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Abstract

The problem of interest is how to dynamically allocate
wireless access services in a competitive market which im-
plements a take-it-or-leave-it allocation mechanism. In this
paper we focus on the subproblem of preference elicitation,
given a mechanism. The user, due to a number of cognitive
and technical reasons, is assumed to be initially uninformed
over their preferences in the wireless domain. The solution
we have developed is a closed-loop user-agent system that
assists the user in application, task and context dependent
service provisioning by adaptively and interactively learn-
ing to select the best wireless data service. The agent learns
an incrementally revealed user preference model given ex-
plicit or implicit feedback on its decisions by the user. We
model this closed-loop system as a Markov Decision Pro-
cess, where the agent actions are rewarded by the user, and
show how a reinforcement learning algorithm can be used
to learn a model of the user’s preferences on-line in the
given allocation mechanism. We evaluate the performance
and value of the agent in a series of preliminary empirical
user studies.

1. Introduction

We have developed an adaptive personal agent called
the Personal Router (PR) which is a small, portable hard-
ware platform that provides wireless network connectivity
for mobile users’ data communication requirements, provi-
sioning connectivity services to wireless access providers
and continuously selecting the most appropriate service
as applications, task and user requirements change [10, 5,
11, 18]. Interactions in such a system are naturally non-
cooperative in nature. Therefore the principled design and
engineering of such markets is theoretically possible us-
ing Mechanism Design (MD) tools, where the “Principle’s”
(the access provider) goal is to design a revelation mech-
anism that truthfully elicits the valuation of the users (the
“agents”) for services. However, this modeling task has

been problematic for two related reasons: 1) the assump-
tions MD makes about the knowledge state of the players
and 2) none-efficiency constraints faced in practical indus-
trial organization of Internet. Firstly, MD is not a complete
theory of design of an allocationsystem, because it provides
a solution to only the preference aggregation problem and
ignores the preference determination problem, a non-trivial
problem in domains such as the Internet [20, 15, 19]. The
mechanism/game form is said to induce a game once the
preferences, or types, of the individuals are specified [6].
However, although a game form can model the possibility of
individually varying preferences, the preferences specified
in a game are assumed to be exogenous to the theory of MD.
The theory is a theory of asymmetric information, requiring
that only the “Principle” be uninformed and the “Agents”
be informed (know their preferences) and the preferences
be well structured [6]. Such knowledge and structural as-
sumptions are reasonable for informed agents such as firms
who invest time and effort to elicit, correct and model (using
decision analysis tools such as conjoint analysis [7]) a well-
defined closed-form utility function. These preferences are
then (optimally, [3]) elicited and aggregated, by the Princi-
ple from strategic and informed agents, for computing so-
lutions to some well defined multiagent distributed opti-
mization problem [6]. Secondly, participation in an efficient
mechanism is not always guaranteed in complex domains.
In fact sellers may be motivated by technological and in-
formation, rather than efficiency, criteria and may therefore
not have the incentive to participate in an efficient mecha-
nism. Therefore, the mechanism designer may not actually
be able to design an incentive mechanism to individually
motivate all players to participate in the mechanism.

Conversely, we are interested in the design of allocation
mechanisms when both side of the market are symmetri-
cally uncertain of their valuations. The sub-problem we ad-
dress in this paper is the design of a computational multi-
agent system for preference determination of end users or
“household” consumers, who often,in additionto the Prin-
ciple, are assumed to be initially uninformed due to high
preference formation and enumeration costs. We begin by
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assuming that in domains like the Internet what mechanism
can be implemented is severely restricted because prefer-
ences cannot be assumed to be available to the mechanism,
even ex-ante . In fact due to both seller and buyer uncer-
tainties over the buyer’s valuations the mechanisms actu-
ally implemented in the practice tradeoff optimality crite-
ria [19]. The central goal in this paper is then to develop
and engineer a generalizable and inductive model of how
to learn the preferences of a “household” consumer and in-
crementally optimize a consumer’s choices in the given ap-
proximate mechanism. We demonstrate this approach in a
specific domain: dynamic wireless service selection prob-
lem in a market consisting of multiple access providers.
We then motivate and present a commonly adopted take-
it-or-leave-it “first hop” network access allocation mecha-
nism. An adaptive agent who interfaces with and assists a
user in the service selection decisions in this mechanism is
then presented. The goal of the agent is to learn to select
better context dependent services by incrementally learning
the preferences of the user given minimal user feedback.
This contrasts to most current agent-based market mecha-
nisms where users are not part of the mechanism execu-
tion because their preferences are given apriori by a station-
ary and context independent axiomatic model which is then
executed autonomously by their agent in the mechanism.
Rather, the class of problems of interest in this paper are bet-
ter characterized as choice-based (rather than model-based
[13]), that involves approximate reasoning as opposed to
optimization, where objectives and constraints are well de-
fined prior to single/iterative optimal multiagent decision.

The intuition behind the problem is demonstrated in a
scenario in section 2. The mechanism and the underly-
ing mathematical optimization problem of the consumer
are then presented in section 3. The adaptive optimization
framework and the corresponding computational model, a
Markov Decision Process, are then motivated and presented
in sections 4 and 5 respectively. Select results from pilot
user studies are then summarized in section 6. The conclu-
sions and future work are presented in section 7.

2. The Service Selection Problem

Consider the following scenario that illustrate the tech-
nical system and cognitive difficulties. Imagine a user who
is running some applications on a mobile device in a cof-
fee shop. Further imagine each application requires differ-
ent network performance guarantees for its basic opera-
tion (e.g. bandwidth, jitter, latency, etc.). Applications are
run in some context to achieve some tasks (e.g arranging
a meeting, transferring files, video-conferencing, etc.) and
the user is likely to require some personal desires, such as
urgency, that place further none application or task related
constraints on the service the user requires. Assume ser-

vices have profiles that describe minimally two axes of a
service: 1) performance (bandwidth, jitter, latency) and 2)
price (initial price and marginal usage price, often as micro-
payments). Further imagine, that the users represents and
evaluates the utility of each service profile in higher level
objectives such as quality and cost. The decision problem of
the consumerfor a given contextis then which service pro-
file to select that maximizes the quality and minimizes the
cost for the set of application, task and user defined con-
straints. Now imagine, at some time step later the user is
in a different context: different physical location, still run-
ning the same applications for the same task and require-
ments, but now facing supply from a different set of base
stations offering different service profiles. In the worst case
the user may in fact be in a more hurried state than before.
Or maybe they have started another application, or termi-
nated old ones.

The complexity and dynamicity of such domains are
endless. Below we present an allocation mechanism and a
closed-loop agent-user system that attempts to control for
this complexity (see [10, 18] for solutions to more system
oriented problems).

3. The Mechanism

The consequence of cognitive and dynamicity con-
straints of the domain means users are unlikely to have
an incentive to participate in informationally and commu-
nicatively complex, but allocatively efficient, mechanisms
such as bargaining or auctions. In fact, it is known that be-
cause of human factors users actually tradeoff efficiency
for usability, preferring simple contracts for data/voice ser-
vices [15, 20]. Likewise, it is unlikely that sellers have
an incentive to participate in a complicated dynamic al-
location mechanism because they are constrained by
numerous factors, such as: a) an individual seller’s con-
tribution to the satisfaction of an end-user is only a por-
tion of any end-to-end path and a fraction of what would
have to be a globally coordinated distributed alloca-
tion mechanism [2, 19]; b) the cost structures, coordination
costs, and expansion pressures tend to drive the indus-
try to adopt simpler mechanisms over more complex but
“efficient” mechanisms [15, 16]; and c) more fundamen-
tally, the architectural principles that the Internet was
founded upon dictate that complicated allocation mecha-
nisms should not be embedded deeply into the network ar-
chitecture [19]. For these seller and consumer constraints
a commonly adopted end user access allocation mecha-
nism is a take-it-or-leave-it mechanism.

More specifically, we assume there areN heterogeneous
wireless access providers andM consumers respectively at
any instance of time. Consumers are located at some distinct
location, and can detect a subset of sellers dictated by the
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power transmission rates of their base stations. We assume
the market contains producers with heterogeneous produc-
tion capabilities, ranging from regional service providers to
individually owned base stations who can only resell ac-
cess and have no service negotiation power because they
lack any service production capabilities. For this reason we
adopt a mechanism where service proposers (the Princi-
pals) and the player who receives the proposal/s (the agents)
are the sellers and buyers respectively. We assume, for rea-
sons given above, that services are proposed on a take-it-or-
leave-it basis: The selleri ∈ N strategy space is given by
the set of technologically feasible service profilesSi (see
section 3.1). An agentk ∈ M strategy space is then to ac-
cept or reject the service profilesi ∈ Si, ∀N, ∀S proposed
by the Principals (see section 3.2). Rejection ends the rela-
tionship between the players. A contract is then setting the
rules of a secondary (Quality of Service, or commitment)
game to be played by the Principal and the agent, which we
do not model in this paper.

3.1. Seller’s Strategies: Services

We make no attempt to define or analyze the equilib-
rium of the sellers optimization problem given their strategy
space. We omit such definitions and analysis because of the
heterogeneity in the industrial organization among sellers
and the uninformed nature of the consumers in such a dy-
namic spot market. Therefore, rather than analyzing equi-
librium strategies for the sellers we instead enumerate the
strategy space in the take-it-or-leave-it mechanism in this
section. Note, we make no attempt to formally model the
seller’s constrained optimization due to technological fac-
tors in this reduced strategy space given these limitations.

More specifically, the current supply of services in the
market,S = {×isi}, is determined by both the physical lo-
cation of the user as well as the current production func-
tion of the sellers. A servicesj ∈ Si for selleri is assumed
to be a multi-dimensional set of features (called aservice
profile, sj) that describe two sets of necessary features: per-
formance and price of a service. The performance of a ser-
vice is specified through a two bucket profile describing a
service in terms of its short term and long term burst char-
acteristics, [21]. The other feature of a service profilesj is
the price of a service. Generally, in Internet pricing, ser-
vice providers price their services based on tiered peak-
rate schedules [9]. Other pricing strategies include usage
based prices [12] or more complicated user-specific con-
tracts [17]. Since the costs involved in contracting and com-
petitive pricing is too high in a dynamic wireless domains
we restrict the pricing strategies of the sellers to usage pric-
ing only. Such a strategy minimally specifies just two price
attributes: price per minutecmin and price per kilobyteckb.
Therefore the strategy space of selleri, Si, is some (con-

strained) continuous function of service performance guar-
antees it can make as well as the asking prices.

3.2. Buyer’s Strategies

The strategy of each consumerk ∈ M in this mecha-
nism is then defined as:

πk : v(sj , g, w)→ Π ∈ {A, R}, ∀i ∈ N, ∀sj ∈ Si (1)

whereΠ is the response of the consumer from the set, ac-
cept (A) or reject (R). g denotes the current context of the
consumer andw represents the weighting over each objec-
tive. v in turn is the value function which is a representa-
tion induced by a set of rationality axioms, [7, 8]. We then
describeeachaccess decision problem of the user in con-
text g as a constrained multi-objective maximization prob-
lem:

maximize vm(sj,g,wm), m = 1, 2, . . . , M ; (2)
s.t go(sj) ≥ 0, o = 1, 2, . . . , O;

hp(sj) = 0, p = 1, 2, . . . , P ;

smin
il ≤ sil ≤ smax

il , l = 1, 2, . . . , n;

wherem is the set of objectivesvm : Rn → R and
wm is the weight of themth objective.sj = [sj1, . . . , sjn]
is the vector of service profile features proposed by the
seller in the mechanism, that belongs to the nonempty fea-
sible regionD and which is a subset of the seller’s feasi-
ble service profile spaceRn. We restrict ourselves to two
objectives (m = 2) cost and quality. The set of such solu-
tions to a Multi-Objective Optimization Problem (MOOP)
is bounded by variable bounds that restrict each decision
variable to some uppersmax

jl and lowersmin
jl bounds. For

example, a user may have budgetary constraints and/or have
thresholded bandwidth perception, etc. These bounds, pos-
sibly derived through a combination of psycho and econo-
metric studies, then define the feasibleservice profile space
D. Finally, service profiles/solutions may also need to sat-
isfy not only variable bound constraints but also inequal-
ity and/or equality constraint functions (go andhp respec-
tively), such as minimal user aspiration levels.

Each access decision problem of the user is then to si-
multaneously maximizem objectives/criteria bysearch-
ing for a solution in the market that maximizes them
objectives. Solutions that satisfy all three types of con-
straints are referred to asfeasible solutions. The objective
and the feasible objective spaces are denoted byRm and
Z(= v(D)) respectively. Elements ofZ are called objective
vectors or criteria vectors and are denoted byv(sj,g,w) or
z = (z1, . . . , zm), wherezi = vi(sj,g,w)∀i = 1, . . . , n

are objective values or criterion values. Then the vector
Permission to make digital or hard copies of all or part of  
this work for personal or classroom use is granted without fee  
provided that copies are not made or distributed for profit or  
commercial advantage and that copies bear this notice and the  
full citation on the first page. To copy otherwise, to republish,  
to post on servers or to redistribute to lists, requires prior  
specific permission and/or a fee.  
           AAMAS'04, July 19-23, 2004, New York, New York, USA.  
           Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00 

482



optimization problem is to select a single solution/service
profile vector from the set of seller proposed solutions
that optimally solves each objective simultaneously,z∗ =
v∗ = (v∗1 , . . . , v∗m). Furthermore, the vectorv∗ ∈ D

chosen should be Pareto-optimal—there does not exist an-
other decision vectorsj ∈ D such thatvi(sj,g,w) ≤
vi(s

∗

j ,g,w)∀i = 1, . . . , m andvj(sj,g,w) < vj(s
∗

j ,g,w)
for at least one indexj.

4. Interactive Optimization

Since the consumer is assumed to be uninformed over
their value function then most function evaluation search
based mathematical programming solutions (such as a pos-
teriori, a priori and interactive methods [14, 4]) which un-
derlie the implementation of MD are inappropriate because
they all assume the value functionv is axiomatically given
(is model-based) and well defined for the task of generating
the Pareto profile set. However, the methodology of interac-
tive methods permits learning of user preference functions
because they firstly assume the user is available through-
out the solution stages, theniteratively generate a subset
of the Pareto-optimal set that is presented and evaluated by
the decision maker.1. The learning framework we adopt is
to tightly couple user to agent decisions in a closed looped
system—interleaving allocation decision making with inter-
active search methods that continually learn an approximate
user model and update this model sequentially and on-line.
The problem then is learning an optimal strategy over se-
quences of decisions. Learning is a feasible option because
the task-environment is forgiving, where the cost of errors
(or regret, the difference between acting optimally and sub-
optimally) is not prohibitive to exploration since the mon-
etary cost of a wrong service are in the order of cents. The
interactive learning algorithm we propose maps the MOOP
above from an objective space to a state space in a Markov
Decision Process (MDP).

5. The Personal Router Agent

The problem of learning a user’s preferences is framed as
learning a strategy over a sequential decision problem. The
search problem for an optimal strategy is solved through
reinforcement learning, by incrementally learning an opti-
mal control policy given an estimate of the utility of states,
derived from user rewards, in a MDP [10]. Therefore, the
agent (the controller) incrementally learns to select the op-
timal sequence of services given the user’s (the system)
feedback. Furthermore, preference data learnt in interac-
tions with the reinforcement learner can be used as train-

1 Note, the method still assumes the existence of a well defined value
function to generate the Pareto set.

ing data for regression algorithms, such as neural networks,
to enable generalization and prediction of the utility of ser-
vices not yet experienced by the user.

We formally define the service selection problem ad-
dressed by the PR agent as a fully observable MDP, de-
fined by a set of statesS, a set of actionsA, and a tran-
sition model.δ. 2 At each time stept, the agent receives an
observationrt from the user. The MDP model is defined by:

States (S): A state in our problem represents the set of
available network servicesl and the context in which it is
being used (theuser contextg). At time t, we define the
state to beSt = (lt, gt).

Let D = {S1, S2, . . .} be the set of all feasible services
sellers can produce andDt be the set of servicesxi avail-
able to the PR at timet. Let si ∈ Dt be the service in use at
time t.

The utility of a service also depends on the context in
which it is used. LetG be the set of all user contexts. At
time t, the agent determines the contextgt from the cur-
rently running application. The agent treats this context as
exogenous and does not attempt to predict or affect it.

Agent Actions (A): The goal of the PR is to select net-
work services for the user. At a timet, the agent actionat is
to choose the next servicesj ∈ Dt. LetA = {b1, b2, . . .} be
the set of all agent actions, where actionbi is to select ser-
vice si. The PR may choose from any of the available ser-
vicesDt, hence the set of available agent actions at timet

is At = {bi|si ∈ Dt}.
Transition Function (δ): In general an MDP may have

probabilistic transitions; however, in our problem the transi-
tions are deterministic and the agent has full control over the
services it receives. The transition functionδ : S ×A→ S

determines the next state the MDP enters given a state and
agent action. That is,δ(st, bi) = (ct, xi). The user context
c may change exogenously at any time, however.

Reward Model (R): At each time stept, the agent deter-
mines its rewardrt from the user input. A typical user is un-
willing or unable to provide detailed information about their
preferences over network services. Therefore we allow only
two user inputs: at a timet, the user may either indicate sat-
isfaction with the current service (rt = sat), dissatisfaction
with the quality and a request for a higher quality service
(rt = better), or dissatisfaction with the cost and a request
for a lower cost service (rt = cheaper). Based on this in-
put the agent calculates two values,∆q and∆c, The value
∆q = −1 if rt = better and∆q = 1 if rt = sat. Simi-
larly, ∆c = −1 if rt = cheaper and∆c = 1 if rt = sat.

Action Value Estimation (V ): For each servicesi and
user contextg that the PR observes, it maintains estimated
quality and cost valuesVq(g, si) ∈ [0, 1] andVc(g, si) ∈

2 See [1] for a Partially Observable MDP treatment of the preference
elicitation problem that, although has the same goal, represents states
as utility function.
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[0, 1]. The estimated quality and cost are calculated by av-
eraging the previous∆q and∆c inputs according to the ex-
ponential weighted average update rules

Vq(g, si) ← α
∆q + 1

2
+ (1 − α)Vq(g, si) (3)

Vc(g, si) ← α
∆c + 1

2
+ (1 − α)Vc(g, si) (4)

with learning rateα = 0.1, whereg is the current context
andsi is the currently selected service. If the PR’s predic-
tor has not yet been trained, then values ofVq andVc are
initialized optimistically with 0.9, encouraging the agent to
try new services. Otherwise, they are initialized to the val-
uesFq(g, s) andFc(g, s) by the prediction algorithm de-
scribed below.

The total pricectotal of a service to the user is a linear
time weighted combination of these price attributes where
the weight is the duration of usaget and the quantity of data
transferredy according to the equationctotal = cmint + ckby.

Action Selection: Action selection then involves accept-
ing the service that maximizes a weighted function of the
estimated quality-cost estimates, where the weights are also
an estimate of the user’s quality/cost weight and are updated
on user input according to the rulew ← w + ∆w and con-
strained so that0 ≤ w ≤ 1. We choose to simply use a lin-
ear action value functionv(si, g, w) as a starting point:

v(si, g, w) = wVq(g, si)+ (1−w)Vc(g, si)+ cswitch (5)

wherecswitch = 0.1 if s is the currently selected service
and 0 otherwise. We introduce the variablecswitch to ac-
count for switching costs in the system.

Actions are selected stochastically to encourage explo-
ration according to a Gibbs softmax distribution of the es-
timated utility of the available action/services, where the
probability of selecting an action/ servicesi with value
v(si) from the set of available servicesS is given by the
expression

ev(si,g,w)/τ

∑
x∈S ev(x,g,w)/τ

(6)

whereτ is called the annealing temperature.
Action Value Predictor Values of actions/services

which have not yet been experienced by the user are initi-
ated using the current action value estimates as training data
for a multi-layer neural networks (MNN). The (non-linear)
regression output from the MNN is then used as a pre-
dicted value of actions/services (see [10, 11] for a more
detailed exposition of the MNN).

6. User Experiments

The developed agent’s learning performance was tested
in static and dynamic service environments in a series of ex-

ploratory controlled user experiments. A detailed treatment
of the experimental goals, hypothesis and results of previ-
ous experiments are given in [10, 11].

6.1. Experimental Setup: Network and Users

The set of available services were generated using traf-
fic shaping in a software router. Services were defined
by three features: Average Data Rate (ADR), Cost per
Minute (CPM), and Cost per Kilobyte (CPB). The val-
ues of these features were chosen to mimic a range of
realistic network services, from inexpensive low qual-
ity services to expensive high quality services. We chose to
use seven quality levels, corresponding to bandwidth lev-
els commonly encountered by users in current 802.11b and
broadband, modem, and cellular data networks: 11Mbps,
1Mbps, 384Kbps, 128Kbps, 56Kbps, 28.8Kbps, and
9600bps. Costs were set so that the user must choose ser-
vices carefully to avoid expending all their credits.

Eight services were available in three simulated loca-
tions. For each location there was exactly one optimal ser-
vice that allowed the user to complete the experiment objec-
tives. All other services were either too costly or too slow.
Eight services were chosen because it is a large enough
number to make the search task of correct service selec-
tion hard enough for the subjects while enabling the PR to
learn service values within the time frame of the experi-
ment.

Subjects were 17 students and staff of the MIT Com-
puter Science and Artificial Intelligence Laboratory. Sub-
jects were rewarded for their participation with $10 to $20
based on their performance.

6.2. Procedure

In order to evaluate the ease of use and effectiveness of
the agent and user interface the performance of the PR was
benchmarked against a manual selection policy. Subjects
were randomly assigned to one of two groups: 1) the con-
trol group where subjects had to choose between services
manually by selecting from a menu displaying the available
services and their features and 2) the test group where sub-
jects used the PR to select between services, requesting ser-
vices using thebetter andcheaperbuttons described ear-
lier. The final distribution of subjects to groups was 8 con-
trol and 9 test conditions.

An experiment consisted of three phases. The first phase
controlled for task learning effects. Subjects were given ten
minutes to become familiar with the user interface, the pro-
cedure and the available services. The second phase con-
sisted of astaticconfiguration of all eight services for a par-
ticular location and tested how well the PR can learn an esti-
mate of user preferences (estimation tests). The third phase
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was identical to the second phase but tested for the adequacy
of the selected choices when the set of available services
changedfrom the set available in the second phase (predic-
tion tests). Within each phase the subjects had to complete
one or more tasks. For each task, the subjects had to use a
web browser to fully load a series of ten web pages within
five minutes while selecting a service using the mechanism
designated for their group. Each web page contained four
large image files. We chose this task because it approxi-
mates the network usage of a typical subject shopping or
looking for information on-line and makes use of the net-
work service in a realistic and familiar way. Subjects were
instructed that they would be charged for their network us-
age based on the cost of the current service. The task perfor-
mance of the subjects was given by the dependent variable
score, measured as the number of credits expended during
that task.

In each phase the simulated location and the set of avail-
able services changed. In Phase 1 the subject was placed in
Location 1 and was asked to perform their downloading task
twice for practice. In Phase 2, the PR was reset and the sub-
ject chose services from Location 2. The subject was given
two attempts at their task and was instructed to try to min-
imize their score. Finally in Phase 3, the user attempts to
minimize their score in Location 3.

6.3. Results

Previous experiments confirmed that the PR can learn
user preferences and select services effectively [10, 11]. The
goal of these experiments was to assess the subjects’ prefer-
ences for services by analyzing the observed ordinal rank-
ings over the set of services. Direct conjoint analysis was
not possible because asking pairwise questions over even
such a small service set was, in addition to their treatment
task, too costly in time and attention since subjects would
have to specify 72 pairwise preference relationships after
experiencing each service for their task. The observed du-
ration spent on a servicesi (t(si)) was instead used as a
heuristic about the satisfaction of the user with a service’s
cost and quality. The preference heuristic to compare two
servicessi andsj wassi � sj iff (t(si) ≥ t(sj)). Usage
duration is a reasonable dependent variable because the at-
tention of the users was controlled for in each treatment
condition by the task. Therefore, the subjects should have
behaved, spent time using a service, “as though” they were
maximizing the value of their scores. The correlation be-
tween the observed service usage durations and the PR es-
timates of utility of that service was computed to derive the
relationship between the usage duration and the agent esti-
mated orderings. We observed that indeed the usage dura-
tion was linearly and positively correlated (with coefficient
of r2 = 0.736) with the estimated utility (withw = 0.625)

S 1 2 3 - - - - 8
1 1 - 3 - - - - -
2 - - 3 - 5 6 - 8
3 1 2 3 - - - 7 8
4 - - 3 - - 6 - -
5 1 2 - 4 5 - - -
6 1 2 3 4 - - 7 8
7 1 2 3 - 5 - - -
8 - 2 - - - - - -
9 1 2 - - - - - 8
G 1 2 3 - - - - 8

Table 1. Final Pareto Set Induced by the Ac-
tual Services, the Users and the Group

of that service by the agent.
We first compared thefinal set of weakly Pareto opti-

mal services induced by each subject’s PR estimate of qual-
ity and cost of all services (POi) with the Pareto opti-
mal set induced by the eight actual experimental services
(POS). Weakly Pareto optimal services were identified by
pairwise comparison of all of the services,(si, sj), ∀i, j
and selecting those that satisfied the condition:(adr(si) ≥
adr(sj))∧(cpm(si) ≤ cpm(sj)). That is, servicesi weakly
Pareto dominatessj because it provides at least as much
quality at equal or less cost.

Table 1 shows the weak Pareto optimal set for the ac-
tual experimental services (POS , row S), compared to the
final induced set by the PR estimates of each individual
subject (POi, rows 1 to 9), together with the set induced
by the aggregate estimates of the group of subjects (row
G). The results show that 5 out of 8 experimental ser-
vices weakly Pareto dominated others objectively:POS =
{s1, s2, s3, s6, s8}.3 By observation we can see that the fi-
nal Pareto dominating set induced by the PR estimates of
the group (POG) is similar to POS . As suspected more
variations in similarity between the actual and PR estimated
Pareto set were observed at the level of each individual sub-
ject, but nonetheless some similarities obtained.

We also measured the frequency of times the PR ordered
pairs of services correctly by either quality or cost alone or
both. The observed frequency ratio of each subject for each
ordering condition (out of 28 service comparisons) is shown
in Table 2. For example, the first subject was observed to
correctly order almost80% of the services correctly using
the either the quality or cost criteria alone. However, the ac-
curacy ofall subjects responses was lower when both cost

3 We observe such a large Pareto set size because we chose to exper-
iment with service profiles whose quality and cost profiles were not
random but instead were similar to actual current services.
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Quality Cost Quality and Cost

1 0.79 0.79 0.68
2 0.82 0.75 0.68
3 0.93 0.79 0.75
4 0.93 0.75 0.68
5 0.82 0.79 0.64
6 0.57 0.89 0.54
7 0.89 0.75 0.68
8 0.61 0.64 0.46
9 0.82 0.86 0.79
G 0.71 0.89 0.79

Table 2. Actual v.s PR Estimated Quality-Cost
Consistency

1 0.57
2 0.86
3 0.86
4 0.86
5 0.57
6 0.71
7 0.29
8 1.00
9 0.57
G 0.86

manual 1.00

Table 3. Usage Duration and Locally Pareto
Optimal Ratios

and quality was considered. A value of 0.5 would corre-
spond to random estimates. These results indicate that the
quality and cost estimates learned by the PR are fairly con-
sistent with the actual quality and cost of services.

Next we measured if Pareto dominant services were used
more by the subjects, in theprocessof arriving to the fi-
nal service estimations. To support such an inference we
used the concept of Local Pareto dominance as the depen-
dent variable. If forsj there exists another servicesi such
that||si − sj || ≤ ε, whereε is a small positive number, and
si dominatessj , thensi is locally Pareto optimal. In other
words,si is simply a more optimal service in theneighbor-
hoodof a servicesj , wheresi does not neccessairly lie on
the Pareto frontier (i.e is not the global optimal).

Table 3 shows for each PR user the fraction of service
pairs(si, sj) that obey the relationsi � sj over the set of
services such thatsi weakly locally Pareto dominatessj.
The fractions are also given for the aggregate PR and man-

ual selection durations. The table shows that ordering ser-
vices based on duration of usage is consistent with a prefer-
ence ordering based on Local Pareto optimality. When pre-
sented with two services, one of which weakly Pareto dom-
inates the other locally, the user almost always uses the lo-
cally Pareto dominant service for a longer duration than the
dominated service.4

Finally, we analyzed the subject’s search dynamics by
analyzing performance of the PR in terms of the timing of
user inputs. We definesatisfactionto be when a service is
in use for more than 15 seconds without any button presses.
Each time the user pressed a button following a state of sat-
isfaction, we counted the number of button presses before
satisfaction was again achieved. Figure 6.3 shows the cu-
mulative probability distribution of the number of these but-
ton presses. Shown in the figure are the average results for
users of the manual interface and for the PR interface. In
addition, we show the results followingbetterandcheaper
button presses in the PR. We observe that the average num-
ber of button presses required to satisfy the PR users is less
than the average number of presses required under manual
selection up to about the 95th percentile. On average, about
65% of the time the PR satisfies the user after just one but-
ton press, whereas after just one button press manual se-
lection users were satisfied less than 50% of the time. We
also see that PR users as satisfied more quickly after press-
ing thecheaperbutton than when they press thebetterbut-
ton. This may be because users are more likely to be satis-
fied with lower cost services than higher quality services, or
perhaps because the PR’s selections are more accurate when
users request cheaper services.
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Figure 1. Satisfaction Distribution

4 Recall, that since the observed correlation between the usage dura-
tion of the service and the estimated utility of the agent is positive
and large we can also assume these results can be applicable to pref-
erence relation and estimated utilities.
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7. Conclusion

We motivated, presented and evaluated a state-based
model of an interactive on-line agent that learns the user’s
preferences for wireless services in a dynamic and compet-
itive environment. Decisions were made to optimize esti-
mated preferences of users in a take-it-or-leave-it alloca-
tion mechanism, a mechanism that was argued to be fea-
sible given real economic, technical and cognitive cost con-
straints.

Central to our approach is an inductive methodology, be-
cause we are interested in engineering rather than analy-
sis of a multiagent system. This is similar to economists’
“revealed preference” models, where a preference theory is
developed by observing consumer choices. If the observed
choices are consistent in a particular way we can then repre-
sent them as if consumers maximized utility functions that
satisfy the axioms of preferences. The benefit of a more bot-
tom up, data-driven inductive modeling is that no prior as-
sumptions need to be made about the rationality of the play-
ers, unlike deductive model-based assumptions of Mecha-
nism Design. However, the cost of this methodology is the
difficulty in constructing a theory of system equilibria since
no generalization can be established given many sources of
conflicting evidence. Nonetheless, this is also a problem for
deductive models of MD in domains with large scaled dy-
namicity, such as wireless/ad-hoc networks, where standard
equilibrium solutions no longer apply given the uninformed
nature of the players. We have therefore had to trade-off an-
alytical expressiveness for an engineered solution.

Our future goal is to continue to develop better learn-
ing models and evaluate whether these estimated models
derived from observed consumer data does indeed (weakly
or strongly) satisfy the consistency conditions required by
the model-based deductive equilibrium models. If so we
can then make valid inferences using deductive models. The
preliminary empirical work reported here shows that prim-
itive conclusions can be made, even in dynamic environ-
ments as wireless networks.
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