
Aggressive Inlining

Andrew Ayers Robert Gottlieb Richard Schooler

Hewlett-Packard Massachusetts Language Laboratory
300 Apollo Drive

Chelmsford, MA 01824
e-mail: {ayers,gottlieb,schooler}@ch.hp.com

Abstract

Existing research understates the benefits that can be
obtained from inlining and cloning, especially when
guided by profile information. Our implementation of
inlining and cloning yields excellent results on average

and very rarely lowers performance. We believe our
good results can be explained by a number of factors:
inlining at the intermediate-code level removes most
technical restrictions on what can be inlined; the ability
to inline across files and incorporate profile information

enables us to choose better inline candidates; a high-
quality back end can exploit the scheduling and regis-
ter allocation opportunities presented by larger subrou-
tines; an aggressive processor architecture benefits from
more predictable branch behavior; and a large instruc-
tion cache mitigates the impact of code expansion. We
describe the often dramatic impact of our inlining and
cloning on performance: for example, the implementa-
tions of our inlining and cloning algorithms in the HP-
UX 10.20 compilers boost SPECint95 performance on

a PA8000-based workstation by a factor of 1.32.

1 Introduction

Procedure boundaries have traditionally delimited the
scope of a compiler’s optimization capabilities. Indeed,
it is no accident that optimizations within a procedu-
ral scope are termed global optimizations. But as an
optimizer’s scope is limited, so is its power, and several

techniques have been developed to extend optimizations
to larger scopes.

One such technique is inlining: direct incorporation
of the code for a subroutine call into the calling proce-
dure. After inlining, optimizations blocked or hindered

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

PLDI ‘97 Las Vegas, NV, USA

0 1997 ACM 0-89791-907-6/97/0006...$3.50

by the procedure call boundary can be applied straight-

forwardly to the combined code of caller and cake with
little or no loss of precision. As a side benefit, the run
time cost of a procedure call is also eliminated. Another
common technique for exploiting interprocedural infor-
mation is cloning: the duplication of a &lee so that its
body may be specialized for the circumstances existing

at a particular call site or set of call sites.
Mining is often considered to be a brute-force ap-

proach to interprocedural optimization. Since many
global optimizations are not linear time or linear space,
and since instruction caches are of fixed capacity, the
code expansion caused by inlining is cause for some con-
cern. Interprocedural analysis is usually proposed as a
more tractable alternative to inlining with less drastic
resource costs. However, it is difficult to model many
important analyses in an interprocedural setting, and
many of the analyses degrade markedly in the usual case
where not all program source is visible to the analyzer.
Even if interprocedural analysis is performed, effective
use of this information will almost always require code
expansion, since many of the code transformations en-

abled by an interprocedural analysis are impossible to
safely express without some duplication of code in ei-
ther the caller, the callee, or both.

Our high-level intermediate-code optimizer, HLO,
employs both inlining and cloning iu combination to
achieve its optimization goals. Cloning is goal-directed:
it is used to expose particularly important details about
the calling context to the callee. Inlining is used more

liberally to allow traditional optimizations to affect a
wider scope. HLO’s inlining and cloning capabilities

are uniquely powerful: it can inline or clone calls both
within and across program modules, can inline or clone
independent of source language, can accommodate both
user directives and profile directed feedback, and can
inline or clone at almost every call site with very few
restrictions.

The aggressive inlining and cloning done by HLO can
substantially reduce the run time of a program. For ex-

134

ample, on the six SPEC92 integer benchmarks, HLO’s
inlining and cloning boost the overall performance ra-

tio by a factor of 1.24 on a PA8000 workstation, with a
maximum speedup ratio of 2.02. For the eight SPEC95

integer benchmarks the results are even more dramatic,
boosting overall performance by a factor of 1.32 with a
maximum speedup ratio of 1.80.

The remainder of this paper is organized as follows:
Section 2 describes the capabilities and structure of
HLO; Section 3 presents data from a number of mea-
surements; Section 4 describes related work, and Sec-

tion 5 summarizes our results and describes opportuni-
ties for future work.

2 HLO’s Mining and Cloning

2.1 Compiler Infrastructure

The current generation of HP compilers communi-
cate via a common intermediate language known as

mode. Language front-ends produce ucode, and the
common back end accepts ucode as input. HLO acts
as a ucode-toucode transformer interposed between
the front and back ends of the compiler. By buffer-
ing the ucode from the front-end, HLO is able to per-

form module-at-a-time optimizations. An alternative
compile path allows the ucode to be stored into special
object files known as isoms. These files remain unopti-
mized until link time. When the linker is invoked and

discovers isoms, it passes them en masse to HLO, which
performs optimizations and then passes the files one-at-
a-time to the back end, where real object files are pro

duced. After all files have been optimized the linker is
reinvoked on the real object files to build the final exe-
cutable. This path allows HLO to perform intermodule
optimizations.

The isom path is fully make compatible. It also al-
lows for the incorporation of profile information - for
example, branch execution counts - gathered by previ-
ous training runs. The availability of profile information
feeds the inlining and cloning heuristics, and enables
a number of other profile-based optimizations (PBO)
within the compiler [15, 9, 121. Figure 1 gives a picture
of how all this fits together.

2.2 Structure of HLO

Conceptually, HLO operates as something of a pipeline.
The input stage translates the ucode into HLO’s own
internal representation (IR), and builds up a compre
hensive symbol table. A variety of classic optimizations
(e.g. constant propagation) are performed on the IR at
this time, mainly to reduce its size. After all code has
been input, a limited amount of inter-procedural anal-
ysis is performed. HLO then inlines and clones in a

manner we describe below. The output phase converts
the HLO IR back into ucode and sends the ucode on to

the back end for intensive intraprocedural optimization
and ultimately generation of object code.

HLO performs several passes of inlining and cloning.
The main motivation for this multi-pass structure is
that it is quite difficult to anticipate the optimization
impact of a particular inline or clone. If all inlining and
cloning were done in a single pass HLO would not be

able to focus in on particular areas of interest revealed
only after the first stage of inlining. Having multiple
passes also simplifies matters like cloning a recursive
procedure with a pass-through parameter which might
be difficult to do correctly in a single pass. The overall

algorithm is sketched in Figure 2.
High-level control of the inliner is done by giving

the inliner a budget. This budget is an estimate of
how much compile time will increase because of inlin-
ing. By default the inliner will try to lit compile-time
increases to 100% over no inlining. Note that because

various optimization phases are nonlinear, a 100% in-
crease in compile time does not imply that the inliier
will double the size of the code. The HP-UX backend
optimizer contains several algorithms that are quadratic
in the size of the routine being optimized, so we model
this effect accordingly. For our compiler, then, code

growth is typically on the order of 20%. The budget
can be adjusted in either direction by a variety of user
controls. Once the overall budget has been computed,
the inliner computes the staging for the budget. This
apportions the budget amongst the various passes, ba-
sically to ensure that not all of the budget is used up
in the first pass. The compiler then alternates cloning
and inlining passes until either the budget is exhausted

or a pass limit is reached.

2.3 Cloning

Cloning begins with the selection of cloning sites. Each
call site is examined in turn. The cloner first determines
if the call site passes certain legality tests. For example,
cloning is disallowed if there are gross type mismatches
between caller and callee, or if the caller and callee do
not agree on the number of parameters to be passed.’

Next, the cloner determines if the caller supplies in-

teresting information to the callee. For example, the
caller might pass an integer 0 as the first actual param-
eter. If the calliig context is sufficiently interesting,

the callee’s use of this context is queried next. If the
callee can benefit from knowing about its formals what
the caller knows about its actuals, the site is consid-
ered to be one suitable for cloning. At this point, the

‘We could clone even in such cases, but the idea is to try and
preserve the behavior of even semantically incorrect programs.

135

Sources Front End Optimization
Linker

Front End Optimization Optimkation

optimized
Executable

Figure 1: (Top) A traditional compile path, supporting intraprocedural optimization, and interprocedural optimiza-
tion within a source module. (Bottom) The path used in HP-UX compilers to support cross-module optimization
and profile-based optimization.

Inline and Clone(G)

INPUT

call graph G: (routines, edges)

ALGORITHM
// estimate current compile time cost
current cost C = 0
FOREACH routine R IN G

c= C + (sizeof (R)j2

/,I determine budget
growth factor D = 1.2
budget B = C * D

// determine staging of budget
s co1 = C + B * 0.2
. . .

SClimit-11 = C + B

// inline and clone
clone database D = (}
pass number P = 0
WHILE (C c B AND P < limit 1 Do

c= Clone(G,SCPl ,C,D)
c- Inline(G,SCPl ,C)
P =P+l

Figure 2: Overall Inlining and Cloning algorithm

cloner effectively intersects the information supplied by
the caller and the information useful to the cake to
create a clone specification, or clone spec. In our cur-
rent implementation, only caller-supplied constants are
considered interesting. Many other criteria are possi-
ble: cloning to exploit aliasing properties that hold at

the call site, or the fact that certain arguments are ig-
nored by the callee, or that the caller ignores the return
value, and so on.

Our current implementation of the &lee-side anal-

ysis is relatively simplistic. Each parameter is consid-
ered independently, only the abstract constancy or non-
constancy of the parameter is considered, and we do not
model interprocedural effects (pass-through constants).
Special emphasis is put on parameter values that reach
the function position at an indirect call site. Each inter-
esting use of a parameter is weighed by an estimate of
the importance of that use. When PBO data is present,
the compiler computes the profile count of the block
relative to the routine entry; without such data it uses

heuristics to guess at the relative importance.
After finding an interesting call site, the cloner could

continue on building clone specs for all suitable call
sites, but doing so might lead to unnecessary prolif-
eration of clones. Instead, once an interesting site has
been found, the cloner uses the clone spec to try and
greedily create a clone group: a set of call sites which
can safely call the clone described by the clone spec.
This is done by examining each of the calls made to the

136

callee to see if the calling context at the call site is com-
patible with the clone spec created for the clone group.

If so, the call site is included into the clone group. Once
the clone group is completely formed, the cloner then

assesses the run-time benefit of making the clone. This
calculation takes into account factors like the estimated
total number of calls that will call the clone instead of
the original routine, and the value to the callee of the
caller-specific context information.

After all call sites have been examined, the cloner
has a collection of clone groups describing the particu-
lar clones that could be created, and an estimate of the
benefit of creating each clone. The cloner then ranks

all clone groups by benefit and greedily creates clones
and modifies call sites until the current allotment of the
compile-time growth budget has been used up. Any
clone groups that were not handled in this pass are dis-
carded; they may be recreated and cloned in a later
pass.

Creation of a clone is fairly straightforward. The IR
for the clonee is duplicated, and any formal parameters
that are known from the calling context are turned into
routine-scope variables and initialized with appropriate
constants in the clone’s entry block. If there are slight

discrepancies in type, a type cast is inserted. The clone
is always placed into the same module as the clonee. If
the caller is in another module and is passing symbolic
information which is only visible in the caller’s module
(e.g. the address of a file-static procedure), this infor-
mation must be promoted to global scope and given a
unique name that will not collide with any user-supplied
name.

As clones are created, the clone and associated clone
spec are also recorded in a special database. This

database comes into play in later cloning passes, when
it is possible that the cloner will reproduce the same

clone spec used to clone in an earlier pass, because in-
tervening optimizations have sharpened the information
available at call sites which were previously not worth
consideration. If a given clone exists in the database
then it is simply reused; otherwise the clone must be

created as described above.
Modification of the call sites in a clone group to in-

voke the clone is also fairly straightforward. The clone
spec describes the signature of the new routine, so any

parameters incorporated into the clone are edited from
the actuals list. The call site is then modified to refer to
the clone instead of the original routine. This modifica-
tion in turn inspires changes in the call graph to reflect
the new relationships between caller, clonee, and clone.
In particular, if all calls to a clonee are replaced by calls
to a clone, the clonee may become unreachable in the
call graph and will be deleted. The cloner attempts to
anticipate subsequent clonee deletion when estimating

Clone(G,B,C,D) : returns C

INPUT
call graph G: (routines,edges)
budget B
current cost C
clone database D

ALGORITHM

N setup
FOREACH routine R IN G
create parameter-usage descriptor P(R)
FOREACH edge E IN G
create calling-context descriptor S(E)

// build clone groups
FOREACH edge E in G
callee R = E.target
IF (clonable(R) end clonable(E) 1 THEN
clone spec CS = intersect(S(E), P(R) >
IF (CS is nonempty > THEN
clone group CC = (R,CS,E)
FOREACH edge EJ incident on R
IF (clonable(E') AND

matches(S(E), CS) > THEN
add E’ to CG

estimate benefit of CC

// select clones
sort CGs by benefit; C' = C
FOREACH clone group CG IN CGs
cost x = (sizeof(R)j2
IF (C' + X < B) THEN
accept CG; C' = C' + X

// create clones and jix call sites
FOREACH clone group CG IN accepted CGe
IF (! lookup(D, R, CS> > THEN
R' = make clone (R, CS)
add database entry (R, CS, R’)
FOREACH edge E' IN CC
change target of E' from R to R'

/,/ optimize clones and recalibrate
FOREACH newly created clone R'
optimize(R))
C = C + (sizeof(R')j2

Figure 3: Cloning Pass

137

the budget impact of a particular clone group or groups;
in effect, a clone group that ensures that the clonee will
be deleted is considered to have no compile time impact.

2.4 Mining

The overall structure of an inlining pass is similar to
cloning. The inliner first considers all call sites for
any legal, technical, pragmatic, or user-imposed restric-
tions on inlining. Illegal sites include those with gross

type mismatches, varargs, or argument arity differences.
Technically restricted sites include those where infor-
mation specific to the callee disagrees with information

specific to the caller. For example, the caller’s IR may
specify that reassociation of floating point operations
is allowed, while the callee’s IR may indicate that such
re-associations are unacceptable. By and large these
kinds of restrictions are imposed to simplify the task of
representation of this information. Pragmatic concerns

include issues like handling callees that use alloca to
dynamically allocate space on the stack, or inlining at
a site where actual parameters describe overlapping re-
gions of memory and the callee is allowed to assume
that its formal parameters do not alias. User imposed
restrictions come from various command line options

and pragmas.
Once the set of viable inlining sites has been identi-

fied, they are assigned a runtime figure of merit. High-
frequency call sites are given highest priority. Sites that

occur in blocks executed less frequently than the rou-
tine entry block are assigned a penalty. This helps to
avoid inlining into a non-critical path; doing so might
cause increases in register pressure which push spills
into critical code paths and hurt performance.

The inliner then walks over the inline site list in pri-

ority order. The compiktime impact of each site is
considered, and if within the current budget, the inline
is accepted. Computation of the compile time effect is
complicated by interactions among inlines. For exam-
ple, if A calls B and B calls C, the cost of inlining B into
A depends on whether or not C has been already been
inlined into B. To model this dependence, the inliner
keeps a schedule of the order in which it will perform
all accepted inlines. By and large, the inliner attempts
to work bottom-up over the call graph. To compute

the cost of inlining B into A, a description of the in-
line is first inserted into the schedule in the appropriate
spot. If B is then determined to be the target of an ear-
lier inline or inlines, the estimated size of B after those
inlines have been performed is used to compute the cost
of optimizing A.

The inliner processes and accepts call sites greed-
ily until its allotment of the budget is exhausted. At
this point the remaining viable inline sites are discarded

Inline(G,B,C) : returns C

INPUT
call graph G: (routines,edges)
budget B
current cost C

ALGORITHM
// screen inline candidates
FOREACH edge E IN G
IF (inlineable(E) > THEN
accept E; compute benefit(E)

// select inline sites
sort accepted E's by benefit
C' = c
FOREACH accepted edge E

insert E into schedule

cost x =
(sizeof(E.target + E.source >I2

- (sizeof(E.target)I2
C' ' = C'

C' = C' + x

IF (E.target is source in
later inline) THEN

adjust C' for cascaded cost
IF (C' > B) THEN

remove E from schedule

C’ = C”

// perform inlines
FOREACH scheduled edge E
inline E.target into E.source

// optimize inlines and recalibmte
FOREACH routine inlined into R'
optimize@')
c= C + (sizeof(

Figure 4: Mining Pass

130

GO8.e.SprfSso 3166

022.li 1638

023.cqntoa 472

026.comprcss 200

072x 1373

085gcc 9942

099.go 2565

124.m88ksim 1876

126.gcc 21241

129.compress 116

13OSi 1527

132.ijpeg 1644

134.ped 4501

147.voltcx 9478

= ZEi
m cross module

m within module

recursive

Figure 5: Static characteristics of call sites in the SPEC

integer benchmarks. The number at right is the total
number of call sites in the code.

(they may be reconsidered in a subsequent pass of inlin-
ing). The inliner then uses its schedule to carry out each
inline in the list of accepted inlines. As with cloning,
movement of code between modules may result in pro-
gram entities being promoted to wider scopes.

3 Measurements

3.1 Characteristics of Call Sites

Figure 5 illustrates some static information about the

14 programs in the SPEC92 and SPEC95 suites. Each
call site in these programs can be classified into one of
five categories: external, indirect, cross-module, within-
module cross-routine, and recursive.

External sites represent calls to library routines or to
program modules not visible to the compiler. In princi-
ple it is possible to provide intermediate code versions
of such libraries and modules to broaden the scope of
inlining or cloning even further, but the results reported
in this paper are with standard precompiled libraries,
with one notable exception. The 072. SC benchmark in-
cludes a special curses library in which all curses calls

do nothing. These calls (reported in our figure as cross-
module calls) would be ideal candidates for inlining, but
they are eliminated before inlining because HLO’s inter-
procedural analysis determines that they have no side
effect.

At indirect sites the callee is computed at run time,

so these sites are not directly amenable to inlining or
cloning. It is possible to employ various techniques to
try and resolve the target of indirect calls at compile
time. For example, HLO will aggressively clone at sites
where the caller passes a pointer to a procedure and
the callee uses the value of a formal variable in an indi-
rect call. Subsequent constant propagation of this code
pointer to the call site will then provide the information
needed to turn the indirect call into a direct call, which
can then be inlined or cloned in a later pass. This sort
of staged optimization would be much more difficult to
accomplish in a single inlining pass.

The remaining are amenable to inlining and cloning.

As the figure shows, there are significant numbers of
cross-module calls. The ability to inline these cross-
module calls is crucial for good performance.

3.2 Transformations to SPEC Integer Programs

Table 1 shows more detail on the transformations done

to a subset of the SPECint programs by HLO. There
are several points worthy of further discussion. First, as
more information is made available to the compiler, the
quality of the code improves. For instance, in 072.sc,
the base performance level with iulining and cloning
done per-module is 7.1 seconds. If the compiler is al-
lowed to inline and clone cross-module, the runtime
drops to 6.3 seconds. If the compiler is allowed to make
use of profile information, the runtime becomes 5.3 sec-
onds. Finally, the combination of both cross-module
iulining and cloning with profile feedback gives a run
time of 4.5 seconds. By and large, this monotonic im-
provement property holds for almost all programs that

we have examined.
Another consequence of the increase in scope is that

compile time2 increases. Again looking at 072.sc, the
base compile time is 862 seconds, while the compile time
with cross module inlining and profile feedback is 1786
seconds, approximately 100% larger (this time includes
the time required for the instrumenting compile, train-
ing run, and final compile). In some cases, the compile
time increases are a good deal larger; in others, smaller.
The precise impact is often difficult to estimate because
the analyses performed downstream are often quite sen-
sitive to particular sorts of code structures.

2All programs were compiled on an HP K400 workstation us-
ing special developmental versions of the HP-UX 10.20 compilers.
The times shown are therefore 30-40% slower than would be ob-
tained by production compilers on the same hardware.

139

Ti; Tim;26 1

983 8.2

976 8.2
1047 7.6

348 25.6
466 20.0

981 1 6.3

Clone
Benchmark Scope Inlines Clones Repls Deletions

Compile 1 Run

008,espresso 281 28 47 28
C 188 18 32 23
P 815 45 106 9
cP 297 17 47 7

022.li 256 42 52 63
C 76 13 18 15
P 620 93 495 35
cP 90 23 256 10

072. SC 127 26 30 18
C 39 6 8 4
P 244 42 50 21
cP 106 12 17 6

085 .gcc 732 87 247 70
C 1008 230 760 193
P 309 47 110 25
cP 641 349 2484 80

099. go 400 23 219 6
C 545 30 371 2 877
P 154 14 177 0 1013
cP 121 22 327 0 996

124.m88ksim 140 33 64 18 491
C 339 121 431 19 702
P 97 21 27 17 783
cp 80 49 132 7

147. vortex 253 17 67 9
C 841 121 2211 5
P 140 9 12 5
cp 175 83 2142 1 IL

13544 1 22.5

453.4
436.3

386.0

298.0

284.8
228.7

2028 1 373.7
2522 1 270.1

Table 1: Mine and clone information for selected benchmarks. Here c indicates cross-module compilation, p profile-
based compilation. Baseline is a compiler with full inlining and cloning capabilities.

140

008.espresso m , , , , ,

022.li -

023.eqntott

026.compress

072.sc

085gcc

SPECint!JZ

099.go

124.m88ksim

126.gcc

129.compfcss

130X

132.ijpeg

134.pecl

147.vortex

SPECint95

3
I I I I
I I I I

I I I

I I

I I

116 I!8

m inline and clone
V inline
m clone

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

2!0

Figure 6: Relative speedup of SPEC integer programs
with inlining, cloning, or both, for the PA8000 worksta-
tion. Baseline compile uses cross-module and profile-
based optimization, plus peak options not affecting in-
lining or cloning. Overall figures present the geometric
mean speedup for each benchmark suite.

Data in this table also underscores the role of clone
groups. Most clones are usable at more than one call
site, and as the optimization scope widens, the ratio of
call sites modified to clones created increases, indicat-
ing that a given clone is being used at a larger number
of sites on average. The distribution tends to be quite
skewed. A sizeable number of routines are also deleted

during compilation. These include both file-scope user
routines and clones which are provably not callable be-
cause all calls have either been cloned or inlined.

The data in table also indicates the synergistic ben-
efits of profile-based and cross-module optimizations.
For instance, in 099. go, the cross-module profile-based
compilation actually does fewer inlines than the other
compilations, yet produces a faster binary. Compile
times are shorter than the cross-module alone case, de-
spite the need for a preliminary compile with instru-

mentation and a training run to produce the profile
database. The data also shows that for our compiler,
profile-based optimization is usually more valuable than

cross-module optimization. We cannot yet say if this
represents anything fundamental; it may simply be an
indication of the relative maturity of the profile-based

optimization components.

3.3 Overall Performance

Figure 6 shows the relative performance of the 14

SPECint programs as measured on a PA8000-based [lo]
K460 workstation running HP-UX 10.20. The worksta-

tion had two 180 MHz cpus and 256 MB of memory,
16way interleaved. Programs were compiled with the

HP-UX 10.20 C compiler. All compilations used inter-
procedural optimization (t04 +Onolimit) and all the
compiles incorporated profile information (tP) gathered
from an instrumentation run done on the specified train-
ing data set. Each benchmark was compiled four sepa-
rate times: with no inlining or cloning, with only inlin-

ing or only cloning, and with both inlining and cloning.
Each executable was run three times on an unloaded
workstation, and the best time reported was used.

The data shows that inlining alone has the biggest

impact on performance, though cloning is a vital con-
tributor to both 022. li and 13O.li (which are quite
similar) and to 124.m88ksim. Cloning by itself does
not yield significant performance improvements, and on
some benchmarks actually reduces performance slightly
over what can be obtained by inlining alone. Though
we have several theories, we have not as yet been able
to determine the precise reason or reasons for the per-
formance losses seen in some benchmarks when just
cloning is used.

What is it that happens in inlining that leads to

these speedups? To try and answer this question we
ran several of the benchmarks through a PA8000 sim-
ulator. Data for several of these sets of simulations
are presented in Figure 7. In gathering this data, the
simulator ran modified versions of the SPEC95 inte-
ger benchmarks, with simplified input sets designed to
closely mimic the behavior of the benchmark.

The simulation data shows that in several bench-

marks inlining has resulted in dramatic drops in overall

execution time (as measured by cycles) and the num-
ber of instructions retired by the processor. The effect
on the CPI varies; in 130. li it falls dramatically, but

in 147.vortex it rises; yet both benchmarks speed up
substantially.

Not surprisingly, inlining and cloning both tend to
increase the I cache miss rate and the total number of
I cache misses. For the most part, however, inlining
reduces the total number of I cache accesses, meaning

141

Relative

Cycles

Cycles
Per Instruction

Relative
I Cache Act.

I Cache
Miss Rate xl000

Relative
D Cache Act.

D Cache
Miss Rate xl00

Relative
Branches

Branch

Miss Rate

Key

1.0

0.8

0.6

0.4

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

m inline and 4one m inline

m clone m neither

Figure 7: Simulation results for the PA8000 running a modified versions of the SPEC integer benchmarks. Relative
indicates that the data is scaled relative to the run with neither inlining or cloning.

142

that some of the increase in miss rate is due to the same
number of I cache misses being amortized over fewer ac-

cesses. In the larger benchmarks, especially 126.gcc,
the I cache miss rate more than doubles. The overall im-

pact of the inlining and cloning on I cache performance
is unclear, and seems to depend on the particular dy-
namic of the program in question.

The number of D cache accesses is also dramatically
decreased. This causes an increase in the data cache

miss rate, again because a similar number of misses is
spread over fewer total accesses. A big part of this dra-
matic drop is the elimination of caller and callee register
save operations at call sites that have been inlined. We

believe that this indicates that the register allocation
phase of the HP-UX compiler has little difficulty with

the larger routines created by inlining and cloning, and
that for the most part register pressure is not an issue.

The number of branches overall is reduced. Since

this number includes procedure calls this is also not
surprising. The branches that remain appear to be-
come more predictable. Since the PA8000 always mis-
predicts procedure return branches, this may also be a
misleading statistic. However, we suspect that the pre-
dictability of the remaining branches is also enhanced.
Any possible improvement in branch behavior must be
weighed off against an increase in the total number of
branches, which may increase the rate of branch colli-
sion in a branch prediction cache.

3.4 Validation of Heuristics

There is no practical technique at compile time for de-
termining the optimum set of inlines or clones. Both
the run time benefit and compile time costs must be
estimated (see Ball [3] for an example). Furthermore,
in any reasonably sized benchmark, there are a stag-
gering number of ways to perform inlining and cloning.
Chang, Mahlke, Chen, and Hwu [5] point out that a
simplified version of the problem is equivalent to the
knapsack problem, which is known to be NP complete.
Each site can be either inlined or cloned, and the or-

der of inlining and cloning may make a difference in the
final code.

Inlining and cloning must thus be guided by heuris-
tics. As with all heuristics it is important to verify

that the decisions they make are reasonably sound ones.
To this end we present the data shown in Figure 8,
which illustrates one technique for assessing the quality
of heuristics used in HLO. As an experiment, we var-
ied the budget provided to the inliner from a relatively
small budget of 25 to a large budget of 1000. For each
budget level we compiled the benchmark 022. li a num-
ber of times. In each compile we artificially stopped the
inliner after a certain number of inlines and/or clone re-

placements. The resulting curves depict the incremen-
tal benefit of each successive inline or clone replace-
ment. As can be seen, very few inlines or clones have
an adverse impact on performance. Also, once the bud-
get has reached a sufficiently large value (100 in this
case), there is no additional performance increase with
extra inlining. This property (that performance reaches
an asymptote with increasing budget) is true of many
of the programs we have studied. Our default bud-
get of 100 was chosen to maximize the performance of
the benchmarks we studied without performing unnec-
essary inlines.

3.5 Mining in Other Codes

Inlining is also of potential benefit in any language that

supports the notion of a procedure or subroutine. At
present, HLO is only capable of optimizing C, FOR-
TRAN, and C++ programs.

In this paper, we do not report any data for the
floating-point benchmarks in the SPEC suite. One rea-
son for this is that there is a significant barrier to in-
lining in FORTRAN: it is difficult to aggressively rep-
resent the aliasing semantics of an inlined FORTRAN
subroutine. By default, the compiler is free to assume
that formal parameters do not alias each other nor any
global variables. Representing this information in the

post-inlined code is tricky, and compilers (like ours) that
cannot properly represent it are usually better off not
inlining.

The SPEC benchmarks tend to be small programs;
126. gee is the largest at around 120,000 lines of code.
A major challenge to effectively deploying aggressive
inlining is the sheer size of production codes. We have
recently been experimenting with compiling the 500,000
line performance kernel of an important application pro-
gram, and have been amazed to find that significant

speedups like we see in some of the SPEC benchmarks
can also be obtained in large production codes.

4 Related Work

Many research and production systems have been capa-
ble of inliing and cloning [l, 2, 14, 7, 5, 4, 11,6, 8, 131.
However, very few have reported consistently good re-

sults in a mature compilation system, reported results
on moderately large well-known programs, reported the
effects of aggressive inlining and cloning, or offered a de
tailed analyses of the costs and benefits of inlining.

Chang, Mahlke, Chen, and Hwu [5, 111 describe a
profile-based inliner for the IMPACT compiler. Their
work is perhaps closest in spirit to ours, inlining across
modules, and making use of profile information to select
the best inlining sites. The control algorithm makes a

143

. 25

- loo
--- 200

-. - 1000

19 -

17 -

I5 -

14 -

I2
0

I

50

I

loo

I

150

.4
.tied ‘\

\
\ ‘.A

\ ‘\ .-

I I I I
300 350 4clo 450

Number of inlining and cloning operations

Figure 8: Incremental benefit of inlines and clone replacements in 022.li, at various budget levels.

single pass over the inlineable sites, ranking them by
profile weight. As in our implementation, selected in-
lines are then scheduled to be performed in roughly
bottom-up call graph order. Overall control is gov-

erned by a code growth budget. They report a mean
speedup of 11% with a maximum speedup of 46%. Our
work differs in a few important aspects: we make use
of cloning, perform multiple passes, rank inline sites
both in terms of profile weight and relative execution
frequency, and have profile information not only on in-
terprocedural arcs but also intraprocedural ones.

Davidson and Holler [7] developed an inliner for C
programs that operated at source level. They reported
a mean speedup of about 12% and a maximum speedup
of about 35% on a variety of programs. They noticed a

number of cases where inlining induced register pressure
limited performance. Their study was done without the
benefit of profile information, which we believe to be
crucial to getting good performance.

Allen and Johnson [2] describe a C language inliner
and give a good discussion of some of the motivations for
inlining. However, we feel that the commonly held no-

tion (found in [2] and elsewhere) that an inliner should
aim to inline only small functions to be untrue. Medium
and large functions should be inlined if the remainder
of the compile path is capable of aggressively handling
large functions.

Cooper, Hall, and Kennedy [S] describe a cloning
algorithm which is a good deal more sophisticated than
ours. Their analysis is interprocedural and relies on the
actual values of constants passed to callees. Our use

of clone specifications and clone groups mimics some of
the clone vector merging possible in their work. For
reasons we do not yet completely understand, we have

found our implementation of cloning to be relatively

ineffective in boosting performance.
Dean and Chambers [S] describe an interesting sys-

tem that is able to perform experiments to determine
the actual benefits of an inline. Our system is handi-

capped by having to rely on static estimates of the ben-
efit of an inline, and assessing an independent benefit
of any particular inline is not easy, since such benefits
depend upon all the other inlining decisions that have
been made so far. For code under development in sit-

uations where development builds make use of inlining,
however, the idea of a database to record information
about past inlining decisions is appealing.

5 Summary and Future Work

Our experiences with inlining and cloning in HLO
demonstrate that aggressive inlining and cloning can
give substantial and widespread improvements in the
performance of programs, with some well-studied pro-
grams like 022.li speeding up by a factor of two.

Our inliner differs from previous inliners described in
the literature in that it is able to inline at almost any
call site without restriction; it can inline cross-module

and cross-language calls; it is uses profile feedback in
conjunction with multiple passes to aggressively inline
in the important parts of the program and adapt to the
consequences of previous inlines and clones; and it keeps

144

a budget that allows for a global assessment of compile
time impact without artificially restricting the amount
of inlining in any one portion of the code.

Our inliner was added to a mature compiler that
already contained an aggressive, state-of-the-art global
optimizer. The fact that inlining produces such im-

pressive additional speedups is an indication that the
gains we are seeing here are not simply straw-man arti-
facts where high-level optimizations eliminate problem-

atic code from an immature global optimizer. Instead,
the inliner’s actions expose more significant and weighty
regions of code to the global optimizer, and thereby en-
able the full power of the compiler to be trained on the
performance-critical portions of the application.

Though we are pleasantly surprised with the results

we have obtained so far, we have a number of future
projects in mind. We want to apply aggressive inlining
to large, production programs like the HP-UX kernel,
database applications, and CAD tools. We also plan
to improve the impact of cloning and remove the in-
lining restrictions for FORTRAN codes. We are look-
ing at techniques to make profiling less onerous, per-

haps incorporating profile information from a variety
of sources. We are also contemplating using aggressive
outlining as a complement to aggressive inlining, to help
further focus the global optimizer on the truly impor-
tant stretches of code.

Acknowledgments

We gratefully acknowledge the inspired contributions
made by our colleagues on the HLO project and in other
HP language projects, especially Anne Holler, Manuel
Benitez, Wei Hsu, La&y Shah, Carl Burch, Rajiv Ku-
mar, Adam Matusiak, John Liu, Jonathan Springer,

and Steve Rehrauer. We also appreciate the thoughtful
comments of the anonymous referees which helped to
substantially improve this paper.

References

PI

PI

[31

F. C. Allen and J. Cocke. A catalogue of optimiz-
ing transformations. In Design and Optimization
of Compilers, R. Ruskin, Ed., Prentice-Hall, En-
glewood Cliffs, NJ, 1971, l-30.

R. Allen and S. Johnson. Compiling C for vector-
ization, parallelization, and inline expansion. Pro-
ceedings of the ACM SIGPLAN ‘88 Conference on
Programming Language Design and Implementa-
tion, 241-249.

J. Ball. Predicting the effects of optimization on
a procedure body. ACM SIGPLAN Notices 14(8),
214-220, 1979.

PI

PI

PI

171

PI

PI

[lOI

WI

WI

1131

[I41

P51

P. Chini. Automatic Inlining. IBM Research Re-
port RC 20286, November 1995.

P. P. Chang, S. A. Mahlke, W. Y. Chen, and W.
W. Hwu. Profile-guided automatic inline expansion
for C programs. Software Practice and Experience
22(S), 349-369, May 1992.

K. D. Cooper, M. W. Hall, and K. Kennedy.
A methodology for procedure cloning. Computer
Languages, 19(2), 105-117, February 1993.

J. W. Davidson and A. M. Holler. A study of a C
function inliner. Software Pmctice and Experience
18(8), 775790, August 1988.

J. Dean and C. Chambers. ‘Iraining compilers to
make better inlining decisions. Technical Report
93-05-05, Department of Computer Science and
Engineering, University of Washington, 1993.

A. M. Holler. Compiler optimizations for the PA-
8000. COMPCON 1997 Digest of Papers, February
1997.

D. Hunt. Advanced performance features of the 64-
bit PA8000. COMPCON 1995 Digest of Papers,
123-128, March 1995.

W. W. Hwu and P. P. Chang. Inline function ex-
pansion for compiling C programs. Proceedings of
the ACM SIGPLAN ‘89 Conference on Program-
ming Language Design and Implementation, 246-
257.

K. Pettis and R. C. Hansen. Profile guided code
positioning. In Proceedings of the ACM SIGPLAN
‘90 Conference on Programming Language Design
and Implementation, 16-27.

S. Richardson and M. Ganapathi. Interprocedural
analysis versus procedure integration. Information
Processing Letters, 32(3), 137-142, August 1989.

R. W. Schiefler. An analysis of inline substitution
for a structured programming language. Commu-
nications of the ACM 20(g), 647-654, September
1977.

S. E. Speer, R. Kumar, and C. Partridge. Improv-
ing UNIX Kernel Performance using Profile Based
Optimization. In USENIX 1994 Proceedings.

145

