
Scientific Computing
for ML and Supercloud

Jonathan Huggins

Scientific Computing for
Machine Learning1

• Challenges

• Algorithms are stochastic

• Correct algorithms can perform badly

• What counts as good performance?

• ML algorithms can be robust to bugs!

• Fails on large datasets, in high dimensions, etc.

• Unforeseen interactions between ML algorithms
1Based on Grosse and Duvenaud (2014). “Testing MCMC code.” http://arxiv.org/abs/1412.5218

http://arxiv.org/abs/1412.5218

Scientific Computing for
Machine Learning1

• Best practices

• modular code

• separate logically distinctive components

• e.g., optimizer + function being optimized

• e.g., sampler + model

• testing

• unit tests: correctness of small piece of code

• integration tests: correctness of system
1Based on Grosse and Duvenaud (2014). “Testing MCMC code.” http://arxiv.org/abs/1412.5218

http://arxiv.org/abs/1412.5218

Example: Gibbs sampler for a
mixture of Gaussians model1

1Based on Grosse and Duvenaud (2014). “Testing MCMC code.” http://arxiv.org/abs/1412.5218

http://arxiv.org/abs/1412.5218

Gibbs sampling
• Model is p(x, y, z)

• Start with state (x, y, z), then  
 x’ ~ p(. | y, z) 
 y’ ~ p(. | x’, z) 
 z’ ~ p(. | x’, y’)

• Set (x, y, z) ← (x’, y’, z’)

• Repeat

1Based on Grosse and Duvenaud (2014). “Testing MCMC code.” http://arxiv.org/abs/1412.5218

http://arxiv.org/abs/1412.5218

Writing MCMC code
• For MCMC, split code into

• Distributions

• Model

• Sampler

• Modularity makes testing and reuse easier

<show MoG code>

Unit Testing
• Ideally, write the tests before writing the code

• Modular code makes writing unit tests easier

• Write and test “naive” implementation before adding an
optimized implementation

• Trick for testing conditional probabilities: check that  
 
 p(x | z)/p(x’ | z) = p(x, z)/p(x’, z) 
 
holds for random x, x’, z (normalization terms will cancel)

Unit Testing in Python

• In python, nose makes testing very easy

• name test files test_* and test functions test_*

• also very useful: numpy.testing

• when a test fails, provides useful debugging info

Integration Testing
• Geweke test:

1. Sample iid from full model (data and latents)

2. Iterate between (a) sampling new latents using MCMC
algorithm and (b) resampling data from forward model

3. Compare samples from steps 1 + 2 using P-P plot:

• for CDFs F and G, plot (F(z), G(z)) for z in (-inf, inf)

• Geweke test can fail because of bug or poor mixing

Using Supercloud
• Supercloud is a high-performance cluster available

through Lincoln Labs

• ssh <username>@txe1-login.mit.edu

• LLsub <job-script> -o <log-file> -J <job-name>

• See http://groups.csail.mit.edu/broderick/wiki/
index.php?title=Supercloud

• Please add whatever you learn to the wiki!

http://txe1-login.mit.edu
http://groups.csail.mit.edu/broderick/wiki/index.php?title=Supercloud

Future topics…

• Using Cython (easy integration of C code with
Python)

• Gelman–Rubin diagnostics for debugging MCMC

• Coding for GPUs (if anyone knows how)

• Autodiff

