
Observations on the Dynamics of a CongestionControl Algorithm: The E�ects of Two-Way Tra�cLixia Zhang1, Scott Shenker1, David D. Clark2AbstractWe use simulation to study the dynamics of the congestion control algorithm em-bedded in the BSD 4.3-Tahoe TCP implementation. We investigate the simple case ofa few TCP connections, originating and terminating at the same pair of hosts, usinga single bottleneck link. This work is an extension of our earlier work ([16]), whereone-way tra�c (i.e., all of the sources are on the same host and all of the destinationsare on the other host) was studied. In this paper we investigate the dynamics thatresults from two-way tra�c (in which there are data sources on both hosts). We �ndthat the one-way tra�c clustering and loss-synchronization phenomena discussed in[16] persist in this new situation, albeit in a slightly modi�ed form. In addition, thereare two new phenomena not present in the earlier study: (1) ACK-compression, whichis due to the interaction of data and ACK packets and gives rise to rapid uctuationsin queue length, and (2) an out-of-phase queue-synchronization mode, which keeps linkutilization less than optimal even in the limit of very large bu�ers. These phenomenaare helpful in understanding results from an earlier study of network oscillations ([19]).1 IntroductionOne of the longstanding problems with datagram networks is that it is di�cult to controlcongestion. However, in the past decade, tremendous progress has been made on this prob-lem. One particularly noteworthy success is the congestion control algorithm developed byJacobson ([6]), which is currently embedded in the BSD 4.3-Tahoe TCP implementation andis similar in spirit to the one Jain, Ramakrishnan, and Chiu ([8]) designed for the DECnetarchitecture. Jacobson's congestion control algorithm has resulted in a dramatic reductionin congestion in the Internet3 and has become an Internet standard ([1]). Thus, it is impor-tant to understand the behavior of this algorithm. We hope that increased insight into thisparticular algorithm can both lead to better understanding of the behavior of the currentInternet and provide guidance for the design of new congestion control algorithms.While the practical bene�ts of this congestion control algorithm are clear, its behavior is notyet fully understood. There is a small, but rapidly growing, set of simulation studies of thisalgorithm; for example, see [2, 3, 4, 5, 10, 16, 18, 19]. In several of these studies the focusis on the e�ect of various gateway disciplines such as Fair Queueing ([2, 3]) and RandomDrop ([4, 5, 10, 18]) on network performance in the presence of tra�c sources using the1Palo Alto Research Center, Xerox Corporation2Laboratory for Computer Science,Massachusetts Institute of Technology3While we are not aware of anyone who disputes this statement, the evidence for improved overall Internetperformance due to this congestion control algorithm is mostly anecdotal.1



BSD 4.3-Tahoe TCP congestion control algorithm. Several other studies ([5, 18]) presentaggregate throughput, loss, and delay characteristics of this congestion control algorithm invarious complicated network con�gurations.In contrast, in this paper we examine only a few simple network con�gurations with standardFIFO gateways. Our focus is instead on the detailed dynamics of the congestion controlalgorithm in rather simple settings. Aside from the seminal work of Jacobson [6], thesedynamics have received little attention. Some aspects of these dynamics were studied in[19], where simulations on two di�erent network con�gurations revealed the presence of rapidqueue length uctuations. While preliminary explanations were o�ered, the complexity ofthe network con�gurations precluded a systematic analysis. One of the purposes of thispaper is to reproduce the essential elements of that uctuating behavior in the simplestpossible network con�guration so that it can be more fully analyzed.This paper is a continuation of the research e�ort initiated in [16]. There we examinedthe dynamics of the BSD 4.3-Tahoe TCP congestion control algorithm in the simplest ofnetwork con�gurations: one or several TCP connections, originating and terminating at thesame pair of hosts, sending tra�c through a single bottleneck link, with all of the connectionstransmitting in the same direction (i.e., with all of the sources of the connections on onehost and all of the destinations of the connections on the other host). Since all of the datapackets travel in one direction and all of the ACK packets travel in the other, the dynamicsare relatively tractable in this con�guration. In the present paper, we retain the samenetwork topology of a single bottleneck link but progress to the slightly more complicatedsituation of having one source on each host, so that both data and ACK packets travel ineach direction. The seemingly innocuous modi�cation of introducing two-way tra�c greatlycomplicates the dynamics. More surprisingly, it appears that all of the essential elements ofthe behavior reported in [19] are present in this simple con�guration.In the one-way tra�c con�guration, there are two notable aspects of the behavior: theclustering of packets from each connection and the synchronization of packet losses (thesee�ects will be described in more detail later). Two-way tra�c exhibits similar phenomena.However, there are two dynamic phenomena that are singular to two-way tra�c. The �rst,labeled ACK-compression, gives rise to rapid uctuations in the queue length at the bottle-neck gateway. In contrast to one-way tra�c, where the ACK's provide a reliable clock toregulate tra�c and keep the queue length variations modest, in two-way tra�c the ACK'scan become compressed together and hence lose their clocking properties. The second phe-nomenon is an out-of-phase synchronization mode. In the one-way tra�c con�guration, allof the connections are synchronized in-phase in that the ow control windows of the variousconnections all increase and decrease at the same time. With two-way tra�c, under certainconditions the connections in di�erent directions are synchronized out-of-phase in that theow control window of one connection is increasing while that of the other is decreasing.This phenomenon has the e�ect of keeping the bottleneck utilization below optimal, even inthe limit of in�nite bu�ers.Our detailed analysis is only applicable to the single speci�c network con�guration we con-sider. However, the basic phenomena of ACK-compression and synchronization modes seemto be present in the dynamics of much more complicated con�gurations. Similarly, while2



the present study is limited to investigating the behavior of one speci�c congestion controlalgorithm, we think that the e�ects described above apply to a wider class of algorithms.In fact, we conjecture that any nonpaced4 window-based congestion control algorithm willexhibit these two phenomena.We hasten to note, however, that our study is rather incomplete. The BSD 4.3-Tahoe TCPcongestion control algorithm gives rise to a wealth of complicated dynamical behavior; wehave only examined the most accessible of these. Even in the extremely simple con�gurationsexamined here, there are e�ects that we do not yet fully understand. More importantly, forthose behaviors which we do understand, we have yet to determine how relevant the insightgained from examining relatively simple network topologies is to more complicated andrealistic network con�gurations. This is the subject of future work.This paper has 6 sections. In the next section, we briey describe the BSD 4.3-TahoeTCP congestion control algorithm and discuss our network model and simulator. To providecontext for the two-way tra�c simulations presented here, in Section 3 we review the one-waytra�c results from [16] and the rapid queue length uctuation results from [19]. In Section 4we examine the novel behavioral aspects of two-way tra�c, focusing on ACK-compressionand synchronization modes. The relationship between this data and that in [19] and the e�ectof various other factors, such as the delayed-ACK option and other network topologies, arediscussed in Section 5. We summarize our results in Section 6.2 Network: Algorithm, Con�guration, and SimulatorIn this section we �rst give a brief overview of the BSD 4.3-Tahoe TCP congestion con-trol algorithm, then discuss the network con�gurations considered, and lastly describe thenetwork simulator used.2.1 BSD 4.3-Tahoe TCP Congestion Control AlgorithmThe following is a very abbreviated and oversimpli�ed description of the BSD 4.3-TahoeTCP congestion control algorithm. For further details, see either [6] or the BSD 4.3-Tahoecode itself (which has su�cient comments to render it a useful text). At TCP connectionset-up the receiver speci�es a maximumwindow size maxwnd.5 To simplify the presentationin this paper, we will assume that all window sizes are measured in units of maximum sizepackets, instead of bytes. In the original TCP speci�cation ([14]), the window used by thesender, which we will denote by wnd, is the receiver advertised window maxwnd regardlessof the load in the network. In the BSD 4.3-Tahoe TCP algorithm, the window size used bythe sender is adjusted in response to network congestion. The sender has a variable calledthe congestion window cwnd, which is increased whenever new data is acknowledged and4Pacing will be discussed later, but for now it su�ces to de�ne a nonpaced algorithm as one in which thesource sends data packets immediately upon the receipt of an ACK, without introducing any arti�cial delaywhich would spread out packets.5The variable names used here are not the same as in the BSD 4.3-Tahoe code.3
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Host-1 Host-2Figure 1: Network Topology.decreased whenever a packet loss is detected.6 The actual window used by the sender is theoor of the minimum of the congestion window and the receiver advertised window:7wnd = bMIN(cwnd;maxwnd)cThe congestion window adjustment algorithm has two phases, the slow-start or congestionrecovery phase, where the window is increased rapidly, and the congestion avoidance phase,where the window is increased much more slowly. A control threshold, ssthresh, determineswhich phase a connection is in. Whenever a packet drop is detected, ssthresh is set to halfof the current cwnd value, cwnd is then set to one, and the congestion recovery phase begins.cwnd increases rapidly until it passes the threshold ssthresh, then the algorithm switchesinto the congestion avoidance phase. The speci�cs of the adjustment algorithm in the realBSD 4.3-Tahoe TCP code are as follows:When new data is acknowledged, the sender doesif (cwnd < ssthresh)cwnd += 1;elsecwnd += 1 / cwndWhen a packet drop is detected, the sender doesssthresh = MAX[ MIN(cwnd/2, maxwnd), 2]cwnd = 1We de�ne an epoch of a TCP connection to be the time period during which an entirewindow's worth of packets have been acknowledged. We will focus particularly on thoseepochs in which packet losses occur. These will be called congestion epochs.The amount by which the congestion window increases during an epoch, which we willcall the acceleration, is an important measure of how rapidly the window size is changing.Notice that when cwnd < ssthresh, cwnd doubles during an epoch so acceleration � cwnd.In contrast, when cwnd > ssthresh, cwnd increases by approximately 1 during an epoch:acceleration � 1.6Packet losses are detected by either the receipt of duplicate acknowledgments or the expiration of atimer.7Since TCP transmits maximum size packets whenever possible to avoid the silly-window syndrome, wndwill always be an integer and is the maximum number of outstanding packets allowed.4



Note that the congestion control algorithm presented above has the occasional anomalythat after a full window's worth of packets have been acknowledged the value of bcwndcwill remain unchanged even when cwnd < maxwnd. As discussed in [16], this anomalousbehavior can be removed by simply changing the congestion avoidance increase algorithmwith cwnd � ssthresh to read:cwnd += 1 / bcwndcWith this change, bcwndc increases by one in every epoch in which cwnd < maxwnd. Inorder to simplify the results in our simulations, we will use this modi�ed algorithm. None ofthe qualitative conclusions we reach will be a�ected by the change. Removing the anomalydoes make the analysis of the dynamics much more straightforward.The BSD 4.3-Tahoe TCP implementation has a delayed-ACK option. With the option o�,the arrival of each new data packet at the receiver triggers the transmission of an associatedACK packet. With the option on, upon receiving the �rst data packet after an ACK hasbeen sent, the receiver does not send out an ACK immediately. The receiver instead waitsfor either a data packet transmission in the other direction on which the ACK can be piggy-backed, or the arrival of another data packet so that two ACK's can be combined, or theexpiration of a timer. In our simulations, the delayed-ACK option is o�. We will discuss thee�ect of turning the delayed-ACK option on in Section 5.2.2 Network Con�gurationAll of the simulation results reported on here will involve the simple network topology con-sisting of a single bottleneck duplex link connecting two switches, as depicted in Figure 1.Attached to each switch is a single host (Host-1 and Host-2). The bottleneck link has abandwidth � of 50 Kbps, and a propagation delay denoted by � . We will consider two valuesfor � , .01 sec and 1 sec. The links connecting the hosts to the switches have bandwidthsof 10 Mbps and a propagation delay of 0.1 msec. All links are modeled as giving error-freetransmission. The host processing time of each data or ACK packet is 0.1 msec.Each switch has a packet bu�er associated with each outgoing link and uses the FIFO servicediscipline and the drop-tail discarding algorithm.8 There is no bu�er sharing between thedi�erent outgoing lines. All the con�gurations discussed in this paper have a bu�er size of20 packets, except the one used to reproduce the simulations in [19] where the bu�er size is30 packets, and the one used to investigate the dynamics of connections with �xed windowsizes where the bu�er size is assumed to be in�nite.The tra�c sources will consist of some number of TCP connections which have an in�niteamount of data to send. Each TCP connection has a maxwnd value of 1000, with a constantpacket size M of 500 bytes.9 ACK packets are 50 bytes each. We assume that each TCPconnection preexists, so the connection set-up exchange is not simulated.8When the bu�er is full and a new packet arrives, the arriving packet is dropped.9For our network con�gurations the value of cwnd never exceeds 50, so that the actual value of themaximum window size will not be a factor in any of our simulations.5



We de�ne the bandwidth-delay product or pipe size P as the number of data packets thatcan be in ight in one direction along the bottleneck link: P � ��=M . With our particularchoices in parameters, the propagation delays of 0.01 sec and 1 sec represent pipe sizes of0.125 and 12.5 packets, respectively.The con�gurations considered in this paper are distinguished by the number and locationof the TCP connections. The one-way con�gurations considered in [16] and reviewed inSection 3.1 involve several TCP connections all having their data sources located on Host-1.The con�gurations in [19], reviewed in Section 3.2, and the con�gurations in Section 4 havesources on both hosts.2.3 SimulatorAll of the simulations reported on here were done with a simulator written by one of us(LZ), and has been used in several previous simulation studies ([16, 18, 19]). The TCPcode was taken directly from the BSD 4.3-Tahoe release and modi�ed slightly to conform tothe requirements of the simulator. In addition, the code related to TCP connection set-up,keep-alive, and close was removed. Also, in order to remove the anomaly in the measure ofacceleration, a single line in the window adjustment algorithm was modi�ed as discussed inSection 2.1.3 Previous WorkIn this section we review our two previous studies on the dynamics of the BSD 4.3-TahoeTCP congestion control algorithm. We begin with the work on one-way tra�c in [16], wherethe dynamics are relatively well understood. We then continue on to the more complicatedcon�guration of [19], where the dynamics are signi�cantly more mystifying. Our goal is toincrease our understanding of these more complicated dynamics by applying the insightsfrom the simple con�gurations in [16] to more complex con�gurations.3.1 One-Way Tra�cConsider a network con�guration as in Figure 1 with three TCP connections, all with theirsources located on Host-1 and their destinations on Host-2. Figure 2 shows the queue lengthand cwnd behavior of this con�guration. A detailed analysis of this and other relevant datais given in [16]. Here we only briey review the aspects of the dynamics most relevant toour subsequent discussion.First we note that there are periods when the queue length is alternating between two adja-cent values at a very high frequency (on the order of a data packet transmission time10); inwhat follows, let q denote the smaller of these two values. Due to the limited resolution, these10Here, as elsewhere in the paper, transmission time refers to that on the bottleneck link.6
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Figure 2: Packet queue at the switch and congestion window sizes for a con�guration withthree connections, all having sources on Host-1, and with � = 1 sec. The switches have abu�er size of 20 packets. The marks above the graph of the queue length show the timeswhen packets from the various connections are dropped; the darkened regions are due tothe queue length alternating between two adjacent values as packets arrive and depart in aninterleaved fashion.rapid variations appear as darkened areas in Figure 2. These variations are not associatedwith any rapid variations in the cwnd values and instead are due to the alternation of packetarrivals and departures at the queue. The value of q changes rather smoothly with time, andthese changes are associated with variations in the values of cwnd. This smoothness in thebehavior of q is due to the fact that the ACK packets are serving as e�ective clocks for theconnections. That is, between every two ACK arrivals at the source of a connection, therehas been a packet departure at the queue. Thus, transmitting a single packet in response toeach ACK (as would happen if wnd were �xed) ensures that the queue length will alternatebetween the two adjacent values q and q + 1. If we �x the window sizes, the queue lengthwill obey the equation q = bMAX[0; wnd1 + wnd2 + wnd3 � 2P ]cWe can de�ne the capacity C of the path, the maximal total window size that will not resultin dropped packets, as C = bB + 2P c where B is the size of the switch packet bu�er and Pis the pipe size. Since q is a function of the total window size, each change in q is associatedwith a change in the window sizes wndi. 7



In addition to the extremely high frequency alternations in the queue length, there arerelatively low frequency oscillations (with a period of roughly 34 seconds) in both the cwndvalues and the queue length. These oscillations are on the scale of many round-trip times,and reect the nature of the congestion window adjustment algorithm; cwnd is increaseduntil a dropped packet is detected, at which point cwnd is decreased to one and the cyclestarts over again. The cwnd oscillations in the three connections are completely synchronizedin-phase. This is because the packet losses of the various connections (which are depictedin Figure 2 by symbols over the graph of the queue length) are synchronized. A note onterminology; we refer to the synchronization of the cwnd values as window-synchronizationand the synchronization of the packet losses as loss-synchronization. Each connection losesa single packet during the congestion epoch. The number of packets each connection loses isexactly the acceleration (as de�ned in Section 2.1) of the window adjustment algorithm. Atthe beginning of the congestion epoch, the total window size has reached the capacity of thepath, wnd1 + wnd2 + wnd3 = C, and any further increase in the window sizes will result indropped packets. A source, upon receiving the ACK that causes the value of wnd to increaseby one, immediately sends two packets out; however, there is only room for one packet in thequeue (remember that the ACK signaled the departure of a single packet from the queue) sothe second packet is dropped. The amount by which a connection increases its value of wndduring a congestion epoch is exactly the number of extra packets the source will transmit inresponse to incoming ACK's while the queue is full, and thus directly determines how manyof its packets will be dropped.Note that there are some periods during which the queue is empty, and thus the line is idle.The level of utilization for the � = 1 sec case depicted in Figure 2 is about 90%; for the� = 0:01 sec case which is not shown here but is treated in [16], the level of utilization is nearly100%. Thus, the utilization level decreases as the size of the pipe increases. Furthermore,the utilization increases as the size of the bu�er increases. Intuitively, the time period duringwhich the queue remains empty during the cycle is an increasing function of the pipe size,and the length of the oscillatory cycle is an increasing function of the bu�er size. Thus, theutilization level decreases with an increased pipe size, and increases with an increased bu�ersize. One can show that asymptotically the link idle time decreases with increasing bu�ersize as B�2.There is an important aspect to the behavior in this con�guration that is not readily apparentfrom the data presented here. All of the packets from a single connection are clusteredtogether; the entire window's worth of packets passes through the switch consecutively,uninterrupted by packets from another connection. This clustering is reected in the graphsof cwnd in Figure 2 where the curves alternate constant regions with increasing ones, withonly one connection increasing at a time and only one increase period per epoch; since cwndonly changes upon the receipt of ACK's, this indicates that all of a connection's ACK's arrivein a cluster. The following is a brief explanation of the clustering e�ect; for a more completeexplanation see [16].Consider a connection immediately after it has reduced cwnd to one. At every point atwhich this connection increases wnd, the extra packet is sent out immediately followingthe preceding packet. Thus, as a connection increases its window size, each new packet isattached to an already existing cluster. The clusters from the various connections do not8



intermingle, since only one connection receives an ACK in each packet transmission intervalmaking it impossible for a connection to transmit during another connection's cluster. Thisanalysis is valid as long as every packet transmission is in response to an ACK; this can beviolated only when the connections are recovering from packet loss(es), in which case theyretransmit after some essentially random interval. However, since all connections lose atthe same time in this particular con�guration, the retransmissions don't interfere with theclustering. In contrast, if only one connection were to lose during a congestion epoch, thenits retransmission would likely occur during another connection's cluster.Let us introduce the terminology that a pacing congestion control algorithm is one in whicheither data packets are not always transmitted immediately by the source upon receipt of anACK, or ACK packets are not always transmitted immediately by the receiver upon receiptof a data packet; instead, either data or ACK packets are paced out according to some othercriteria (such as, for example, an estimate of the network bottleneck's transmission rate).Nonpaced algorithms are ones in which both data and ACK packets are always transmittedimmediately upon receipt of an ACK or data packet, respectively. One can show that, underfairly general assumptions, this clustering e�ect will exist in this network con�guration withany nonpaced congestion control algorithm. This follows from noting that as long as everypacket transmission follows immediately upon receipt of an ACK, the number of packetswhich are followed in the queue by a packet from a di�erent connection is a nonincreasingfunction. Experimentally, the same clustering e�ect has been reported ([11]) in a verydi�erent congestion control algorithm (see [12] for a description). Note, however, that theanalysis of the clustering e�ect depends in detail on the round-trip times of the variousconnections being identical. See Section 5 for further discussion of this point.While we cannot claim to fully understand every detail of the dynamics in this con�guration,most of the relevant phenomena here do seem comprehensible within the framework wedeveloped in [16]. A natural progression to more complicated con�gurations would lead toconsideration of having the sources of the TCP connections located on both hosts. Such acon�guration was considered in [19], to which we now turn.3.2 Rapid Queue FluctuationsReference [19] discussed the dynamics in two network con�gurations signi�cantly more com-plicated than the one discussed in [16] which was reviewed above. The simpler of the twocon�gurations considered in [19] is similar to that of Figure 1 with ten TCP connections,�ve having their source on Host-1 and �ve having their source on Host-2. The actual con-�guration considered in [19] had somewhat di�erent line speeds, and did not use the slightmodi�cation to the congestion control algorithm (described in Section 2.1), but those di�er-ences have no qualitative impact on the results. To facilitate direct comparisons, we havechosen to show simulation results from such a con�guration based on the network in Figure 1with � = 0:01 sec and the congestion control algorithm described in Section 2.1 rather thanreproducing the data from the original paper. In this con�guration, both switches have abu�er size of 30 packets. The graphs of the total queue length at the two switches are shownin Figure 3. 9
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congested queue in the one-way tra�c case, is the relative synchronization of the queuelengths in the two switches. In Figure 3 the queue lengths both go through similar lowfrequency oscillations, but they are out-of-phase with each other. One queue reaches itsmaximum while the other queue is at its minimum.For the sake of brevity, we have not shown any data on the cwnd or packet-drop behavior,which are not nearly so simply characterized as in the one-way tra�c case; we now brieysummarize those results. There is still some degree of loss-synchronization, in that themajority of the connections lose packets during the same congestion epoch. One remarkableoccurrence is that 99.8% of the dropped packets are data packets, even though during acongestion epoch all connections are sending packets to a nearly full queue with some of thepackets being data packets and some being ACK packets. Since only one of the two queues isfull during a congestion epoch (the other is nearly empty), this tendency to drop only datapackets implies that only connections sending data packets through the congested queueexperience drops during that congestion epoch. In addition, the cwnd data indicates thatthe connections sending in the same direction are window-synchronized in-phase, but theconnections with sources on Host-1 are synchronized out-of-phase with the connections onHost-2. This is reected in the out-of-phase synchronization of the queue behavior discussedabove. The total number of packet drops per congestion epoch varies, but the average isapproximately ten, the same as the total acceleration in this con�guration.It is clear that the insights gained in [16] are not su�cient to explain the behavior in thismore complicated con�guration. However, the presence of ten connections makes a detailedanalysis di�cult. Thus it seems natural to consider the simplest case of two-way tra�c: thatof two TCP connections with sources on di�erent hosts. The dynamics of that con�gurationis the focus of the rest of this paper.4 Features of Two-Way Tra�cIn this section we analyze the dynamics of the con�guration consisting of a network as inFigure 1 with two connections, connection 1 having its source on Host-1 and connection2 having its source on Host-2. We present our analysis in three parts. We �rst give anoverview of the dynamics, then examine more closely the phenomena of ACK-compressionand synchronization modes.4.1 OverviewFigures 4-7 depict the queue lengths and cwnd values from the two-way tra�c con�gurationwith propagation delay values � = 0:01 sec and � = 1:0 sec. The queue lengths exhibitthe familiar low frequency oscillatory pattern. In each congestion epoch two packets aredropped. This is consistent with the acceleration analysis which predicts that the totalnumber of packet drops in a congestion epoch is equal to the total acceleration during thatepoch; in this case the acceleration of each connection is one so the total acceleration is given11



by the number of connections. Furthermore, as in the one-way tra�c case, the packets fromeach connection are completely clustered together. This fact is not evident from the �guresbut was gleaned from a more detailed examination of the dynamics.However, there are two obvious features of these two-way tra�c results that are not presentin the one-way tra�c results. First, there are high frequency square waves superimposedon the low frequency oscillations of the queue size. These high frequency square waves aresimilar to, but much more regular than, the rapid uctuations in queue size seen in [19]and discussed in Section 3.2. Second, the synchronization behavior when � = 0:01 sec isdi�erent from that in Figure 2. Note that the window-synchronization is out-of-phase inFigure 5, in that one window is increasing while the other is decreasing. Also, there is noloss-synchronization in Figure 4; instead, the two dropped packets in each congestion epochare always from the same connection. We will discuss each of these phenomena in turn inthe sections that follow.The data from the two-way tra�c case is rather complex, which not only interferes with theanalysis but greatly complicates our presentation. To simplify the situation, we disentangledthe e�ects of the congestion control algorithm from the e�ects of two-way tra�c by consid-ering a con�guration in which the window sizes were �xed. Figures 8-9 show the behaviorof queue length in con�gurations in which the two TCP connections have values of wndwhich are held constant at 30 and 25 respectively. The switches have in�nite bu�ers. Thetwo connections started at random times and the packets of each connection are completelyclustered.While these �xed-window graphs look quite di�erent than the corresponding graphs in Fig-ures 4 and 6, they share enough of the essential dynamics to render them useful. In fact,as we shall see, both of the phenomena alluded to above have little to do with the detailsof any particular congestion control algorithm, and are really a feature of clustered two-waytra�c under window ow control when the data and ACK packets are of di�erent sizes.4.2 ACK-CompressionConsider Figures 8-9 which depict the �xed-window data. They exhibit square wave oscil-lations similar to those in Figure 4, except that here the amplitude of the oscillations isconstant which facilitates the analysis. Note that a similar simulation with one-way tra�cwould have yielded a constant queue length (modulo the alternation between adjacent valuesas packets arrived and departed). This is because, with one-way tra�c, the ACK packetsserve as a reliable clock in steady state: between every two ACK arrivals at a source therehas been a packet departure at the queue (if the queue is nonempty). This clocking dependscritically on the fact that, upon arriving at the source, ACK packets are separated in timeby at least the transmission time of a data packet. Because data packets leaving a queue arespaced by the transmission time of a data packet, the receiving host generates ACK packetswith this proper spacing. This spacing will remain constant as long as the ACK packetsnever encounter a nonempty queue on their way back to the source host, which holds truefor one-way tra�c. When we have two-way tra�c, however, ACK packets do encounternonempty queues. Recall that packets from each connection are clustered together; when14
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the situation is similar, with A2's arriving and D1's leaving. The queue lengths areessentially constant during this period.2. The last D2 has just left Q2; the A1's are now leaving at rate RA, while the A1's arestill arriving at rate RD, causing the length of Q2 to drop suddenly. At Q1, D1's arearriving at rate RA (due to the A1's leaving Q2 at that rate) while D1's are leaving atrate RD, causing the length of Q1 to increase suddenly.3. Q2 has just emptied; now the A1's that arrive at rate RD leave at rate RD since thereis no queue. At Q1, D1's are both leaving and arriving at the same rate RD. Thequeue lengths are essentially constant during this period. Note that all of connections2's packets are in Q1 (as ACK's) during this phase, with D1's both ahead and behindthem in the queue.4. The A2's have reached the front of Q1; A2's are leaving at rate RA and D1's arearriving at rate RD, causing a sudden drop in the length of Q1. At Q2, D2's arearriving at rate RA (due to the A2's leaving Q1 at that rate) while D2's are leaving atrate RD, causing a sudden increase in the length of Q2.5. All of the A2's have left Q1 and the last D2 has reached Q2; now D1's are leaving Q1at rate RD and A2's are arriving at rate RD. At Q2, A1's are arriving at rate RD andD2's are leaving at rate RD. This completes the cycle.The explanation of the ACK-compression phenomena used only the following two assump-tions: (1) ACK packets are signi�cantly smaller than data packets, and (2) the packetsfrom di�erent connections are clustered. The �rst of these assumptions is almost universallyvalid; the second, as discussed in Section 3.1, is valid in this con�guration for a wide rangeof congestion control algorithms. Thus, we expect the phenomena of ACK-compression tobe rather common in con�gurations like those we have described. ACK-compression is theonly e�ect we are aware of which, in steady state, gives rise to large rapid changes in queuelengths.The fact that not all packets are spaced out by the transmission time of a data packetrenders invalid our analysis in [16] about the capacity C of the path. With two-way tra�c,the number of packets that can be in ight at any one time depends on how many compressedACK's are in the pipe. Thus, there is no longer a well de�ned capacity C that can reliablypredict the occurrence of the congestion epochs. For one-way tra�c, the line is fully utilizedin the congested direction (though almost completely idle in the other direction) wheneverthe sum of the window sizes is larger than 2P (with data packets �lling up the pipe inone direction and ACK packets, which are spaced out by one data packet transmission time,�lling up the pipe in the other direction). One might naively expect that with two-way tra�cboth lines would be fully utilized whenever this condition was met. This is clearly not thecase. In Figure 8 where P = 0:125 and the sum of the window sizes is 55, there is signi�cantidle time when the queue for switch 2 is empty (the corresponding line has a utilization of86%). In Figure 9 where P = 12:5, both queues have times when they are empty (the lineshave utilization of 81% and 70% respectively). Why does this idle time occur? We do notyet have a complete explanation, and do not have room to explain what we do know, but17



the following remarks may provide some intuition. Whenever an ACK packet has to waitin a queue, the queueing delay has the same e�ect as increasing the pipe size. Thus, eventhough the window sizes are large enough to �ll the actual pipes, they are not able to �llthe e�ective pipes. Note that the size of the e�ective pipe seen by a connection is a functionof the window size of the other connection. Thus, increasing a connection's window willincrease the utilization of one line, but will decrease the utilization of the other line.We are not yet able to precisely characterize the idle time in this �xed-window system. Asystem which is easier to analyze is one in which the ACK's are of zero length. We discussthis system again in Section 4.3.3, but make the following observations here. As long as thepipe has nonzero size there are no conditions in which both lines are fully utilized. In sucha system, when the di�erence in window sizes is less than 2P , both lines are underutilized(as in Figure 9). When the di�erence is greater than 2P , only one line is underutilized (asin Figure 8).Returning to the adjustable window case, the square wave oscillations in Figures 4 and 6are due to the same ACK-compression phenomena just described for the �xed-window case.The only di�erence is that the increase in the window sizes in each epoch causes the plateauheights to increase in each epoch. The observation that ACK packets always arrive at aqueue spaced out by the data packet transmission time implies that no ACK packets areever dropped. Since a nonempty queue has decreased by at least one between every twoACK arrivals, we know that if the �rst ACK packet was not dropped the second cannot bedropped either. The �rst ACK packet in a cluster won't be dropped because it must followthe previous data packet by at least a data packet transmission time. This remark will beuseful in the next section, where we focus on the behavior of cwnd.4.3 Synchronization ModesThe graphs in Figures 4-7 exhibit two di�erent synchronization modes. When the propa-gation delay is small (Figures 4 and 5), the connections are synchronized out-of-phase. InFigure 5, one cwnd value is rising while the other is falling. Similarly, the two queues areout-of-phase with each other in Figure 4. This is much like the synchronization behavior inthe Figure 3. However, when the propagation delays are large (Figures 6 and 7) the con-nections are in phase with each other; the queue lengths rise and fall together as do the twocwnd values. This is much like the in-phase window-synchronization we saw in the one-waytra�c case. Simulation of other con�gurations reveals that typically for a �xed bu�er size,the synchronization is in-phase for large P and out-of-phase for small P . Similarly, for a�xed pipe size, the synchronization is usually in-phase for small bu�ers and out-of-phasefor large bu�ers. We now discuss the out-of-phase and in-phase synchronization behaviorsseparately. 18



4.3.1 Out-of-PhaseWe �rst consider Figures 4 and 5 where the propagation delay � of the bottleneck link is 0.01sec. The symbols above the graph of the queue length in Figure 4 indicate the occurrenceof packet drops. During each congestion epoch one connection loses two packets whilethe other connection loses none. In the next congestion epoch, the roles are reversed andthe connection which escaped without packets drops in the previous congestion epoch nowsu�ers the double packet drop. Thus, in every congestion epoch the total number of packetslost is equal to the total acceleration, but the losses are not distributed evenly. Becauseone connection loses while the other doesn't, the window increase-decrease cycles of thetwo connections are synchronized out-of-phase. The current implementation of the windowadjustment algorithm is such that, if two data packets are lost in a row, the value for ssthreshis reduced to its minimal value of 2.11 It takes a long time for the connection to build itswindow back up; during this time the other connection is getting most of the bandwidth.In fact, cwnd increases as the square root of time over the whole cycle, rather than havingan initial exponential and then linear growth periods (see [16] for a fuller discussion of thecongestion window growth laws).The utilization of the bottleneck line is 70% (compared to nearly 100% for the one-way tra�ccase). Note that with two-way tra�c there is considerable idle time, even here where thepipe is very small. This idle time is similar to what we saw in Figure 8; since the pipe size isso small, the windows always di�er by more than 2P and thus only one line is underutilizedat any given time.The presence of signi�cant idle time remains true even if we increase the bu�er size; whenthe bu�er size is increased to 60 and 120 the utilization remains at roughly 70%. For thevarious one-way con�gurations analyzed in [16] the fraction of idle time on the bottleneck lineapproaches zero in the limit of in�nite bu�ers. This was because, as discussed in Section 3.1,the length of a window increase-decrease cycle increases as one increases the bu�er size, butthe idle time in a cycle remains constant because it is just a function of the pipe size. Thisis no longer true when we have two-way tra�c. The idle time in a cycle is a function of thee�ective pipe size which, since it is determined by the other connection's window, increaseswith the bu�er size. In fact, the increase in the e�ective pipe size is proportional to theincrease in the cycle time, so that in the limit of in�nite bu�ers the utilization remains lessthan optimal.4.3.2 In-PhaseWe now turn to Figures 6 and 7 where the propagation delay � of the bottleneck link is 1sec. Again, packet drops are indicated by the symbols above the graph of the queue lengthin Figure 6. In each congestion epoch, each connection loses a single packet. Thus, eventhough the assumption of a well de�ned path capacity C which underlay the analysis inSection 3.1 is no longer valid here, the results about each connection losing an acceleration's11When the �rst loss is detected, ssthresh is reduced to cwnd/2, and cwnd is reduced to 1. Upon detectionof the second loss, cwnd's value is still 1, and ssthresh is set to its minimal allowed value which is 2.19



worth of packets during the congestion epoch seems to hold. Since the drops are close toeach other in time, the increase-decrease cycles of the cwnd values and the queue lengthsare all synchronized in-phase. There are repeating periods of idle time when the compressedACK's are in the pipe; the average utilization of the line is roughly 60% (compared to 90%in the one-way tra�c case with the same pipe size). Note that there are times when bothlines are idle, as in Figure 9. This is di�erent from the small pipe case where only one lineis idle at any moment.4.3.3 AnalysisAn obviously relevant question is: why do these two di�erent synchronization modes arise?Surprisingly, one can see the root causes of these two modes in the �xed window data inFigures 8 and 9. Consider Figure 8; in each epoch queue 1 reaches a maximum of 55 whilequeue 2 reaches a maximumof 23. If one were to �x the bu�er size to be 55 and then suddenlyincrease the window sizes of both connections by one, connection 1 would su�er two losseswhile connection 2 would not su�er any losses. This follows from three observations: (1) twopackets must be dropped in order to �t in the bu�er size of 55, (2) ACK packets are neverdropped (as explained in Section 4.2), and (3) packets are never lost from queue 2 becauseits maximum length is well below the bu�er size. This behavior resembles the out-of-phasesynchronization mode.In contrast, the queues in Figure 9 both reach the same maximal height of 23. If one wereto �x the bu�ers sizes to be 23 and then suddenly increase both window sizes by one, bothqueues would overow and thus both connections would experience a single packet loss. Thisis reminiscent of the in-phase synchronization mode.We are not yet able to completely characterize the dynamics of this �xed window system.However, we do have a conjecture for a system in which the ACK packets are of zero length12.Let w1 and w2 denote the �xed window sizes and assume, without loss of generality, thatw1 � w2. Then, we conjecture that there are only the following two cases.1. w1 > w2 + 2P : The two queues are synchronized out-of-phase, and only one line isfully utilized.2. w1 � w2 + 2P : The two queues are synchronized in-phase, and neither line is fullyutilized when the inequality is strict.This simple criterion completely characterizes the relevant behavior when we have negligiblesize ACK's. It appears that with nonzero-sized ACK's the system continues to exhibit onlythese two behaviors, but the simple criterion no longer applies.What role does the congestion control algorithm play in determining which synchronizationmode is present? The window-adjustment algorithm controls the relative window sizes during12Due to space limitations, we only present the content of the conjecture here; a fuller explanation willappear in a future publication. 20



the congestion epoch; these window sizes determine which �xed-window case we are in.Increasing the bu�ers with a �xed P tends to increase the di�erence between the windowsizes at the congestion epoch, thus producing the out-of-phase synchronization. IncreasingP with �xed bu�ers makes the criterion w1 > w2 +2P harder to satisfy, thus producing thein-phase synchronization.We have simulated other con�gurations. Upon varying the bu�er size or the pipe size P(by adjusting the propagation delay � ), one usually sees one of the two cases describedabove. However, we have also observed behavior which which does not �t neatly into our in-phase/out-of-phase taxonomy. Usually these problematic behaviors are either synchronizedin-phase or out-of-phase, but often the pattern of dropped packets is more complicated thanwe described above and violates the acceleration analysis (which we knew was not appropriatefor two-way tra�c). For instance, there is an in-phase mode in which both connectionsexperience double drops every congestion epoch. Some modes alternate between the singledrop and double drop behavior. Also, there is a mode in which an anomalously large number(roughly 10) of packets are dropped every few congestion epochs. We do not understand thebehavior in these other, less common, modes; they are the subject of future work.5 DiscussionOne of the purposes of this paper is to understand the results in [19], which we reviewedbriey in Section 3.2. Are those results explained by what we have seen in our simple two-way tra�c con�gurations? Compare Figure 3 with Figure 4. The rapid queue uctuationsin Figure 3 are similar to those in Figure 4, indicating the presence of ACK-compression.Furthermore, the synchronization and idle time apparent in Figure 3 resembles those of theout-of-phase synchronization mode in Figure 4. These were the key features we wanted tounderstand. There are some di�erences, however, between the data in Figure 3 and thatin Figure 4; in Figure 3 the plateaus of the square-wave-like uctuations are narrower, thequeue length rise more rapid, and the dynamics signi�cantly less regular.The widths of the plateaus reect the sizes of packet clusters. Recall that the con�gurationanalyzed in Figure 3 had a bu�er of size 30, with �ve connections in each direction and� = 0:01 sec. Thus, if the dynamics were completely regular and symmetric, each connectionwould have a maximum wnd � 6 during the congestion epoch. This is in contrast to themaximumwnd values of roughly 17 and 33 (see Figures 5 and 7) for the simpler con�gurationsconsidered in this paper. This explains the narrowness of the plateaus.The rate at which the queue size rises is related to the total acceleration and the totalacceleration during a congestion epoch is just the total number of connections. Since wehave 10 connections in the con�guration for Figure 3 compared to just 2 for Figure 4, wewould expect the queue length to rise much more rapidly in Figure 3.The regularity in the simple con�gurations considered in this paper is due to the completeclustering of the packets. We have explained in [16] why this clustering occurs for one-way21



tra�c con�gurations. It also holds when there is a single connection in each direction.13However, complete clustering does not always occur when there are multiple connections ineach direction because not all connections lose packets during the same congestion epoch.There is still some degree of clustering, in that most packets are followed in the queue bypackets from the same connection, but the clustering is no longer complete nor regular. Thiscauses the dynamics in Figure 3 to be somewhat irregular.We have spent considerable time focusing on the phenomena of ACK-compression and syn-chronization modes. It is natural to ask how general these results are. The presence of thetwo phenomena relied on two crucial properties: (1) ACK packets are signi�cantly smallerthan data packets, and (2) the packets from each connection are clustered together. Wetherefore expect that any con�guration which satis�es these two properties will exhibit thephenomena of ACK-compression and synchronization modes. There are two aspects of acon�guration; the ow control algorithms and the network topology.In this paper we have only considered the BSD 4.3-Tahoe TCP congestion control algorithm.However, we expect our results to be more generally applicable. Other nonpaced windowadjustment algorithms will also have the clustering e�ect, and thus we would expect to seeACK-compression and synchronization modes for those algorithms as well.Similarly, we have only considered one very simple network topology. But, once again, as longas some degree of packet clustering exists, we expect the phenomena of ACK-compressionand synchronization modes to be important aspects of the tra�c dynamics. Therefore a cru-cial question is: for what kinds of network con�gurations are the packets at least partiallyclustered? We do not yet know the answer to this question. However, for a topology consid-ered in [19] consisting of four switches, with a tra�c pattern of 50 connections whose pathlengths were roughly equally split between 1, 2, and 3 hops, the queue length data displayedboth the ACK-compression and out-of-phase synchronization phenomena. Thus, even in thisrather complicated topology where a detailed analysis of the dynamics is infeasible, the basicaspects of the behavior are due to the phenomena we have discussed here.On the other hand, we know at least two kinds of modi�cations to the con�guration thatcan reduce packet clustering to some extent. First, the fact that the two connections had thesame round-trip time was crucial to the complete packet clustering in our simulation. Whenthe round-trip times of di�erent connections di�er by more than a packet transmission timeat the bottleneck point, the clustering will no longer be perfect, although partial clusteringmay still exist. Secondly, the delayed-ACK option (see Section 2.1) in the current BSD4.3-Tahoe TCP implementation introduces some elements of pacing, not by changing whatthe source does but by modifying how soon the receiver responds to arrived data. With thedelayed-ACK option on, the receiver will hold back the acknowledgment to an arrived datapacket until a second data packet arrives or until a timer, which has a rather conservativetimeout value, expires; both of these actions e�ectively delay the ACK to the �rst packet byat least a packet transmission time. We have simulated the behavior with this option on. Forsmall window sizes (e.g., maxwnd = 8), the packets in the window are cut into a few smallpartial clusters minimizing the e�ect of ACK-compression. When the window sizes are large,13The argument in [16] can easily be extended to include this case; for the sake of brevity, we have omittedthis argument. 22



however, some partial clusters are of appreciable size, and the e�ect of ACK-compressionbecomes signi�cant again. Thus, the delayed-ACK option reduces the degree of clustering,and hence the e�ect of ACK-compression, to some degree but does not eliminate it.It is reasonable to ask if the phenomena we have described here are merely artifacts of ourunrealistically simple simulation model. A piece of closely related work by Wilder et al.([17]), which we received after the completion of our work, describes some measurements onan OSI testbed network. The testbed con�guration was somewhat similar to those consid-ered here, but with longer paths and various numbers of connections going in each direction.The hosts in the testbed run an implementation of the OSI transport protocol TP4 enhancedwith the CE-bit congestion avoidance algorithm ([15]). Even though this congestion con-trol algorithm has shown fair throughput allocations in previous tests with one-way tra�ccon�gurations (on the same testbed), the two-way tra�c measurements revealed extremeunfairness. This unfairness was ascribed to rapid queue length uctuations caused by ACK-compression, which seriously interfered with the switch's load averaging algorithm. It wasalso noted that, as we have seen here, the lines were signi�cantly underutilized. These mea-surements on a real network suggest that the phenomena we described: (1) are not simulatorartifacts, (2) exist in real implementations with di�erent window-based congestion controlalgorithms, and (3) can have a signi�cant and harmful e�ect on congestion control algorithmswhich were designed with the assumption that ACK's would provide su�cient clocking tokeep the queue length uctuations minimal.6 SummaryThis paper addressed the nature of network dynamics in a simple network with two-waytra�c controlled by the BSD 4.3-Tahoe TCP implementation. Two-way tra�c exhibitsseveral of the same phenomena that we found in one-way tra�c. The packets from eachconnection are clustered together, and the number of losses can be roughly estimated by theacceleration analysis. However, there are two phenomena that are new to two-way tra�c.First, there is ACK-compression caused by the interaction of ACK and data packets in aqueue. ACK-compression produces rapid and large uctuations in the queue length. It alsorenders invalid the assumption that ACK's provide reliable clocks for data transmissions. Inaddition, ACK-compression can give rise to signi�cant idle time even when the ow controlwindows are large compared to the pipe size. Second, two-way tra�c has two synchroniza-tion modes. The out-of-phase synchronization mode has the counterintuitive property thatincreasing the bu�er size does not always result in higher throughput.Even though our analysis was restricted to a very special case, it appears that the insightgained from these simple networks appears to apply, at least in part, to more general sit-uations. However, there are many unresolved issues. The dynamics in more complicatednetworks is still very poorly understood. Also, it is not clear what relevance our results havefor the Internet or other similar large-scale networks. For instance, is ACK-compression acommon phenomenon in these networks? Are the packets from di�erent connections clus-tered in network queues, or or are they mostly interleaved? These questions await carefulmeasurement. 23



Finally, one can ask whether what we have seen here has any implications for the design ofnew congestion control algorithms. We have seen that a standard rule-of-thumb is not validwith two-way tra�c; ACK's are not reliable clocks, even in steady state. Thus, future designsmust �nd more reliable means to supply this clocking function. Perhaps most importantly, wehave also seen that minor modi�cations in protocol implementations can have a profound andunintended impact on the performance. For instance, the delayed-ACK option was originallyintended solely to decrease the network overhead by reducing the number of ACK's. However,this slight change to the ACK'ing behavior can signi�cantly alter the tra�c dynamics. Whenseeminglyminor implementation changes can have unintended and unexpected consequences,how does one separate the implementation speci�c details of an algorithm from the essentialfeatures needed for adequate performance?References[1] R. Braden (editor). Requirements for Internet hosts - communication layers, RFC-1122,October 1989.[2] J. Davin and A. Heybey. A Simulation Study of Fair Queueing and Policy Enforcement,In ACM Computer Communication Review, 20(4), pp. 23-29, October, 1990.[3] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair QueueingAlgorithm, In Journal of Internetworking: Research and Experience, 1, pp. 3-26,1990.[4] S. Floyd and V. Jacobson. Tra�c Phase E�ects in Packet-Switched Gateways, In ACMComputer Communication Review, 21(2), pp. 26-42, April, 1991.[5] E. Hashem. Analysis of Random Drop for Gateway Congestion Control, In Report LCSTR-465, Laboratory for Computer Science, Massachusetts Institute of Technology,1989.[6] V. Jacobson. Congestion Avoidance and Control. In Proceedings of SIGCOMM '88,pp. 314-329, August 1988.[7] V. Jacobson. Berkeley TCP evolution from 4.3-tahoe to 4.3-reno. In Proceedings of theEighteenth Internet Engineering Task Force, Vancouver, British Columbia, August,1990.[8] R. Jain, K. K. Ramakrishnan, and D.-M. Chiu. Congestion Avoidance in ComputerNetworks with a Connectionless Network Layer, In Innovations in Networking, editedby Craig Partridge, Artech House, Boston, 1988.[9] A. Mankin and K. Thompson. Limiting Factors in the Performance of the Slow-StartTCP Algorithms, In Proceedings of USENIX Winter'89 Conference, 1989.[10] A. Mankin. Random Drop Congestion Control, In Proceedings of SIGCOMM '90,pp. 1-7, September 1990. 24
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Figure 5: The congestion window sizes for the two connections in the con�guration describedabove. The increase-decrease cycles of the two connections are synchronized out-of-phase.12
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Figure 7: The congestion window sizes for the two connections in the con�guration describedabove. The increase-decrease cycles of the two connections are synchronized in-phase.13


