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Scientific Computing for 
Machine Learning1

• Challenges 

• Algorithms are stochastic 

• Correct algorithms can perform badly 

• What counts as good performance? 

• ML algorithms can be robust to bugs! 

• Fails on large datasets, in high dimensions, etc. 

• Unforeseen interactions between ML algorithms
1Based on Grosse and Duvenaud (2014). “Testing MCMC code.” http://arxiv.org/abs/1412.5218

http://arxiv.org/abs/1412.5218


Scientific Computing for 
Machine Learning1

• Best practices 

• modular code 

• separate logically distinctive components 

• e.g., optimizer + function being optimized 

• e.g., sampler + model 

• testing 

• unit tests: correctness of small piece of code 

• integration tests: correctness of system
1Based on Grosse and Duvenaud (2014). “Testing MCMC code.” http://arxiv.org/abs/1412.5218

http://arxiv.org/abs/1412.5218


Example: Gibbs sampler for a 
mixture of Gaussians model1

1Based on Grosse and Duvenaud (2014). “Testing MCMC code.” http://arxiv.org/abs/1412.5218

http://arxiv.org/abs/1412.5218


Gibbs sampling
• Model is p(x, y, z) 

• Start with state (x, y, z), then  
    x’ ~ p(. | y, z) 
    y’ ~ p(. | x’, z) 
    z’ ~ p(. | x’, y’) 

• Set (x, y, z) ← (x’, y’, z’) 

• Repeat

1Based on Grosse and Duvenaud (2014). “Testing MCMC code.” http://arxiv.org/abs/1412.5218

http://arxiv.org/abs/1412.5218


Writing MCMC code
• For MCMC, split code into 

• Distributions 

• Model 

• Sampler 

• Modularity makes testing and reuse easier



<show MoG code>



Unit Testing
• Ideally, write the tests before writing the code 

• Modular code makes writing unit tests easier 

• Write and test “naive” implementation before adding an 
optimized implementation 

• Trick for testing conditional probabilities: check that  
 
     p(x | z)/p(x’ | z) = p(x, z)/p(x’, z) 
 
holds for random x, x’, z (normalization terms will cancel)





Unit Testing in Python

• In python, nose makes testing very easy 

• name test files test_* and test functions test_* 

• also very useful: numpy.testing

• when a test fails, provides useful debugging info



Integration Testing
• Geweke test: 

1. Sample iid from full model (data and latents) 

2. Iterate between (a) sampling new latents using MCMC 
algorithm and (b) resampling data from forward model 

3. Compare samples from steps 1 + 2 using P-P plot: 

• for CDFs F and G, plot (F(z), G(z)) for z in (-inf, inf) 

• Geweke test can fail because of bug or poor mixing









Using Supercloud
• Supercloud is a high-performance cluster available 

through Lincoln Labs 

• ssh <username>@txe1-login.mit.edu 

• LLsub <job-script> -o <log-file> -J <job-name> 

• See http://groups.csail.mit.edu/broderick/wiki/
index.php?title=Supercloud 

• Please add whatever you learn to the wiki! 

http://txe1-login.mit.edu
http://groups.csail.mit.edu/broderick/wiki/index.php?title=Supercloud


Future topics…

• Using Cython (easy integration of C code with 
Python) 

• Gelman–Rubin diagnostics for debugging MCMC 

• Coding for GPUs (if anyone knows how) 

• Autodiff


