Studying Sabotage-Toler ance M echanisms through Web-based Parallel
Parametric Analysisand Monte Carlo Simulation

Luis F. G. Sarmenta*
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

In this paper, we show how we have been able to use
parallel parametric analysis and Monte Carlo simulations,
running on a Java applet-based volunteer computing sys-
tem, Bayanihan, to develop and study new mechanisms for
addressing the problem of sabotage by maliciousvolunteers
in volunteer computing and Internet computing systems.
e begin by describing the general -purpose framework we
have devel oped for writing various parametric analysisand
Monte Carlo applications on Bayanihan. Then, we give
an overview of the sabotage-tolerance mechanismswe have
devel oped, including voting, spot-checking, and credibility-
based fault-tolerance, and present some exampl es of results
we have gotten using our simulator. Finally, we present per-
formance results that show how parallelizing our simulator
has made our research possible by enabling us to do para-
metric analysisin much lesstimethan possiblewith asingle
computer.

1 Introduction

A very promising class of Internet computing systems
are volunteer computing systems [11], which seek to make
it possible to build very large parallel networks very quickly
by enabling casual users on the Internet to share their com-
puters’ idle time through easy-to-use software. Probably the
most popular examples of these are distributed.net, which
gained fame in 1997 by solving the RSA RC5-56 challenge
using thousands of volunteers’ personal computers around
the world [2], and SETI@home, which is currently em-
ploying hundreds of thousands of volunteer machines to
search massive amounts of radio telescope data for signs
of extraterrestrial intelligence [12]. A number of academic
projects have also ventured to study and develop volunteer

*The author is now at the Department of Information Systems and
Computer Science, Loyola Schools, Ateneo de Manila University, P.O.
Box 154, Manila, Philippines. Email: 1fgs@admu.edu.ph, Web site:
http://www.cag.lcs.mit.edu/bayanihan/

computing systems, including some, like our own Bayani-
han [9, 11], that promote web-based systems using Java
[1, 3]. Even the commercial sector has joined the fray, with
a number of new startup companies seeking to put volunteer
computing systems to commercial use, and pay volunteers
for their computer time [4, 6, 7, 8].

Such volunteer computing systems, however, present a
new and largely unstudied problem — if we allow anyone
to join a computation, how do we prevent malicious volun-
teers from invalidating the computation by submitting bad
results? Traditional fault-tolerance techniques that work
well against random faults, such as using parity and check-
sum schemes, will not be effective in this case because they
cannot protect against intentional attacks by malicious vol-
unteers — or saboteurs— who can disassemble the code, and
figure out how to produce valid checksums for bad data.
Thus, there is a need for new sabotage-tolerance mecha-
nisms that work in the presence of malicious saboteurs with-
out depending on checksums or cryptographic techniques.

In earlier work [9], we presented preliminary experi-
ments exploring the use of traditional techniques such as
voting as well as a new technique called spot-checking. In
these experiments, we ran a real application (Mandelbrot
set image rendering) and measured error rates with differ-
ent sabotage-tolerance mechanisms and different numbers
of good workers and saboteurs. Although these experiments
produced very interesting and promising results, they were
limited by the number of worker machines we could use in a
controlled environment (in this case, less than 20 machines).
They were also very time-consuming since they required
doing a real Mandelbrot rendering computation. Thus, we
could not extrapolate our results to more general and more
realistic cases where there may be hundreds or thousands of
worker machines and thousands of work pieces to compute.

In this paper, we describe how we have gotten around
this problem by using Bayanihan to run parallel para-
metric analysis and Monte Carlo simulations on a web-
based volunteer computing system using Java applets. We
begin by describing the general-purpose framework we
have developed for writing various parametric analysis and

Monte Carlo applications on Bayanihan. Then, we give an
overview of the sabotage-tolerance mechanisms we have
developed, and present some examples of results we have
gotten using our simulator. Finally, we present performance
results showing how parallelizing our simulator has given
us speedups that has made our research possible by allow-
ing us to do parametric analysis in much less time than it
would have taken with a single computer.

2 TheBayanihan Framework for Parametric
Analysisand Monte Carlo Simulation

Parametric analysis applications are ones wherein we run
a large number of independent computationally intensive
sequential computations, each with a slightly different set
of input parameters. They are among the most promising
classes of applications for volunteer computing today not
only because they are typically coarse-grain and easily par-
allelizable, but even more so because they form a natural
extension of the simulators that most programmers write to-
day. Since most programmers today do not have access to
parallel machines, many simulators today are still written
as sequential programs. Programmers use these by feed-
ing them different parameter combinations and taking note
of the results for each combination. Parallel parametric
analysis offers these programmers a straightforward way to
save time by enabling them to run their programs on many
machines with many different parameter combinations at
the same time. Since no change in the sequential code is
needed, a programmer can start benefitting from volunteer
computing right away without having to learn complex par-
allel programming techniques.

A particularly promising class of such applications are
Monte Carlo simulations. These simulations compute cer-
tain properties of a hard-to-analyze system by simulating its
behavior given many different randomsequences of events,
and analyzing the results. Note that Monte Carlo simula-
tions are simply parametric analysis computations where
the parameter that is varied is the random number generator
seed that generates the random events within the sequential
simulator. Thus, they can be run on any system that sup-
ports parametric analysis, and are particularly appropriate
for volunteer computing systems.

2.1 Writing Parametric Analysis Applications

Bayanihan provides a simple but flexible framework for
writing parametric analysis applications. To write an ap-
plication, one needs to define four main types of objects:
the work, result, configuration, and program objects. The
work object contains the sequential code for doing one run
of the computation with a specific set of parameters. It takes

a configuration object representing the parameters, and re-
turns a result object representing the output of the compu-
tation for that particular configuration. The program object
is responsible for creating a list of parameter configurations
that the programmer wants to try, and then adding work ob-
jects with each of these configurations to the work pool so
that they can be processed in parallel by the volunteer work-
ers. After the parallel step, control returns to the program
object, which then processes the results that have been col-
lected, and writes them into a file, if desired. After pro-
cessing these results, the program can proceed to try more
configurations if desired, possibly depending on the results
of the previous batch.

2.2 Writing Monte Carlo Applications

In addition to the basic framework for parametric analy-
sis, we also provide a framework for Monte Carlo simula-
tions. This framework provides the following features:

e Random number generator classes. These classes,
adapted from the Colt project [5], provide random
number generators that have better statistical proper-
ties and are more well-suited to Monte Carlo simula-
tions than the built-in Java Random class. One of the
classes taken from Colt is a random seed generator that
can be used to generate sequences of non-correlated
seeds to be given as initial parameters to each work
object. This is crucial in parallel Monte Carlo simula-
tors since these simulators require not only that the ran-
dom number generators within each work object have
good pseudo-random properties, but also that the ran-
dom numbers generated in each work object are inde-
pendent from those in other objects.

e Statistics summary class. This class, DStat, has
an addsample () method that takes samples in the
form of a double or another DStat object, and ef-
ficiently computes running values of statistics such as
the mean, standard deviation, and maximum and min-
imum values as each sample is added. This makes col-
lecting and analyzing the results from each work ob-
ject simple. The standard deviation statistic produced
by DStat can also be used to measure the precision
of the results so far, and determine whether the results
are good enough or more samples need to be taken.

e Parallel methods. Monte Carlo programs can make
use of the doBatch () method, which takes a work
class object and a configuration object, and allows us
to run many different instances of the work class in
parallel (using the same parameter configuration but
with different random number seeds), and collect the
results through a collector object that extracts infor-

mation from result objects generated by work classes
and places them in corresponding DStat objects.

The sample code in the appendix shows how some of these
features are used.

3 Sabotage-Tolerance Mechanisms

By enabling us to observe the performance of different
mechanisms under different conditions represented by dif-
ferent parameter configurations, the Bayanihan framework
has allowed us to develop and study different sabotage-
tolerance mechanisms. We give an overview of these mech-
anisms in this section, and discuss how we have simulated
them in the next section.

3.1 Model and Parameters

Our mechanisms assume a work pool based master-
worker model of computation. Here, a computation is di-
vided into a sequence of batches, each of which consists
of IV independent work objects. At the start of each batch,
these work objects are placed in a work pool by the master
node, and are then distributed to P different worker nodes
who execute them in parallel and return their results to the
master. When the master has collected the results for all the
work objects, it generates the next batch of work objects and
repeats the whole process until the computation is done.

To simulate sabotage, we assume that up to a certain
faulty fraction f of the P workers are saboteurs. Each sabo-
teur is assumed to be a Bernoulli process with a probability
s of submitting a bad result, known as the sabotage rate.
Without the use of sabotage-tolerance mechanisms, these
bad results eventually get accepted at the end of each batch,
and become errors. The average fraction of final accepted
results that are errors is defined as the error rate (¢). This
fraction is also equal to the probability of each individual
final result being bad.

The goal of our sabotage-tolerance mechanisms, there-
fore, is to reduce the error rate to an acceptably small value.
For some applications, a relatively high error rate would
suffice. In image rendering, for example, a few scattered
erroneous pixels would not be noticeable to the human eye.
Other applications, on the other hand, cannot tolerate even
a single error in a batch. In these cases, the target error rate
must be made very small in order to make the probability of
getting any error at all acceptably small. Fortunately, as we
will show, we can shrink the error rate exponentially with
only a small linear increase in redundancy.

3.2 Mechanisms

Some of the sabotage-tolerance mechanisms we have de-
veloped and studied include the following (for a more de-

tailed description and discussion, please see [10] and [11]):

Voting. Here, we wait until we receive at least /. match-
ing results for the same work object. The error rate in this
case is exponential in form, and can be shown to be roughly
€majv = (cf)™ where c is between 1.7 and 4. Voting is
good when f is small, but is very inefficient for relatively
large values of f, requiring a large value of m for even mod-
est error reductions. Also, it requires that we do all the work
objects at least twice, and so has a minimum redundancy
and slowdown of 2.

Spot-checking. Here, we do not redo all work objects, but
instead randomly check workers’ results with a probabil-
ity ¢ known as the spot-check rate. 1f a worker is caught,
then we backtrack through all its submitted results, invali-
dating them and forcing them to be redone. We also remove
the worker from the system, and, if possible, blacklist it
such that it cannot submit further results anymore. Spot-
checking is more efficient than voting and only slows down
the computation 1/(1 — ¢) times instead of m times as in
voting. If we have blacklisting, then the maximum average
error rate (which occurs if a saboteur chooses some opti-
mal sabotage rate s between 0 and 1) can be shown to be
bounded by roughly (1/gne)(f/(1 — f)), where n is the
amount of work given to a worker in a batch (i.e., N/ P plus
spot-checks and other redundancies), and e is the natural
logarithmic base. If blacklisting cannot be enforced, then a
saboteur can maximize damage by only doing [< n works
and then leaving and rejoining under a new identity. In this
case, the average error rate is bounded by roughly f/ql. In
either case, note that the error rate is reduced by a factor that
is linear in the amount of work done by a worker, and thus
linear in time. If our target error rates are relatively large
(e.g., around 1%), then spot-checking performs better than
voting, especially for large values of f (e.g., greater than
around 5%).

Voting and spot-checking combined. Although useful
alone, voting and spot-checking can also be combined. If
blacklisting is enforced, such a hybrid approach effectively
takes the linearly-reduced error rate due to spot-checking
and then exponentially reduces it by voting. This achieves
much lower error rates than either voting or spot-checking
alone for the same slowdown.

Credibility-based fault-tolerance. In this new and
highly generalizable technique, the key idea is to compute
the credibility of each tentative result as the conditional
probability that the result is correct, based on voting (i.e.,
the more workers agreeing on a result, the higher its cred-
ibility), spot-checking (i.e., the higher the number of spot-
checks passed by the workers who produced these results,

the higher the credibility of the workers and the results), and
other factors (e.g., human knowledge that some worker ma-
chines are more trustworthy than others). While the cred-
ibility of a result is below a certain credibility threshold
9, we continue to have it recomputed by other workers,
and continue to spot-check workers. When the credibility
threshold is reached (which can happen either because we
gather enough matching results, or the workers pass enough
spot-checks, or both), then we accept the result as final. By
waiting for the threshold to be reached in this way, we guar-
antee that on average, the error rate will not exceed 1 —1. At
the same time, we allow the system to automatically com-
bine voting and spot-checking, and efficiently trade-off re-
dundancy for more reliability, using only as much redun-
dancy as necessary to reach the threshold. The result is
mathematically guaranteeable correctness with “minimal”
(i.e., given what we can know and control) slowdown.

4 Simulating the M echanisms
4.1 TheSimulator

To study all these mechanisms, we have developed a
sabotage-tolerance simulator with Bayanihan that is both a
parametric and Monte Carlo simulator. As a Monte Carlo
simulator, it computes the average expected error rate of
a volunteer computing system given a sabotage-tolerance
mechanism (e.g., voting, spot-checking, or credibility-
based fault-tolerance) and specific values for the different
parameters (e.g., the faulty fraction f, sabotage rate s, cred-
ibility threshold 4, etc.), by running multiple instances of
the simulator with the same parameters but different ran-
dom number seeds. At the same time, it allows us to do
parametric studies by varying the different parameters and
observing the effect on the error rate.

In the plots in Sect. 4.2, for example, each point repre-
sents the result of 100 Monte Carlo simulations run in par-
allel using the same combination of parameters, and gives
us the expected performance (i.e., error rate and slowdown)
of the system for a particular combination of f, s, and ¢, av-
eraged over these simulations. At the same time, the plots
themselves represent the result of running many such sets
of parallel Monte Carlo simulations, and show how the er-
ror rate and slowdown vary with these different parameters.

The appendix shows sample code for a sabotage-
tolerance experiment. Here, each call to doBatch () in
doCredScan () runs a parallel Monte Carlo simulation
using a particular work class and configuration. After the
call to doBatch () the collector object contains statistics
such as the error rate and slowdown, which we use to plot
one point in the plots in Sect.4.2. To get the whole plot,
we run many such parallel Monte Carlo simulations with
different parameters, and record the results in a file.

slowdown

15

1
1E+00 1E-01 1.E-02 1.E-03 1E-04 1.E-05 1.E-06 1.E-07
err

Figure 1. Majority voting. Slowdown (relative to a system
without sabotage-tolerance) vs. maximum final error rate
at various values of f and m = {2, 3,4}.

4.2 Results

Figures 1 to 3 show the experimental results we get from
running our Monte Carlo simulator. For our experiments,
we ran 100 runs of simulated computation per point, each
consisting of a sequence of 10 batches of N = 10000 work
objects each, done by P = 200 workers. These num-
bers were chosen to be small enough to be simulatable in
a reasonable amount of time, but large enough to provide
good precision (i.e., the smallest measurable error rate is
1 x 10~7) and to prevent blacklisting from killing all the
saboteurs too early. In addition, the work-per-worker ra-
tio, N/P = 50, was chosen to be large enough to show
the effects of spot-checking, while still being representative
of potential real applications. Also, having the computation
go through 10 batches allows us to see the benefits of letting
good workers gain higher credibility over time.

Figure 1 plots the resulting slowdown and error rate from
majority voting given different values of the initial faulty
fraction f (assuming a sabotage rate of 1). As shown, when
f is large, majority voting requires a lot of redundancy to
achieve even relatively large error rates. Extending the line
for f = 0.2 theoretically, we find that it would take a
slowdown of more than 32 to achieve a final error rate of
1 x 10~%. Note, however, that the slope becomes less steep
as f becomes smaller. (The other points for f = 0.01 re-
sulted in no errors in this experiment, and are not shown.)

Figure2 shows the results of using credibility-based
fault-tolerance with voting and spot-checking with black-
listing. Here, each group of points corresponding to a cred-
ibility level is divided into three curves corresponding to
f =0.2,0.1 and0.05, respectively. This plot shows that,
as guaranteed, the average error rate does not go above 1—1,
regardless of s and f.

1E-01 ; ; ; ; ; ; : : :)
01 02 03 04 05 06 07 08 09 1
1.E-02
1.E-03
S1.E-04
1.E-05 4
1.E-06

e x
1607 1 oo

[—%x—099

0.999 —A—0.9999 0.99999 —e— 0.999999 ‘

Figure 2. Credibility-based voting with spot-checking and
blacklisting. Error rate vs. s at f = {0.2, 0.1, 0.05}.

mo.2
A01
©0.05

slowdown
w

4
1 :
1E+00 1E-01 1E-02 1E-03 1E-04 1E-05 1E-06 1.E-07
err

Figure 3. Credibility-based voting with spot-checking and
blacklisting. Slowdown vs. maximum final error rate at

¥ = 0.99,...,0.99999 at various values of f.

Figure 3 shows the automatic trade-off between redun-
dancy and correctness. Here, we plot the slowdown in-
curred in achieving the maximum error rate for each combi-
nation of f and ¢. Note how the slopes of the lines here are
much better than those in simple majority voting. For exam-
ple, whereas majority voting would have required a slow-
down of more than 32 to achieve an error rate of 1 x 10 ~6
for f = 0.2, here we only need around 3. Also note that in
some cases, spot-checking can be enough to reduce f down
to the threshold 1 — ¢ without requiring voting, as shown by
the points with slowdown less than 2.

Several other results are presented in [10] and [11]. In
these, we show results from other variations of the tech-
niques presented here, such as spot-checking without black-
listing, and using voting itself as a spot-checking mech-
anism. Using the latter technique, we show that we can
achieve an average error rate of less than 1 x 10¢ at f = 0.2

===no0. of procs *
fastest speed

A total speed /
fastest speed

(X 28 4

Processor
N
(42}

& actual speed
/ fastest

&

Speedup Relative to the Fastest

0 10 20 30 40 50
Processors

Figure 4. Speedup of the simulator relative to the fastest
machine.

with a slowdown just little over a 2.5, even without black-
listing. This error rate is almost 10° times smaller than that
of majority voting for the same slowdown.

4.3 Performance

Since each point in these plots requires 100 simulations
of 10 batches of 10,000 work objects each, it can take hours
to compute a point with a single machine. Thus, paralleliz-
ing the application was really necessary in this case. To gen-
erate these plots, we used a variety of machines within the
MIT campus network running on different operating sys-
tems. These included Windows PCs (a 166 MHz Pentium
Pro, 180 MHz and 200 MHz dual-Pentium machines, 350
MHz Pentium machines, and others), Linux PCs (800 MHz
Pentium Ill machines), and Sun workstations (Sun Sparc-
station 5 and Ultra 5 workstations). Bayanihan’s use of
web-based Java applets allowed us to run the parallel simu-
lator on these machines with minimal effort.

Figure4 shows the speedup of the system relative to
the fastest machine. Because the machines had different
speeds, speedup in this case was not clearly defined. To
measure speedup, we measured the speed of each individual
machine by having it report the amount of local computa-
tion time required (not counting communication time) and
the number of operations done for each work object. At the
end of the batch, the server goes through all the results sub-
mitted by the worker and computes the total number of op-
erations and the total time. Dividing these gives us the aver-
age speed of each machine for that batch. Finding the fastest
machine and comparing its speed to the actual throughput at
the server (measured as the total number of operations for
the batch over “wall clock” time at the server), we get the
speedups indicated by diamonds in Fig. 4.

As shown, we get more speed as we add more proces-
sors. Apart from that, however, it is difficult to draw any
conclusions about the performance of the system. Since

100%
80% 24 s ° *
70% - ¢ s ‘ 4
Z 60% | e o
5 50% -
= 40% 4
30% 4
20% 4
10% |
0% ‘ ‘ : : ‘
0 10 20 30 40 50
Processors
Figure 5. Efficiency of the simulator.
50
45 1 s
40 {
Q
2 351 + §
g :1
a 30 4 P t 2
a . ideal
9 25 s ¢
N ¢ actual
T 20 4 L
£
5 154
z
10 |
54 w
0 ‘ : : ‘
0 10 20 30 40 50

Processors

Figure 6. Normalized speedup of the simulator.

some of the machines are slower, the ideal speedup is less
than the ideal speedup of P for P processors in a homoge-
neous system. To get a better idea of how much speedup we
can expect, we took the total of the individual speeds of the
machines at the end of the batch. As shown by the triangles
in Fig. 4, this was less than the number of processors, as
we expected, but more than the actual net speed measured
at the server. Given this total speed, we can get a better
measure of the performance of the system by calculating its
efficiency as the actual speed over the total speed. Figure5
shows a scatterplot of the efficiencies we observed across
different batches and runs of the simulator with a varying
combination of machines, while Fig. 6 shows an equivalent
plot with the normalized speedup, computed by multiplying
the efficiency by the number of processors.

As shown, we get reasonably good efficiency, even at
50 processors. Interestingly, the losses in efficiency in this
case are not due to communication and server-side over-
head, as we might at first suspect. The simulations shown
here were fairly coarse-grain computations — i.e., the aver-
age time taken by the fastest computer for each work ob-
ject (i.e., sequential Monte Carlo run) was between 2 and
200 seconds with a median of around 20 seconds (the times
varied because some parameter combinations resulted in
longer or shorter simulations). We suspect that most of the

inefficiencies are instead due to a limitation of Bayanihan’s
eager scheduling system [9]. Generally, eager scheduling is
a good feature that makes sure that slow processors do not
slow down the faster processors (i.e., in the worst case, all
the work will be done in the time it would take the faster
processors to do the job by themselves, as if the slower pro-
cessors were not there). However, in this case, we had only
100 work objects distributed among up to 50 workers. This
caused fast workers to quickly run out of unassigned work
to do, and start doing work already assigned to slower work-
ers — possibly finishing the work before they do. This effec-
tively wasted the processing power of the slower processors.

In general, the way to get around this problem and get
more efficiency is to have longer batches. In this case, one
solution might be to provide a doMultiBatch () method
in the Monte Carlo API that would take multiple pairs of
configuration and collector objects, and allow Monte Carlo
simulations with more than one set of parameter values to
run in parallel in the same batch. Suppose for example,
that we want to see the effects of changing s from 0.1 to
0.2 to 0.3. Instead of having to run a sequence of three
batches of 100 work objects each as we do now, we may
run a single batch with 300 work objects instead, and thus
improve efficiency.

In any case, however, even with its slightly suboptimal
efficiency, the sabotage-tolerance simulator has proven it-
self an invaluable enabling tool that demonstrates the abil-
ity of volunteer computing to empower people to conduct
previously impossible research.

5 Conclusion

In this paper, we have presented two main results. The
first is that it is possible to protect volunteer computing sys-
tems from computational sabotage attempts by malicious
volunteers without too much redundancy. We have shown,
through simulation results, that by combining old tech-
niques such as voting, with new ones such as spot-checking,
and credibility-based fault-tolerance, we can reduce error
rates by several orders of magnitude, needing only 2 or 3
times more time than a system without sabotage-tolerance.
As future work, it would be interesting to implement these
techniques in real volunteer computing and Internet com-
puting systems, and see how they fare in real life, as well as
how they can be improved.

Our second result is the way itself by which we were
able to arrive at our first result. By using our Bayanihan
web-based volunteer computing system to parallelize our
simulator, and thus allow us to get results in much less time
than before, we have demonstrated that web-based volun-
teer computing systems and other Internet computing sys-
tems can indeed be used for real research, and not just
for solving esoteric mathematical problems, as some may

think. In particular, we have shown how volunteer comput-
ing can be used for parametric analysis and Monte Carlo
simulations. These include a wide range of useful appli-
cations beyond our own sabotage-tolerance simulator, and
thus offer researchers many opportunities to start benefit-
ting from volunteer computing today.

Appendix: Sample Code

package bayanihan.apps.ftsim;
import java.io.*; import bayanihan.util.*;

public class CredScanProgBL extends FTSimProg
{ // ... some code omitted ...
public CredScanProgBL ()
{ super();
// this class specifies the simulator version
// which contains formulas used for credibility
// in this case, this class uses the credibility
// metric for spot-checking with blacklisting
this.simRunClass = SimRunWorkCredBL.class;

}
/* run() method */

public void run()
// ... some code omitted ...

// the following are the parameter settings to try
double credArr|[] = { 0.999999, 0.99999,
0.9999, 0.999, 0.99 };

double fArr[] = { 0.2, 0.1, 0.05, 0.01 };

double sArr[] = { 0.01, 0.02, 0.03, 0.05, 0.07,
0.09, 0.1, 0.12, 0.14, 0.16,
0.18, 0.20, 0.22, 0.25, 0.3,
0.35, 0.5, 0.65, 0.8, 1.0 };

// loop through different values of f

for (int i = 0; 1 < fArr.length; i++

{ this.config.fractBad = fArr[i];
this.config.cF = fArr[i];

// loop through different values of
// credibility threshold, and s
doCredScan(sArr, credArr);
}
}

/* Parallel method */

protected void doCredScan(double[] sArr,
double[] credArr)
{ // loop through different credibility thresholds
for (int ¢ = 0; ¢ < credArr.length; c++)
{ this.config.cThresh = credArr(c];

// loop through different values of s
for (int i = 0; 1 < sArr.length; i++)
{ this.config.probSabotage = sArr[i];

// doBatch runs a Monte Carlo simulator

// in parallel, given the work class,

// the config object, the number of runs,

// and a collector object for result stats

doBatch(this.sumRunClass, this.config,
this.numRuns, this.collector);

writeCollector(collector);
System.gc () ;

References

[1]

(2]

3]

[4]

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

A. Baratloo, M. Karaul, Z. Kedem, and P. Wyck-
off, Charlotte: Metacomputing on the Web, in Proc.
9th Intl. Conf. on Parallel and Distributed Computing
Systems, 1996. http://cs.nyu.edu/milan/
charlotte/

distributed.net home page. http://www.
distributed.net

P. Cappello, B.O. Christiansen, M.F. lonescu, M.O.
Neary, K.E. Schauser, and D. Wu, Javelin: Internet-
Based Parallel Computing Using Java, in Proc. ACM
Workshop on Java for Science and Engineering Com-
putation, Las Vegas, 1997. http://javelin.cs.
ucsb.edu/

Entropia home page. http://www.entropia.
com/

W. Hoscheck, Colt Web page. http://nicewww.
cern.ch/ “hoschek/colt/index.htm

Parabon home page. URL: http://www.
parabon.com/

Popular Power home page. http://www.
popularpower.com/

Process Tree home page. http://www.
processtree.com/

L.F.G. Sarmenta and S. Hirano, Building and Study-
ing Web-Based \Volunteer Computing Systems Us-
ing Java. Future Generation Computer Systems,
Special Issue on Metacomputing, 15(5-6), Else-
vier, 1999. http://www.cag.lcs.mit.edu/
bayanihan/papers/fgcs/

L.F.G. Sarmenta, Sabotage-Tolerance Mecha-
nisms for Volunteer Computing Systems, to ap-
pear in CCGrid 2001, Brisbane, Australia, May,
2001. http://www.cag.lcs.mit.edu/
bayanihan/papers/ccgridol/

L.F.G. Sarmenta, \olunteer Computing,
Ph.D. thesis, MIT, Cambridge, MA, March,
2001. http://www.cag.lcs.mit.edu/

bayanihan/papers/sarmenta-phd/

SETI@home home page. http://setiathome.
ssl.berkeley.edu/

