

Finch Version 5-5-04
Cinco de Mayo Version

This release includes a simple, sequential priority function optimizer. It also includes a
parallel optimizer that relies on the PBS job queuing system and NFS; PBS distributes the
computation, and the file system is used for communication.

Changes since Version 12-01-03

1. Added some new benchmarks to the bench directory to illustrate how
a training set can be created.

2. Fixed a bug in the proxycomp spec file that prevented the proxycomp
from working on a platform other than linux-i386.

3. The finch library now reports errors a bit better.
4. Added a –verbose flag for easier debugging.
5. Fixed a bug in the creation of random expressions.

Introduction

This document describes finch, a tool that automatically fine-tunes compiler heuristics.
Rather than trying to fine-tune an entire heuristic, the system focuses on priority
functions. Priority functions—sometimes called cost functions—simply assign weights
to the options available to a compiler heuristic. For instance, list schedulers use a priority
function to determine the order in which instructions in the ready worklist should be
scheduled. Such priority functions often consider latencies and dependence heights of
instructions in the worklist.

Priority functions have several nice properties that make them amenable to machine
learning algorithms. First of all, it would be infeasible to learn an entire valid heuristic.
Any heuristic that the learning algorithm discovers must enforce program correctness for
all input programs. Priority functions allow the learning algorithm to concentrate on a
very small portion of a compiler algorithm—among other things, the baseline algorithm
enforces correctness. Nevertheless, even small changes to a priority function can
drastically affect the quality of a compiler heuristic.

In addition, priority functions have a clear specification: we know that a priority function
expects measurable program characteristics as input arguments, and we know that the
function will return a cost1.

Finch uses genetic programming to automatically search for priority functions. The
algorithm starts by creating an initial population of automatically created random priority
functions. In this release, the ramped-half-and-half method is used to create the initial
population [3]. Then, until a user-defined number of iterations has been reached, the
algorithm constantly updates the population of priority functions in a process akin to
Darwinian evolution. By default the top individual is guaranteed survival in the
following iteration. After every iteration, a new working population is created by
crossing over and mutating priority functions in the current population. Please see [1] for
a complete description of the algorithm employed by finch.

Building finch and Supporting Libraries
You can obtain finch’s source code at http://www.cag.lcs.mit.edu/metaopt. The latest
version of finch will be listed in the Software Downloads section of the webpage. Related
papers and presentations are also available at the URL.

Before describing the build process, here is what needs to be built:

• finch: this is the program that steers the search process.
• fanalyzer: a program that helps analyze the best expressions.
• libfinch.a: this library contains a genetic programming expression class, and a

random number generator. This library will have to be linked in with your
compiler.

1 Constants can also be used as input arguments.

Figure 1 shows the directory structure of the package. All of the source code is in the src
directory. The bench directory contains sample benchmarks as well as the benchmark
specification file that finch needs to compile and run it. The (GNU) makefiles in the
source directory will build the binaries and libraries and copy them to bin and lib
directories respectively. In addition, include files will be copied to the include directory.

Figure 1. Directory structure of the distribution.

To build the system, you need to run GNU make in the src directory. The makefiles
currently use the GNU g++ compiler, gcc compiler, flex++, and yacc. If you’d like to
use the PBS, parallel system, you have to modify the Makefile in src/harness by including
the following definition at the top of the Makefile: HAS_PBS_SERVER = 1.

Validated Systems

Finch has been validated on the following systems:

Architecture Operating System
x86 Redhat Linux v7.2, v8.0
Itanium® I and II Redhat Linux v7.2

The system was compiled with g++ version 2.95.3. It has been tested less rigorously
with g++ version 3.2. Furthermore, lex and yacc are required to build the libraries. If
you manage to get the system working on another system, please let us know
(mstephen@mit.edu).

Plugging in the System

This section describes how to wrap finch around your compiler infrastruc ture. To start
with, you must identify a candidate priority function to optimize. Presumably you
already have a priority function in mind if you downloaded this document.

finch

bench bin doc include lib src

finchlib harness

Finding a Suitable Priority Function

If you are searching for priority functions to optimize, here are a few simple, and perhaps
obvious tips. First, grepping for “cost”, “priority”, “prioritize”, or “sort” in your
compiler’s source directory will likely reveal several candidates.

Optimizing a priority function is a time-intensive process. For the benchmarks that we
surveyed in [1], our native sequential system took anywhere from 1 to 3 days per
benchmark in the training set (running on Itanium). Thus, a quick check to see if you
have found a priority function that is amenable to our system could save a lot of wasted
cycles. Fortunately, simply replacing your compiler’s priority function with a constant
value (or with a call to a random number generator) can tell you a lot about the
importance of the function. If the constant priority function noticeably affects the
performance of binaries created by your compiler, running our system is a noble use of
computer cycles.

Is finch Suitable for your System?

Finch requires feedback from the system to assign fitnesses to expressions. If this
feedback is noisy—as is the case on non-simulated systems—then finch may not be up to
task. As a prerequisite, make sure that back-to-back-to-back runs of the same application
return similar measurements (regardless of the metric that you are measuring). For
instance, on an Itanium® machine running Linux, most benchmarks have a fairly
consistent running time, making finch an appropriate optimization tool. On the other
hand, the dynamic nature of the Pentium® 4 processor (with SMT enabled) makes back-
to-back executions very inconsistent. As a result, finch is not appropriate for optimizing
compilers that target Pentium 4’s.

As a rule of thumb, differences of less than a couple of percent are tolerable; anything
more, may provide problems—unless of course the returns of using our system far
outweigh noise margins.

Hooking in finch

There are three general library calls that must be made: a call for initialization, a call for
evaluation of the priority function, and finally a call for finalization. Finch uses the file
system to communicate between the harness (the finch executable) and the compiler that
you wish to optimize. Finch expects you to set the $FINCH_HOME environment
variable. $FINCH_HOME should point to a directory that will be used for
communication between finch and the compiler.

The following numbered list describes Finch’s communication protocol. Please note
that it is not necessary to understand the details of the protocol in order to use finch.

1. Finch initially removes the $FINCH_HOME/config file. This file is used to
specify the number and types of arguments that the learning algorithm should
consider when trying to learn a priority function.

2. Finch then invokes the compiler. If the library calls are made correctly—which
will be described later—the system will create a new $FINCH_HOME/config
file. The numbers in the config file tell finch vital information about input
arguments to the priority function—namely how many double-type arguments
and how many Boolean-type arguments finch should consider.

3. Finch will then use the information in this file to create an initial population of
random priority functions.

4. The harness will then write the priority functions in the population to disk. For
the sequential version the priority functions are written one at a time to the file
called $FINCH_HOME/evaluate/pfun.l. Note that the evaluate directory is
created by the harness. For the parallel version, the priority functions are written
to $FINCH_HOME/evaluate/<bench_num>/<expr_num>/pfun.l.

5. As described later, an input file is used to specify how to run the benchmarks in
your training set. Finch uses this file to compile, link, and run the benchmarks.
When an appropriately modified compiler is run, it will use the priority function
that finch wrote to disk.

6. The sequential harness expects a “fitness” file to be placed in
$FINCH_HOME/evaluate/fitness. The parallel version looks for the fitness file in
$FINCH_HOME/evaluate/<bench_num>/<expr_num>/evaluate/fitness. The user
is responsible for communicating this information back to finch. For the Itanium
results presented in [1], we simply used the time command when we ran the
benchmarks: “/usr/bin/time –output=fitness –format=%U”. By default, the
sequential version of finch compiles and runs benchmarks in the
$FINCH_HOME/evaluate directory, so the time command shown above would
create a file named $FINCH_HOME/evaluate/fitness with the total user time
required to run the benchmark in the file. Execution time is not the only metric
you can use, but please note that finch considers lower fitnesses to be better.

The following sections describe the available interfaces to the finch library. They
describe files that must be included, as well as the necessary library calls.

C++ Interface

All of the functions in this section can be found in finch_interface.h, and their
corresponding definitions are in finch_interface.cc.

The first function that has to be called is shown below:

void FINCH_initialize_lib()

It initializes the finch library. It should only be called once for every invocation of the
compiler pass that you are trying to optimize. The function opens and parses priority
functions created by the harness. This call should generally be made with your compiler
pass’s other initialization code.

The initialization call dynamically creates a new priority function. This priority function
will replace the static priority function that you are trying to replace. Instead of using the
“stock” priority function that came with your compiler, use a call to one of the following
functions:

double FINCH_evaluate_real_expr(uint32 num_dbls, uint32 num_bools, …)
bool FINCH_evaluate_binary_expr(uint32 num_dbls, uint32 num_bools, …)

Both of these functions use varargs. The first and second arguments specify the number
of double-valued and Boolean-valued parameters respectively that the priority function
should consider. All of the double-valued arguments come next, followed by the
Boolean valued arguments. Thus, an example usage of the library call is:

p = FINCH_evaluate_real_expr(2, 1,

 num_ops, num_branches,
 is_predictable);

Here p is the double-typed priority value returned by the function call, num_ops and
num_branches are the two double-typed arguments, and is_predictable is the one
Boolean-typed argument. Other similar calls that do not use varargs are listed in
finch_interface.h.

Finally, be sure to clean up the memory that the finch library created. A call to the
following function will do this:

void FINCH_finalize_lib()

This should be placed with your pass’s other cleanup code.

Linking in the Libraries

Now that your compiler contains calls to the finch library, you must link your compiler
with $FROOT/lib/$MACHTYPE/libfinch.a, where $FROOT is the location of the base of
the distribution shown in Figure 2.

Creating a Training Set

This section describes how to create a training set. As mentioned above, finch reads an
input file that specifies which applications are in the training set, as well as how to
compile and run each of them.

The best way to describe the input file is by example:

newbench {
 $time = "/usr/bin/time --output=fitness --format=%U ";
 $benchname = "aps";
 $rootdir = "/home/bench/$benchname";
 $srcs = "$rootdir/APS.f";
 $clean = "rm -f *";
 setup = "$clean", "ln -s $rootdir/API9 .";
 profile = "";
 compile = "gcc –o $bench.o –c –O3 $srcs";
 link = "gcc -o $bench $bench.o";
 run = "$time $bench";
 check = "grep -w VALID APV";
 clean = "$clean";
}

This example assumes that you have already modified gcc by replacing one of its priority
functions as described in the last section. The newbench keyword specifies that you are
adding a new benchmark to the training set. Thus, if you were to create a training set that
consisted of four benchmarks, your training set specification file would have four such
entries:

newbench {

…
}
newbench {

…
}
newbench {

…
}
newbench {

…
}

Finch uses the C system command to execute the specifications. More specifically, finch
executes the commands in the following order:

1. setup: commands listed in this phase can be used to copy any files into the
evaluate directory where the benchmark will be compiled. Notice how this phase
specifies two comma separated commands. In any phase, any number of comma
separated commands can be executed.

2. profile: this phase can be used to profile your code. This phase is empty, and
thus, we did not even have to specify it.

3. compile: commands listed in this phase actually compile the benchmark.
4. link: If not done in the previous phase, this phase can be used to link the object

files.
5. run: this phase runs the benchmark. Notice how time is used to record the fitness

of the benchmark.

6. check: this phase is used to check the validity of the benchmark. In theory, any
priority function should be legal, but sometimes a particular priority function will
break the compiler algorithm. Thus, finch may also be useful for correctness
checking.

7. clean: this phase cleans up any files that any of the phases might have created. It
is not strictly necessary however, since finch does this anyway.

Note that if any of the calls to system return non-zero, finch will halt with an error
message that reports the offending command.

It is sometimes useful to create variables that represent strings such as commonly
referenced directories. For instance the above specification created the variables named
$rootdir and $bench that were used in the phase specifications. These variables are
expanded within the aforementioned phase descriptions. Note: You can specify shell
environment variables such as $PWD. Variables defined in a newbench clause are
not exported to the shell, and such definitions supercede environment variables.

Running the System

With the library calls instantiated properly, and a benchmark specification file created, it
is time to actually run the system. This section describes how to do this. Before
continuing however, it is important to note that once your compiler has been
modified to call the finch library, it can no longer be used as a standalone compiler.
The compiler must be run by using the Finch executable, which communicates with
the finch library as discussed above.

Setting Environment Variables

Set the $FINCH_HOME environment variable to point to any directory. Note: Finch
deletes some files such as $FINCH_HOME/config, $FINCH_HOME/evaluate,
$FINCH_HOME/srate, and $FINCH_HOME/notes. The finch binary—as well as the
finch library—relies on this environment variable. You may also wish to include the
location of the finch binary in your path:

$FROOT/bin/$MACHTYPE/,

where $FROOT is the root of the Finch source tree.

Finch Usage

Finch has the following usage: finch [options] <benchmark specification file>

The options that finch accepts are described in the following table :

Option Argument Default Description
-classifier Off Creates classification (binary) priority functions.

For some problems you may wish to create
Boolean- rather than double-typed priorities.

-dsssize Uint 6 Specifies size of the subset of the training set that
finch should use. This dramatically increases
execution time. Note that this value changes
dynamically. If you specify a subset size of 6, finch
will probabilistically chose a subset of size 5, 6, or
7. The minimum of the number of benchmarks and
the dss set size will be used.

-elitist uint 1 Specifies the number of top expressions that are
guaranteed survival in the next generation.

-initial char* “” Specifies the filename of an initial population. At
the beginning of each generation, the population is
written to a file named _state_x, where x is the
generation number. This file can be read directly
into finch.

-gens uint 100 Specifies the number of generations to run for.
-gensize uint 180 Places a cap on the size of expressions that are

generated.
-help Displays the usage.
-height uint 3 Specifies initial expression heights.
-mutate uint 8 Percentage of the population that should be mutated

after each generation
-mortality uint 22 Percentage of the population that is replaced using

crossover after each generation. By default this
number is low because of dynamic subset selection;
we may not want to replace an expression before it
has been evaluated on several benchmarks.

-popsize Uint 400 Specifies the population size.
-quantize Uint Keeps a set of all fitnesses that have been computed

thus far. Useful to gauge the fitness landscape.
-savepop char* “” Saves the population to a file at the end of each

generation. The string specified with this option is
used as the base of the file’s name (e.g., _pop12).

-seed uint 42 Seeds the random number generator.

-sunset uint 1 If an expression is the best expression in any
generation, it is marked as the best expression. The
sunset parameter specifies how long it should be
retained before being a candidate for replacement.
This option is useful for dynamic subset selection
(DSS) where some expressions may perform well
on certain subsets.

-tournament uint 7 Specifies the tournament size for selection.
Tournament selection is a standard genetic
programming technique for selecting the fittest
individual. The fittest of N randomly chosen
expressions is selected as the fittest expression,
where N is the tournament size.

-usepbs Off Uses the PBS job queuing system to parallelize
computation. This option only works if PBS is
installed on your system.

-verbose Off When this flag is used, finch writes the commands it
is trying to execute to stderr. This flag generates a
lot of text, so it is really only desirable for
debugging.

Restarting the System

The system relies on the file system. If at any point the file system becomes unstable,
finch may break. Because of this, finch constantly writes its state to disk. Once the file
system has been restored, finch can be restarted with the last known state. Finch can be
started with the last known state by using the –initial option. In other words, if the last
known state is _state5, use “-initial _state5”. In addition to this, after every
generation, finch writes the DSS state to disk to a file called _dssstate. This file is a
modified version of the benchmark specification file that includes up-to-date state used
by dynamic subset selection.

Interpreting Results

After every generation the best expression from that generation is written to best.l. In
addition, the _state* files contain the entire population of expressions for a given
generation.

Let’s say your call to evaluate the current priority function looks like this:

p = FINCH_evaluate_real_expr(2, 1,

 num_ops, num_branches,
 is_predictable);

The solutions that finch comes up with will look something like the following:

(cmul (barg $b0) (dconst 1.3) (darg $d1))

Here “(barg $b0)” simply represents the 0th binary argument, in this case
is_predictable. Likewise “(darg $d1)” represents the 1st double argument, in this
case num_branches. Finch can create a double argument that corresponds to any of the
double arguments in the evaluation library call. Likewise, any Boolean argument in the
call might be created by finch. “(dconst 1.3)” is the constant 1.3, and cmul is the
conditional multiply opcode. Thus, the above expression represents the following
computation:

if is_predictable then
 return 1.3*num_branches
else
 return num_branches

All of the opcodes used in this distribution are described in [1].

Using fanalyzer

fanalyzer is a tool that we developed to help analyze priority functions created by
Finch. It relies on dot, a graphing utility that draws directed graphs [4]. fanalyzer
essentially profiles a given priority function on a set of input benchmarks. The input
benchmark specification is the same as that required by Finch.

The usage is as follows:

 fanalyzer [options] -expr <expression_file> -benches <benchmarks>

options:
 -dotfname the dot output file name.
 -help print help information.
 -srate the sample rate [1..100].

fanalyzer creates a DOT graph description of the priority function. Each node in the
graph is annotated with its variance during compilation of the benchmarks in the
benchmark specification file. Furthermore, the grayscale color of each node reflects the
covariance of each subexpression with the root node (the whole expression). The darker
the node is, the higher the covariance between it and the root node. Thus, the root node
will be black, and constant nodes will be white; the colors highlight the most important
subexpressions. Figure 2 shows an example dot-generated graph.

 Figure 2. An example “dot” graph produced by fanalyzer.

The following call to fanalyzer will sample twenty percent of the evaluations of the
priority function (best.l) over the benchmarks specified (those in bench.spec).

fanalyzer –srate 20 -expr best.l –benches bench.spec

Putting it all Together: A Small Example

We have put together a small example to illustrate Finch’s usage. To begin with, we
have created a fake compiler called the proxycompiler. The source code for proxycomp
is in $FROOT/src/proxycomp, where $FROOT is the root of the Finch distribution. The
proxycomp illustrates the three library calls that must be made:

FINCH_initialize_lib() at the beginning of the compiler pass,
FINCH_evaluate_real_expr() in place of the compiler’s priority function, and
FINCH_finalize_lib() before the pass exits.

Before continuing, it is important to note that the proxycomp differs from a normal usage
of Finch in several ways. First, the proxycomp assigns a fitness to the priority function
that it uses. Usually, the compiler would simply compile the code using the specified
priority function, and the fitness – or value – of the priority function would not be
determined until the resulting executable was run. Secondly, the proxycomp does not
compile code. It assigns a fitness to the given priority function according to how closely
it matches the arithmetic expression





=
=+−⋅

=
1if
0if 0.2

2

2

bi
bjji

f

In other words, the proxycompiler simply uses the sum of squared errors to regression
match.

Go to $FROOT/testdir. Here you’ll see a file called bench.spec, the contents of which
are repeated here:

newbench {
 $bindir = "$PWD/../bin/$MACHTYPE";
 $bench = "$bindir/proxycomp";
 $clean = "rm -f *";
 setup = "";
 compile = "$bench";
 link = "";
 run = "";
 check = "";
 clean = "$clean";
}

This file is the training set specification. In this case, there is only one “benchmark” in
the training set. A normal benchmark specification file might contain several newbench
clauses, each of which would specify how to compile, link, run, and check correctness of
a particular benchmark. The Makefiles that you used to build finch and the proxycomp
put the executables in the $FROOT/bin/$MACHTYPE directory. Thus, the $bindir variable
points to that directory.

Now, set the $FINCH_HOME environment variable: setenv FINCH_HOME `pwd`

Now, issue the command:

finch –gens 50 -popsize 750 -height 4 –gensize 60 -mortality 99
bench.spec

This command starts the finch harness. This will run Finch for fifty generations which
may take a while, so be patient. You should see the fitness of the best expression remain
the same or decrease after every generation. Finch will create 750 expressions, ranging
from height one to height 4. Whenever Finch creates a new expression that exceeds 60
nodes, it discards the expression. The –mortality flag specifies that 99% of the
population will be replaced after each generation (though regardless of this setting, the
best expression is always kept).

You should also see that Finch creates a file called _state_X, where X is the generation
number that corresponds to the expressions in the file. Each of the expressions in one of
these state files is annotated with its fitness on the problem.

Finch scores the fitnesses of each of the expressions in the population relative to the 0th
expression in the last population. Thus an entry from a state file will look something like
the following:

 // 3 : [0.741433,1]
 [0:1975087.856500]
(tern (barg $b0) (darg $d3) (darg $d3))

The first line tells us tha t this expression is the third expression in the population.
Furthermore, it tells us that this expression is 1/0.74 times better than the 0th expression
from the last population. This line also tells us that this expression is one generation old.

The second line is the raw fitness of the expression. The [<bench num> :<fitness>]
means that the fitness for benchmark number <bench num> is <fitness>.

Finally, the priority function itself is on the third line.

Tips

This following list provides some tips that may help you use Finch to its fullest:

1. For the problem that we have studied, large populations (greater than 500) seem
to work better than smaller populations that run for more generations.

2. Increasing the mortality rate (from its default setting of 22%) can improve
convergence speed, especially when there are few benchmarks in the training set.

3. Before even running finch, it is sometimes instructive to replace the priority
function you’re trying to optimize with a call to rand() (or even easier, replace it
with the constant zero). If performance is not affected, then the priority function
may not be worth optimizing.

4. Genetic programming is a stochastic algorithm that is highly dependent on where
in the search space it is started (i.e., the initial random population that is created).
You will likely find that invoking finch with different seeds (via the –seed flag)
will yield different results. Many genetic algorithms researchers perform several
runs with different initial seeds.

I think you have all the information you need to start using finch. Please refer to the
bench directory in the distribution for an example benchmark specification file.

Bibliography

[1] M. Stephenson, M. Martin, U. O'Reilly, and S. Amarasinghe. Meta Optimization:
Improving Compiler Heuristics with Machine Learning. In Proceedings of the
SIGPLAN '03 Conference on Programming Language Design and Implementation, San
Diego, CA, June 2003.

[2] C. Gathercole. An Investigation of Supervised Learning in Genetic Programming.
PhD thesis, University of Edinburgh, 1998.

[3] J. Koza. Genetic Programming: On the Programming of Computers by means of
Natural Selection. MIT Press, 1992.

[4] AT&T Research. http://www.research.att.com/sw/tools/graphviz/refs.html

