows an initial attemptat parallelizingthe loop
on a machinewith two workers. The figure is annotated
with the dependencesthat limit parallelism. The variable
x createsa true-dependence, becausethe valuewritten to
variablex by worker 0 is usedby worker 1. The readof
variableu on worker0 causesananti-dependence with the
write of variableu on worker 1. Finally, the readsand
writes to theA arraycreatemay-dependences betweenthe
iterations. The patternof accessesto the arrayA depends
on thevaluesin theb andc arrays,andsocannot bede-
termineduntil runtime.Withoutany furthersupport,any of
thesethreedependenceswould forcethesystemto run this
loopsequentially.

Figure3 shows the loop after two compileroptimizations
have beenperformed. First, the variableu hasbeenre-
namedv onworker1. Thiseliminatestheanti-dependence.
Second,on both worker 0 andworker 1, temporaryvari-
ables,s andt, havebeenintroduced.Thisallowsworker0
to createthenew valueof variablex earlierin theiteration,
reducingthelengthof time thatworker1 will needto wait
for the true-dependence.The final remainingdependence
is themay-dependenceon theaccessesto arrayA.

This remainingmay-dependenceis monitoredat runtime.

worker 0 worker 1

int v,t
t = x
x = g(x)
v = A[b[t]]
A[c[t]] = v

int u,s
s = x
x = g(x)
u = A[b[s]]
A[c[s]] = u

true-
may-

time

Figure3. After renamingthe anti-dependenceis eliminatedand
thecritical pathlengthof thetrue-dependenceis shortened.

The systemexecutesthe array accessesin parallel, even
thoughthis maycausethemto executeout of order. Each
of thesespeculative memoryaccessesis sentto oneof the
memorynodes.The runtimesystemat thememorynodes
checksthat the accessesare independent.If not, execu-
tion is temporarilyhalted, the systemstateis restoredto
the most recentcheckpointandseveral iterationsare run
sequentiallyto getpastthemis-speculationpoint. Because
thesystemis speculatingthatthecodecontainsnomemory
dependences,this techniqueis calledmemory dependence
speculation (Franklin& Sohi,1996).

3. Design

Eachof thethreedependencetypesdiscussedin theexam-
ple,anti-,true-andmay-dependences,arehandledby adif-
ferentSUDSsubsystem.SUDShandlesanti-dependences
by compilerbasedrenaming.TheSUDSruntimeprovides
supportfor renamedvariablesby allocatinga local stack
on eachworker. SUDShandlestrue-dependencesat run-
timeby explicitly checkpointingthemandthenforwarding
the datafrom worker to worker throughRaw’s point-to-
point interconnect. The remainingmay-dependencesare
thosethat the compileris unableto analyzefurther. They
arehandledat thememorynodesusinga runtimememory
dependencevalidationprotocolbasedon basictimestamp
ordering(Bernstein& Goodman,1980).

SinceSUDScanhandleanti- andtrue-dependencesmore
efficiently than may-dependences,the goal of the SUDS
compiler is to move asmany objectsaspossibleinto the
more efficient categories. It doesthis using three main
compileroptimizations.Privatization usesdataflow anal-
ysis to identify objectswhoselive rangesdo not extend
outsidethe bodyof a loop. It alsoidentifiesseveralkinds
of true-dependencesandloop invariantobjects.Additional
supportis providedfor renamingnon-scalarobjectsby tak-
ing advantageof scopinginformation. Critical path re-
duction improvesprogramparallelismin the faceof true-
dependences,as shown in Figure 3. We introduceaddi-
tional temporaryvariablesthat will hold the old valueof
theobjectwhile thenew valueis computedandforwarded
to other, waiting, workers. Register promotion performs

partial redundancy elimination on load and storeinstruc-
tions (Cooper& Lu, 1997),reducingthe numberof may-
dependencerequestssentto thememorynodes.

4. Status

TheSUDSsystemhasbeenoperationalfor severalmonths.
The systemruns on a cycle accuratebehavioral simula-
tion of a Raw microprocessor. Several sparse-matrixand
linked-liststyleapplicationsrunon thesystemandachieve
betterthan2x speedups.In thecurrentversionof thesys-
tem, the programmertells the systemwhich loopsto par-
allelize. SUDSwill attemptto parallelizeany loop, even
“do-across”loops,loopswith true-dependences,loopswith
non-trivial exit conditionsandloopswith internalcontrol
flow.

Raw microprocessorsprovide a numberof featuresthat
make them attractive targets for a memory dependence
speculationsystemlike SUDS.First, thelow latency com-
municationpathbetweentiles is importantfor transferring
true-dependencesthat lie alongthe critical path. In addi-
tion, the independentcontrolon eachtile allows eachpro-
cessingelementto be involved in a different part of the
computation.In particular, sometiles canbe dedicatedas
worker nodes,running the user’s application,while other
tiles areallocatedasmemorynodes,executingcompletely
differentcodeaspart of the runtimesystem. Finally, the
many independentmemoryportsavailableon a Raw ma-
chineallow thebandwidthrequiredfor supportingrenamed
private variablesand temporariesin addition to the data
structuresthat thememorynodesrequireto monitormay-
dependences.

References
Bernstein,P. A., & Goodman,N. (1980).Timestamp-BasedAlgo-

rithms for Concurrency Control in DistributedDatabaseSys-
tems. Proceedings of the Sixth International Conference on
Very Large Data Bases (pp.285–300).Montreal,Canada.

Cooper, K. D., & Lu, J. (1997). RegisterPromotionin C Pro-
grams.Proceedings of the ACM SIGPLAN ’97 Conference on
Programming Language Design and Implementation (pp.308–
319). LasVegas,NV.

Franklin, M., & Sohi, G. S. (1996). ARB: A HardwareMecha-
nism for DynamicReorderingof Memory References.IEEE
Transactions on Computers, 45, 552–571.

Lee, W., Barua,R., Frank,M., Srikrishna,D., Babb,J., Sarkar,
V., & Amarasinghe,S. (1998). Space-Time Schedulingof
Instruction-Level Parallelismona Raw Machine.Proceedings
of the Eighth ACM Conference on Architectural Support for
Programming Languages and Operating Systems (pp.46–57).
SanJose,CA.

