Meta Optimization:
Improving Compiler Heuristics with Machine Learning

Mark Stephenson and
Saman Amarasinghe
Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, MA 02139

{mstephen, saman}@cag.lcs.mit.edu

ABSTRACT

Compiler writers have crafted many heuristics over the years
to (approximately) solve NP-hard problems efficiently. Find-
ing a heuristic that performs well on a broad range of ap-
plications is a tedious and difficult process. This paper in-
troduces Meta Optimization, a methodology for automat-
ically fine-tuning compiler heuristics. Meta Optimization
uses machine-learning techniques to automatically search
an optimization’s solution space. We implemented Meta
Optimization on top of Trimaran [20] to test its efficacy.
By ‘evolving’ Trimaran’s hyperblock selection optimization
for a particular benchmark, our system achieves impressive
speedups. Application-specific heuristics obtain an average
speedup of 23% (up to 43%) for the applications in our suite.
Furthermore, by evolving a compiler’s heuristic over several
benchmarks, we can create effective, general-purpose com-
pilers. The best general-purpose heuristic our system found
improved Trimaran’s hyperblock selection algorithm by an
average of 25% on our training set, and 9% on a completely
unrelated test set. We further test the applicability of our
system on Trimaran’s priority-based coloring register allo-
cator. For this well-studied optimization we were able to
specialize the compiler for individual applications, achiev-
ing an average speedup of 6%.

Keywords

machine learning, priority functions, genetic programming,
compiler heuristics

1. INTRODUCTION

Compiler writers have a difficult task. They are expected
to create effective and inexpensive solutions to NP-hard
problems such as instruction scheduling and register allo-
cation. This problem is complicated by the advent of in-
tractably complex computer architectures.

Since it is impossible to create a simple model that cap-
tures the intricacies of modern architectures, compiler writ-
ers rely on inaccurate abstractions. Such models are based
upon many assumptions, and thus may not even properly

MIT/LCS Technical Memo,
LCS-TM-634,
December 3, 2002.

Martin Martin and Una-May O’Reilly
Massachusetts Institute of Technology
Artificial Intelligence Laboratory
Cambridge, MA 02139

{mcm, unamay}@ai.mit.edu

simulate first-order effects. In addition, changing an archi-
tecture likely requires substantial changes to the compiler.

Faced with these challenges, developing a compiler is more
of a black art than a science. Most of the optimizations that
a compiler performs are NP-hard. Compilers often perform
several optimizations with competing and conflicting goals.
Getting everything to mesh nicely is a daunting task.

Compilers cannot afford to optimally solve NP-hard prob-
lems. Therefore compiler writers devise clever heuristics
that find good approximate solutions for a large class of ap-
plications. Unfortunately, heuristics rely on a fair amount
of tweaking to achieve suitable performance. Trial-and-error
experimentation can help an engineer optimize the heuris-
tic for a given compiler and architecture. For instance, one
might be able to use iterative experimentation to figure out
how much to unroll loops for a given architecture (i.e., with-
out thrashing the instruction cache or incurring too much
register pressure).

We found that many heuristics have a focal point. A
single priority or cost function often dictates the efficacy of
a heuristic. A priority function, a function of the factors that
affect a given problem, measures the relative importance of
choices along which a compiler algorithm can proceed.

Take register allocation for example. When a graph col-
oring register allocator cannot successfully color an interfer-
ence graph, it spills a variable to memory and removes it
from the graph. The allocator then attempts to color the
reduced graph. When a graph is not colorable, choosing an
appropriate variable to spill is crucial. For many allocators,
this decision is bestowed upon a single priority function.
Based on relevant data (e.g., number of references, depth in
loop nest, etc.), the function assigns weights to all uncolored
variables and thereby determines which variable to spill.

Fine-tuning priority functions to achieve suitable perfor-
mance is a tedious process. Currently, compiler writers man-
ually experiment with different priority functions. For in-
stance, Bernstein et. al manually identified three priority
functions for choosing spill variables [4]. By applying the
three functions to a suite of benchmarks, they found that a
register allocator’s effectiveness is highly dependent on the
priority function the compiler uses.

This key insight into compiler heuristics motivates Meta
Optimization, a method by which a machine-learning algo-
rithm automatically searches the (priority function) solution
space. More specifically, we use a learning algorithm that
iteratively searches for priority functions that improve the

execution time of compiled applications.

Our system can be used to cater a priority function to a
specific input program. This mode of operation is essentially
an advanced form of feedback directed optimization. Alter-
natively, it can be used to find a general-purpose function
that works well for a broad range of applications. Experi-
mental results show an average of 23% improvement (over
well-known baseline heuristics) when specializing for indi-
vidual applications. By ‘evolving’ over a set of benchmarks,
our system found a general-purpose priority function that
achieves an average speedup of 25% when applied to the
benchmarks on which it was trained. Demonstrating its gen-
erality, the priority function achieves an average speedup of
9% on a completely unrelated set of benchmarks.

While many researchers have used machine-learning tech-
niques and exhaustive search algorithms to improve an ap-
plication, none have used learning to search for priority func-
tions. Because Meta Optimization improves the effective-
ness of a compiler, in theory, we need only apply the process
once (rather than on a per-application basis).

The remainder of this paper is organized as follows. The
next section introduces priority functions. Section 3 de-
scribes genetic programming, a machine-learning technique
that is well suited to our problem. Section 4 presents two
case studies that we use to determine the efficacy of Meta
Optimization. Section 5 discusses our experimental frame-
work. We present encouraging results in Section 6. Section 7
discusses related work, and finally Section 8 concludes.

2. PRIORITY FUNCTIONS

This section is intended to give the reader a feel for the
utility and ubiquity of priority functions. Put simply, pri-
ority functions prioritize the options available to a compiler
algorithm.

For example, in list scheduling, a priority function assigns
a weight to each instruction in the scheduler’s dependence
graph, dictating the order in which to schedule instructions.
A common and effective heuristic assigns priorities using la-
tency weighted depths [11]. Essentially, this is the instruc-
tion’s depth in the dependence graph, taking into account
the latency of instructions on all paths to the root nodes:

P(i) = { max

i depends on

if 4 is independent.
otherwise.

latency(z)
jlatency(i) + P(j)

The list scheduler proceeds by scheduling ready instructions
in priority order. In other words, if two instructions are
ready to be scheduled, the algorithm will favor the instruc-
tion with the higher priority. The scheduling algorithm
hinges upon the priority function. Apart from enforcing
the legality of the schedule, the scheduler blindly uses the
priority function to make all of its decisions.

This description of list scheduling is a simplification. Pro-
duction compilers use sophisticated priority functions that
account for many competing factors (e.g., how a given sched-
ule may affect register allocation).

The remainder of the section lists a few other priority
functions that are amenable to the techniques we discuss
in this paper. We will explore two of the following priority
functions in detail later in the paper.

e Clustered scheduling: Ozer et. al describe an ap-
proach to scheduling for architectures with clustered
register files [17]. They note that the choice of priority

function has a “strong effect on the schedule.” They
also investigate five different priority functions [17].

e Hyperblock formation: Later in this paper we use
the formation of predicated hyperblocks as a case study.

e Meld scheduling: Abraham et. al rely on a priority
function to schedule across region boundaries [1]. The
priority function is used to sort regions by the order in
which they should be visited.

¢ Modulo scheduling: In [19], Rau states, “As is the
case for acyclic list scheduling, there is a limitless num-
ber of priority functions that can be devised for mod-
ulo scheduling.” Rau describes the tradeoffs involved
when considering scheduling priorities.

e Register allocation: Many register allocation algo-
rithms use cost functions to determine which variables
to spill if spilling is required. We use register allocation
as a case study later in the paper.

This is not an exhaustive list of applications. Many im-
portant compiler optimizations employ cost functions of the
sort mentioned above. The next section introduces genetic
programming, which we use to automatically find effective
priority functions.

3. GENETIC PROGRAMMING

Of the many available machine-learning techniques, we
chose to employ genetic programming (GP) because its at-
tributes best fit the needs of our application. The following
list highlights the suitability of GP to our problem:

e GP is especially appropriate when the relationships
among relevant variables are poorly understood [14].
Such is the case with compiler heuristics, which often
feature uncertain tradeoffs. Today’s complex systems
also introduce uncertainty.

e GP is capable of searching high-dimensional spaces.
Many other learning algorithms are not as scalable.

e GP is a distributed algorithm. With the cost of com-
puting power at an all-time low, it is now economically
feasible to dedicate a cluster of machines to searching
a solution space.

e GP solutions are human readable. The ‘genomes’ on
which GP operates are parse trees which can easily
be converted to free-form arithmetic equations. Other
machine-learning representations are not as compre-
hensible.

Like other evolutionary algorithms, GP is loosely pat-
terned on Darwinian evolution. GP maintains a popula-
tion of parse trees [14]. In our case, each parse tree is an
expression that represents a priority function. As with natu-
ral selection, expressions are chosen for reproduction (called
crossover) according to their level of fitness. Expressions
that best solve the problem are most likely to have progeny.
The algorithm also randomly mutates some expressions to
innovate a possibly stagnant population.

Figure 2 shows the general flow of genetic programming in
the context of our system. The algorithm begins by creating
a population of initial expressions. The baseline heuristic

@ (b)

exec_ratio

num_ops

© (d

exec_ratio

num_branches

Figure 1: GP Genomes. Part (a) and (b) show examples of GP genomes. Part (c) provides an example of a random
crossover of the genomes in (a) and (b). Part (d) shows a mutation of the genome in part (a).

reate initial population
gens=0

Compile and run each expression

Probabilistically select expressions

rossover and mutatiol
gens=gens+1

Figure 2: Flow of genetic programming. Genetic pro-
gramming (GP) initially creates a population of expres-
sions. Each expression is then assigned a fitness, which
is a measure of how well it satisfies the end goal. In
our case, fitness is proportional to the execution time of
the compiled application(s). Until some user-defined cap
on the number of generations is reached, the algorithm
probabilistically chooses the best expressions for mat-
ing and continues. To guard against stagnation, some
expressions undergo mutation.

over which we try to improve is included in the initial popu-
lation; the remainder of the initial expressions are randomly
generated. The algorithm then determines each expression’s
level of fitness. The fitness is a measure of the expression’s
effectiveness. In our case, compilers that produce the fastest
code are fittest. Once the algorithm reaches a user-defined
limit on the number of generations, the process stops; oth-
erwise, the algorithm proceeds by probabilistically choosing
the best expressions for mating. Some of the offspring un-
dergo mutation, and the algorithm continues.

Unlike other evolutionary algorithms, which use fixed-
length binary genomes, GP’s expressions are variable in
length and free-form. Figure 1 provides several examples
of genetic programming genomes (expressions). Variable-
length genomes do not artificially constrain evolution by
setting a maximum genome size. However, without special
consideration, genomes grow exponentially during crossover
and mutation.

Our system rewards parsimony by selecting the smaller of

two otherwise equally fit expressions [14, p. 109]. Parsimo-
nious expressions are aligned with our philosophy of using
GP as a tool for compiler writers and architects to identify
causal variables and the relationships among them. Without
enforcing parsimony, expressions quickly become unintelligi-
ble.

In Figure 1, part (c) provides an example of crossover,
the method by which two expressions reproduce. Here the
two expressions in (a) and (b) produce offspring. Crossover
works by selecting a random node in each parent, and then
swapping the subtrees rooted at those nodes'. In theory,
crossover works by propagating ‘good’ subexpressions. Good
subexpressions increase an expression’s fitness.

Because GP favors fit expressions, expressions with favor-
able building blocks are more likely selected for crossover,
further disseminating the blocks. Our system uses tourna-
ment selection to choose expressions for crossover. Tourna-
ment selection chooses N expressions at random from the
population and selects the one with the highest fitness [14].
N is referred to as the tournament size. Small values of
N reduce selection pressure; expressions are only compared
against the other N — 1 expressions in the tournament.

Finally, part (d) shows a mutated version of the expression
in (a). Here, a randomly generated expression supplants a
randomly chosen node in the expression. For details on the
mutation operators we implemented, see [2, p. 242].

To find general-purpose expressions (i.e., expressions that
work well for a broad range of input programs), the learning
algorithm learns from a set of ‘training’ programs. To train
on multiple input programs, we use the technique described
by Gathercole in [10]. The technique—called dynamic sub-
set selection (DSS)— essentially trains on subsets of the
training programs, concentrating more effort on programs
that perform poorly compared to the baseline heuristics.

The next section describes two heuristics that we will use
as case studies.

4. TWO CASE STUDIES

This section motivates and discusses two popular com-
piler heuristics that we use as case studies throughout the
remainder of the paper: IMPACT’s hyperblock formation
algorithm [15] and priority-based register allocation [8]. Sec-
tion 5 quantitatively shows that small changes to the priority

Selection algorithms must use caution when selecting random tree nodes. If
we consider a full binary tree, then leaf nodes comprise over 50% of the tree.
Thus, a naive selection algorithm will choose root nodes over half of the time.
We employ depth-fair crossover, which equally weighs each level of the tree [13].

functions associated with these heuristics have a tremendous
impact on the performance of compiled code.

buf = *inp
inp=inp+1

t=buf >>4
d=1t& Oxf

cmp p2,p3 ...
(p2) d = buf & Ox1
(p3) buf =*inp

(P3)inp=inp+1
(P3) t=buf >>4
(P3) d=t & Oxf

@ (b)

Figure 3: Control flow v. predicated execution. Part (a)
shows a segment of control-flow that demonstrates a sim-
ple if-then-else statement. As is typical with multime-
dia and integer applications, there are few instructions
per basic block in the example. Part (b) is the corre-
sponding predicated hyperblock. If-conversion merges
disjoint paths of control by creating predicated hyper-
blocks. Choosing which paths to merge is a balancing
act. In this example, branching may be more efficient
than predicating if p3 is rarely true.

4.1 Case Study I: Hyperblock Formation

Architects have proposed two noteworthy methods for de-
creasing the costs’? associated with control transfers: im-
proved branch prediction, and predication. Improved branch
prediction algorithms would obviously increase processor uti-
lization. Unfortunately, some branches are inherently unpre-
dictable, and hence, even the most sophisticated algorithm
would fail. For such branches, predication may be a fruitful
alternative.

Rather than relying on branch prediction, predication al-
lows a multiple-issue processor to simultaneously execute the
taken and fall-through paths of control flow. The processor
nullifies all instructions in the incorrect path. In this model,
a predicate operand guards the execution of every instruc-
tion. If the value of the operand is true, then the instruction
executes normally. If however, the operand is false, the pro-
cessor nullifies the instruction, preventing it from modifying
processor state.

Figure 3 highlights the difference between control-flow
and predicated execution. Part (a) shows a segment of
control-flow. Using a process dubbed if-conversion, the IM-
PACT predicating compiler merges disjoint paths of execu-
tion into a predicated hyperblock. A hyperblock is a predi-
cated single-entry, multiple-exit region. Part (b) shows the
hyperblock corresponding to the control-flow in part (a).
Here, p2 and p3 are mutually exclusive predicates that are
set according to the branch condition in part (a).

Though predication effectively exposes ILP, simply pred-
icating everything will diminish performance by saturating
machine resources with useless instructions. However, an

2
The Pentium@® 4 architecture features 20 pipeline stages. It squashes up to
126 in-flight instructions every time it mispredicts.

appropriate balance of predication and branching can dras-
tically improve performance.

In the following list we give a brief overview of several cri-
teria that are useful to consider when forming hyperblocks.
A path refers to a path of control flow (i.e., a sequence of
basic blocks that are connected by edges in the control flow

graph):

e Path predictability: Predictable branches incur no
misprediction penalties, and thus, should probably re-
main unpredicated. Combining multiple paths of ex-
ecution into a single predicated region uses precious
machine resources [15, pp. 146,148]. In this case, us-
ing machine resources to parallelize individual paths is
typically wiser.

e Path frequency: Infrequently executed paths are
probably not worth predicating. Including the path
in a hyperblock would consume resources, and could
negatively affect performance.

e Path ILP: If a path’s level of parallelism is low, it may
be worthwhile to predicate the path. In other words, if
a path does not fully use machine resources, combining
it with another sequential path probably will not di-
minish performance. Because predicated instructions
do not need to know the value of their guarding pred-
icate until late in the pipeline, a processor can sustain
high levels of ILP.

e Number of instructions in path: Long paths use
up machine resources, and if predicated, will likely
slow execution. This is especially true when long paths
are combined with short paths. Since every instruc-
tion in a hyperblock executes, long paths effectively
delay the time to completion of short paths. The cost
of misprediction is relatively high for short paths. If
the processor mispredicts on a short path, the pro-
cessor has to nullify all the instructions in the path,
and the subsequent control independent instructions
fetched before the branch condition resolves.

e Number of branches in path: Paths of control
through several branches have a greater chance of mis-
predicting. Therefore, it may be worthwhile to predi-
cate such paths. On the other hand, including several
such paths may produce large hyperblocks that satu-
rate resources.

e Compiler optimization considerations: Paths that
contain hazard conditions (i.e., pointer dereferences
and procedure calls) limit the effectiveness of many
compiler optimizations. In the presence of hazards, a
compiler must make conservative assumptions. The
code in Figure 3(a) could benefit from predication.
Without architectural support, the load from *inp can-
not be hoisted above the branch. The program will
behave unexpectedly if the load is not supposed to ex-
ecute and it accesses protected memory. By removing
branches from the instruction stream, predication af-
fords the scheduler freer code motion opportunities.
For instance, the predicated hyperblock in Figure 3(b)
allows the scheduler to rearrange memory operations
without control-flow concerns.

e Machine-specific considerations: A heuristic should
account for machine characteristics. For instance, the
branch delay penalty is a decisive factor.

Clearly, there is much to consider when designing a heuris-
tic for hyperblock selection. Many of the above considera-
tions make sense on their own, but when they are put to-
gether, contradictions arise. Finding the right mix of crite-
ria to construct an effective priority function is nontrivial.
That is why we believe automating the decision process is
crucial. We now discuss the heuristic employed by the IM-
PACT compiler [15, 16]. This heuristic was later adopted
by the SGI Pro64 compiler.

Because loop-backedges are not predicatable, the IMPACT

compiler attempts to coalesce them into a single back-edge [15].

This transformation creates more predicatable paths. The
algorithm then identifies acyclic paths of control that are
suitable for hyperblock inclusion. Park and Schlansker de-
tail this portion of the algorithm in [18]. A priority function—
which is the critical calculation in the predication decision
process— assigns a value to each of the paths based on char-
acteristics such as the ones just described [15]. Some of these
characteristics come from runtime profiling.
IMPACT uses the priority function shown below:

h — 0.25 if path; contains a hazard.
L 1 if path; is hazard free.
dratior — dep_height; .
max;j—1- N dep_height;
o_ratio; = [WUm-op3i

maXj—=1—N NUM_0OpPS;

priority; = exec_ratio; - h; - (2.1 — d_ratio; — o_ratio;) (1)

The heuristic applies the above equation to all paths in a
predicatable region. The variable exec_ratio, is a measure
of how frequently the path in question executes. In other
words, based on a runtime profile, exec_ratio is the proba-
bility that the path is executed. The priority function also
penalizes paths that contain hazards (e.g., pointer derefer-
ences and procedure calls). Such paths may constrain ag-
gressive compiler optimizations. To avoid large hyperblocks,
the heuristic is careful not to choose paths that have a large
dependence height (dep_height) with respect to the maxi-
mum dependence height. Similarly it penalizes paths that
contain too many instructions (num_ops).

In Section 6 we show that this heuristic can be drasti-
cally improved simply by replacing its priority function with
one determined automatically using machine-learning tech-
niques.

4.2 CaseStudy II: Priority-Based Coloring
Register Allocation

The importance of register allocation is well-known, so we
will not motivate the optimization here. Many register al-
location algorithms use cost functions to determine which
variables to spill when spilling is required. For instance in
priority-based coloring register allocation, the priority func-
tion is an estimate of the relative benefits of storing a given
live range in a register [8]. A live range is defined as a con-
tiguous group of basic blocks in which a variable is live. [8]’s

approach creates live ranges and prioritizes them according
to the following equations:

bbpriority; = w; - (LDsave - uses; + STsave - defs;) (2)

> ic1 bbpriority;
61# (3)

Here, a collection of basic blocks compose a live range (Ir).
LDsave and STsave are estimates of the execution time
saved by keeping a variable’s live range in a register for ref-
erences and definitions respectively. uses; and defs; repre-
sent the number of uses and definitions of a variable in basic
block ¢. N is the number of basic blocks in the live range,
and w; is an execution frequency estimate for block i.

The algorithm then tries to assign registers to live ranges
in priority order. Please see [8] for a complete description
of the algorithm. For our purposes, the important thing to
note is that the success of the algorithm depends on the
priority function.

The priority function described above is intuitive— it as-
signs weights to live ranges based on the estimated execution
savings of register allocating them. Nevertheless, as we will
show in Section 6, our system found functions that improve
the heuristic by up to 11%.

The next section describes the experimental framework we
use to ‘evolve’ priority functions for the two optimizations
covered in this section.

priority(lr) =

5. EXPERIMENTAL FRAMEWORK

While the priority functions described in the last section
are intuitive, they are based on a simple model that does not
capture the full essence of a complex system. While this may
seem counterintuitive, Section 6 will show that variations in
the priority function can have a tremendous influence on
performance.

Our system uses genetic programming to automatically
search for effective priority functions. Though it may be
possible to ‘evolve’ the underlying algorithm, we restrict our-
selves to priority functions. This drastically reduces search
space size. This restriction is not constraining; even small
changes to the priority function can drastically improve (or
diminish) performance.

Our infrastructure is built upon Trimaran [20]. Trimaran
is an integrated compiler and simulator for a parameter-
ized EPIC architecture. Table 1 details the specific archi-
tecture over which we evolved. This model is similar to
Intel’s Itanium” architecture.

We tackled the two case studies separately, starting with
hyperblock formation. We modified Trimaran’s IMPACT
compiler by replacing its hyperblock formation priority func-
tion (Equation 1) with our GP expression parser and evalu-
ator. This allows IMPACT to read an expression and eval-
uate it based on the values of human-selected variables that
might be important for creating effective priority functions.
Table 2 describes these variables.

The hyperblock selection algorithm passes the variables in
the table as parameters to the expression evaluator. For in-
stance, if an expression contains a reference to dep_height,
the selection algorithm will evaluate the expression with the
value of the path’s dependence height. Most of the char-
acteristics in Table 2 were already available in IMPACT.
The priority function in Equation 1 has a local scope. We

Feature

[Description |

Registers 64 general-purpose registers, 64 floating-
point registers, and 256 predicate
registers.

4 fully-pipelined units with 1-cycle la-
tencies, except for multiply instructions,
which require 3 cycles, and divide instruc-
tions, which require 8.

Floating-point units | 2 fully-pipelined units with 3-cycle laten-
cies, except for divide instructions, which
require 8 cycles.

2 memory units. L1 cache accesses take
2 cycles, L2 accesses take 7 cycles, and
L3 accesses require 35 cycles. Stores are
buffered, and thus require 1 cycle.

1 branch unit.

2-bit branch predictor with a 5-cycle
branch misprediction penalty.

Integer units

Memory units

Branch unit
Branch prediction

Table 1: Architectural characteristics. This ta-
ble describes the EPIC architecture over which we
evolved. This approximates the Intel Itanium ar-
chitecture. For the register allocation problem, we
used 32 general-purpose registers and 32 floating-
point registers.

added the minimum, maximum, mean, and standard devi-
ation of all path-specific characteristics, which encapsulates
some global knowledge.

We modified the compiler’s profiler to extract branch pre-
dictability statistics. In addition, we added a 2-bit dynamic
branch predictor to the simulator.

For the second case study, we modified Trimaran’s Elcor
register allocator by replacing its priority function (Equa-
tion 2) with an expression parser and evaluator. The reg-
ister allocation heuristic described in Section 4.2 essentially
works at the basic block level. Equation 3 simply sums and
normalizes the priorities of the individual basic blocks. For
this reason, we stay within the algorithm’s framework and
leave Equation 3 intact.

Table 3 shows characteristics relating to the priority-based
coloring register allocator. To more effectively stress the
register allocator, we only use 32 general-purpose registers
and 32 floating-point registers.

We built the iterative framework of Figure 2 around Tri-
maran. The initial population consists of randomly initial-
ized expressions, as well as Trimaran’s original priority func-
tion (Equation 1 for hyperblock formation, and Equation 2
for register allocation).

The results presented in this paper use total execution
time (reported by the Trimaran system) to assign fitness.
This approach rewards frequently executed procedures, and
therefore, may slowly converge upon general-purpose solu-
tions. However, when one wants to specialize a compiler
for a given input program, this evaluation of fitness works
extremely well. Future work will experiment with different
fitness evaluations.

Table 4 shows the expression primitives that our system
uses. Careful selection of GP primitives is essential. We
want to give the system enough flexibility to potentially find
unexpected results. However, the more leeway we give GP,
the longer it will take to converge upon a general solution.
Some of the primitives we included are not present in the
final solutions, which suggests that they might be useless
components of a priority function. In future work, we will

[Characteristic [Description
dep_-height The maximum instruction depen-
dence height over all instructions in
path.
num_ops The total number of instructions in
the path.
exec-ratio How frequently this path is executed

compared to other paths considered
(from profile).

The total number of branches in the
path.

Path predictability obtained by sim-
ulating a branch predictor (from pro-
file).

The average number of instructions
executed in the path (from profile).

num-_branches

predictability

avg-ops_executed

unsafe_JSR If the path contains a subroutine call
that may have side-effects, it returns
true; otherwise it returns false.

safe-JSR If the path contains a side-effect free

subroutine call, it returns true; oth-
erwise it returns false.

If the path contains an unresolvable
memory access, it returns true; oth-
erwise it returns false.

The maximum dependence height
over all paths considered for hyper-
block inclusion.

The sum of all instructions in paths
considered for hyperblock inclusion.
Number of paths considered for hy-
perblock inclusion.

mem_hazard

max_dep_height

total_ops

num_paths

Table 2: Characteristics that might affect hyper-
block selection. The compiler writer chooses inter-
esting attributes, and the system evolves a priority
function based on them. We rely on profile infor-
mation to extract some of these parameters. We
also include the min, mean, max, and standard de-
viation of path characteristics. This provides some
global information to the greedy local heuristic.

experiment with different primitive sets.

6. RESULTS

This section discusses the results we obtained with our
GP system. Our system evolved each of the compiler prior-
ity functions (genomes) for 50 generations. Our algorithm
maintains a population of 400 expressions. It randomly re-
places 22% of the population every generation. Only the
single best expression is guaranteed survival. The system
creates new expressions via the crossover operator discussed
in Section 3. The mutation operator described in the same
section mutates roughly 5% of the new expressions. We use
tournament selection with a tournament size of 7 to choose
expressions for crossover. This setting causes moderate se-
lection pressure. Table 5 summarizes the GP parameters.

For both case studies, we enabled the following Trimaran
compiler optimizations: function inlining, loop unrolling,
backedge coalescing, acyclic global scheduling [7], modulo
scheduling [21], hyperblock formation, register allocation,
machine-specific peephole optimization, and several classic
optimizations.

Table 6 shows the benchmarks this section surveys. All of
the Trimaran certified benchmarks are included in the ta-
ble® [20]. Our suite also includes most of the Mediabench
benchmarks. The build process for ghostscript proved too

3
We could not get 134.perl to execute correctly, though [20] certified it.

Characteristic

Description |

spill _cost The estimated cost of spilling this
range to memory. See Equation 2.
Number of times the basic block was
executed (from profile).

The number of live operations in the
block.

The number of procedure calls in a
basic block.

The callee’s ‘benefit’ of allocating the

region_weight

live_ops

num-_calls

callee_bene fit

range.
caller_benefit The caller’s ‘benefit’ of allocating the
range.
def_num The number of definitions in the
block.
use_num The number of uses in the block.
STsave Estimate of the execution time saved
by keeping a definition in a register.
LDsave Estimate of the execution time saved

by keeping a reference in a register.
If the block has a single reference
this returns true, otherwise it returns
false.

If the number of live references in the
block is greater than 0, return true,
otherwise return false.

The number of references in the block.
The number of registers available for
the register class of the live range.
The number of registers that are not
available to the live range (because
it interferes with an allocated live
range).

Returns true if the live range belongs
to the class GPR, FPR, or PR respec-
tively; returns false otherwise.

has_single_ref

is_pass-through

ref_op_count
reg_size

forbidden_regs

GPR,FPR, PR

Table 3: Characteristics that might affect register
allocation.

difficult to compile. We exclude the remainder of the Medi-
abench applications because the Trimaran system does not
compile them correctly?.

6.1 Hyperblock Formation

We first present results for hyperblock formation. We be-
gin by showing results for application-specialized heuristics.
Following this, we show that it is possible to use Meta Op-
timization to create general-purpose heuristics.

6.1.1 Specialized Priority Functions

Specialized heuristics are created by optimizing a prior-
ity function for a given application. In other words, we
train the priority function on a single benchmark. Figure 4
shows that Meta Optimization is extremely effective on a
per-benchmark basis. The dark bar shows the speedup (over
Trimaran’s baseline heuristic) of each benchmark when run
with the same data on which it was trained. The light bar
shows the speedup when alternate input data is used.

Intuitively, in most cases the training input data achieves

a better speedup. Because Meta Optimization is performance-

driven, it selects priority functions that excel on the training
input data. However, the alternate input data likely exer-
cises different paths of control flow—paths which may have
been unused during training.

Figure 5 shows fitness improvements over generations. In
many cases, Meta Optimization finds a superior priority
function quickly, and finds only marginal improvements as

We exclude cjpeg, the complement of djpeg, because it does not execute prop-
erly with some priority functions.

Real-Valued Function
Reali, + Reals> (
Real, — Reals (
Realy - Realo (
{ Realyi /Reals if Reals #0 (

(

(

Representation

add Real; Reals)
sub Reali Reals)
mul Real: Reals)

div Real; Real2)

0 : if Reala =0

v Real; sqrt Realq)
Realy ifBooly

{ Reals : if notBools tern Bool, Reali Reals)
Realy - Reals : ifBool;

{ Reals + if notBool; (cmul Booly Reali Reals)

Returns real constant K (rconst K)

Returns real value of arg from en- | (rarg arg)

vironment

[Boolean-Valued Function [Representation

Bool, and Bool> (and Bool, Bools)

Bool, or Boola (or Bool1 Bool2)

not Bool; (not Bool1)

Real; < Reals (1t Real1 Reals)

Real; > Reals (gt Reali Reals)

Real; = Reals (eq Reali Reals)

Returns Boolean (bconst {true, false})

constant {true, false}
Returns Boolean value of arg
from environment

(barg arg)

Table 4: GP primitives. Our GP system uses the
primitives and syntax shown in this table. The top
segment represents the real-valued functions, which
all return a real value. Likewise, the functions in
the bottom segment all return a Boolean value.

Parameter

[Setting
Population size 400 expressions
Number of generations 50 generations
Generational replacement | 22 expressions

Mutation rate 5%
Tournament size 7
Fitness Total execution time for com-

piler specialization. Total execu-
tion time normalized on an input-
program basis for DSS-style train-
ing.

Table 5: GP parameters. This table shows the GP
parameters we used to collect the results in this sec-
tion.

the evolution continues. In fact, the baseline priority func-
tion is often quickly obscured by GP-generated expressions.
Often, the initial population contains at least one expression
that outperforms the baseline. This means that by simply
creating and testing 399 random expressions, we were able
to find a priority function that outperformed Trimaran’s for
the given benchmark.

Once GP has homed in on a decent solution, the search
space and operator dynamics are such that most offspring
will be worse, some will be equal and very few turn out to be
better. This seems indicative of a steep hill in the solution
space. In addition, multiple reruns using different initializa-
tion seeds reveal minuscule differences in performance. It
might be a space in which there are many possible solutions
associated with a given fitness.

[Benchmark [Suite [Description
codrled See [5] RLE type 4 encoder/decoder.
decodrle4
huff_enc See [5] A Huffman encoder/decoder.
huff_dec
djpeg Mediabench | Lossy still image decompressor.
g72lencode Mediabench | CCITT voice
g721decode compressor/decompressor.
mpeg2dec Mediabench | Lossy video decompressor.

rasta Mediabench | Speech recognition application.

rawcaudio Mediabench | Adaptive differential pulse code

rawdaudio modulation audio encoder/decoder.

toast Mediabench | Speech transcoder.

unepic Mediabench | Experimental image decompressor.

085.ccl SPEC92 gcc C compiler.

052.alvinn SPEC92 Single-precision neural network
training.

179.art SPEC2000 A neural network-based image
recognition algorithm.

osdemo Mediabench | Part of a 3-D graphics libraray

mipmap Mediabench | similar to OpenGL.

129.compress | SPEC95 In-memory file compressor and

decompressor.

023.eqntott SPEC92 Creates a truth table from a logical
representation of a Boolean equa-
tion.

132.ijpeg SPEC95 JPEG compressor and
decompressor.

130.1i SPEC95 Lisp interpreter.

124.m88ksim | SPEC95 Processor simulator.

147.vortex SPEC95 An object oriented database.

Table 6: Benchmarks used. The set includes ap-
plications from the SpecInt, SpecFP, Mediabench
benchmark suites, and a few miscellaneous pro-
grams.

6.1.2 Finding General-Purpose Functions

We divided the benchmarks in Table 6 into two sets®: a
training set, and a test set. We evolve over the training set
using dynamic subset selection [10]. We then apply the re-
sulting priority function to the benchmarks in the test set.
The machine-learning community refers to this as cross val-
idation. Since the benchmarks in the test set are not related
to the benchmarks in the training set, this is a measure of
the priority function’s generality.

Figure 6 shows the results of applying the single best pri-
ority function to the benchmarks in the training set. The
dark bar associated with each benchmark is the speedup
over Trimaran’s base heuristic when the training input data
is used. This data set yields a 44% improvement. The light
bar shows results when alternate input data is used. The
overall improvement for this set is 25%.

It is interesting that, on average, the general-purpose pri-
ority function outperforms the application-specific priority
function for the reference data set. The general-purpose so-
lution is less succeptible to variations in input data precisely
because it is more generally applicable.

The results of the cross validation are shown in Figure 7.
This experiment applies the best priority function on the
test set to the benchmarks in the training set. The aver-
age speedup over the test set is 9%. In three cases (un-
epic, 023.eqntot, and 085.ccl) Trimaran’s baseline heuris-
tic marginally outperforms the GP-generated priority func-
tion. For the remaining benchmarks, the heuristic our sys-

We chose to train mostly on Mediabench applications because they compile
and run faster than the Spec benchmarks. However, we randomly chose two
Spec benchmarks for added coverage.

M Train data set @ Reference data set

compress
g721encode
g721decode
huff_dec
huff_enc
rawcaudio
rawdaudio
toast
mpeg2dec
Average

Figure 4: Hyperblock specialization. This graph shows
speedups obtained by training on a per-benchmarks ba-
sis. The dark colored bars are executions using the same
data set on which the specialized priority function was
trained. The light colored bars are executions that use
an alternate data set.

35

——compress
—8-g721decode
—a—mpeg2dec
—rawcaudio
—*—rawdaudio
—e—toast
——huff_enc
huff_dec

0 ‘5 1‘0 1‘5 20 2‘5 3‘0 3‘5 4‘0 4‘5 50
Generation

Figure 5: Hyperblock formation evolution. This figure

graphs fitness over generations. For this problem, Meta

Optimization often finds a priority function that outper-

forms Trimaran’s baseline heuristic.

tem found is better.

6.2 Register Allocation

Preliminary results indicate that Meta Optimization works
well, even for well-studied heuristics. Figure 8 shows speedups
obtained by specializing Trimaran’s register allocator for a
given application. The dark bar associated with each appli-
cation represents the speedup obtained by using the same
input data that was used to specialize the heuristic. The
light bar shows the speedup when an alternate data is used.

Once again, it makes sense that the training input data
outperforms the alternate input data. In the case of regis-
ter allocation however, we see that the difference between
the two is less pronounced. This is likely because hyper-
block selection is extremely data-driven. An examination of
the general-purpose hyperblock formation heuristic reveals
two dynamic factors (exec-ratio and predictability) that are
critical components in the hyperblock decision process.

Figure 9 graphs fitness improvements over generations.
It is interesting to contrast this graph with Figure 5. The

[M Train data set O Reference data set]

decodrle4
codrle4
g721decode
g721encode
rawdaudio
rawcaudio
toast
mpeg2dec
124.m88ksim
129.compress
huff_enc
huff_dec
Average

Figure 6: Training on multiple benchmarks. A sin-
gle priority function was obtained by training over all
the benchmarks in this graph. The dark bars represent
speedups obtained by running the given benchmark on
the same data that was used to train the priority func-
tion. The light bars correspond to an alternate data set.

unepic
dipeg
rasta
023.eqntot
132.ijpeg
052.alvinn
147 .vortex
085.cc1
art

130.1i
osdemo
mipmap
Average

Figure 7: Cross validation of the general-purpose prior-
ity function. The best priority function found by training
on the benchmarks in Figure 6 is applied to the bench-
marks in this graph.

fairly constant improvement in fitness over several genera-
tions seems to suggest that this problem is harder to op-
timize than hyperblock selection. Additionally, unlike the
hyperblock selection algorithm, the baseline heuristic was
typically retained (i.e., it remained in the population) for
several generations.

We were unable to evolve a general solution for register
allocation in time for this submission. With 20 processors,
these results take about 6 days to collect.

7. RELATED WORK

Many researchers have applied machine-learning methods
to compilation, and therefore, only the most relevant works
are cited here.

Calder et. al used supervised learning techniques to fine-
tune static branch prediction heuristics [6]. They employ
two learning techniques — neural networks and decision
trees — to search for effective static branch prediction heuris-
tics. While our methodology is similar, our work differs in

M Training data set @ Reference data set

1.15 4

Speedup
=
o

0.95
0.9 A

8 2 8 2 3])

I 3 2 2 3 8 g

= 8 g £ £ @ o

@ 3 =3 =3 o 3

Q = 8 S S &

£ 8]
o

Figure 8: Register allocation specialization. This

graph shows speedups obtained by training on a per-
benchmarks basis. The dark colored bars are executions
using the same data set on which the specialized pri-
ority function was trained. The light colored bars are
executions that use an alternate data set.

1.125

—e—mpeg2dec
—&—rawcaudio
—4— g721decode
#— compress
*—huff_enc
—huff_dec

1.075

Speedup

1.025

0 ‘5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50
Generation

Figure 9: Register allocation evolution. This figure

graphs fitness over generations. Unlike the hyperblock

selection evolution, these fitnesses converge slowly.

several important ways. Most importantly, we use unsuper-
vised learning, while they use supervised learning.

Unsupervised learning is used to capture inherent orga-
nization in data, and thus, only input data is required for
training. Supervised learning learns to match training in-
puts with known outcomes. This means that their learning
techniques rely on knowing the optimal outcome®, while ours
does not. In their case determining the optimal outcome is
trivial- they simply run the benchmarks in their training
set and note the direction that each branch favors. In this
sense, their method is simply a classifier: classify the data
into two groups, either taken or not-taken. Priority func-
tions cannot be classified in this way, and thus they demand
an unsupervised method such as ours.

We also differ in the end goal of our learning techniques.
They use misprediction rates to guide the learning process.
While this is a perfectly valid choice, it does not necessarily

®In fact, this is a strict requirement both for decision trees
and the gradient descent method they use to train their
neural network.

reflect the bottom line: execution time.

Cooper et. al use genetic algorithms to solve compila-
tion phase ordering problems [9]. Their technique is quite
effective. However, like other related work, they evolve the
application, not the compiler. Thus, their compiler itera-
tively evolves every program it compiles. By evolving com-
piler heuristics, and not the applications themselves, we need
only apply our process once.

The COGEN(t) compiler creatively uses genetic algorithms
to map code to irregular DSPs [12]. This compiler, though
interesting, also evolves on a per-application basis. Nonethe-
less, the compile-once nature of DSP applications may war-
rant the long, iterative compilation process.

Beaty’s instruction scheduler based on genetic algorithms
is not only application-specific, it is also data-specific [3].
By not enforcing correctness, Beaty's algorithm may work
for the data set on which it evolves, but not for an alternate
data set.

8. CONCLUSION

Compiler developers have always had to contend with
complex phenomenon that are not easy modeled. For ex-
ample, it is not possible to create a useful model for all the
input programs the compiler has to optimize. However until
recently, most architectures — the target of compiler opti-
mizations — were simple and analyzable. This is no longer
the case. A complex compiler with multiple interdependent
optimization passes exacerbates the problem. In many in-
stances, end-to-end performance can only be evaluated em-
pirically.

Optimally solving NP-hard problems is not practical even
when simple analytical models exist. Thus, heuristics play
a major role in modern compilers. Borrowing techniques
from the machine-learning community, we created a general
framework for developing compiler heuristics. We propose a
genetic programming based methodology for automatically
learning effective priority functions.

This paper investigated two such heuristics— hyperblock
selection and register allocation. Our technique identified
more effective priority functions than the baseline functions
against which we compared. For the hyperblock formation
optimization, we achieved an application-specific speedup
of 23%. Furthermore, we found a general-purpose prior-
ity function that lead to a 25% improvement on the bench-
marks on which it was trained, and a 9% improvement on
completely unrelated applications. For the register alloca-
tion problem, our technique discovered application-specific
priority functions that yield a 6% overall improvement.

Compiler writers are forced to spend a large portion of
their time tweaking heuristics. 'We believe that automatic
heuristic tuning based on empirical evaluation will become
prevalent.

9. REFERENCES

[1] S. G. Abraham, V. Kathail, and B. L. Deitrich. Meld
Scheduling: Relaxing Scheduling Constaints Across
Region Boundaries. In Proceedings of the 29th Annual
International Symposium on Microarchitecture
(MICRO-29), pages 308-321, 1996.

[2] W. Banzhaf, P. Nordin, R. Keller, and F. Francone.
Genetic Programming : An Introduction : On the
Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufmann, 1998.

[3] S. J. Beaty. Genetic Algorithms and Instruction
Scheduling. In Proceedings of the 24th Annual
International Symposium on Microarchitecture
(MICRO-24), November 1991.

[4] D. Bernstein, D. Goldin, and M. G. et. al. Spill Code
Minimization Techniques for Optimizing Compilers. In
Proceedings of the SIGPLAN 89 Conference on
Programming Language Design and Implementation,
pages 258-263, 1989.

[6] D. Bourgin. hitp://hpuz.u-
aizu.ac.jp/hppd/hpuz/Languages/codecs-1.0/.
Losslessy compression schemes.

[6] B. Calder, D. G. ad Michael Jones, D. Lindsay,

J. Martin, M. Mozer, and B. Zorn. Evidence-Based
Static Branch Prediction Using Machine Learning. In
ACM Transactions on Programming Languages and
Systems (ToPLaS-19), volume 19, 1997.

[7] P. Chang, D. Lavery, S. Mahlke, W. Chen, and
W. Hwu. The Importance of Prepass Code Scheduling
for Superscalar and Superpipelined processors. In
IEEE Transactions on Computers, volume 44, pages
353-370, March 1995.

[8] F. C. Chow and J. L. Hennessey. The Priority-Based
Coloring Approch to Register Allocation. In ACM
Transactions on Programming Languages and Systems
(ToPLaS-12), pages 501-536, 1990.

[9] K. Cooper, P. Scheilke, and D. Subramanian.
Optimizing for Reduced Code Space using Genetic
Algorithms. In Languages, Compilers, Tools for
Embedded Systems, pages 1-9, 1999.

[10] C. Gathercole. An Investigation of Supervised
Learning in Genetic Programming. PhD thesis,
University of Edinburgh, 1998.

[11] P. B. Gibbons and S. S. Muchnick. Efficient
Instruction Scheduling for a Pipelined Architecture. In
Proceedings of the ACM Symposium on Compiler
Construction, volume 21, pages 11-16, 1986.

[12] G. W. Grewal and C. T. Wilson. Mappping Reference
Code to Irregular DSPs with the Retargetable,
Optimizing Compiler COGEN(T). In International
Symposium on Microarchitecture, volume 34, pages
192-202, 2001.

[13] M. Kessler and T. Haynes. Depth-Fair Crossover in
Genetic Programming. In Proceedings of the ACM
Symposium on Applied Computing, pages 319-323,
February 1999.

[14] J. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. The MIT
Press, 1992.

[15] S. A. Mahlke. Ezploiting instruction level parallelism
in the presence of branches. PhD thesis, University of
Illinois at Urbana-Champaign, Department of
Electrical and Computer Engineering, 1996.

[16] S. A. Mahlke, D. Lin, W. Chen, R. Hank, and
R. Bringmann. Effective Compiler Support for
Predicated Execution Using the Hyperblock. In
International Symposium on Microarchitecture,
volume 25, pages 45-54, 1992.

[17] E. Ozer, S. Banerjia, and T. Conte. Unified Assign
and Schedule: A New Approach to Scheduling for
Clustered Register Filee Microarchitectures.

[18] J. C. H. Park and M. S. Schlansker. On Predicated

Execution. Technical Report HPL-91-58, Hewlett
Packard Laboratories, 1991.

B. R. Rau. Iterative Modulo Scheduling: An
Algorithm for Software Pipelining Loops. In
Proceedings of the 27th Annual International
Symposium on Microarchitecture (MICRO-24),
November 1994.

Trimaran. hitp://www.trimaran.ory.

N. Warter. Modulo Scheduling with Isomorphic
Control Transformations. PhD thesis, University of
Illinois at Urbana-Champaign, Department of
Electrical and Computer Engineering, 1993.

