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Abstract

In designing and building a network like the Internet, we continue to face the problems of
scale and distribution. With the dramatic expansion in scale and heterogeneity of the Inter-
net, network management has become an increasingly difficult task. Furthermore, network
applications often need to maintain efficient organizationamong the participants by col-
lecting information from the underlying networks. Such individual information collection
activities lead to duplicate efforts and contention for network resources.

The Knowledge Plane (KP) is a new common construct that provides knowledge and
expertise to meet the functional, policy and scaling requirements of network management,
as well as to create synergy and exploit commonality among many network applications.
To achieve these goals, we face many challenging problems, including widely distributed
data collection, efficient processing of that data, wide availability of the expertise, etc.

In this thesis, to provide better support for network management and large-scale net-
work applications, I propose a knowledge plane architecture that consists of a network
knowledge plane (NetKP) at the network layer, and on top of it, multiple specialized KPs
(spec-KPs). The NetKP organizes agents to provide valuableknowledge and facilities
about the Internet to the spec-KPs. Each spec-KP is specialized in its own area of in-
terest. In both the NetKP and the spec-KPs, agents are organized into regions based on
different sets of constraints. I focus on two key design issues in the NetKP: (1) a region-
based architecture for agent organization, in which I design an efficient and non-intrusive
organization among regions that combines network topologyand a distributed hash table;
(2) request and knowledge dissemination, in which I design arobust and efficient broad-
cast and aggregation mechanism using a tree structure amongregions. In the spec-KPs,
I build two examples: experiment management on the PlanetLab testbed and distributed
intrusion detection on the DETER testbed. The experiment results suggest a common ap-
proach driven by the design principles of the Internet and more specialized constraints can
derive productive organization for network management andapplications.

Thesis Supervisor: Karen R. Sollins
Title: Principal Research Scientist, Computer Science and Artificial Intelligence Labora-
tory
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Chapter 1

Introduction

1.1 Background

The Internet began in the 1960s. At that time, multiple networks coexisted, including

ARPAnet, UUCP, etc. TCP/IP was developed to unify these networks so that they could

communicate with each other. With the commercialization ofthe Internet in the late 1980s

and early 1990s, the Internet has grown exponentially in itsscale and heterogeneity. The

number of users has increased from a few in 1960s to more than one billion by 2007; the

coverage has expanded from a few universities in the U.S. to almost every country in the

world; the devices connected to the Internet have evolved from a few terminals to millions

of computers, PDAs, cell phones, robots, and even coffee machines; the applications have

increased from email to web, file sharing, online business, gaming and many others. The

Internet has become an indispensable component of our society.

Due to its extraordinary success, the Internet has become increasingly global, crossing

domains of responsibility, as well as having been pushed deeply into our daily life and very

personal environments. It has also evolved from a small, simple, and friendly network to a

large and complicated environment where entities have different and sometimes conflicting

objectives. Viruses, worms, and spams also leverage the Internet to propagate themselves

to their advantage. Today the Internet infrastructure is a federation of more than 15,000

routing domains, each of which is under its own operation andadministration. The Border

Gateway Protocol (BGP) connects those networks into the Internet.
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1.2 New Challenges

Traditional network management has been focusing on managing the elements in the net-

work such as routers and switches. With the increasing density and expansion of the net-

work, the problem space is becoming much larger and more complex, and has clearly

expanded into domains of supporting network applications.Therefore, bynetwork man-

agementwe mean a much broader set of problems than the traditional domain of core

network management.

For purposes of explanation, we partition the space of network management into man-

aging the network resource and supporting network applications. We will talk about these

two topics separately. We further discuss an example, because it has an interesting feature:

It essentially happens in the domain of application level management, but it crosses the

boundary into the traditional network management as well.

To facilitate the discussion, I use the term “agent” to describe a participant that works

together with others to perform a task. Agents function on behalf of users, service providers,

etc, and they do a broad range of tasks, ranging from simply collecting packet traces to run-

ning sophisticated intrusion detection techniques. An agent can be a local intrusion detector

on an end host, a traffic monitor on a gateway, a daemon that provides network topology

information, etc. An agent may issue requests to other agents. A “request” is a message

that looks for an answer to a problem, or asks for an action to be undertaken. For example,

a request may be sent by a local detector to collect intrusiondetection status from many

other detectors for an aggregate analysis. I will discuss these terms in detail in Chapter 3.

The problem we address in this thesis is organizing agents inorder to achieve a broader

definition of network management.

1.2.1 Network Resource Management

The Internet was originally designed to be a decentralized,multi-administrative structure

that combines a simple, transparent network with rich end-system functionality [34, 111].

The core network is simple and transparent in the sense that it only deals with one task:

to carry packets without knowing what is in the packets. Richend-system functionality is
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achieved by end hosts at the edge of the Internet, who understand what the goal is and what

the applications do in their contexts. This transparency and rich end-system functionality,

however, becomes a nightmare for network operators who manage the network at the low

level, because they cannot specify the high level goal or even relate the high level goal to

the low level operations. This gap leads to a difficulty when the edge recognizes a problem

but the network has no idea about what should happen. Traditionally, network analysis,

diagnosis, and management have been done manually by a smallnumber of people. As the

Internet continues to grow in reach and in density, there areincreasing problems with un-

derstanding how it works, where it runs into problems, and how to address those problems.

As a result, those traditional manual approaches require anincreasing number of people to

be involved, and the management task itself becomes increasingly complex. Furthermore,

some problems are not in the unique domain of network management. The definition of

network managementis expanding. Even within the scope of the network,network man-

agementrefers to a broader spectrum of problems that is not limited to router configuration

and other traditional network management tasks.

Let us consider a network diagnosis example. When a web browser is experiencing

slow access to a web page, how can the root cause of the problembe identified and fixed,

if possible? If network operators or IT support staff are immediately available, they may

be called upon. However, this is usually not the case; otherwise, many more support staff

will be needed. If a user wants to diagnose the problem by himself, he can first check

whether the local host is misconfigured. If not, he needs to check whether the website’s IP

address is correct, i.e., whether the DNS is working. Then hechecks whether the path from

the end host to the website is working, and finally whether theweb server is overloaded.

We can see that considerable knowledge about the network configuration and conditions

and real-time measurement are needed for the diagnosis, as the web access requires many

interdependent components to work together correctly. Some components are not easy to

measure or diagnose from the user side, such as the path condition and the status of the

web server. Therefore, more powerful and intelligent mechanisms are needed to provide

the necessary knowledge about each component and to automate the diagnosis process.

Actually the problem is even worse, because in general the problem can be caused by
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an aggregate behavior of multiple components, as opposed toa single component analyzed

above. For example, if every link has a small packet loss rate, the aggregation of the link

losses can cause the path to fail intermittently. This faultcannot be traced back to any

single device, and requires collecting information from multiple places (links along the

path in this example).

Another diagnostic approach is for agents on end hosts to collaborate with each other

to confine the scope and the cause of the problem. For example,if many end hosts visiting

the web server from different places of the Internet all experience slow browsing, then it

might be concluded that the root cause is very likely a problem with the web server itself;

if only a set of neighboring hosts are having the same problem, then it is likely a local area

network problem. Therefore, it is very valuable to have a mechanism that helps agents

discover each other and collaborate together based on network scope/topology.

Part of the problem space that has received lots of attentionso far is single source fault

diagnosis. I am more interested in the other side of such problems. In this thesis, I study

problems that involve multiple components simultaneously, and focus on the collaboration

among many agents in order to solve problems more effectively.

1.2.2 Network Application Support

An orthogonal issue to network management is the support needed by new network appli-

cations. Those applications are widely distributed acrossthe Internet, and often maintain

their own connectivity graphs among their participants. Examples include overlay net-

works, content distribution networks, end system multicast, peer-to-peer networks, pub-

lish/subscribe systems, etc [16, 33, 49, 67, 102]. Routing overlays build their own routing

graphs to route around congested paths with comparable or even better performance [16];

end-system multicast constructs the application-layer multicast tree to transmit video ef-

ficiently [33]; nodes in peer-to-peer networks probe each other to find nearby neighbors

to improve lookup performance [49]. Currently each application builds and maintains its

own connectivity graph by probing latency, available bandwidth, loss rate or other met-

rics actively between hosts, which often incurs significantcost in the network as redundant
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operations are performed by them individually. Due to limited network resources, such

redundant operations cause contentions for resources, instability of the network traffic, and

many other potential problems [10].

To summarize, the new features common in many network applications are as follows:

• The systems are widely distributed in the Internet, and are formed as a set of entities

that collaborate to achieve certain functionality under some constraints;

• They need information from the network layer to organize themselves efficiently, and

there is a commonality in the structure and nature of the pattern that it is both useful

and possible to abstract out;

• They involve a variety of expertise and reasoning in order tohandle widely dis-

tributed, incomplete, possibly contradictory and inaccurate information.

1.2.3 A Motivating Example

For motivation, let us consider a specific example: intrusion detection. Please note that this

is just an example used to demonstrate the challenges we willaddress in this thesis. These

challenges are common in many other problems in today’s Internet. The same example will

be carried out through the following chapters, and I will discuss it in depth in Chapter 7.

In this example, we focus on zero-day and slow-scanning worms. Such worms are es-

pecially difficult to detect due to two features. First, the worms are completely new, which

means no existing signatures or behaviors are known. Thus, many existing intrusion de-

tection systems that depend on signatures do not work. Second, unlike traditional worms

that propagate aggressively in the Internet, slow-scanning worms propagate slowly to hide

themselves from detection. Although a gateway is a natural place to inspect aggregated

traffic, without knowing the signature beforehand, it is hard to observe strong traffic pat-

terns from those slow-scanning worms. To that end, since thebehaviors of zero-day worms

are not known a priori, the best location for initial attention is the local host itself, because

only the end node can possibly know whether slightly anomalous traffic is a potential attack

or only a new application, in the context of local behaviors.However, at the local node,
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one loses the aggregation effect of repeated or simultaneous low level anomalies. In addi-

tion, it is difficult to make all local detectors strong enough because they see only a small

percentage of the global traffic and cannot devote many resources to detection. Therefore,

there is a need for those weak local detectors to collaborateefficiently, so that the system

can aggregate the results of weak local detectors to get a broader perspective and to find

stronger signals. This idea is appearing increasingly in other places as well [59, 60].

Based on the above analysis, we face the following challenges. These challenges are

common in many network management and network applicationsin today’s Internet. First,

a more effective detection approach is needed. As discussedabove, detectors at the gate-

ways cannot detect such worms effectively, nor can an individual local detector, so we

propose to aggregate information from many local detectorsand conduct an aggregate anal-

ysis. To generalize this idea, let us think about the agents in the Internet and the knowledge

they have. There are many detectors with various capabilities, and many different kinds

of useful knowledge in the network. For example, some agentsmay have the expertise to

analyze aggregate data, and some may have knowledge about the network topology and

configuration information that can be used to cluster the local detectors together. Examples

of questions to be analyzed are: How can those local detectors or agents with similar inter-

ests find each other in the first place? How can the detectors find the necessary knowledge

and techniques to conduct the aggregate analysis? To address these questions, we discuss

the agent organizing criteria and principles in Chapter 3. Wefurther propose a mechanism

that supports an agent to issue a broadcast request to other agents so that those with similar

interests can find each other.

Second, the overhead of the detection approach must be low. Agood approach should

not overburden the network. We want to minimize message passing and avoid flooding

schemes that generate excessive redundant messages. One way to do so is to organize

detectors based on their network proximity. For instance, enterprise networks are reflected

in topological neighborhoods and we can cluster detectors in the same enterprise networks

together, and detectors outside the enterprise networks may be organized based on the

Autonomous System boundaries. In this way, most communication happens among nearby

nodes. Such network knowledge is useful in many other areas,such as server selection,
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application layer multicast, and file sharing [49, 58]. Therefore, we propose to build a

new infrastructure to provide knowledge about the Internet, as discussed in Chapter 3. We

further discuss how to achieve efficiency and non-intrusiveness in the organization of a

large number of agents in Chapter 4.

Third, the approach should not create a bottleneck in the network or cause huge traffic

explosion at a single point. For example, if we construct a tree structure to aggregate

information and each local detector is a node in the tree, we want to ensure that there

is good load-balancing, in the sense that no node in the tree should be responsible for

forwarding a disproportionate amount of network traffic or have a large number of child

nodes to take care of. We present a broadcast and aggregationmechanism based on a

balanced tree structure to propagate requests and knowledge in Chapter 5.

Finally, if detectors belonging to multiple parties are involved, very often local control

is needed to determine what information to be exposed, as there may be various kinds of

constraints, such as security, policy and economics imposed by those parties. For example,

an agent may allow the complete packet trace to be shared withothers, while another may

only allow the sharing of packet headers or even just report whether it detects an attack.

We discuss this issue in Chapter 7 to ensure those policies in an effective way.

1.3 The Knowledge Plane

The work presented here falls into the paradigm of the knowledge plane. To make the

network more intelligent,the knowledge planewas proposed by Clark et al. in [35]. In

network architecture, we recognize two architectural divisions: a data plane over which

data is transported, and a control plane that manages the data plane. The knowledge plane

(KP) is a new higher level construct in network architecture, contrasting with the data and

control planes. Its purpose is to provide knowledge and expertise to enable the network

to be self-monitoring, self-analyzing, self-diagnosing,and self-maintaining. At an abstract

level, the knowledge plane gathers observations, constraints and assertions, and applies

reasoning to these to generate observations and responses.At the physical level, it runs on

hosts and servers within the network on which knowledge is stored. The KP is a loosely
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coupled distributed system of global scope. The KP brings upa number of challenging

problems, such as knowledge representation and dissemination, incorporation of AI and

cognitive techniques, conflict resolution, trust and security, how to design a distributed

knowledge base for the networks, how to incorporate into theframework pre-existing sets

of specialized data and tools for network management, etc.

We believe that the knowledge plane is an appropriate construct to address the new

challenges from network management and network applications. Based on the types of

knowledge at the network layer and the upper layer, as well asthe organization suitable for

those layers, I propose an architecture that consists of thefollowing components:

1. A network knowledge plane (NetKP). The NetKP is an application-independent mech-

anism at the network layer that provides knowledge about network topology, condi-

tions, policies, etc. The NetKP supports network management and applications.

2. Specialized KPs (Spec-KPs). The spec-KPs are application-specific, and specialize

in various areas, to achieve certain functionality of network management or applica-

tions, under a set of constraints.

To design and build the NetKP and the spec-KPs, we identify the following design re-

quirements: scalability, to address the size and scope of the Internet; efficiency, to provide

responsiveness to requests; robustness, to enable the KP tocontinue to function as best pos-

sible, even under incorrect or incomplete behavior; non-intrusiveness, to keep the KP from

impinging significantly on the resource usage intended for the customers of the network.

Spec-KPs also need to satisfy additional constraints from their own areas of interest, and

have local control to support local networks and resources in their needs for privacy and

other forms of local control, while enabling them to cooperate for mutual benefit in more

effective network management.

1.4 Thesis Contributions

In this thesis, I make the following contributions.
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First, I propose a new architecture for network management and applications based on

the concept of the knowledge plane. The architecture consists of a network knowledge

plane and, on top of it, multiple specialized KPs. The NetKP provides network knowledge

and facilities to help construct the spec-KPs. Each spec-KPis specialized in its own area

of interest under functionality, policy and other constraints.

Second, I analyze the criteria and principles to organize the NetKP and the spec-KPs,

and propose a region-based agent organization to support those criteria and to operate

within the principals.

Third, I address two important issues in the NetKP. One is thecross-region organiza-

tion, in which I design a distributed hash table that leverages network topology knowl-

edge to achieve efficiency and non-intrusiveness. The otheris a broadcast and aggregation

mechanism among regions, in which design a robust and efficient tree construction and

maintenance protocol using a novel idea of the parent function.

Fourth, I conduct two case studies on the spec-KPs: experiment management on testbeds

and distributed intrusion detection. In the first case study, I study how to facilitate dis-

tributed experiment management on PlanetLab, specificallyon how different kinds of knowl-

edge are maintained and propagated to resolve the node selection problem during the exper-

iment setup. In the second case study, I design a knowledge-based framework for collabo-

ration between different intrusion detection systems, andimplement a distributed intrusion

detection system on the DETER testbed.

Fifth, during the research I also developed several insights that are not limited to the

knowledge plane and can be applied to many other areas in the large-scale distributed sys-

tems.

• Latency approximation. I use the number of Autonomous System (AS) hops as an

approximation of the end-to-end latency, and take the AS heterogeneity into consid-

eration. The proposed hybrid proximity neighbor selectionalgorithm achieves the

lookup performance comparable to proximity neighbor selection while significantly

reducing the probing traffic.

• Parent function. The parent function provides a flexible wayto construct and main-
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tain a tree structure, as the tree properties are tunable using the parameters in the

parent function. The parent function I proposed forms a balanced tree that is robust

to node churn and can be optimized according to network topology. It also allows an

efficient construction of multiple interior-node-disjoint trees, thus alleviating single

points of failure.

• Dependency-based intrusion detection. To detect zero-dayand slow-scanning worms,

I design an approach that allows for partitioning along policy boundaries and that

applies different detection techniques within and across regions to capture the de-

pendency among end hosts.

1.5 Roadmap of the Dissertation

The dissertation is organized as follows. Chapter 2 discusses research work in several re-

lated areas, including network architecture, overlay network organization, and our previous

research on regions. Chapter 3 presents the system architecture and the organizing princi-

ples of the NetKP and the spec-KPs. Chapter 4 presents a cross-region organization in the

NetKP that combines network topology knowledge and a distributed hash table. Chapter 5

designs an aggregation and broadcast mechanism for requestand knowledge dissemination

among regions in the NetKP. Chapter 6 presents a case study on experiment management

on PlanetLab, to demonstrate how different types of knowledge are maintained and prop-

agated based on their features. Chapter 7 proposes an intrusion detection framework, and

presents a distributed intrusion detection system on the DETER testbed. Chapter 8 con-

cludes the dissertation and discusses the future work.
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Chapter 2

Related Work

There are many categories of related work to the knowledge plane, as many issues are

involved in this work. In this chapter, I present an overviewof network architecture, over-

lay networks, broadcast and aggregation mechanisms. More specific related work to each

chapter will be discussed in those chapters.

2.1 Network Architecture and Management

In the original Internet architecture, distributed management of networks under different

administrations was not given high priority, as other goals, such as multiplexed utilization

of existing interconnected network, survivability, and support for multiple types of service

[34]. However, as the Internet increases its size and heterogeneity, and becomes an indis-

pensable part of the infrastructure, network management has become a hard problem. That

is why the knowledge plane is proposed to make the network self-manageable [35].

New architectures have been proposed to meet the challengesin network management.

Greenberg et al. proposed a clean-slate approach to networkcontrol and management, the

4D architecture [51]. 4D employs a centralized top-down method guided by three prin-

ciples: Specify network-level objectives for performance, reliability, and policy; Collect

timely and accurate network-wide views of topology, traffic, and events; Use direct control

on switches instead of hardwired logic. 4D decomposes the functions of network control

into four planes: a decision plane that is responsible for creating a network configuration; a
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dissemination plane that gathers information about network state to the decision plane, and

distributes decision plane output to routers; a discovery plane that enables devices to dis-

cover their directly connected neighbors; and a data plane for forwarding network traffic.

4D separates the decision making and the placement of the information and the execution,

and suggests a centralized method for the decision making. We concur with the value of the

separation of the functionalities, and focus in this work onhow the expertise is organized

efficiently in a distributed way. 4D is proposed for network control and management within

an administration, while our work aims at the global Internet where thousands of different

administrations coexist. As a result, our focus is more on how agents are organized into

regions and how regions collaborate to resolve network problems and facilitate network

applications.

Feamster takes a different approach towards network management, specifically on In-

ternet routing [45]. Instead of fixing the problems afterwards, he proposes to define a

specification for correct behavior of a routing protocol in terms of path visibility, route

validity, and safety. Furthermore, he develops techniquesto check whether a routing pro-

tocol satisfies the correctness specification within a network and whether the interactions

of multiple networks violate the correctness.

iPlane [75] is a common infrastructure for collecting network data. Compared with

many of its predecessors, iPlane provides a richer set of performance characteristics using

several clustering techniques. iPlane and many other research efforts, including this work,

realize that there is a set of common functions that should beprovided to network manage-

ment and applications, instead of letting each individual application implements its own

functions. iPlane only focuses on network performance information, while the work in this

thesis provides a broader set of functions. iPlane employs acentralized way to manage and

disseminate the knowledge, which may not scale to a large number of participants. In this

thesis, we choose a distributed model to organize agents andresolve requests, as not all

queries go to the same place and the set of resource to examinemay not overlap with each

other.

Lee proposes CAPRI, a common architecture for distributed probabilistic fault diag-

nosis on the Internet [69]. CAPRI addresses several challenges including the extensible
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representation and communication of diagnostic information, the description of diagnos-

tic agent capabilities, and efficient distributed inference. It is an open question where the

knowledge comes from. This thesis does not address this rendezvous problem, and rather

focuses on scalable and efficient agent organization for request and knowledge dissemina-

tion.

Steinder et al. discuss various techniques and algorithms on Internet fault diagnosis

in [121]. The diagnosis algorithms come from many differentfields including decision

trees, neural networks, graph theory, etc. They also propose a hierarchical partitioning

of the problem space [120]. In that approach, a diagnose manager divide the diagnosis

into multiple domains, and each domain performs local diagnosis separately. Then local

diagnosis results are collected and analyzed by the managerto draw a global conclusion.

In a similar spirit but more broadly, I propose to diagnosis network failures from the end-

to-end point of view, so our approach crosses multiple network layers and services, not just

about routing.

Ballani et al. propose Complexity Oblivious Network Management (CONMan), a net-

work architecture in which the management interface of data-plane protocols includes min-

imal protocol-specific information [19]. CONMan restricts the operational complexity of

protocols to their implementation and allows the management plane to achieve high level

policies in a structured fashion. TheNetwork Managers (NMs)are similar to theagents

in our work that manage network management. So far CONMan has been focusing on a

single NM and its modules. Our work in this thesis tries to solve the scalability problem

when we have many (maybe millions) of agents distributed in the Internet, instead of the

implementation of specific agents. Furthermore, CONMan doesnot deal with non-locality,

and is limited to a local domain. In contrast, we address in this work how agents organize

themselves into regions, and how agents collaborate with each other within a region and

among regions.
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2.2 Agent Organization and Overlay Networks

A research effort closely related to the NetKP is the routingunderlays [82, 83]. Routing

underlays use network topology information to eliminate redundant virtual links in over-

lays to achieve scalability. Both routing underlays and theNetKP try to expose network

topology knowledge to the applications. However, there areseveral differences. First, the

NetKP is designed to be part of the KP under a general framework, and is to be extended to

accommodate other kinds of knowledge. Second, it provides more knowledge than routing

information. Third, it aims to help many applications in different ways, not only routing

overlays.

Many peer-to-peer networks provide a robust and scalable organization among dynamic

nodes. Based on how the nodes are connected to each other, P2Pnetworks are classified

into two kinds: unstructured, such as Napster [85], Gnutella [49], KaZaA [66], Freenet

[36], and structured, such as CAN [104], Chord [122], Tapestry[133], or Pastry [109].

In unstructured P2P networks, nodes are connected somewhatarbitrarily, often without a

strict or well-defined structure. Structured P2P networks,especially distributed hash tables

(DHTs), employ a globally consistent protocol to ensure that any node can efficiently route

a search to its peers. A DHT is a distributed resolution mechanism for P2P systems that

manages the distribution of data among a changing set of nodes by mapping keys to nodes.

DHTs allow member nodes to efficiently locate stored resources by name without using

centralized servers. A large number of DHTs, such as CAN Chord,Tapestry and Pastry,

have been proposed. These systems are expected to eventually become the fundamental

components of large scale distributed applications in the near future, and would therefore

require an aggregation/broadcast functionality. In this work, I use a combination of the

DHT and network topology in our region organization, as described in Chapter 4.

Another related work is large-scale measurement and monitoring infrastructures, which

usually manage a large number of monitoring hosts. Many measurement and monitoring

infrastructures have been proposed and built so far [57, 8, 130]. TAMI [57] is a measure-

ment infrastructure that is both topology-aware and supports various scheduling mecha-

nisms. But the topologies in TAMI are source and sink trees only, mainly for bandwidth
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measurement purposes. Those infrastructures only supportbasic operations among their

members, mostly monitoring and probing. Our mechanism makes use of network topology

such as autonomous systems information. Agents are organized based on their topological

locations. In contrast with the simple behaviors in the previous measurement and moni-

toring infrastructures, agents in the knowledge plane can collaborate to perform intelligent

reasoning. The prototype mechanism in this thesis is aimed to be a step forward from the

simple infrastructure and distributed query processing toward the KP. KP will need to build

on these and new measurement monitoring capabilities as underpinnings as well as possi-

bly supporting the management and organization of such distributed tools. NetProfiler [89]

uses a peer-to-peer organization to facilitate end-to-endfault diagnosis using aggregation.

Semantic overlay networks [124, 37, 26] are similar to the issues we have in organizing

agents in the network applications in that both focus on the dissemination and sharing

of complicated knowledge that requires semantic understanding. Interest-based overlay

networks such as [118] are similar to this work in that peers prefer to connect with others

with similar interests. In that work, a node caches the information about other peers which

provided useful results to recent queries, as those peers have shown similar interests, and

are likely to provide good results for the future queries.

2.3 Propagation and Aggregation

Publish/subscribe systems address problems similar to ours [67, 102]. There are three

kinds of pub/sub systems: unicast, single-identifier multicast and content-based multicast.

Unicast systems transmit notifications directly to subscribers over the Internet’s existing

mechanisms. Single-identifier multicast systems send messages to discrete message chan-

nels to which customers with identical interests subscribe. The most popular approach is

content-based multicast systems, which forward messages based on the text content of the

messages. The problem in the KP is more closely related to content-based multicast than

the other two in that in our problem, requests and knowledge need to match each other

based on content. However, our problem is more complicated because there are many

heterogeneous knowledge sources with different interestsand capacities.
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Search has been an important component in many networked systems, especially in

peer-to-peer systems. For example, Distributed Hash Tables use hashed IDs to find specific

files [122, 104, 133]. Gnutella [49] uses scoped broadcast ofkey words to search for

contents, which is similar to our propagation problem. However, in the KP, more complete

representations of requests and knowledge, and more sophisticated search functions are

needed, such as range search, fuzzy pattern match, etc.

Content routing networks support name-based routing in the Internet [52, 9]. In [52],

routers need to support name-based routing which requires name-based aggregation. How-

ever, the current name aggregation mechanism is not scalable. The KP does not require the

routing infrastructure changes, but we will need similar aggregation functionality to aggre-

gate requests among agents in both the network layer and the application layer. Intentional

naming system (INS) [9] integrates name resolution and message delivery by constructing

a spanning-tree overlay for anycast and multicast. INS employs “late binding”, where the

binding between the name and the network location is made at message delivery time rather

than at the request resolution time, to handle mobile and dynamic situations. However, INS

is designed for intra-domain deployment and does not scale to the Internet scope, and the

“late binding” is expensive for content distribution.

Directed diffusion is an important data dissemination paradigm in sensor networks [61,

73]. In directed diffusion, a sensing task is disseminated throughout the sensor network as

an interest for named data, and this process sets up gradients to draw events that match the

interest. Then events start flowing towards the originatorsof the interest. We have a similar

goal in the knowledge plane: how agents organize themselvesto resolve requests. However,

sensor networks are different from the Internet in that sensor networks are smaller in the

scale and simpler in the structure.

The semantic web is a task force aimed to make web pages understandable by com-

puters, so that websites can be searched in a standardized way. The potential benefits

are that computers can harness the enormous network of information and services on the

Web. The semantic web uses the descriptive technologies Resource Description Framework

(RDF) and Web Ontology Language (OWL), and the data-centric,customizable Extensi-

ble Markup Language (XML), to address the machine-readability problem. These existing
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techniques help us with the knowledge representation problem, but they cannot solve the

propagation problem.

2.4 Region Research

In my previous research, the Region Project [98, 117] is related to this thesis. In that work, I

designed and implemented a region mechanism for peer-to-peer systems to improve lookup

and replication performance using Autonomous System information [71]. Theregionsin

that work can be viewed as a simplified prototype of the KP, since regions provide the appli-

cations with the underlying network topology information,but lacking in the sophisticated

support that the KP provides.

Similar ideas have been proposed in other research fields. For example, in sensor net-

works, there have been research on microprogramming at “region” level [86]. In [86], a

region represents a collection of signals, and is defined in terms of broadcast hops. Our

regions exist at both the network level and application level, and can be defined in different

criteria. Whitehouse et al. proposes the concept of “Hood” in[127]. In Hood, a neighbor-

hood is fundamentally a local construction at each node, in contrast to the regions in our

work where membership is shared and manipulated among all the nodes in the group.

2.5 Summary

I have discussed several research areas that are related to the knowledge plane. In some

later chapters I will discuss related work specific to the research problems addressed by

those chapters in more detail.
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Chapter 3

System Design

To address the challenges in network management and networkapplications, I propose to

construct an application-independent network knowledge plane at the network layer, and

on top of it, to build the application-dependent spec-KPs. In this chapter, I present the sys-

tem architecture, and describe each component in the architecture. Section 3.1 presents an

overview of the system architecture, and defines several important concepts. Section 3.3

describes the network knowledge plane in detail. Section 3.4 briefly discusses how to orga-

nize the spec-KPs using network knowledge and area-specificknowledge and constraints.

Section 3.5 summarizes this chapter.

3.1 System Architecture

3.1.1 Overview

The knowledge plane provides us a unified approach that encourages edge involvement

from a global prospective. Based on the idea of the knowledgeplane, I propose to build

a network knowledge plane (NetKP) at the network layer and ontop of it, multiple spe-

cialized KPs (spec-KPs), each specialized for one network management task or a network

application. Their relationship is demonstrated in Figure3-1. Both the NetKP and the

spec-KPs are composed of agents, and agents may be in a singleKP or multiple KPs at the

same time. In each KP, agents are organized into regions for scalability and efficiency.
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We propose the division between the NetKP and the spec-KPs for the following reasons.

First, the NetKP is at the bottom level of the Internet, and isnot dependent on any other

layers. In order to do that, we base its organization on the underlying, pre-existing network

structure, specifically network topology. On the other hand, because the spec-KPs are built

on top of the existing structure, we allow for more diversified organization based on high

level requirements, more sophisticated functionality andconstraints.

Network Knowledge Plane

(NetKP)

Network Management

Network Applications

Spec−KPs

Spec−KPs

Figure 3-1: The system architecture. The underlying is the NetKP that provides
application-independent network knowledge and facilities. On top of it, there are two parts:
network management spec-KPs and network application spec-KPs. Network management
spec-KPs is needed to support some network application spec-KPs.

The NetKP is designed to provide an increasing set of capabilities to network man-

agement and applications in a scalable and efficient way. Theknowledge provided in the

NetKP includes network topology, network conditions (latency, bandwidth, etc), policy

information, etc. The NetKP also provides facilities to help agents in the spec-KPs to dis-

cover each other, organize themselves, and communicate in different ways (unicast, broad-

cast, etc). For example, the performance downgrade diagnosis in Chapter 1 can use the

knowledge provided by the NetKP to find out network conditions, find others who are ex-

periencing similar problems, and collaborate to figure out the root cause. To build such

an infrastructure, I will address two problems: one is the agent organization using net-

work knowledge, and the other is a broadcast and aggregationmechanism for knowledge

dissemination. Those two topics are addressed in the next two chapters.

On top of the NetKP, there are multiple specialized KPs for network management and

applications, using the knowledge and facilities providedby the NetKP. The organiza-

tions of the spec-KPs are constructed and maintained using the knowledge provided by
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the NetKP, knowledge in their specific areas, and other constraints. Each spec-KP spe-

cializes in one network management task or application. Forexample, agents interested

in the fault diagnosis form a spec-KP that helps diagnose network failures or performance

downgrade, while agents interested in security form an intrusion detection spec-KP.

Note that we treat network management as the spec-KPs on top of the NetKP, instead

of part of the NetKP, for the following reasons. The NetKP only provides basic knowledge

and primitives about the network conditions, and does not perform sophisticated reasoning.

Network management requires the understanding of high-level objectives and constraints

that cannot be easily captured by the NetKP. Therefore, we treat network management as

separate spec-KPs on top of the NetKP.

3.1.2 Agents

An agent-based model is a conceptual paradigm for analyzingproblems and for design-

ing systems, for dealing with complexity, distribution, and interactivity, while providing

a new perspective on computing and intelligence [18, 24, 74]. We choose an agent-based

model for the following reasons. First, entities in our system are autonomous and represent

different parties. Some represent end users, some represent network operators, some rep-

resent network application developers, and each has its owngoal. Second, entities collect

and manage knowledge, learn, and reason, based on their own capabilities. Third, entities

interact with each other to achieve their goals. Therefore,an agent-based model fits our

needs.

Both the NetKP and the spec-KPs are composed of agents. In this thesis,an agentis de-

fined as an autonomous entity in the Internet that manages knowledge, performs reasoning,

and interacts with other entities in the NetKP or the spec-KPs. Agents are responsible for

collecting, storing, sharing and distributing requests and knowledge. Arequestis a mes-

sage that looks for an answer to a problem, or asks for an action to be undertaken. Agents

also manage a distributed knowledge base. The knowledge base is distributed among agents

since the network knowledge is distributed and managed by different parties in the Internet.

The NetKP is composed of agents at the network layer, and the spec-KPs are composed of
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agents in their specific areas of interest.

I believe that there are two aspects of an agent; each agent provides at least one of these.

One is request propagation, and the other is request resolution. There are two reasons to

separate these two aspects. First, propagation is a common task in the KP, and they are

similar in all the agents. Second, request resolution oftenrequires reasoning and inference

techniques, which are different in different agents. Depending on their capacity, willing-

ness, and availability, agents may have one or both of the components. These two separable

aspects reflect the fact that different agents may have different roles and capabilities in the

KP: some agents are responsible for receiving requests and responding to them, and some

manage the knowledge, and some do both.

Agents are deployed by different parties, such as end users,ISPs, application devel-

opers. Agents have access to different kinds of knowledge. For instance, in the intrusion

detection example in Chapter 1, an end user may run an agent on his computer as a weak

local detector, while the corporate can deploy agents on dedicated machines who collect

and analyze the reports from many such local detectors and that have access to the gateway

information as well.

Some agents are stable, while others may join and leave frequently. For example, an

agent for fault diagnosis may only join the system and collaborate with others when it

discovers some problems, while an agent for intrusion detection in a corporate network

may run for a long time keeping monitoring the network and exchanging information with

other agents. Therefore, a robust organization among agents is needed.

3.1.3 Region

Due to their large number, agents need a scalable and efficient organization. I follow the

divide-and-conquer strategy by dividing the agents into regions. A region is an entity that

encapsulates and implements scoping, subdividing, and crossing boundaries of sets of en-

tities that share common features or constraints [117]. A region is a new design element in

the network architecture for large scale, wide distribution and heterogeneous networks. In

this work, I use the region as the building block of the NetKP and the spec-KPs, for the fol-
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lowing reasons. First, due to the large scale of the knowledge plane, we need to introduce

some organizing structure to achieve scalability and efficiency, and a region is a natural

structure that fits our needs. Second, as a general and flexible networking mechanism, a

region or set of regions can be tuned to match the Internet structure which consists of tens

of thousands of different administrative domains, or matchthe inherent structures of the

spec-KPs.

Agents are organized into regions for scalability and efficiency. Agents are grouped

into different regions according to certain criteria, suchas network proximity, interest,

etc, as we will discuss in the following sections. In the NetKP, we organize agents into

regions based on network topology and other network-level constraints. In the spec-KPs, a

region is defined by a bunch of constraints, both application-independent and application-

dependent. In the intrusion detection example, due to security and policy concerns, agents

can collaborate closely with only those in the same organization, so the regions are formed

based on policy boundaries, such as enterprise networks. Wewill discuss the constraints in

both the NetKP and the spec-KPs in detail later.

Agent Types

According to their roles in the regions, we classify agents into three kinds in our system:

member agents, regional leaders, and global agents. This classification applied to agents

both in the NetKP and in the spec-KPs.

1. Member agent. A member agent has three tasks. First, it maintains the connection

with neighboring agents and the leader in its region. Second, it resolves requests

using its knowledge. Third, it acts as a proxy to resolve the requests from local users.

Some agents may specialize in some areas, such as network topology or geography

knowledge service.

2. Regional leader. Each region has a leader. The regional leader maintains a list of all

the agents in its region. It helps a new agent join its region by providing information

about existing agents. It also maintains connections with other regional leaders. A
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leader is a hub that connects the member agents in the local region to the outside

world.

3. Global agent. Global agents are those who provide global services to all the agents.

Currently there is only one such kind of global agent: the global directory agent.

The global directory agent maintains a list of existing regions, and helps a new agent

find appropriate regions to join. It also helps to detect inconsistency caused by agent

failures or network partitions. Note that global agents arenot required in agent or-

ganization, and can be replaced by any other bootstrap mechanisms. All the other

functions can be provided by leaders themselves.

Agents can also be classified into three categories based on their owners and privi-

leges. One is the authoritative agents deployed by ISPs, institutions and organizations in

their own networks. They may have (limited) access to sensitive information, such as the

BGP information at the border gateways, and may enforce certain policy when exposing

this knowledge. Another is the agents residing on end hosts.These agents are proxies

for the users, and collaborate with each other to resolve requests. A third category from

the perspective of a region is the agents outside the region,both peers and other kinds of

agents. In this work, we deploy multiple agents with BGP dataor geographic data to act as

authoritative agents.

In the intrusion detection example, when a user sends a request to a regional leader

(regional detector) about whether there are any intrusion attempts, the regional leader needs

to collect knowledge from local agents (local detectors), so it sends new requests to many

local detectors in its region in the intrusion detection spec-KP. The local detectors in the

spec-KP use packet traces to make local decisions. Those packet traces are collected by

local agents in the NetKP. The regional detector in the spec-KP makes a regional decision

using the information collected from the local detectors, thus creating new knowledge.

Note that the regional detector performs both request propagation and resolution functions

in this case.
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Philosophical Aside

In designing such a system, for many important issues there is more than one design choice.

We take particular positions on that spectrum of those designs, and do not guarantee that

they are the best ones, but they solve our problems in this work. Key choices are:

1. At least one agent is needed for a region to exist. In this work, regions are formed

in a bottom-up way, which is appropriate as the regions are used to manage agents.

There are other models in which a region can be empty. For example, we can create

a region first, and then put agents or assign members into it. As another example, if

regions are defined by the distance to some landmarks, then regions exist whether or

not there are agents in them.

2. Agents are static. Note that I assume static agents instead of mobile agents in this

work, and communication between agents is through message passing. In the future

we may evaluate the need for mobile agents. Depending on the definition of the

regions, mobile agents can introduce much complexity into the region formation.

For example, if a region is defined by the distance from the current leader, then the

membership changes as the leader moves.

3.1.4 Knowledge

Knowledgeas a term is more common in the AI community than in the networking. In this

thesis, knowledge refers to any useful information in the Internet, including the information

about individual objects in the network, and the relationships between objects. There are

various kinds of knowledge in the Internet. There are two ways to categorize knowledge.

First, based on the subject matter of the knowledge, we can classify knowledge into two

kinds: network knowledge at the network layer, and specific knowledge in different areas

at the application layer. Second, based on the form of the knowledge, we can classify it into

facts and relationships. Sources of knowledge include human beings, measurements and

monitoring, and inference, reasoning and learning. A specification of a knowledge domain

is usually defined in some ontology languages, such as XML, RDP or OWL [53, 126].
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Due to the distributed and heterogeneous nature of the knowledge in the networks and

its large amount, we need a distributed knowledge base. I will address issues including

knowledge collection and distribution in the following sections, but note that the knowledge

base is not the focus of this thesis.

Knowledge Credibility

Credibility is an important issue in the knowledge plane, as agents who provide the knowl-

edge come from different organizations and each has its own interest. Agents must be pre-

pared to deal with knowledge with different credibility. Wediscuss briefly several problems

related to credibility below, including completeness, timeliness, consistency, and correct-

ness.

1. Completeness. It is always better to have complete knowledge, but sometimes it is

not possible. Agents may need to deal with incomplete knowledge. For example,

an agent may need to figure out the latency between two hosts, but it is only able to

get the latency of several links along that path. In the intrusion detection example

that we will discuss in detail in Chapter 7, regional leaders are designed to work with

incomplete and even contradictory knowledge using statistical learning techniques.

2. Timeliness. Some knowledge is time sensitive, and expires very soon. For example,

an agent may need a prediction on the condition of a path in an hour. If the answer

comes after an hour, it may not be useful any more.

3. Consistency. Even if all agents are honest, we still need toconsider the knowledge

consistency from different agents. An agent may receive different answers from

different agents. The differences may be due to many reasons. For example, a multi-

homed agent may find multiple AS paths between itself and a remote host, and it has

to be able to tell which one is what it wants (maybe both). As another example, an

agent is likely to receive different answers from differentagents about the latency

between two hosts, as agents at different locations may use different methods to ob-

tain the latency. In the intrusion detection example, because local agents see different

42



traffic, their responses may appear to be inconsistent with each other, and we must

be able to operate in such an environment.

4. Integrity. An agent needs to figure out whether the knowledge it receives is corrupted

or not.

Accordingly, we face challenges such as the provider’s intention, scaling, efficiency,

etc. An ISP may be reluctant to admit failures within their own networks. As another

example of a desire to hide the local state, consider agents residing on end hosts. An agent

that represents an end user may want to hide the fact that worms originate from his machine

due to his negligence. Furthermore, the amount of knowledgeis huge, and how can we find

what we need in a scalable and efficient way?

In this prototype network knowledge plane, we set aside malicious intentions. That

is, agents may provide incomplete knowledge, but we assume they will not provide false

knowledge intentionally. As future work, a trust model is needed that considers both au-

thentication and reputation. In Chapter 7 we will consider trust and private information

retrieval in collaborative intrusion detection.

3.2 Key Design Issues

To build the NetKP and the spec-KPs, which are distributed systems of global scale like

the knowledge plane, the following requirements must be met:

1. Scalability. The number of agents is large and they are distributed all over the Inter-

net, so is the knowledge. We need to organize the agents in a scalable way to support

request and knowledge dissemination.

2. Efficiency. The NetKP and the spec-KPs are supposed to respond quickly to requests,

and distribute knowledge to where it is needed efficiently. Furthermore, in many

cases knowledge, such as the available bandwidth of a path, may become outdated

very soon. Therefore, we need efficient knowledge collection and dissemination

mechanisms.
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3. Robustness. The knowledge plane functionalities are often most neededwhen the

network is not working correctly. Therefore, agent organization must be robust to

network failures, partition, and instability.

4. Non-intrusiveness. The knowledge plane needs to collect, share and distributelarge

amounts of knowledge, without adding too much burden to the network. Therefore,

a non-intrusive propagation mechanism is needed for knowledge and requests so as

to reduce network traffic overhead.

There are other properties we need to consider. We should design the KP for trustwor-

thiness, longevity, and heterogeneity, but they are not thefocus of this thesis.

In both the NetKP and the spec-KPs, there are three tasks in common: (1) agent or-

ganization; (2) request and knowledge dissemination; (3) knowledge management. The

first task, agent organization, refers to how agents discover each other and organize them-

selves together. The second task, request and knowledge dissemination, deals with how

to propagate requests so that they can be resolved quickly and efficiently and how to dis-

seminate knowledge so that agents interested in that knowledge can receive it in a timely

fashion. The first two tasks are tightly related to each other, because agent organization

largely determines how requests and knowledge can be propagated. The third task, knowl-

edge management, addresses the question of how agents manage their local knowledge and

learned knowledge. For example, agents may maintain a distributed knowledge base. The

first two tasks are the focus of this thesis.

As discussed earlier, I propose a region-based structure toorganize the NetKP and

the spec-KPs. The concept of a region is the central organizing components in this work

[117]. Agents are organized into regions to achieve scalability and efficiency. In the NetKP,

regions are constructed following network topology, such as Autonomous Systems (ASes)

and corporate network boundaries. For efficiency, agents ina large Autonomous System

may be divided into several regions, while agents in nearby small ASes may be in the same

region. In the spec-KPs, agents with similar interests formregions based on both network

topology and area-specific knowledge and constraints.
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3.3 Network Knowledge Plane

The NetKP is an application-independent distributed system that provides network knowl-

edge to help construct the spec-KPs for network management and applications. For ex-

ample, the intrusion detection example needs packet traces, but the agents in this spec-KP

do not collect the traces themselves; instead, they get the data from the NetKP. Initially,

this information will be the basic information, measurements and other kinds of network

specific information, both reasonably static and often quite dynamic. The NetKP may be

seeded with basic information, but quickly it will also be extended with new, more accurate,

more complete, or otherwise more extended information.

In the following, I first describe the functions and interface the NetKP provides, then

discuss the agent organization that follows the Internet topology, request propagation and

resolution, and knowledge collection in the NetKP.

3.3.1 Network Knowledge and Functions

We divide network knowledge into three categories: configuration, operation, and control

knowledge. Network knowledge is provided by the agents in the NetKP to the agents in

the spec-KPs. A set of functions is defined in the following accordingly. Note that this is a

set of examples, and more will be added as needed.

1. Configuration knowledge. This kind of knowledge includes network topology, geo-

graphic location, etc, which are configured to make the network work. Such knowl-

edge is stable, and changes infrequently. The following functions are defined to

provide network topology knowledge. They correspond to therequests that an agent

receives from others in the NetKP or in the spec-KPs.

* getASN(IP). Given an IP addressIP, return the AS number to which the IP address

belongs. This tells the topological location of an agent.

* getASPath(AS1, AS2). Given two AS numbersAS1andAS2, return the AS path from

AS1to AS2. This gives a measure of the topological distance between two ASes.
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* getLocation(IP, [metric]). Given an IP addressIP, return its geographic location in

the form of ametric. Currently we use city and state for this metric.

2. Operation knowledge. This refers to the network conditions or the realized net-

work performance, which includes latency, available bandwidth, loss rate, etc. Such

knowledge usually changes frequently with time, and needs to be measured at run-

time unless a recent measurement is cached; in contrast, configuration knowledge is

stable, and can be easily replicated and stored at multiple locations. The following

examples are defined below:

* getLatency(IP1, IP2, [time]). Given two IP addressesIP1 andIP2, return the latency

from IP1 to IP2 at time, andtime is an optional parameter.

* getBandwidth(IP1, IP2, [time]). Given two IP addresses, return the bandwidth from

IP1 to IP2. We useiperf [62] to measure bandwidth.

* getLossRate(IP1, IP2, [time, accuracy]). Given two IP addressesIP1 andIP2, return

the packet loss rate fromIP1 to IP2. As loss rate is often small and hard to measure,

accuracyspecifies how accurate the returned result should be.

3. Control knowledge. The Internet consists of thousands of administration domains,

and each domain defines its own policy on route announcements, firewall rules, etc.

We provide the following examples on control knowledge:

* isPortBlocked(port, AS). Given a port number and an AS number, this function re-

turns whether that port is blocked by that AS.

* getCost(IP1, IP2, metric). Return the cost of the path between IP1 and IP2 in term

of the cost metric, such as monetary cost.

The function set above is just one example set. Additional network knowledge will be

provided in future work, and more sophisticated functions can be built on top of the primi-

tives. For example, given two pairs of IP addresses, we can use getASPathto determine if

the paths between the two pairs of IP addresses intersect at some AS. This is helpful when
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studying the interaction between traffic or building overlays with no overlapping paths. As

another example, agents can collaborate with each other to monitor the networks, and lo-

cate possible failures in the network [130]. Therefore, we expect that more functions will

be added to the NetKP as required by network management and applications.

3.3.2 Agent Organization in the NetKP

Organization Based on Network Topology

As the NetKP consists of agents widely distributed in the Internet, a natural way to organize

agents is to follow the network topology. Here a region approximately corresponds to an

administrative domain in the Internet, which is either a routing domain like an autonomous

system, or an intranet such as the HP corporate network. Autonomous Systems are very

heterogeneous, and in some cases we may need to divide agentsin a large Autonomous

System into several regions. We follow the following rules:First, agents are organized into

regions based on network topology. Specifically, agents in the same Autonomous System

are grouped into one region. Second, if a region covers too large an area or contains too

many agents, it will be split into multiple smaller regions.Third, regions that contain only

a few agents will be merged with a nearby region. Fourth, eachregion has a leader, selected

from the agents under certain criteria, who is in charge of the communication with other

regions. There are about 17,000 ASes in the Internet [99], sothe number of regions in the

NetKP will be in the same scale.

Within-Region Organization

Different regions may choose different organizations. We do not impose any specific orga-

nization within a region, because we believe that a proper organization should be based on

many factors, including the number of agents in the region, how closely they collaborate

with each other, the requirement on robustness, etc. An adaptive scheme is as follows.

When the number of agents is small, they form a complete graph,but it is not scalable. As

the number of agents increases, we can maintain the connectivity among agents by forming

a connected graph. To do that, each agent connects to a numberof nearby agents, and the
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leader makes sure that the graph is not partitioned. Anothercandidate is a distributed hash

table [104, 122, 109, 133].

Cross-Region Organization

Agents in different regions need to collaborate with each other in order to address the

problems that span the regions. Unlike the organization within a region where each region

may choose its own organizing structure, we need a unified approach among regions.

We have at least two options for the organization among the regional leaders. The first

choice is a topology-based structure. In this structure, a region connects to other regions

that are in the same AS and the neighboring ASes. NeighboringASes include its providers,

customers and peers. The second choice is a distributed hashtable (DHT). DHTs provide

a robust and efficient self-organizing infrastructure. We choose a structure that combines

network topology and distributed hash tables. We will address this in detail in Chapter 4.

To resolve requests and disseminate knowledge, an aggregation and broadcast mecha-

nism is needed at the region level. We will discuss this in detail in Chapter 5.

3.3.3 Agent and Region Operations

Agent operations and region maintenance are dependent on the organization within and

among regions. As we do not impose any specific agent organization within a region, and

will discuss cross-region organization in Chapter 4, we focus on the generic operations

within a region and among regions in this section.

Joining

We assume there is a global agent that manages a directory service on the existing regions.

This centralized global agent may be replaced by a cluster ofagents. A new agent joins the

system by contacting a well-known global directory agent and submitting its constraints.

The directory agent matches the constraints with the regions in the region directory, and

returns a number of regions that match the constraints. The new agent then compares its

constraints with the collected regions, and decides which one(s) to connect to. Then the
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new agent checks the latency between itself and the candidate regional leaders that are in

the same AS, and chooses the closest one that matches its constraints. Then it registers at

the regional leader, and retrieves from the leader a list of nearby agents to connect to. If no

appropriate regions exist, the new agent will create a new region, connect to a number of

neighboring regions, and register at the global directory.In this case, the agent automati-

cally becomes the leader of the new region.

We realize that the global directory neither scales nor provides enough reliability. There-

fore, instead of relying on the well-known global directoryagent, an alternative is to design

a distributed service. For example, we can set up authoritative agents in each network, just

like the DNS system, and new agents can join the NetKP througha nearby authoritative

agent. We will see that by using the mechanisms proposed in Chapter 4 and 5, the global

directory is not needed.

Connection maintenance

A member agent periodically sends out heartbeat messages toits regional leader and nearby

agents that it has connected to. If an agent does not receive acknowledgments from some of

its neighbors, a repair procedure starts to find more neighbors to maintain the connectivity.

If it cannot reach the leader, a new leader will be selected among the member agents ac-

cording to certain criteria such as the capability and location. If one cannot reach the leader

due to network partition, those agents who cannot reach the leader will form a new region.

As discussed before, agent organization within a region canbe done in different ways. In

this work, each agent connects to a number of nodes, and the leader decides in a way so

that all the agents in the region are connected, even if without the leader. This is important,

as it allows all the remaining agents to find a new leader in case of leader failures. A repair

may or may not be needed when one cannot connect to a neighbor,depending on whether

this will cause a potential partition or not.

A regional leader contacts the directory service periodically, to let the service know the

current status of the region. It also maintains connectionswith a number of other leaders,

depending on the structure of the cross-region organization. A new leader is responsible for

connecting to existing leaders. Leaders organize themselves in a way so that all the leaders
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form a connected graph, as we will discuss in Chapter 4.

The directory agent is a rendezvous point. It passively maintains the region information.

We do not place too many responsibilities on it to avoid the single point of failure.

Connection repair

Agent organization needs to be repaired when agents change their constraints or some

neighbors leave. In the first case, an agent will ask the regional leader to find appropriate

regions, or contact the global directory agent. In the second case, if an agent cannot contact

some of its neighbors, it first checks if more neighbors are needed to maintain connectivity.

If so, it will contact the current neighbors to find more agents, or ask the leaders.

If a regional leader becomes unresponsive, the agent who detects this notifies other

agents in the region, and they work together to select a new leader within the region. As

mentioned earlier, the new leader needs to reconstruct the region information, which may

require broadcast to all the agent members.

The connectivity among leaders is maintained based on the way they are organized. If

the number of leaders is small and they form a complete graph,then each change needs

to be broadcast to all the leaders. If they form a distributedhash table, the connectivity is

maintained according to the DHT protocol, as described in Chapter 4.

Note that we assume the global directory service is always working, so no maintenance

or repair is needed for it. We can make it more robust by providing multiple directory

agents.

Agent departure

There are two kinds of agent departure: graceful or not. In a graceful leaving, an agent

notifies the regional leader, and the leader removes it from the list. If the departing agent

is a regional leader, then other agents need to select a new leader, and the old leader hands

over the region information to the new leader. If the departing agent is the last one in

the region (and thus it must be the leader), then it will notify other leaders and the global

directory agent.
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For an ungraceful leave, if it is a member agent, this will be detected by its neighbors

and the regional leader due to the heartbeat timeout. If it isa regional leader, then when

a member agent notices it, a leader needs to be selected amongagents in the region, and

when another leader notices it, a repair is conducted. The new leader needs to reconstruct

the region information including the agent membership in the region. If the departing leader

is the only agent in the region, then this region will simply disappear, and be removed from

the global directory.

Region Creation and Removal

There are two cases when a new region is created. As mentionedearlier, a region is created

when a new agent cannot find an appropriate region to join, andthe new agent becomes

the leader automatically. A region may split into two smaller regions when the number

of agents becomes too large. In this case, the current leaderbecomes the leader in one of

the two regions, and a new leader will be selected for the other region. In addition to the

above two cases, a region could be created because of networkfailures, which is discussed

in region merging and splitting.

There are two cases when a region is removed. The first is when all the agents in it

leave. Then the region is removed from the global directory agent. The second is when two

regions merge. One of the two leaders will become the new leader, notify the neighbors,

and update the region information at the global directory agent.

Region Merging and Splitting

As agents join and leave, regions may need to be split or merged to achieve a proper size.

We use two simple thresholds:T1 andT2. If the number of agents in a region is fewer

thanT1, then the region can merge with a nearby region, as long as they are in neighboring

Autonomous Systems. A new leader will be selected between two previous leaders in each

region. If the number of agents is greater thanT2, then the region should be split, based

on network proximity. The previous leader continues to be the leader in a new region, and

another leader will be selected in the region without the previous leader.

Once in a while, the network may be partitioned, and this causes complications in region
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maintenance. Assume two partitions,A andB, are made within a region, and the regional

leader is in partitionA. Then all agents inA, including the regional leader, think they are

fine although their neighbors inB seem to have left. Agents inB will think they need to

select a new leader, under the same region ID. This will confuse the global directory agent

as it sees two regions with the same region ID but different regional leaders. If the global

directory agent just tolerates this, when the network recovers, there will be more confusions

between agents inA andB. The global directory agent can ask the region with the new

leader,B in this case, to change the region ID to form a new region.

In an alternative network partition case, two agentsa andb may not be able to talk to

each other, but another agentc may be able to talk to both of them. If two regions are going

to be formed, then one solution forc is to choose a region to join.

In short, problems with individual agents are easier to detect and fix than network prob-

lems. We need a robust design mechanism to be able to either reconcile the inconsistency

or tolerate it to some extent. Future research is needed in this issue.

3.3.4 Request Propagation in the NetKP

A key function of the NetKP is to resolve requests for networkknowledge. We briefly

discuss the way a request is resolved in the NetKP. Most requests for network knowledge

can be resolved by following the network topology to find the agent who knows the answer.

There have been other research efforts using similar approaches, such as iPlane [75]. In

this thesis, we do not focus on this type of request, but on a broadcast and aggregation

mechanism for requests that cannot be resolved by followingthe network topology and for

initializing spec-KPs, as discussed in Chapter 5.

Requests for network knowledge can be issued by different agents. Agents in the NetKP

issue requests to obtain certain knowledge so as to organizethemselves into regions; agents

in spec-KPs also issue requests for network knowledge to construct their efficient connec-

tivity graphs, such as routing overlays, multicast trees, etc.

Requests can be about properties of different entities in the networks. A simple request

example is the latency between two hosts, while complicatedrequests can beisPortBlocked

52



or the network condition, such as the degree of network congestion. In the latter case,

sometimes it is not clear which agents are responsible for orcan resolve the request, and

an agent that receives the request may initialize the operation and work together with other

agents to resolve the request. Such an operation can be complicated and costly, and may

require authorization. Here I start with simple requests, and will address more complicated

issues like broadcast in Chapter 5.

A request for simple network knowledge is resolved by the local agent as follows. For

some requests, the agent resolves them directly and returnsthe responses to the requesters,

without consulting other agents. This occurs when the localknowledge base already con-

tains the necessary knowledge. Examples of such requests aregetASNandgetASPathwhen

the source IP is in the local AS, as the local BGP table contains the mapping between IP

addresses and AS numbers and the AS paths originating from the local AS to all the other

ASes.

For requests that require non-local network knowledge, such as the AS path between

two remote agents, the local agent forwards such requests tothe agents that have the knowl-

edge to get the answers. Because the local agent has the knowledge of AS paths from the

local AS to all other ASes, it can figure out which agents in which AS(es) should be able to

resolve the request. Therefore, it forwards the request following the corresponding AS path

to an agent in a neighboring AS, and that agent again forwardsthe request to its neighbor-

ing AS following the same AS path until the request reaches anagent in the destination AS.

The agent returns the answer to the source agent following the same AS path in reverse,

and agents along the path may cache the answer. By following the reverse path instead of

the default AS path and agents caching along the path, we construct an implicit aggrega-

tion tree, which helps to resolve similar requests more quickly in the future, because agents

along the AS path may resolve the request if they happen to have cached previous answers.

Figure 3-2 shows the resolution procedure.

So far we have briefly discussed how requests for network knowledge are resolved by

following the network topology in the NetKP. Those requestsall explicitly or implicitly

specify the location where they should be sent. Not all the requests can be resolved in this

way, such as a request to check if the local network is under intrusion attempts. Further-
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Figure 3-2: Request resolution in the NetKP. Agents issues a request for the AS path
between ASA andB. Agents forwards the request to agents along the AS path, until it
reaches agentt in AS A, as shown in the dashed arrow lines. Agentt checks its local
knowledge base, and returns the corresponding AS path, as shown in the dotted arrow
lines.

more, requests from spec-KPs about non-network knowledge are not resolvable by follow-

ing the network topology, such as a request to find a specific intrusion detection technique.

In Chapter 5, I focus on a global broadcast and aggregation mechanism among regions to

propagate this kind of request.

3.3.5 Network Knowledge Collection

We briefly discuss how the three kinds of knowledge, configuration, operation, and control

knowledge, are collected in our system in this section.

First, agents collect configuration knowledge from the local AS. To do so, agents need

authorization to access BGP tables from local border routers. We believe that BGP infor-

mation is usually not sensitive, so organizations may be willing to disclose this information,

and agents can employ policies when exposing such information to others. Network topol-

ogy is also stable, so it can be stored locally and updated infrequently. In this work, we use

BGP data from multiple sources to construct an AS-level network topology as complete as

possible, as was done by He et al. [56].
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To provide configuration knowledge, especially network topology knowledge, some

agents maintain two kinds of network topology knowledge at the Autonomous System

level: (1) the AS number to which an IP address belongs; (2) the AS path between the local

AS and another AS.

Some AS information is already available [17]. Other researchers have successfully

retrieved BGP information. For example, PlanetLab [96] implemented an application sup-

port layer to provide BGP information. To do this, a PlanetLab server is matched with a

BGP router. They are configured to provide a one-way information flow from the router

to the PlanetLab node [81]. This does not require implementing any special interface to

the routers. Furthermore, a set of servers in PlanetLab collectively construct a peering AS

graph. A PlanetLab node also implements a PLUTO BGP Sensor interface to provide ap-

plications an easy access to BGP information [115]. Note that it is possible to replicate the

service of the mapping between IP addresses and their AS numbers in each region, as the

data set is not large. For example, the compressed data set ofthe RouteViews BGP tables

is only 13MB.

In this way, an agent only maintains the local view of the Internet, which represents the

reachability of the local network to the rest of the Internet. This is due to the following

reasons: First, it is hard to get an accurate global view of network topology, but it is easy to

obtain the local view; Second, such local network knowledgeshould be able to satisfy local

requests most of the time; Third, remote network knowledge can be obtained from other

agents through request resolution. Note that restrictionsmay be applied to the parameters

of those functions. For example, an application may not be allowed to query the AS path

between any two ASes, due to the privacy concerns of routing information of those ASes.

Geographic information is another kind of network knowledge we are interested in.

Geographic information provides physical location information, which is often directly

related to network performance, such as latency. It also enables a large set of location-

aware applications. It is not trivial to obtain accurate geography information today, but

approximate location is enough to organize agents in this work. We use data from the

GeoIP Database [41] for this purpose, and plan to leverage existing techniques like [90] in

the future. Agents can run the geography service, and register the service at the regional
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leaders. However, it gets complicated if an agent is mobile.We set aside the mobility issue

in this work.

Second, operation knowledge may be more costly to obtain andmaintain than configu-

ration knowledge. Among different kinds of operation knowledge, latency is usually easy

and lightweight to measure using measurement tools such asping. Unless the latency to

a large number of hosts or an average over a long time period isneeded, real-time mea-

surement will work because of its simplicity and low overhead. Other information, such as

bandwidth and loss rate, can be obtained through measurement with more overhead. Many

tools have been developed to measure network status, and newtools are being developed.

Agents can use those tools and share performance knowledge.A request for performance

knowledge between two hosts is resolved by agents near the hosts. For example, the latency

between two hosts can be approximated by the latency betweentwo agents plus the latency

between each host and its nearby agent, similar to [55]. As another example, agents may

infer the property of a new path by segmentation and composition using previous measure-

ment results. This is similar to network tomography [28]. Consistency is another important

issue here. Agents at different locations may return different answers to the same request,

and the same request asked at different times may get different answers, even if it is not

time sensitive.

Note that the performance and geographic knowledge may be approximate instead of

accurate. First, the performance knowledge changes frequently. Even if we obtain accu-

rate measurement results, it may be outdated when it is returned to the requester. Second,

in many situations it is enough to have approximate information. For example, a stream-

ing video application only needs to know the class of bandwidth (high, medium, low) to

determine the appropriate encoding method.

Third, control knowledge, such as policies, is usually veryhard to obtain directly or

infer. Sometimes we may discover it partially. For example,we can test if an ISP blocks

any port. But generally this knowledge is hard to observe from outside. We focus on simple

policy information in this thesis.
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3.4 Spec-KPs for Network Management and Applications

For the purpose of network management and applications, we propose to build multiple

spec-KPs, one for each specific service. In this section, I discuss briefly the general issues

in the spec-KP organization. Note that in the following discussion, without special spec-

ification, agents refer to those in the spec-KPs, not in the NetKP. I will present two case

studies on the spec-KPs in detail in Chapter 6 and Chapter 7.

3.4.1 Constraints on the Spec-KP organization

Similar to the NetKP, agents in the spec-KPs are organized into regions, but under a differ-

ent set of criteria. Agents in the spec-KPs register their information in the NetKP, but may

not participate in the activities in the NetKP.

The set of orthogonal constraints for organizing the spec-KPs fall into five categories.

The primary one is the functionality that defines the spec-KPand how the functionality

is partitioned. A spec-KP is likely to, although not necessarily, run on multiple agents to

achieve the functionality by composition. Those agents either do the same task at different

places or participate in different parts of the problem. Forexample, if we design a diagnosis

system for the DNS system, the naming hierarchy and the zone structure will inevitably

play an important role in such a spec-KP. As another example,intrusion detection itself

does not impose any constraints on the corresponding spec-KP, but due to security and

privacy reasons, such a system is often organized based on corporate network boundaries.

A second and obvious constraint is the physical location andnetwork topology. When

a spec-KP is to be instantiated, the authority on whose behalf it is happening may have an

interest in constraining it to run only in some part of the network or in some other location

based region, such as geographical. For example an ISP network manager might want

to run a particular spec-KP within the scope of the ISP network, simply due to network

topology reasons. A simple version of this may be AS or IP based. In terms of geography,

such a specification may be as general as named geographic region or as specific as ranges

of longitude and latitude.

The third kind is external policy constraints. They are security policies, pricing or
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economic policies, and other incentive-based policies. Security policies specify hard con-

straints on which information and functionality can and cannot be made available across

specified boundaries and by whom. Pricing constraints allowfor perhaps a sliding or de-

gree based decision. Other forms of incentives may be designed specifically to encourage

cooperation, in the face of proprietary and other security constraints.

The fourth kind is performance. Applications may have to runwith a set of efficiency

criteria, which may determine the placements of agents. Forexample, if it is important to

have low latency, then paths between agents should be selected on that basis; if the amount

of network traffic should be low, then agents may be collocated on the same nodes as much

as possible.

The fifth kind is shared resource usage. This requires that the spec-KPs, in determining

their organizations, know enough about others which may be sharing resources to make

a possible compromise in order that the spec-KPs not interfere unnecessarily with each,

as best possible. We take a lead from previous work, beginning with a set of information

similar to that of CoMon [93] from PlanetLab. CoMon provides a monitoring statistics for

PlanetLab at both a node level and a slice level. It can be usedto see what is affecting the

performance of nodes, and to examine the resource profiles ofindividual experiments. In

the longer run, it will be necessary for this sort of information to be distributed in the KP,

unlike what is currently being built in PlanetLab.

3.4.2 Agent Organization in Spec-KPs

Generic agent and region operations in the spec-KPs are similar to that in the NetKP. Within

a region, agents can be organized in different ways, depending on the size of the region and

the distribution of the distance metrics. When the size is small, a full mesh will suffice.

That is, each one knows all the others. When the size is large, astructured peer-to-peer

organization, such as distributed hash table, may be preferred. In general, we want to limit

the size of a region so as to simplify its organization and recommend a full mesh structure.

There is no single answer to the region size. It will depend onwhat they are doing under

what conditions. Cross-region organization in the spec-KPsdepends on the nature of the
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spec-KP itself. In Chapter 6 and 7, we present two case studiesto demonstrate different

organizations for different tasks.

An important issue in the spec-KPs is how to discover agents in the same problem

domain when an agent joins. There are two steps. The first is tofind a spec-KP that

matches its interest, and if no such spec-KP exists, to create a new spec-KP. This can be

done using the broadcast mechanism presented in Chapter 5 to broadcast the request to all

the regional leaders in the NetKP. Note that all the spec-KPsregister their information in

the NetKP.

The second is to find an appropriate region after the spec-KP is found or formed. If

there are multiple regions formed in order to partition the set of agents, when an agent

comes into existence, the choice of how regions are defined isgoing to drive which region

the agent will end up with. In this work, the discovery procedure uses the underlying

NetKP. Each region in the NetKP maintains a list of local agents in the spec-KPs and their

interests. A request looking for agents with similar interests is propagated from the local

region to neighboring regions. In most cases there is already a spec-KP with this interest,

and the new agent only needs to find one that is already in this network to join the spec-KP.

Furthermore, a high-level task may involve multiple agentsbelonging to different spec-

KPs. For example, to diagnosis a web access failure, we need help from agents on DNS

diagnosis, routing diagnosis, server status monitoring, etc. To find those agents, we need

to first find local agents in the NetKP, and then search for agents in each spec-KP.

3.4.3 Request Propagation in Spec-KPs

Request resolution in a spec-KP depends on the nature of the spec-KP itself. A simple

example is as follows. When an agent issues a request, it is propagated to all agents in

the same region, and also to one or a few agents in every regionwithin a certain number of

region hops, sayn. When a piece of knowledge is issued, it is also disseminated in the same

way. Therefore, the knowledge withinn region hops is guaranteed to be found by a request.

Figure 3-3 shows an example withn=2. This shows how regions help to improve scalability

and efficiency. To further extend this, we can consider many factors, such as the location
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Figure 3-3: Request and knowledge propagation in the spec-KPs. This shows a request
from agentmand a piece of knowledge from agentn meet at agentx.

of an agent, the cost model, and even the diameter of a specialized KP, etc. In Chapter 6

and Chapter 7, I present different propagation mechanisms based on the functionality and

constraints of the spec-KPs.

3.5 Summary

In this chapter, I discuss the design criteria and principles for the knowledge plane, and

propose an architecture that consists of the NetKP and multiple spec-KPs. Based on the

criteria and principles, I design a region-based agent organization, and discuss the opera-

tions of agents and regions. The insights of the NetKP are twofold. One is that valuable

knowledge at the network level is exposed to network management and applications. The

other is that the overhead of this exposure is amortized among network applications. To

do so, we need an efficient agent organization. In the next twochapters, I address two

key issues in the NetKP: cross-region organization, and broadcast and aggregation among

regions, both in the NetKP.
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Chapter 4

Cross-Region Organization

In this chapter, I focus on a network-topology-based distributed hash table for cross-region

organization among the regional leaders, and present a hybrid neighbor selection mecha-

nism using Autonomous System information. We find that, by combining the distributed

hash table and network topology knowledge effectively, we can have a scalable, efficient,

robust and non-intrusive organization among regions.

4.1 Design Rationale

Cross-region organization is a core issue in the NetKP, as agents in different regions need

to collaborate with one another in order to address the problems that span the regions.

Unlike the organization within a region where each region may choose its own organizing

structure, we need a unified approach among regions.

As mentioned in Section 3.2, four properties are important to the agent organization in

the NetKP: efficiency, scalability, robustness, and non-intrusiveness. Section 3.3.2 briefly

discusses two options for the organization among the regional leaders, and we elaborate

them here. The first is a network-topology-based structure.In this structure, regions con-

nect to each other following the network topology. Specifically, a region connects to other

regions that are in the same AS and the neighboring ASes. The neighboring ASes include

its providers, customers and peers, or ASes that are closestin any of the three kinds. The

advantage of this approach is that this structure follows the network topology naturally, and
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thus is efficient for aggregating information and suppressing redundant requests. However,

there are several problems with this structure. First, thisapproach may lead to an unbal-

anced structure. We know that the Internet topology at the Autonomous System level can

be described efficiently with power laws, where some ASes have many neighbors while

many other ASes have only one or a few neighbors [116, 123]. Asa result, this approach

may lead to a structure in which some regions may have to connect to a large number of

regions, while some can only find a few. For example, a region in a top-tier AS may have

hundreds of neighboring regions, while a region in a small bottom-tier AS may only con-

nect to its provider. Second, it is hard to maintain this structure in case of churn. If a region

disappears due to agent departures, region merging or network partitions, its neighboring

regions will need to discover other regions to maintain the connectivity. Third, when the

regions are sparse in the Internet, the connectivity of thisstructure is not well defined. For

example, if there are no regions in the provider’s AS, a region needs to find other regions

in two or more AS hops. All these problems can be fixed, but obviously a more robust and

clean design is needed.

The second choice is a distributed hash table (DHT). Distributed Hash Tables, such as

CAN [104], Chord [122] , Pastry [109], and Tapestry [133], provide a scalable and robust

organization, in which any information is guaranteed to be located in a limited number

of steps (usuallyO(log n)). These systems provide a robust self-organizing infrastructure

that is expected to become the fundamental component of large-scale distributed systems.

However, a pure DHT structure is not enough for our purpose.

DHTs provide scalability and robustness, but they often rely on active probing to achieve

efficiency. Most topology-aware DHT lookup algorithms proposed so far, such as proxim-

ity neighbor selection and proximity routing [54], requireeach peer to probe other peers

directly to discover proximity. Such probing generates a considerable amount of network

traffic. Similarly, many network applications and services, such as end-system multicast

[58], DHT-based DNS [103], and content delivery networks [12], require efficient organi-

zation among the participants, and several previous research efforts focus on constructing

network overlays in order to route traffic optimally, such asRON [16]. They all rely on

active probing using ping or traceroute to measure path quality and to detect anomalies
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[130, 39]. As a result, 1GB of ping traffic was observed daily on PlanetLab in 2003, which

equals to one ping per second per node [82]. As another example, RON periodically mea-

sures all inter-node paths to discover link failures; due toits probing traffic, a 50-node RON

requires 33Kbps bandwidth for each node, which prevents it from scaling to a large size.

As overlay networks grow in popularity and sizes, this may lead to a significant increase in

network traffic and contention for network resources, whichmay cause network instability.

We choose a hybrid structure that combines network topologyand distributed hash ta-

bles. DHTs provide scalability and robustness, and we need adesign for efficiency and

non-intrusiveness. In this chapter, we demonstrate the useof network topology knowledge

to improve the efficiency of the DHT-based cross-region organization, while maintaining

low overhead. Specifically, we design a hybrid proximity neighbor selection algorithm that

uses Autonomous System information to estimate network latency. Proximity neighbor

selection (PNS) in DHTs is, given a number of neighboring leaders, which ones a node

should choose as the neighbors in its DHT routing table. Thisis an important issue, as

it determines the efficiency of the region-level organization among leaders. We use the

AS-path length as a proxy for network latency to filter out unlikely candidates without

probing them during the selection process, and only a small number of leaders who pass

the filtering will be probed. Compared with those approaches based on active probing, our

algorithm can significantly reduce the amount of probing traffic without greatly undermin-

ing DHT lookup performance, and our savings on probing traffic increase with network

size, as demonstrated in the experiments. Note that in this organization, each regional

leader also maintains a number of its topological neighboring regional leaders, as it is con-

venient to resolve the requests that follow network topology whenever possible, but this list

of neighbors is not required.

The rest of the chapter is organized as follows. Section 4.2 and 4.3 present an overview

on distributed hash tables and the Internet topology, respectively. Section 4.4 presents

a hybrid PNS algorithm using network topology information.Section 4.5 evaluates the

performance of our approach. Section 4.6 discusses the policy implication of our approach.

Section 4.7 reviews related work. We conclude in Section 4.8.
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4.2 Distributed Hash Tables

4.2.1 DHT Routing

The explosion of peer-to-peer applications, originally file sharing such as Napster [85],

Gnutella [49] and BitTorrent [23], has inspired the more structured peer-to-peer networks.

Structured peer-to-peer networks, such as CAN [104], Chord [122], Pastry [109], and

Tapestry [133], provide a scalable distributed hash table,in which any piece of data is

guaranteed to be located in a limited number of steps. These systems provide a robust

self-organizing infrastructure that is expected to eventually become the fundamental com-

ponent of large-scale distributed applications. In this section, we present some background

on structured P2P networks and the standard proximity neighbor selection.

DHTs provide an efficient and scalable routing mechanism where a lookup opera-

tion can be performed in typicallyO(log n) steps and each node maintains only typically

O(log n) states, wheren is the number of nodes. Many geometries have been proposed

in DHTs to achieve the balance between the number of states and the number of lookup

steps [54]. For instance, CAN uses a hypercube [104], Chord uses a ring [122], Viceroy

forms a butterfly network [77], and Pastry combines a tree anda ring [109]. Figure 4-1

demonstrates two examples.
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Figure 4-1: DHT geometry examples. (a) shows the finger tables of Chord, and (b) shows
how nodes divide the name space in CAN. The numbers are the nodes’ IDs.
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Figure 4-2: Pastry routing. In (a), the circle represents the name space, and the arrows
show the entries in the routing table of node02311, which is also shown in Table 4.1. (b)
shows a lookup procedure by02311 to find node20012.

We use Pastry [109] as an example to demonstrate the DHT routing. Pastry is a generic

P2P infrastructure. Each Pastry node has a unique ID in a circular 128-bit name space.

A node is responsible for storing data whose keys are betweenthe present node and its

predecessor. All nodes together form an overlay network, and a lookup query is routed

through the overlay to a destination by a series of forwarding steps based on routing tables.

Each node keeps track of its neighboring nodes that are closest in the name space in its leaf

set.

For the purpose of routing, each node maintains a routing table that contains a number

of nodeids and their IP addresses. Node IDs are considered as a sequence of digits in

base2b. A routing table is organized into128
2b rows and2b columns. The entries in rowi

refer to nodes who share the firsti digits with the present node, and the(i + 1)th digit of

a node in rowi and columnj equalsj. Table 4.1 and Table 4.2 shows simplified routing

table examples of two nodes. Figure 4-2 demonstrates the routing geometry of Pastry and a

lookup procedure. In Figure 4-2b,02311 checks its routing table to find23010, which has

the longest matching prefix with20012, and forwards a lookup message to it.23010 checks

its routing table for a longest prefix match to20012, which is20332. It is guaranteed to find

a node with longer matching prefix, due to the routing geometry of Pastry. This process

continues until20012 is reached.
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X 12001 23010 32301

00120 01112 X 03232

02011 02231 X

X 02330

X 02312

Table 4.1: A Pastry routing table of node02311. In this example, the name space is 10-bit,
and each digit consists of 2 bits.X refers to the entries that match the present node’s ID.
Some entries are empty because the present node has not foundappropriate nodes for them.
The IP address of each node is not shown here.

02311 12001 X 32301

20332 21003 22102 X

X 23211

23001 X 23030

X 23012

Table 4.2: The routing table of node23010.

X 1**** 2**** 3****

00*** 01*** X 03***

020** 021** 022** X

0230* X 0232* 0233*

02310 X 02312 02333

Table 4.3: A generalized Pastry routing table of node02311. In this example, the name
space is 10-bit, and each digit consists of 2 bits.03∗∗∗means that a node whose ID begins
with 03 fits that entry.X refers to the entries that match the present node’s ID.
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4.2.2 Proximity Neighbor Selection

Although given a DHT geometry the average number of steps is fixed, the actual latency

of a lookup is also determined by the latency of each step. Proximity neighbor selection

(PNS) is an effective method to reduce the lookup latency. PNS is based on the fact that

multiple peers may be suitable for a routing table entry. Table 4.3 shows the flexibility of

the routing table entries. Note that the flexibility is the highest at the top row, and decreases

to none at the bottom row. In PNS, peers adjust their routing table entries for proximity by

periodically exchanging them with its neighbors (those in its routing table). After getting

multiple candidates, the present node probes all the candidates to find the closest ones to fill

in its routing table entries. PNS requires the node to actively probe all candidates, which

generates significant network traffic. We use Pastry as an example. Suppose the network

size isN , and each entry receivesk candidates on average. Since the routing table size is

O(log N), the total number of probing messages of the network isO(kṄ ˙logN) during each

neighbor selection period. This situation would only deteriorate with the network sizes.

4.3 Network Topology

As discussed in Chapter 3, we classify network knowledge intothree kinds: configura-

tion knowledge, operation performance, and control knowledge. Configuration knowledge,

such as network topology, is relatively static and coarse-grained. Operation knowledge,

such as network performance, is fine-grained and dynamic, and represents accurate condi-

tion of the Internet, and may change dramatically over time.Control knowledge refers to

the policies imposed by the network providers.

This classification helps us think about how cross-region organization can obtain and

take advantage of different types of knowledge in differentways. Operation knowledge

provides accurate network conditions, but usually requires active probing, and thus adds to

the Internet traffic. On the other hand, configuration knowledge can be provided without

real-time measurements, as it is more stable. In this section, we discuss the accuracy of the

AS-path length as a proxy for network latency.
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4.3.1 AS Topology Information

Interconnected ASes together comprise an AS-level Internet topology. However, the AS-

level topology cannot be simply drawn as an undirected graph, because there are several

complications. First, there is a large number of ASes; it is difficult to collect complete,

accurate, and timely topology information. Second, AS links are not undirected. For ex-

ample, a multi-homed customer AS will not transit traffic between its providers. Third, AS

connectivity is not transitive. For example, suppose thereare three ASes,A, B andC. A

andB peer with each other, andB is C ’s customer. In this configuration, usuallyB will not

accept traffic fromA whose destination isC. Fourth, network errors such as link failures

may affect the actual AS topology, and it is hard to detect them in a timely fashion.

For the first problem, it turns out that BGP routing tables at multiple vantage points al-

ready contain most ASes of the Internet [82, 123]. For example, RouteViews data contain

more than 15,000 ASes [99]. To deal with the second problem, instead of using an undi-

rected graph, we can construct the AS topology as a directed graph. In this way, we can

distinguish the in-degree and out-degree of an AS, which is useful when considering replica

placement, as discussed in next section. Furthermore, the second and the third problems

interact with each other. For example, in the same AS scenario as that in last paragraph,

B’s out-degree is 2, ifA andC areB’s only neighboring ASes. However,A usually only

accepts traffic fromB whose destinations are inA or A’s customers, because the link be-

tweenA andB is a peering link; therefore, the out-degree 2 is deceptive in thatB’s links

to its peerA and its providerC are not equal in their importance of providing connectiv-

ity. Fortunately, peering links are much fewer than provider-customer links. According to

[123], only 4.75% links in the Internet are peering links, and many of them are links be-

tween backbone ASes who have no providers. Therefore, we believe this problem is minor.

In the current work, we do not treat peering links specially in the AS topology, and we

plan to consider this problem in the future work. Finally, itis not necessary to construct a

completely accurate AS-level topology before we are able touse this information.

There are several advantages of using AS information. First, under our assumption,

AS information can be obtained locally, which adds little toInternet traffic. Second, such
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information is usually stable and static, and thus can be statically stored, easily retrieved,

and infrequently updated. Third, AS information can be collected in an aggregate way

by the local server and provided to clients, so that applications do not have to probe the

Internet individually.

4.3.2 Relationship between AS-path and Latency

BGP [107] was designed for reachability and policy rather than routing efficiency, but

previous research shows that the AS-path length correlateswith network latency to some

extent [88, 4]. An intuitive reason is that the longer an AS path is, the more ASes a packet

has to go through. This is also because routing within an AS isusually efficient and well

managed, and many anomalies occur on the links between ASes [6]. We reconfirm these

results using the RouteViews data [99] and the Skitter data [3]. We retrieve end-to-end

latency information from the Skitter data. For each pair of source and destination in the

latency information, we search the RouteViews data to find the corresponding AS path

using IP prefix matching. Figure 4-3 shows the relationship between the number of AS

hops and latency. We also sum up the percentage of different AS-path lengths based on

the Skitter data. We can see that the average latency is positively related to the lengths

of AS paths. Note that the maximum number of AS hops in the Skitter dataset is 7, but

the maximum number of AS hops in the Internet will be larger. In this figure, the average

latency of 7 AS hops is lower than that of 6 AS hops, because theamount of data for 7 AS

hops is very small and the average latency for it may not be very representative.

However, what is not shown in Figure 4-3 is the standard deviation of latencies with the

same AS-path length, which turns out to be very large. The correlation coefficient between

the raw AS hops and the latency is 0.24. That means we can hardly use the AS-path length

directly as a proxy for network latency. There are several reasons why the AS-path length

does not reflect latency very well. First and most importantly, ASes are very heterogeneous

in terms of geographic size. A large AS may span one continent, so one such AS hop

contains many router-level hops, and its latency may be large. In contrast, the latency of a

small AS hop is much smaller. Even worse, if two nodes reside in two small neighboring
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ASes, the latency between them may be lower than two distant nodes in a large AS. In

that case, 1 AS hop is shorter than 0. Second, AS-path lengthsare very coarse-grained.

The AS-path lengths vary from 0 to tens of hops, while networklatency varies from a few

milliseconds to a few seconds. These two are the most important factors that affect the

accuracy.
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Figure 4-3: Relationship between AS hops and latency.

4.4 Leveraging Network Knowledge

In order to validate our proposition that there is benefit to be gained for the cross-region or-

ganization by using network topology information, we explore how to improve the lookup

performance without incurring significant amount of probing traffic. Our goal is to maintain

lookup performance comparable to the standard proximity neighbor selection algorithm,

but to greatly reduce the network traffic generated by probing.
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4.4.1 Hybrid Proximity Neighbor Selection

Algorithm

We propose a hybrid proximity neighbor selection algorithmin this section. The key idea is

to use the AS-path length as a proxy for the end-to-end latency, so that a node does not have

to probe all the candidates during proximity neighbor selection. As in the standard PNS,

nodes exchange routing table entries periodically. After receiving multiple candidates for

each entry, a node performs the hybrid PNS algorithm.

Our hybrid scheme consists of two steps. First, when a node receives several candidates

to fill in a routing table entry, it does not probe all of them directly. Instead, it first calculates

the AS-path length between itself and each candidate. Then it uses the AS-path lengths to

filter out those that are unlikely to be close, leaving a much reduced set of candidates.

Filtering candidates can be done in many ways, as described soon.

Second, the node probes the remaining candidates to find the nearest one. The clos-

est node found is used for the corresponding routing table entry. This is the same as the

standard PNS. Algorithm 1 shows the pseudo code of our hybridPNS algorithm.

Filtering Functions

As mentioned in Section II, there are several complicationsthat make the AS-path length

not a completely accurate proxy for latency. To address thatwe design filtering functions.

Filtering functions are used to deal with the problems that the AS path cannot address,

such as network dynamics. In Algorithm 1 , the filtering process is implemented as a

separate procedure in which different filtering choices aremade. There are many options

for the filtering functions, each of which has its own filtering criteria. Two extremes of

the filtering functions are presented as follows. One is to select nodes solely on basis of

the AS-path lengths. In this case, we can choose those candidates with the shortest AS-

path length. If there are multiple nodes with the shortest AS-path length, we pick up one

randomly from them. That is based on an optimistic belief that the shortest AS-path length

corresponds to the shortest latency. In that case, we do not have to probe any candidate,

and thus save all the probing traffic. However, the found candidate may not be the closest

71



Algorithm 1 The hybrid proximity neighbor selection algorithm.
owner: the present node that performs the selection.
N: a set of candidates to be selected.
A: an array of AS-path lengths between the present node
and the candidates.
R: the set of candidates after the filtering.
getASPathLength(i,j): return the AS-path length between
nodes i and j.

Node hybridPNS (){
// first step
For each node n in N,
A[i] = getASPathLength (owner, n);

NodeSet R = Filter (N, A);
// second step
min = infinity;
For each node rR {
latency = ping(r);
if (latency < min) {
min = latency;
selected = r;

}
}
return selected;

}

NodeSet Filter (NodeSet N, int[] A){
threshold = the shortest AS-path length among all the candidates;
For each n in N,
if (A[i] == threshold)
R = R+{n};

return R;
}
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one. The other extreme is to ignore the AS-path length information and to probe every

candidate, i.e., the standard PNS algorithm. It can always find the closest candidate, but

requires the maximum number of probing messages.

Between the two above extremes, there are many other choices. For example, in Al-

gorithm 1, the filtering function is defined to choose those candidates with the shortest

AS-path length and filter out the others. More sophisticatedschemes can be employed. In

our simulation, one of the filtering functions tested is defined to be that all candidates with

the shortest AS-path length or an AS-path length that is onlyone more than the shortest

length will pass the filtering. The assumption in this filtering function is that due to the

heterogeneity of ASes, candidates with one more hop than theshortest one could still be

the closest, so we do not filter out such candidates. But if a node’s AS-path length is two

or more than the shortest one, it is very unlikely to have a shorter latency.

There is a tradeoff between the lookup performance and the amount of probing traffic.

The more the nodes are filtered out, the less traffic the probing will generate, but the more

likely that the finally found node is not the closest one. However, the found node will

usually still be very close to the present node. That provides the flexibility for each node

to decide the efforts it wants to take to improve the lookup performance, considering its

bandwidth restriction.

4.5 Performance Evaluation

In this section, we present the simulation results of our approach by comparing them with

those currently used in the DHTs. We first describe the simulation setup. Then we present

the lookup performance in terms of the latency, the number ofAS hops, and the amount of

the traffic, respectively.

4.5.1 Experiment Setup

We employ the Pastry structure among the leaders. Our simulation is configured in the

same way as Pastry, with keep-alive messages for leaf sets and lazy routing table repairs

[5]. The simulation is divided into discrete time periods. In each period N queries are
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issued, whereN is the network size. The querying node and the lookup ID are randomly

chosen in the name space. Every 10 periods leaders exchange their routing table entries

to perform proximity neighbor selection. To do this, each node sends each row in the

routing table to neighbors in that row. The leaf set is set to 16, and each node probes all its

neighbors in every period.

We evaluated our schemes on both synthetic Internet topologies and a topology gener-

ated from the real Internet data. The synthetic topologies are generated using the BRITE

Topology Generator [48]. The topologies are two-layer networks. The first level is the AS

level, and the second is the end host level. The BRITE Generator assigns latency to each

link. Due to space limitation, only the results on one synthetic topology and the real topol-

ogy are shown in this chapter. That topology consists of 150 ASes interconnected using the

Waxman model and each AS contains 100 nodes interconnected in the power law model.

The topology is undirected, and the routing between ASes is the shortest AS-path routing.

Second, we generated a real Internet topology from the RouteViews data and the Skitter

data. We calculated the weight vector using the two data sets, and normalize the weight

to be between 0 and 1. We built an Internet topology containing about 10,000 hosts by

randomly choosing nodes in the Skitter data. We also generated an undirected AS-level

topology and a database that contains the mapping between IPprefixes to AS numbers. For

the host pairs appeared in the Skitter data, we infer the AS path between two hosts using the

traceroute information; for other pairs, we use the shortest AS path as an approximation.

In this way, we can find the AS-path length between any pair of nodes. Note that we

make two simplifications here. In reality, AS links are directed, and the policy-based AS-

level routing does not always match the shortest AS-paths. Since it is not our focus here

to construct directed AS topologies with commercial relationships and to generate policy-

based routing, we make the simplifications and plan to construct more realistic topologies

in our future work.
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Name Best Looser NoProbe

Filter If the AS-path length
between a candidate
and the present node
is less than 2, such a
candidate will pass the
filtering, and others are
filtered out; otherwise,
if all the AS-path
lengths are more than
1, then only those with
the shortest AS-path
length will be probed.

All candidates with the
shortest AS-path length
or an AS-path length
that is only 1 more than
the shortest length can
pass the filtering; others
are thrown away.

Only the AS-path
length is used to dis-
tinguish candidates. If
multiple nodes are with
the shortest AS-path
length, then a random
one is chosen.

Naming In the evaluation we
found that it achieved
a good balance between
the lookup performance
and the probing traffic.
So it is calledBest.

It allows more candi-
dates to pass the filter-
ing thanBest, so it is
calledLooser.

This scheme does not
require any probing, so
it is calledNoProbe.

Table 4.4: Filtering functions.

4.5.2 Organization Efficiency Evaluation

As lookup is the key function in DHTs, we compare different lookup schemes in this sec-

tion. The goal is to show that our hybrid PNS schemes can achieve lookup performance

comparable to the standard PNS, but with much less probing traffic.

Five schemes are compared:Raw, PNS, and three hybrid PNS schemes with different

filtering functions. TheRaw scheme implements a generic Pastry network without any

optimization, in which a node sets up its routing table with randomly chosen nodes. This

is the basis of comparison.PNS refers to the standard proximity neighbor selection used

in Pastry. Best, Looser, andNoProbe refer to three hybrid PNS schemes that use the

AS hops but with different filtering functions, as describedin Table 4.4. They are different

in the strictness of filtering. Besides,SP (Shortest Path) is the direct end-to-end metric

between the source and the destination.

Table 4.5 summarizes the performance ofPNS and the three hybrid PNS schemes,

on the synthetic topology and the real topology with both 10,000 nodes. We can see that
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Network Size Filter Latency (ms) AS Hops Probing Traffic

Synthetic
10,000 nodes

PNS 78.4 7.03 100%

Looser 78.8 6.94 22.2%

Best 80.2 6.53 8.0%

NoProbe 90.1 6.46 0%

Real
10,000 nodes

PNS 143.5 11.8 100%

Looser 159.6 7.52 67.2%

Best 173.9 5.72 11.9%

NoProbe 296.3 4.77 0%

Table 4.5: Summary of lookup performance.

on both topologies, the order of lookup latency is, from low to high,PNS < Looser <

Best < NoProbe. The order of the number of the AS hops per lookup is the same asthe

order of the traffic percentage, which is, from low to high,NoProbe < Best < Looser <

PNS. On the synthetic topology,Best andLooser both perform very well in terms of

lookup latency and save significant probing traffic.

Figure 4-4 to 4-9 show in detail the average lookup performance of different schemes

under the network sizes from 1,000 to 10,000 nodes on the two topologies. Note that the

performance does not significantly downgrade with the network size, as nodes are randomly

chosen from the same node set.

Figure 4-4 and 4-7 show the average lookup latency on the two topologies.SP (Short-

est Path) refers to the average end-to-end latency between the source and the destination.

In both topologies, theRaw scheme performs the worst; its latency is much higher than all

the others.PNS performs the best (SP is not regarded as a scheme). BetweenRaw and

thePNS, the lookup latency, from low to high, isLooser, Best, andNoProbe. Best and

Looser perform very close toPNS, especially in Figure 4-4, where they are hardly dis-

tinguishable. In Figure 4-7, the average lookup latency ofBest is about 20% higher than

that inPNS. NoProbe performs worse than the other two filtering functions, sinceit only

uses AS-path lengths to choose nodes. From the results, we can see that the hybrid PNS

schemes with a proper filtering function can significantly improve the lookup performance

compared withRaw, and some are almost as effective as thePNS scheme.
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Figures 4-5 and 4-8 compare the average number of AS hops in a lookup. SP refers

to the length of the direct AS path between the source and the destination. The hybrid

PNS schemes achieve shorter AS-path lengths thanPNS does, since they take the AS-

path length into consideration when filling the routing table. The average numbers of AS

hops of all schemes exceptRaw are similar to each other on the synthetic topology, but

they are quite different on the real topology. On the real topology, PNS requires about 9

AS hops per lookup when the network size is above 8000. In contrast,Best requires about

only 5.5 AS hops. A benefit of shorter AS paths is to reduce the possibility of lookup

failures due to BGP anomalies. It also implies a better matchbetween agent activities and

the administrative boundaries. Comparing Figures 4-4, 4-5 and 4-7, 4-8, we can see that

the latency and the AS-path lengths correlate better in the synthetic topology than in the

real topology.

Figures 4-6 and 4-9 show the percentage of probing traffic in the hybrid PNS schemes,

compared withPNS. The number of probing message inPNS is considered to be 100%.

We can see that a proper filtering function can significantly reduce network traffic, and the

traffic decreases with the network size. For example, on the real topology with a network

size of 1,000 nodes (Figure 4-9),Best only require about 20% of probing messages of

PNS, and it decreases as the network size increases, finally reaches 12% when the network

size is 10,000 nodes. In contrast,Looser requires about 75% of probing messages of

PNS on average.NoProbe does not require any probing; hence it falls on the x-axis.

The percentage of probing traffic goes down as the network size increases, because as the

network size gets bigger, there are more candidates for eachentry, and the filtering is more

effective with more candidates. Comparing Figure 4-6 and 4-9, the percentage of messages

in Figure 4-6 is much lower than that in Figure 4-9.

To evaluate the gains we obtain from saving probing traffic, we need to know the per-

centage of traffic that is generated by probing messages in a network, compared with the

total amount of control messages. Control messages consist of all messages that are used

to maintain the cross-region organization and routing correctness, and traffic generated by

lookup and data transfer is not included here. This percentage depends on several factors,

including the churn rate, the frequency of routing table entry exchange, the number of en-
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tries exchanged, leaf set size, the frequency of keep-alivemessages, etc. As mentioned

before, our simulation is configured in the same way as Pastrywith keep-alive messages

for leaf sets and lazy routing table repairs [5]. Under such configuration and a network size

of 10,000 nodes, we observe that the number of probing messages accounts for about 40%

of the total number of messages in thePNS scheme. In Figure 4-9, when the network size

is 10,000, probing messages inBest is about 12% of that inPNS. Therefore, if all the

other messages are the same, the total number of messages in the Best scheme is about

64.8% of that in thePNS scheme.

Comparing Figures 4-4 to 4-9, we can see that the hybrid PNS schemes perform better

on the synthetic topology than on the real topology in both reducing lookup latency and

saving probing traffic. The reason for this is that the synthetic topology is more homoge-

neous than the real one. In the synthetic topology, each AS contains the same number of

nodes, and the latency on a link within an AS is set to be smaller than that between two

ASes. In contrast, the real Internet is more heterogeneous in both the number of nodes in

an AS and latency distribution. In the real topology, several big ASes may contain many

nodes. As a result, a node in such an AS cannot tell the difference between its neighboring

nodes just based on AS-path lengths, so the filtering does notwork as well as that on the

synthetic topology where nodes are uniformly distributed in ASes. The latency distribution

is not as uniform as that in the synthetic topology either. But we can see that even on the

real Internet data, the hybrid PNS schemes still work quite well and save a large percentage

of probing messages. For example,Best can use 12% probing messages to achieve lookup

latency only 20% longer thanPNS.

The simulation results show that even with some simple filtering functions, we can

achieve similar lookup performance to the standard PNS, with a much reduced number of

probing messages. The results also show that there is a tradeoff between improving lookup

performance and reducing probing traffic. The more we probe,the better performance we

can obtain. Different nodes may also adopt different filtering criteria. For example, if a

node is in a backbone AS, then it should uses a filtering function that does not distinguish

between 0 and 1 AS hop, because a node in the same AS that is far away from the present

node will probably have a long latency. Furthermore, filtering functions provide a node
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the opportunity to control the amount of probing. A peer can choose a filtering function to

balance its requirement on lookup performance and the bandwidth consumption.

Currently we only use very simple and coarse-grained AS-pathlengths. With more

fine-grained information, we can expect the filtering functions based on such information

will achieve better performance. For example, if we know therouter-level hops or the

structure of points of presence (PoPs) in ASes, we can make more accurate estimate on

network latency using this static information. But this requires more efforts to retrieve the

underlying network information. Again, there is a tradeoffbetween cost and benefit.
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Figure 4-4: Synthetic topology: Average lookup latency.

4.6 Discussion

With the prosperity of overlay networks, the interaction between overlays and ISPs be-

comes an important issue [10]. To form a synergistic coexistence, overlays and ISPs must

coordinate their interests and behavior. Our preliminary results have showed that AS in-

formation can help to match overlay activities (agent activities in this work) with the ISP

policies.
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Figure 4-5: Synthetic topology: Average lookup AS hops.

Simulation results show that our schemes can reduce the traffic while maintaining com-

parable lookup performance. These are attractive featuresfor overlays and end users, who

therefore would probably use such techniques in network applications.

Furthermore, we also show in the performance evaluation that our methods achieve

shorter AS hops in the lookup. This implies that our schemes naturally shift overlay activ-

ities with respect to administrative boundaries. Therefore, by using our techniques, users

tend to keep overlay traffic within nearby ASes. This change in traffic pattern is beneficial

to ISPs, as such traffic crosses fewer ASes and thus may cost ISPs less.

We can push further to match overlay/agent activities with ASes. A straightforward

method is to fill the routing table with nodes in the same AS whenever possible. As a

result, most lookup hops will be restricted within the localAS. Furthermore, we need to

consider the data flow between the requesting node and the replica. Our AS-based client

clustering uses the mapping from IP address to their AS number, and places an additional

replica in the AS from which many requests come. Therefore, future requests from the

same AS will find the replica in their local AS, and the downloading activities are within

the administrative boundary.
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Figure 4-6: Synthetic topology: Probing traffic percentage.

In return, such traffic pattern will motivate ISPs to expose more AS-level routing and

topology information to overlays and applications willingly. In this way, we hope that

overlays and ISPs can become more aware of each other and learn to coexist peacefully.

4.7 Related Work

This chapter focuses on achieving efficiency and non-intrusiveness in the cross-region or-

ganization. In DHTs, many lookup optimizations on have beenproposed, such as proxim-

ity neighbor selection, proximity routing, topology-based ID assignment and hierarchical

routing, but they all require active probing of the network [54], as we explain below.

Pastry employs proximity neighbor selection to improve lookup performance [109].

The idea is to build a topology-aware P2P network. In this technique, each peer sets up its

routing table using nearby nodes that satisfy the entry requirement in ID prefix. The effect

of this method depends on the flexibility of each routing table entry in choosing nodes, i.e.,

the length of the prefix. As shown in Table 4.1, the higher rowsof the routing table require

shorter prefix, thus have more flexibility in choosing nodes.This method does not affect
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Figure 4-7: Real topology: Average lookup latency.

the total number of hops in a lookup. This technique can also be applied to Chord with

minor modifications by allowing each finger to point not to a specific position but one in a

range in the name space.

Chord uses proximity routing [122]. Unlike proximity neighbor selection, proximity

routing does not require each node to set up its finger table using nearby peers. Proximity

routing happens during a lookup process. At each step of a lookup, there may be multiple

next hops that are closer to the destination ID than the current node in the name space.

Therefore, the current node can choose the closet next hop inphysical networks among all

possible ones, or one that is a good tradeoff between the physical distance and the progress

in the name space. This technique improves the lookup performance. However, it is limited

by the number of available next hops. Furthermore, unlike proximity neighbor selection,

always choosing the shortest next hop may lead to an increasein the total number of hops,

which affects the lookup performance.

Ratnasamy et al. introduces landmarks as topology signals in CAN [106]. With land-

marks, a node can map its logical ID to its location in the physical networks, so that neigh-

bors of a node in the overlay network are close to it in the physical network. In this way,
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Figure 4-8: Real topology: Average lookup AS hops.

a lookup can reach the destination without going through some faraway nodes. But such

topology-based ID assignments violate the uniform distribution of node IDs, which leads

to load-balancing problems. Neighboring nodes are also likely to suffer correlated failures.

Such a technique cannot be applied to those using one-dimensional name space such as

Chord and Pastry.

Brocade adds a secondary overlay on top of the P2P network [134]. The secondary layer

consists of super nodes, which are nodes near the network access points such as routers.

Each super node manages a set of local nodes, and network traffic is reduced. But super

nodes may become the bottleneck, and thus the system does notscale very well.

Xu et al. propose to build Expressway [129]. Expressway is anauxiliary network on top

of the structured P2P network, based on AS-level topology derived from BGP tables. An

Expressway network consists of nodes near network access points that have good network

capacity. It uses routing advertisement similar to the distant-vector algorithm to improve

routing performance in the Expressway. None-expressway nodes use their local express-

way nodes to route messages. This approach requires that each node know all nodes in the

same AS. Furthermore, the cost of distant-vector routing advertisement under a dynamic
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Figure 4-9: Real topology: Probing traffic percentage.

environment is not clear.

Another category of related work is synthetic coordinate systems [87, 38]. Such sys-

tems allow hosts to predict end-to-end latencies using synthetic coordinates without prob-

ing each other, which can be used by the P2P lookup to avoid contacting distant hosts. GNP

[87] relies on a set of landmarks, and each host computes its coordinates using the laten-

cies between itself and all the landmarks. Vivaldi does not require fixed landmarks [38]. In

Vivaldi, a host can compute its coordinates after collecting latency information from a few

other hosts. Compared with those systems, our approach basedon AS-path length is less

accurate, but can help to match P2P activities with ISPs.

4.8 Summary

In this chapter we have examined and evaluated algorithms for the leader organization

between regions using network topology knowledge and distributed hash tables. This con-

trasts with the current approaches used in DHTs which are generally based on the discov-

ery of latencies between peers by active probing. We demonstrate that there are significant
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advantages to our approach. The first is the significantly reduced probing traffic and perfor-

mance improvement. Using our hybrid proximity neighbor selection scheme with the AS

hop method, we can achieve nearly the same lookup performance as the standard proximity

neighbor selection with only 9% of probing messages on the synthetic topology, and 16%

longer average lookup latency with only 12% of probing messages on the real topology.

Perhaps even more importantly, the AS infrastructure reflects administrative boundaries

in the Internet. Algorithms such as those presented in this chapter allow for restricting agent

activities to either individual or sets of ASes that reflect such boundaries. We conclude

that with more study, one can generalize these ideas more broadly to the Internet layered

architecture, with significant performance and policy benefit.
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Chapter 5

Aggregation and Broadcast

Aggregation and broadcast are two important functions for leaders in the region organi-

zation. First, as discussed in Chapter 3, not all requests canbe resolved by following

network topology, and some need to be broadcast to all the regions. Second, similar re-

quests or knowledge can be aggregated to scale to the Internet scope. Third, a new agent

may need to broadcast in the NetKP to find a spec-KP that matches its interest or to find

relevant agents to form a new spec-KP. Finally, the broadcast and aggregation functionality

is needed in many spec-KPs. Therefore, the NetKP should support efficient broadcast and

aggregation mechanisms at the region level. In this chapter, I present an aggregation and

broadcast mechanism based on the tree structure, and designthe tree maintenance protocol.

In Chapter 4, I have presented a network topology based distributed hash table for cross-

region organization. DHTs represent an effective way to share information, since there are

no central points of failure or bottleneck. However, the flipside to their distributed and

dynamic nature is that it is not trivial to aggregate and broadcast global information effi-

ciently. As aggregation and broadcast are fundamental services in the NetKP, we design a

novel algorithm for this purpose in this chapter. Specifically, we propose to build an aggre-

gation/broadcast tree in a bottom-up fashion by mapping nodes to their parents in the tree

with a parent function. This approach also allows us to construct multiple interior-node-

disjoint trees, thus preventing single points of failure commonly in the tree structures. In

this way, we provide regions with an ability to collect and disseminate knowledge effi-

ciently on a global scale.
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5.1 Introduction

In this chapter, our goal isto design and implement aggregation and broadcast function-

alities among regions.We believe that a good aggregation and broadcast scheme for the

regions must satisfy three criteria: accuracy, scalability, and robustness. In terms of ac-

curacy, we want the scheme to be able to provide aggregate information with a certain

accuracy in a dynamic environment (where nodes and regions join and leave from time to

time). With respect to scalability, we want to minimize message passing and avoid flood-

ing schemes that generate excessive redundant messages, tomake the scheme scalable to a

large network. We also want to ensure that there is good load-balancing, in the sense that

no node among the leaders should be responsible for forwarding a disproportionate amount

of network traffic. In terms of robustness, a scheme should beresilient to the dynamics of

nodes joining, leaving, and failing arbitrarily among leaders.

The tree is a natural and efficient structure for aggregationand broadcast for the follow-

ing reasons. To broadcast information, the root can send theinformation to all its immediate

children, and then each child broadcasts in its subtree iteratively, until leaves are reached.

During this process, each node only receives the information once, so there is no redun-

dant transmission. When the tree is properly designed, each node has approximately the

same number of children, and thus the workload is evenly distributed among nodes and the

process completes in the logarithmic number of steps in terms of the tree size. The same

argument applies when the information is supposed to arriveat a sink.

Therefore, we propose to build and maintain an efficient and robust tree structure among

the regional leaders. In the Chapter 4, I have presented an efficient distributed hash ta-

bles using network topology knowledge, and thus we have at hand an efficient DHT-based

cross-region organization with a circular and continuous name space. With this underlying

infrastructure, we propose a bottom-up approach that constructs and maintains the tree us-

ing soft-state, in which a node dynamically determines its parent using aparent function.

The particular parent function family we provide allows theefficient construction of mul-

tiple interior-node-disjoint trees, thus preventing single points of failure in tree structures,

and also distributes the aggregation and broadcast load evenly among nodes. With such an
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aggregation/broadcast structure, our approach only generates a small amount of network

traffic compared with those based on gossiping or flooding, and is robust to node failures.

The rest of the chapter is organized as follows. In Section 5.2, I first give an overview

of cross-region organization, and define parent functions to facilitate our discussion. Then

I present a bottom-up tree construction and maintenance algorithm, and analyze aggre-

gate accuracy under node failures. Section 5.3 discusses desirable properties that a good

parent function should have, gives a sample parent function(family), and examines its fea-

tures. We also look at how parent functions provide a convenient way to construct multiple

interior-node-disjoint trees, thus preventing single points of failure. Section 5.4 discusses

implementation issues. Section 5.5 presents the simulation results on the properties and

performance of our scheme. Related work is discussed in Section 5.6. Section 5.7 con-

cludes the chapter and highlights current areas of ongoing work.

5.2 A Bottom-up Tree Building Algorithm

In this section, we first give an overview of the cross-regionorganization, and define par-

ent functions. Then we describe bottom-up tree construction and maintenance protocols

in detail, and discuss the advantages of such protocols. Finally, we analyze the aggrega-

tion/broadcast accuracy in case of node failures.

5.2.1 Cross-Region Organization Overview

Because the organization of regional leaders from Chapter 4 is based on a distributed hash

table, it inherits three key features, which are the base of the design. First, the name space

of the regional leaders is circular and continuous, although some are one-dimensional, and

some are multiple-dimensional such as CAN. Second, this organization provides efficient

lookups. It can resolve a lookup inO(log n) or fewer steps, wheren is the number of the

leaders/regions. Finally, this structure is resilient to node failures in that they automatically

repair the organization when nodes leave or fail.

With these three features (continuous name space, efficientlookup, and robustness),

our goal is to build an efficient and robust aggregation/broadcast tree among regional lead-
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ers. As nodes are often used to describe the entities in DHTs,and we focus on the DHT

formed by regional leaders in this chapter, we make nodes andleaders exchangeable in the

following discussion.

5.2.2 Parent Function Definition

The key idea in our bottom-up tree-building algorithm is to use a many-to-one function,

P (x), to map each node uniquely to a parent node in the tree based onits id x. More

specifically, the parent node for a nodex is the node which owns theid P (x). If node

x ownsP i(x) for i = 1, · · · ,∞, thenx is the root of the tree. Note thatP i(x) refers to

function iteration ofP (x). If we consider nodes in a DHT as nodes in a graph and the

child-parent relations determined byP (x) to be directed edges, the resulting graph is a

directed tree converging at the root. A tree example on the DHT name space is shown in

Figure 5-1. In the following we first define the parent function, and will present a parent

function example in Section 5.3.2.

x

P (x)

P 2(x)

P 3(x)
0

y

P (y)

P 2(y)

P 3(y)

Figure 5-1: A tree example. The circle represents the name space,0 is the root, and the
arrows show the directed edges of the tree from a child to its parent. In this figure, node
P (x) is nodex’s parent, nodeP 2(x) is P (x)’s parent, and so on.

Definition 1. A Parent Function,P (x), is a function that satisfies the following conditions:
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P (α) = α (5.1)

P∞(x) = α, ∀ x (5.2)

Distance(P i+1(x), α) < Distance(P i(x), α),

∀ i > 0, P i(x) 6= α (5.3)

whereα is anid owned by the root of the tree,x is any valid nodeid, andDistance(x, α)

is the logical distance betweenid x and the rootα, which is essentially the level ofid x in

the tree.

The above three conditions guarantee that all nodes usingP (x) will converge to the

root in a finite number of steps, and we prove it in the following theorems.

Theorem 1. If a functionP (x) satisfies the above conditions, there is a directed path from

all nodes to the node that owns theid α, which is the root.

Proof. Theorem 1 is a direct consequence ofCondition (5.2). Given an arbitrary nodex,

we know that there is a path fromx to P i(x), ∀ i > 0. SinceP∞(x) = α, there must be a

path fromx to α.

Theorem 2. If a functionP (x) satisfies the above conditions, all nodes will converge to

the root node in a finite number of steps in a finite network.

Proof. From Condition (5.3), we know that a node that ownsP i(x) (∀ i > 0) is closer

to the rootα than its childx in terms ofdistance defined in the parent function. Since

there are a finite number of nodes, a node will converge to the root in a finite number of

steps, if there is no loop (either back to itself or to a node that is even further away from

the parent). We prove that it is impossible to have a loop by contradiction. Without loss

of generality, suppose there is a loop in whichP k(x) = x (k > 0, x 6= α). It implies that

Distance(P k(x), α) = Distance(x, α). This contradictsCondition (5.3).

Note that the name space of the leaders, like that of DHTs, is much larger than the

number of leaders/regions. For example, Chord [122] uses a 160-bit name space, which
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can theoretically hold up to2160 nodes. In contrast, in the widely-deployed P2P network

Gnutella, only about40, 000 peers were observed at a time and1.2M nodes over an 8-day

period [112], which is only a small fraction of the name space. Therefore, a node in a DHT

is usually responsible for a range ofids, instead of its ownid only. Like in Chord [122]

and many other DHTs, we assume a node is responsible for theids or keys between its

predecessor (exclusively) and itself (inclusively), and the node is called theid’s successor

or owner. Accordingly, we do not require that a node with an exactid of P (x) exists.

Instead, as long as a node is currently responsible forid P (x) according to the underlying

DHT, the node represents theid P (x). This rule also applies to the rootα such that any

node that is currently responsible forid α is the root, but usually the root of a tree is the

node that initializes this tree and should be alive through the aggregation/broadcast process.

5.2.3 Tree Construction Protocol

With a parent functionP (x), we can construct an aggregation/broadcast tree by having

each node determine its parent node. The tree construction protocol describes how a node

joins an existing tree as follows, illustrated in Figure 5-2.

1. When a new leader, sayx, joins the system, we assume that it should already know

some existing leaders from which it can set up its state. It isalso from the introducing

nodes that nodex learns about the parent function,P (x), usually parameterized by

the rootid α.

2. After nodex joins the system, it learns theid range that it is responsible for. Ifα

is within this range, nodex knows that it has become the new root of the tree. The

former root also knows this since nodex is its immediate neighbor, and neighbor set

maintenance in the cross-region organization guarantees that the former root knows

the joining of nodex. The former root will take actions according to the tree mainte-

nance protocol in Section 5.2.4.

3. If nodex is not the new root, it must find its parent node usingP (x). If P (x) falls

into its ownid range,P 2(x) is computed and checked if it is still in its ownid range.
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This continues untilP i(x) is found not in its range. This is guaranteed to end and a

P i(x)(i > 0) will be found in a finite number of steps byTheorem 2.

4. Nodex then performs a lookup for theP i(x). The lookup resulting node, say node

y, will becomex’s parent in the tree.

5. After finding nodey, nodex sends a message containingP i(x) to y to register itself

asy’s child.

6. After receivingx’s register message, nodey will add nodex to its list of child nodes

together with the receivedP i(x). If nodey already has too many children to handle,

it will use some admission control to redirect nodex to other nodes, as described in

the tree maintenance protocol in Section 5.2.4.

Note that in step 3, a nodex can usually find its parent by computingP (x), but due to

the sparsity of the leaders compared with the name space, it is possible thatP (x) is covered

in its own id range. In such a case, nodex needs to computeP i(x)(i > 0) wherei is the

minimum number of times thatP has to be applied tox so thatP i(x) maps to a node other

thanx itself. It can always find its parent in this way unless it is the root. A node can easily

figure out whether it is the root by checking if the rootid is covered in itsid range.

A remaining problem is how to set up the first tree among the leaders, because we need

to inform all nodes of the parent function and its parametersfirst. We choose to build and

maintain a default tree with a default parent functionP (x) at a default rootid α when

the NetKP is initialized. We can also depend on either applications or some out-of-band

methods to flood the parent function when we want to constructa tree.

5.2.4 Tree Maintenance Protocol

We need to maintain an aggregation/broadcast tree carefully in the cross-region organi-

zation where leaders may join and leave dynamically, because a single node failure may

cause the subtree rooted at the failed node to lose connection with the other parts of the

tree. Therefore, it is crucial to maintain a robust tree thatcan recover quickly from node

failures. The key idea is to let each node maintain its link toits parent node independently
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Figure 5-2: The node joining procedure. The circle represents the name space,α is the root
id, and the arrows show the directed edges of the tree from a child to its parent. In this
figure, nodey is nodex’s parent in terms ofP (x). Nodez is y’s parent in terms ofP (y).

based on the parent function. Although the parent function gives rise to multiple interior-

node-disjoint tree (as will be described in Section 5.3), here we focus on the robustness of

a single tree, since this can be easily extended to a variety of multiple-tree maintenance

protocol. The tree maintenance protocol is as follows.

1. After a nodex joins the tree, i.e., registers at its parent node, it is henceforth x’s

responsibility to contact its parent nodey periodically to refresh its status reliably as

a child node. The frequency of the refreshment depends on many factors, such as

node failure rate and the requirement of applications. Ify fails to hear fromx after a

specified expiry duration,x will be deleted fromy’s children list.

2. If nodey decides to leave the NetKP, it can notify its children and itsparent. To do

this, y notifies the children and tells them about its successor which should be their

new parent.y will also inform its parent, and its parent will simply delete y from its

children list. Ify leaves without notification, it is considered as node failure.

3. If nodey fails, its childx will detect nodey’s failure when it tries to refresh its status

with y. Thenx will perform another joining procedure to find its new parent.

4. Nodey will discover that it is no longer responsible for theid P i(x) when a new
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node, sayz, happens to join betweenP i(x) andy, and takes overP i(x). In such a

case,y will inform x that it is no longer its parent in terms ofP i(x) and to its best

knowledge,z should be its new parent. After receivingy’s message,x will contact

z. Based on the receivedP i(x), z may either addx to its children list, or tellx that

to its best knowledge, another nodez′ should bex’s new parent, if it knows thatz′ is

betweenP i(x) andz. This recursive procedure continues until a proper new parent

is found. Figure 5-3 shows an example.

5. Nodex may notice that it should change the parent. This happens when x’s current

parent is found in terms ofP i(x) (∀ i > 1), which implies thatP j(x), j = 0, 1, ..., i−

1 are covered inx’s id range. Ifx notices that a new node has joined as its neighbor

and is responsible forP k(x)(0 < k < i), x will switch to the new node and simply

stop refreshing its status with its former parent. Figure 5-4 shows an example.

6. If the current root node finds that a new node has joined as its neighbor and it happens

to cover the rootid, the old root knows that the new node will take over the root

responsibility, so it will find its parent using the parent function.

7. If a parent node is overloaded because it has too many children, or cannot handle all

children due to capability changes, it will ask some children to switch to other nodes.

The way for the children to find other parents can be based on the parent function,

and we will discuss it in detail in Section 5.3.2.

5.2.5 Discussion

As mentioned before, we maintain a default tree over the leaders. We treat it as a light-

weight aggregation/broadcast infrastructure, and as a base to construct other special pur-

pose trees, such as trees for media streaming. To keep it simple, we do not consider factors

such as bandwidth or proximity in the default tree. Since therefreshing message is small,

we can use it to aggregate and broadcast some general NetKP information. For example,

we can piggyback the size of the subtree in refreshing messages, so that the root will ob-

tain the size of all its subtrees and learn the NetKP size. Then the root can piggyback the
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Figure 5-3: The first case of parent change due to node joining. Nodey is nodex’s current
parent in terms ofP (x). Nodez is a new node which joins and coversP (x). Thusz should
bex’s new parent.y can easily discover this by observing thatz becomes its neighbor.

NetKP size in the acknowledgments to its children, so that eventually each node will learn

the NetKP size. Other types of aggregate information can also be collected cheaply in the

similar way.

There are several advantages of our algorithm over previoustree construction and main-

tenance schemes. First, our tree based on the parent function is constructed and maintained

in a distributed bottom-up way. A parent only needs to passively maintain a list of children

without any active detection of their status. Each node is responsible for contacting only

one node, i.e., its parent. Therefore, the tree maintenancecost is evenly distributed among

all nodes.

Second, a node’s parent is determined by the parent functionand node distribution in

the name space, so each node can find its parent independently. Unlike some previous tree-

based broadcast and multicast systems where the tree repairrequires coordination of the

root or multiple nodes [91, 132, 27], our tree can be repairedsimultaneously by each node

that detects a failure of its parent. Therefore our tree can be repaired easily and efficiently

in case of node failure.

Third, parent changes can be detected and completed easily.As explained in Sec-

tion 5.2.4, there are two cases when a node should change its parent. Both cases can be

detected by either the child or the parent by simply observing its neighbor change, as shown
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Figure 5-4: The second case of parent change due to node joining. x’s current parent isy,
in terms ofP 2(x), because there are no nodes betweenx andP (x). Later,z joins and takes
overP (x) and thus should bex’s new parent.x can easily discover this by observing that
z becomes its neighbor.

in Figure 5-3 and 5-4. The first case happens when a new node joins near the parent node.

Suppose that a childx registers at its parenty in terms ofP i(x). Later, a new node may

join at y’s neighborhood and take overP i(x). It is definitely inefficient to have each node

keep detecting whether its correspondingP i(x) is now covered by another node. Instead,

notice that in this case the parent change is triggered by a neighbor changenear the parent

node, and neighbor maintenance already exists in the cross-region organization as in many

DHTs. Suppose thaty is responsible for anid range(y0, y]. If y observes that some nodes

have joined between its predecessory0 and itself, it checks whether the new nodes are be-

tweenP i(x) andy. If so, it knows that its childx should switch to a new parent. This

detection costs nothing since in the cross-region organization each node actively maintains

its successor and predecessor.y then notifiesx about this change. Note that there may

be multiple nodes joining the system simultaneously, soy may not know which new node

takes overP i(x) and the responsibility rests onx itself to disambiguate and find out its

new parent. The second case happens when a new node joinsnear the child. Supposex’s

current parent is found in terms ofP i(x)(i > 1), which implies thatP j(x), (0 < j < i) are

covered inx’s own range. Later, ifx notices that a new node joins at its neighborhood and

takes overP k(x)(0 < k < i), x knows that it should switch to the new node. Therefore,
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tree maintenance cost on parent changes is very low.

5.2.6 Accuracy Analysis

A general aggregation operation consists of three steps. First, a request is sent by a node

to the root. Second, the request is broadcast down along the tree to all nodes from the root.

Third, all nodes aggregate data of their own subtrees and thedata flow up along the tree

to the root. Note that in the first step, a request can follow the tree to reach the root, or be

sent directly to the root if the requester knows the root, forexample, via the parent function

presented in Section 5.3.

Although the tree maintenance protocol tries to recover from node failures and maintain

a robust tree, in an extremely transient environment where asignificant fraction of the nodes

can be down within a short period of time, it is very likely that nodes will fail during the

broadcast and aggregation procedure. Node failures affectthe accuracy in two ways– a

node can either fail before forwarding the aggregation request to its children or before

forwarding the aggregated result of its subtree to its parent. In both cases, without any

recovery mechanism, the final result received by the root will be missing information from

the lost subtree. Below we consider the effect of one type of recovery mechanism, namely

refreshing, on the conditional probability that the aggregation result is correct, given that

the aggregation did occur.

In order to analyze the accuracy of this approach, we make thefollowing assumptions.

We divide time into equal intervals of lengthCr, and there will be one refresh/probe in

each interval. The time that the refresh/probe happens is uniformly distributed within each

interval. Therefore, the probability density function (pdf) is constant at1/Cr in each in-

terval. The lifetime of any node follows an exponential distribution with parameterλl, as

the exponential random variable is a good model for the amount of time until a piece of

equipment breaks down or until an accident occurs. The aggregation events are a Poisson

process with rate parameterλa, as a broadcast or aggregation request can be considered as

an arrival and the Poisson process is natural to describe probabilistic arrival events.

Consider the beginning of a refresh interval and label that time 0. Let R be the time
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interval from 0 until the next refresh. LetL equal the time interval from 0 until the next

failure. Since the lifetime distribution is exponential and thus memoryless, the distribution

of L is again exponential with parameterλl. Let A equal the time interval from 0 until

the next aggregation. Likewise, the inter-aggregation interval is exponentially distributed

and thus memoryless, the distribution ofA is again exponential with parameterλa. For

simplicity, we condition on the aggregation occurring at timea, and that all the different

characteristics of different nodes are independent, unless stated otherwise.

We consider the conditional probability that the aggregation result is correct from a

single node’s perspective, i.e. its parent has received itsaggregation result.

All the probabilities we talk about below are conditioned bythe fact that the aggrega-

tion occurred at timea. By the total probability theorem, we can split this into different

(sub)cases.

1. Case 1: Parent does not fail within time 0 to timea. Conditioned further on this, the

probability of aggregating correctly for a node is 1. The probability of this case is

P[L > A|A = a] = 1−
∫ a

0
λle

−λlldl = e−λla.

2. Case 2: Parent does fail sometime in between time 0 to timea. The probability

that the parent fails sometime in between time 0 to timea is P[L ≤ A|A = a] =

1 − e−λla. There are two subcases to consider, whether the sequence ofevents is:

failure, refresh, aggregation (Case 2-1), or refresh, failure, aggregation (Case 2-2).

In the latter case the result would be incorrect, so we do not need to calculate it. In

the former case, we make another simplification: the refreshalways has enough time

to complete before the aggregation (so refresh is instantaneous). This can be further

divided into two worlds.

(a) Case A:a ≤ Cr.

In essence the probability we are dealing with now is

P[Aggregation correct for a node|A = a, L ≤ A, a ≤ Cr]

= P[L ≤ R ≤ A|A = a, L ≤ a, a ≤ Cr]

= P[L ≤ R|L,R ≤ a ≤ Cr] · P[R ≤ A|A = a, L ≤ a, a ≤ Cr]
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= P[L−R ≤ 0|L,R ≤ a ≤ Cr] · P [R ≤ a|a ≤ Cr]

= P[L−R ≤ 0|L,R ≤ a ≤ Cr] ·
a

Cr

(again,L,R denotes the lifetime and the refreshing-time r.v.s respectively). Let

W denote the random variableL−R. We get the following as the pdf ofW after

doing the convolutionfW =
∫

l
fL(l)fR(l − w)dl. Please see the Appendix A

for the details of the convolutions.

fW =































0 if w ≥ a
∫ a

l=w
1
a

1
1−e−λla

λle
−λlldl if 0 ≤ w < a

∫ a+w

l=0
1
a

1
1−e−λla

λle
−λlldl if −a ≤ w < 0

0 if w < −a

Note that in the abovefL(l) andfR(l − w) are under conditionL ≤ a and

R ≤ a, respectively. This evaluates to

fW =































0 if w ≥ a

1
a

1
1−e−λla

(e−λlw − e−λla) if 0 ≤ w < a

1
a

1
1−e−λla

(1− e−λl(a+w)) if −a ≤ w < 0

0 if w < −a

Therefore,

P[L ≤ R ≤ A|A = a, L ≤ A, a ≤ Cr]

= P[L−R ≤ 0|L,R ≤ a ≤ Cr] ·
a

Cr

=
a

Cr

∫ 0

w=−a

1

a

1

1− e−λla
(1− e−λl(a+w))dw

=
1

Cr

1

1− e−λla
(a−

1

λl

+
1

λl

e−λla)

(b) Case B:a > Cr.

Here, we are after the same probability

P[Aggregation correct for a node|A = a, L ≤ A, a > Cr]

= P[L ≤ R ≤ A|A = a, L ≤ A, a > Cr]

100



= P[L ≤ R|L,R ≤ a, a > Cr] · P[R ≤ A|A = a, a > Cr, L ≤ R]

= P[L−R ≤ 0|L,R ≤ a, a > Cr] · P [R ≤ a|a > Cr]

= P[L−R ≤ 0|L,R ≤ a, a > Cr] · 1

= P[L−R ≤ 0|L,R ≤ a, a > Cr]

Again, we letW denote the random variableL−R, and carry out the convolu-

tion, and get:

fW =











































0 if w ≥ a
∫ a

l=w
1

Cr

1
1−e−λla

λle
−λlldl if a− Cr ≤ w < a

∫ Cr+w

l=w
1

Cr

1
1−e−λla

λle
−λlldl if 0 ≤ w < a− Cr

∫ Cr+w

l=0
1

Cr

1
1−e−λla

λle
−λlldl if −Cr ≤ w < 0

0 if w < −Cr

Note that in the abovefL(l) andfR(l − w) are under conditionL ≤ a and

R ≤ a, respectively. This evaluates to

fW =











































0 if w ≥ a

1
Cr

1
1−e−λla

[e−λlw − e−λla] if a− Cr ≤ w < a

1
Cr

1
1−e−λla

[e−λlw − e−λl(Cr+w)] if 0 ≤ w < a− Cr

1
Cr

1
1−e−λla

[1− e−λl(Cr+w)] if −Cr ≤ w < 0

0 if w ≤ −a

Therefore,

P[L ≤ R ≤ A|A = a, L ≤ A, a > Cr]

= P[L−R ≤ 0|L,R ≤ a, a > Cr]

=

∫ 0

w=−Cr

1

Cr

1

1− e−λla
(1− e−λl(Cr+w))dw

=
1

Cr

1

1− e−λla
(Cr −

1

λl

+
1

λl

e−λlCr)

We can now calculate the probability of the aggregation being correct from a single
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node’s perspective, applying independence:

P[Aggregation is correct for a node|Aggregation occurred ata]

:= P[correct|A = a]

= P[correct|A = a, L > A] · P[L > A|A = a]

+ P[correct|A = a, L ≤ A] · P[L ≤ A|A = a]

= 1 · e−λla + P[correct|A = a, L ≤ A] · (1− e−λla)

At this point, depending on whether we are in case A (a ≤ Cr) or case B (a > Cr),

the result is going to be different. Recall that we are fixingA = a, so we are either

in case A or case B.

In case A (a ≤ Cr) we have:

PA = P[correct|A = a]

= 1 · e−λla +
1

Cr

1

1− e−λla
(a−

1

λl

+
1

λl

e−λla) · (1− e−λla)

= e−λla +
1

Cr

(a−
1

λl

+
1

λl

e−λla)

=
1

Cr

(a−
1

λl

) + (1 +
1

Crλl

)e−λla

and in case B (a > Cr) we have:

PB = P[correct|A = a]

= e−λla +
1

Crλl

e−λlCr −
1

Crλl

+ 1

Note that the inter-arrival time between the aggregation events is exponentially dis-

tributed with parameterλa. Therefore, we can combine the two cases and get the final

formula. LetZ be the event that the aggregation is correct for a node. Table5.1 shows the
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probabilities of several typical settings.

P[Z] = P[Aggregation is correct for a node]

=

∫ Cr

0

PAfA(a)da +

∫

∞

Cr

PBfA(a)da

=

∫ Cr

0

(
1

Cr

(a−
1

λl

) + (1 +
1

Crλl

)e−λla)λae
−λaada

+

∫

∞

Cr

(e−λla + 1−
1

Crλl

+
1

Crλl

e−λlCr)λae
−λaada

=
1

Crλa

−
1

Cr(λa + λl)
+

λa

λa + λl

−
1

Crλa

e−λaCr +
1

Cr(λa + λl)
e−(λa+λl)Cr

To understand the final result, let us look at several extremesituations:

1. Whenλl → 0, P[Z] → 1. λl → 0 means the node life time goes to infinity. P[Z]

approaches 1, because the aggregation will always be correct when there is nearly no

node failures.

2. Whenλa → ∞, P[Z] → 1. λa → ∞ means that the inter-aggregation interval goes

to 0. In this case, P[Z] approaches 1 because when the aggregation event happens

very frequently, the probability that it happens before thenode failure approaches 1.

3. WhenCr →∞, P[Z] = λa

λa+λl

. WhenCr goes to infinity, the probability of aggregat-

ing correctly is equal to the probability that the aggregation event happens before the

node failure event. As the two events are modeled as independent Poisson process,

the merged process is a Poisson process with rateλa + λl, and the probability that

the first arrival is an aggregation event isλa

λa+λl

.

5.3 Parent Function

The protocols in Section 5.2 help to construct and maintain atree in the cross-region orga-

nization, but they do not determine the shape of a tree and other properties: those properties

are determined by the parent function. Parent functions play a central role in the proper-

ties of an aggregation/broadcast tree. In this section, we discuss the desirable features that
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Setting Probability

Cr
1
λa

1
λl

Prob

100 10 5000 99.8%

100 100 5000 98.6%

100 200 5000 96.9%

10 500 10000 95.3%

10 100 1000 91.3%

10 20 100 86.8%

Table 5.1: The probability of aggregation being correct from a single node’s perspective
under different settings. Note that1

λl

is the average node life time, and1
λa

is the average
aggregation interval time.

a parent function should have. Then we present a sample parent function family, show

that it satisfies our definition (i.e. satisfies the three required conditions mentioned in Sec-

tion 5.2.2), and analyze its properties.

5.3.1 Desirable Features

A parent function determines the properties of the constructed tree. We believe that, due

to the scale and potential dynamics of the leaders, a good parent function should have

the following features to be efficient and flexible, besides the three required conditions

mentioned in Section 5.2.2.

First, for the purpose of load balancing, a good parent function should make sure that

each parent node has approximately the same number of children, given that nodes are

uniformly distributed in the name space. This helps to builda balanced tree. Note that

the tree is built on top of the DHT-based cross-region organization, and the assumption of

uniform distribution is common in many distributed hash tables, so this assumption does

not affect the cross-region organization.

Second, node joining and leaving should not significantly affect the structure of an

established tree. We identify that two features of the cross-region organization make it

hard to stabilize a tree. One is that, it may sound appealing to have nodes at each level

of a tree be evenly distributed in the name space. However, the number of the leaders is
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much smaller than its name space, so it is very likely that anid of P (x) will map to the

node that followsP (x). A well-intended parent function that makes nodes at each level

of a tree evenly distributed will inevitably lead to chaos ina real tree due to the sparsity

of the name space. Therefore, a good parent function should guarantee an approximately

balanced tree structure under this circumstance. The otherfeature that makes it difficult to

maintain a stable tree is that a node may change its parent node due to nodes joining and

leaving. For example, suppose a nodex with a large subtree attaches to a parent nodey at a

higher level. Then a new nodez joins as a leaf node in a low level. Ifx should switch from

y to z according to the parent function, then the resulting tree will be very unbalanced.

Third, a good parent function should support branch balancing in a dynamic environ-

ment. Although statistically a good parent function can balance the number of children

each node has, it is unavoidable that some nodes may be assigned too many children to

handle due to the dynamics of the NetKP and variance in node distribution. There are

two aspects of branch balancing: admission control and dynamic adaptation. In admission

control, a parent decides whether to accept a child when the child tries to register. Admis-

sion control is not enough since a parent’s condition may change such that it can no longer

handle all children, and in such a case, a dynamic adaptationis needed. In both cases, the

key problem is how the refused or abandoned children find their new parents. If a node’s

current parent is overloaded and it has multiple parent candidates, it can switch to another

parent.

Fourth, a parent function should allow a child node to pick a parent node optimized ac-

cording to performance or other metrics. For example, the tree can be optimized according

to network topology for performance improvement or according to Autonomous System

relationship for economic reasons.
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5.3.2 A Parent Function Example

There are many functions that satisfy Conditions (5.1) to (5.3) in Section 5.2.2. The fol-

lowing is an example adopted in this work1:

Ps(x) =































α +
⌊

(x−α) (modm)
k

⌋

(modm),

for 0 ≤ (x− α) (modm) < m
2

α−
⌊

m−(x−α) (modm)
k

⌋

(modm),

for m
2
≤ (x− α) (modm) < m

wherex is theid of the present node,α is the rootid, k is a parameter that determines the

branching factor of a tree,k > 1, andm = 2s, wheres is the number of bits for the address

space, i.e.,m is the size of the name space.

As shown in Figure 5-5, a tree resulting from this function isrooted at a node that owns

the id α. The expected branching factor of a spanning tree constructed with this function

is approximatelyk if the nodes are uniformly distributed in the name space (except for

the root). The expected height isO(logk n), wheren is the number of the leaders. Before

proving these properties in theorems 4 and 5 respectively, we first show thatPs(x) is indeed

a parent function, as per definition 1.

Theorem 3. Ps(x) is a parent function.

Proof. This follows from lemmas 1, 2, and 3.

Lemma 1. Ps(x) satisfies the first condition of definition 1, i.e.Ps(α) = α.

Proof. Direct substitution yields the desired result.

Lemma 2. Ps(x) satisfies the second condition of definition 1, i.e.P∞

s (x) = α, ∀ x.

Proof. The essence of this parent function is that after each iteration, the distance between

the root and the currentid Ps(x) is reduced by branching factork. To make it simple, we

make the following substitution.

1Note that the modulo operation on negative numbers inPs(x) is defined as follows:
a modb = b− (−a) modb, if − b < a < 0.
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0

α

α + m
2

m
2

increasing

id

Figure 5-5: Aggregation pattern of the sample parent function. The circle represents the
name space,α is the rootid, m is the size of the name space, and the arrows show the
directed edges from a child to its parent in the tree.

Let di be the distance between the currentid and the rootα after i iterations. We can

convert the parent function as follows.

1. When0 ≤ (x− α) (modm) < m
2

, we have:

d0 = (x− α) (modm);

di+1 =
di

k
;

⇒ P i
s(x) = (α + di) (modm).

It is easy to see thatdi = d0

ki . Wheni → ∞, di → 0, and thusP i
s(x) → α.

2. Similarly, whenm
2
≤ (x− α) (modm) < m, we have:

d0 = (m− (x− α)) (modm);

di+1 =
di

k
;

⇒ P i
s(x) = (α− di) (modm).

It is easy to see thatdi = d0

ki . Wheni → ∞, di → 0, and thusP i
s(x) → α.

ThusP i
s(x) → α in both cases.
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Lemma 3. Ps(x) satisfies the third condition of definition 1, i.e.Distance(P i+1
s (x), α) <

Distance(P i
s(x), α), ∀ i > 0, whereDistance(x, α) :=







(x− α) (modm), for 0 ≤ (x− α) (modm) < m
2

m− (x− α) (modm), for m
2
≤ (x− α) (modm) < m

Proof. In the proof of property 2, it is easy to see thatdi+1 < di in both cases, and therefore

we have

Distance(P i+1
s (x), α) < Distance(P i

s(x), α), ∀ i > 0.

ThereforePs(x) is indeed a parent function. We now move on to discuss the expected

branching factor and the expected height of a tree constructed usingPs(x).

Theorem 4. If the node distribution in the name space is identical, independent, and uni-

form, thenk is the expected branching factor of the tree constructed withPs(x).

Proof. As n nodes are identically, independently and uniformly distributed in a discreteid

range [0,m-1], we can use the results in Section 2.5 in Gallager’s book [47]. LetX be the

interval/distance between two neighboring nodes, then:

P (X > d) = (
m− 1− d

m
)n

E[X] =
m−1
∑

d=0

(1− F (d)) =
m−1
∑

d=0

P (X > d) =
m−1
∑

d=0

dn

mn
≈

m

n

The number of nodes within an interval of lengthx, as discussed Section 2.5 in the

book, is a binomial distribution with probability of success x
m

. The interval of lengthx

corresponds to an interval of lengthx
k

with regard to the parent function. LetN be the

number of children of a non-leaf node, andX be the id range between the parent node and

its predecessor. By law of iterated expectation, we have:

E[N ] = E[E[N |X]] = E[n ·
kX

m
] =

kn

m
E[X] =

nk

m
·
m

n
= k

Therefore, the expected number of children for a non-leaf node isk.
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Theorem 5. If the node distribution in the name space is uniform, thenO(logk n) is the

expected height of a tree constructed withPs(x), wheren is the size of the network.

Proof. With the previous property, we know that each non-leaf node has an expected num-

ber ofk children. Suppose thatNi is a random variable that denotes the number of nodes

at the tree leveli. Note that a non-leaf node has an expectedk children according to Theo-

rem 4. Let the height of the tree be a random variableH. Then we have the following:

n =
H

∑

i=0

Ni

E[N0] = 1

E[Ni] = E[E[Ni|Ni−1]] = E[k ·Ni−1] = k · E[Ni−1], for i > 0

E[n] = n = E[E[
H

∑

i=0

Ni|H]] = E[1 + k + k2 + · · ·+ kH ] = E[
kH+1 − 1

k − 1
]

Then we have the following inequalities based on Jensen’s inequality:

n = E[
kH+1 − 1

k − 1
]

> E[kH ]

≥ kE[H]

⇒ E[H] < logk n

Therefore, given thatn nodes are uniformly distributed in the name space, the expected

height of the formed tree is less thanlogk n.

With the above theorems, we now briefly discuss how our sampleparent functionPs(x)

satisfies the three desirable features we discussed in Section 5.3.1.

First, our parent function builds a balanced tree. According to Theorem 4, each non-

leaf node has an expected number ofk children. The expected tree height isO(logk n),

wheren is the number of nodes.

Second, the tree constructed from our parent function is resilient to node dynamics,

because, according to the proof of Theorem 4, neighboring nodes are at the same level or

the adjacent levels in the tree, and such parent changes willusually move children from
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a node to another node at the same or an adjacent level of the tree. On the other hand, if

a parent function maps nodes’ parents evenly in the name space, its tree will tend to be

unbalanced.

Third, our parent function does not provide natural supportfor branch balancing, but

can be easily enhanced as follows. In case of overloading, the parent will ask some of the

farthest children in the name space to move. An alternative parent candidate will be found

by moving stepwise one neighbor of the parent away from the root, repeatedly until an

underloaded node is found. This is guaranteed to terminate because a leaf node will even-

tually be found in the worst case. After a certain time, the moved children will recompute

the parent function, and move back to their normal parents. Anice property of our parent

function for branch balancing is that this has little impacton the height of the tree, because

nodes near each other are in the same level or adjacent levelsof the tree and thus those

temporary parents are probably in the same level as the original parent. As a result, the

convergence time will not be affected significantly, and theroot will not receive redundant

information from different aggregation paths.

Fourth, tree optimization according to network topology orother metrics can be achieved

with a simple extension. Our parent function determines a unique parent for a given node

id, and thus does not provide the flexibility for performance optimization. For example, a

child and its parent determined by the parent function may bevery distant in the network.

One extension is again to take advantage of the property thatneighboring nodes are at the

same level or the adjacent levels. A child node still uses thesame parent function, but the

parent returns a list of its neighbors, and the child choosesone of them as its parent, for

example, the closest one in terms of latency. During the branch balancing process, a parent

will ask the most distant children to move first. This allows certain degree of optimization

while maintaining the original tree structure.

Overcoming Single Points of Failure

A common problem of using trees for aggregation and broadcast is that trees are inherently

vulnerable to single points of failure. The bottom-up approach will experience periodic

glitches in a highly dynamic network.
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To address this problem and improve the robustness, we can build multiple trees, and

compute the same aggregation/broadcast function over them. By distributing theids of

these trees over the name space uniformly and adopting some quorum system or by aver-

aging over the estimates obtained from several trees, we canfurther improve the robustness

of the aggregation/broadcast.

Depending on their features, some parent functions may provide a convenient way to

build multiple interior-node-disjoint trees, such as the parent function we proposed above.

Here we show that our sample parent function can easily be used to construct disjoint trees

as follows. The key is to adjust parameters in a parent function, so that we can get a

family of similar parent functions. Trees constructed using that family of parent functions

do not overlap in most of their interior nodes. Note that due to the randomness in the

node distribution, this approach does not guarantee a complete disjointness, especially at

the boundaries of each level in the name space. We only consider the situation with high

probability.

Let us consider our parent function. If a tree is rooted atid 0, then according to the

parent function, its non-leaf nodes will be mostly in [0,m
2k

] and [m− m
2k

, m− 1], which is

a range of lengthm
k

in the name space. This is because nodes that are most distantfrom the

root0 are aroundid m
2

, and thus their parents are the non-leaf nodes at the lowest level, and

the parentids are aroundm
2k

andm− m
2k

, respectively, based on the parent function. Nodes

in the other areas are all leaf nodes. Generally, under this parent function, non-leaf nodes in

a tree rooted atα are mostly in [α− m
2k

(modm), α + m
2k

(modm)], and all other nodes are

leaf nodes. Therefore, if we choosek similar parent functions and the distance between two

neighboring roots ism
k

, we can constructk interior-node-disjoint trees, because paths from

any two roots to a node in the two trees are disjoint. In this way, we can greatly increase the

tolerance of node failures and guarantee that with high probability every node will receive

the message at least once. Figure 5-6 demonstrates two disjoint trees whenk = 2.
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Figure 5-6: Two disjoint trees. Herek is 2, and the two roots are at 0 andm
2

, respectively.

5.4 Extensions

The construction and maintenance protocols and the parent function help us build a robust

tree as a default aggregation/broadcast mechanism. There are several other issues, which

are addressed in this section.

5.4.1 Two Operation Modes

As we mentioned before, the tree maintenance messages, i.e., the refreshment and ac-

knowledgment messages, can be used for some light-weight information aggregation and

broadcast. For example, we can compute the network size in this way, since it adds little

to bandwidth consumption. This is an aggregation/broadcast in the background, which we

call thedefault mode.

However, a node may need to perform a special aggregation or broadcast that is useful

only for the node itself, for example, searching for files whose names contain certain key

words. We call this theon-demand mode. The on-demand mode of aggregation consists of

the following:

1. When a node wants to perform an aggregation using the tree, it sends a request to the

root.

2. Upon receiving a request, the root broadcasts it to its immediate children in the tree,
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which in turn forward the request to their children.

3. When a leaf node receives the request, it performs the corresponding aggregation

operation, and sends back the result with a time stamp to its parent. If the child

does not receive an acknowledgment from its parent within a certain time interval, it

determines its new parent and sends the results. Note that ittakes some time to find

the new parent.

4. A parent node waits for results from all its children. If itdoes not hear from a child

after an expiry time, it will delete this child and not wait for its data. After receiving

data from all children, the parent node performs the aggregate operation, attaches a

time stamp, and forwards the aggregate result to its parent.

5. If a node receives data from a new child after having sent its aggregate result, it will

compute and forward the new result to its parent.

6. If a node receives data from a child several times, but withdifferent timestamps, it

will compute the latest result and forward it to its parent.

7. After the root receives results from all children, it willwait for an additional amount

of time that is long enough to allow information delayed by parent failures to reach

the root. In our implementation, the time equals the height of the tree times the

average round trip time. Then the root processes all collected data and computes the

final aggregation result. Finally, it sends the result to therequest node.

5.4.2 Constructing Multiple Trees

Sometimes we need the capability to set up trees rooted at arbitrary nodeids to distribute

the load of a root and to provide robustness. Depending on specific applications, we can

either rely on the application to disseminate or embed the root identifier, or have one per-

manent tree rooted at a pre-determined well-knownid α0, as described in Section 5.2.3. We

focus on the second case. In this case, if a node, sayx, wants to construct a new tree rooted

at itself, it will send a message to the root of the default tree, specifying the parent function
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with the rootid as its ownid. The message will then be broadcast down the default tree.

All nodes will eventually receive this message, and participate in the new tree rooted atx.

When a new node joins the network, it will get a list of all existing trees from its parent

node. Nodes also periodically exchange information on the existing trees. In this way, all

nodes will eventually discover and participate in all existing trees.

When the root node of a tree wishes to tear down its tree, it willsimply broadcast a

message to tell all nodes that the tree should be torn down. Ifa node does not receive the

tear-down message due to its parent failure, it will still get it when it detects the parent

failure and switches to a new parent which has already received the message. Therefore,

the message is guaranteed to reach all nodes eventually. If aroot fails without notification,

subsequent messages will end up at a succeeding node which discovers that it has become

the root of a tree that it did not set up. It can decide either tokeep the tree or to broadcast a

message to tear it down.

5.5 Performance Evaluation

In this section, we evaluate the performance of our bottom-up tree-building algorithm using

the parent function in Section 5.3.2. As an example of usage,we evaluate the estimation of

available network storage under the default mode, and the estimation of the network size

under the on-demand mode.

5.5.1 Experiment Setup

Our experiments are divided into discrete time periods. In each period, a number of nodes

join the network according to a Poisson distribution with parameterλj. At the point when a

node joins, its departure time is set according to an exponential distribution with parameter

λl, and nodes are removed from the network when their lifespansexpire. In the default

mode, each node sends a refreshment message that contains the aggregate information to its

parent in each period. In the on-demand mode, a node refreshes its status under a uniform

distribution with parameterCr, and the aggregation time follows a Poisson distribution
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with parameterλa. In all experiments, we use the parent function in Section 5.3.2. The

root id α is set to 0, andk is 4, unless stated otherwise.

5.5.2 Tree Properties

In the first experiment, we evaluated the overhead of our treeconstruction and maintenance

algorithm in terms of network traffic by counting the number of messages sent in the tree

construction process. In this experiment, the node failurerate is approximatelyλl = 10%

per time period, and about 10% new nodes join the network too.This keeps the network

size roughly stable. During each period, each node refreshes its status with its parent once.

The communication cost in terms of messages sent as a function of network size is shown

in Figure 5-7.

The total number of messages in each period is at least twice the network size, be-

cause each node sends a refreshment message to its parent andreceives an acknowledg-

ment (except for the root). Note that refreshment messages can also be used to aggregate

and broadcast information in the default mode. Additional messages are needed for new

nodes to join, to repair the tree in case of nodes failures, and for overloaded nodes to do

branch-balancing. Figure 5-7 shows that the number of additional overhead messages (in-

cluding tree-repair messages, branch-balancing messages, and node-joining messages) is

small, compared with the total number of messages.

An important property is the number of branches or children at non-leaf nodes, as it

reflects the overhead of a parent node. Ideally, we would likeall the intermediate nodes to

have approximately the same number of children.

In the simulation, we define an overloaded node as having morethan2k, i.e. 8 children.

We use the branch balancing algorithm discussed in Section 5.3.2, which moves additional

children to its neighbor towards the leaf side. We find that, without branch balancing, there

are 3% of overloaded nodes in each period, and the overloading lasts about 3 periods on

average. Overloading is automatically resolved when children leave or new nodes join to

take over some children from the current parent. The branch balancing procedure usually

propagates within 2 neighbors. Figures 5-8 shows the relationship between the network size
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Figure 5-7: Communication overhead for tree construction.

and the branches. We can see that without branch balancing, an overloaded node can take

as many as 48 children in a network with about 12800 nodes, andwith branch balancing,

the maximum branch is only 8, which is the upper bound of the number of children a node

can have.

The height of the resulting tree affects the performance since it determines the time it

takes for the information to propagate from leaf nodes to theroot. Figure 5-9 shows the

average tree heights with or without branch balancing underdifferent network sizes. We

can see that our branch balancing scheme does not increase the height of the tree, even

though the branch balancing affects the tree structure since it does not obey the parent

function.

5.5.3 Aggregated Knowledge Estimation

As an example of usage, we use our bottom-up tree to estimate the evolution of the avail-

able network storage in the default mode, which aggregates continuously. We estimate the

network size in a similar way.
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Figure 5-8: Tree branches against network size.

Figure 5-10 shows the evolution of the network storage estimate and the network size

estimate at the root of the tree with a node failure rate ofλl = 5% per time period. The

storage on each node keeps changing according to an approximately Gaussian distribution

with a mean of 50MB and a standard deviation of 20MB. The simulation consists of three

stages: increasing, stable, and decreasing. From Figure 5-10, we can see that the average

estimation is very close to the true value. Specifically, in the increasing stage, the estimates

tend to be smaller than the actual network storage because there is a lag between the esti-

mate and the actual value. Similarly, during the decreasingstage, the estimates are usually

higher than the actual storage size. The spikes are caused bythe failure of intermediate

nodes high up in the tree, leading to temporary losses or duplicates in the storage informa-

tion. The results demonstrate that our algorithm is responsive to network storage changes,

and recovers rapidly from such failures.
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Figure 5-9: Tree heights against network size.

5.5.4 On Demand Estimation

We also evaluate the accuracy of on-demand estimation in thesimulation. In this setting,

Cr = 10, λa = 50, andλl = 200. The average estimation over 20 trials is plotted. We set

up an initial network of 10000 nodes. During the aggregation, a certain fraction of nodes

fail. Figure 5-11 shows the simulation results under various node failure rates.Before Ag-

gregationrefers to the actual network size before aggregation, andAfter Aggregationrefers

to the actual network size after aggregation. Since it takessome time for an aggregation

procedure to complete, we consider that an estimated value is correct if it is between the

original network size and the network size at the end of aggregation. From Figure 5-11 we

can see that in most cases the estimation is within the correct range. When node failure rate

reaches 15%, some estimates start falling out of the range.
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5.6 Related Work

Many large-scale distributed systems need to collect, aggregate, or broadcast information.

For example, in a P2P storage system ([80]) or a Grid-like environment ([92]) it is valuable

to learn about aggregate available storage or computation capabilities. In particular, some

recently proposed randomized DHT topologies, like Viceroy[77] and Symphony [78], re-

quire network size estimates to tune routing performance. Under other circumstances, life-

time distribution and other characteristics may be valuable. Broadcasting can also be used

to search for arbitrary semi-structured queries that are not supported by the current DHT

lookup. Other applications, such as median distribution, need this functionality, too.

There is a large body of literature in the area of broadcast. In general, existing schemes

can be categorized as flooding-based approaches ([72, 97]) and top-down spanning-tree ap-

proaches ([44, 29]). A major drawback of the former is that itgenerates redundant traffic,
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while a major drawback of the latter is that when nodes fail inthe middle of the hierarchy,

large sections of the original spanning tree will lose contact with the root, and reconstruc-

tion of the subtrees requires significant efforts. In contrast, we address the problem under

more dynamic conditions, and our bottom-up approach not only enables fast recovery from

such failures, but also provides an easy way to build multiple trees with disjoint paths so

that all nodes can be reached with high probability.

Most of previous overlay multicast systems, such as SCRIBE, Bayeux, etc ([110, 135,

105, 44, 131]) are tightly coupled with underlying overlay networks. For example, in [44],

El-Ansary et al. discussed how to use routing tables to construct a broadcast tree, which can

be viewed as a special case of our scheme. The advantage of using routing table information

is that the child maintenance cost is saved by retrieving children from the routing table,

which is always kept updated by the underlying DHT networks.The disadvantage is that

the tree structures are constrained by the underlying DHT topologies and thus not flexible.

Compared with these systems in which it is hard for a node to adjust the number of its

children based on its capability, our bottom-up tree schemeis independent of underlying
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overlay and its structure is determined by the parent function, which is flexible in building

trees according to different requirements.

In [20], Bawa et al. proposed top-down flooding-based aggregation schemes over un-

structured P2P networks, which require a known universal maximum delay and a known

upper bound to the network diameter. With the progress in structured P2P networks, we

believe that it is feasible to build and maintain a robust infrastructure at relatively low cost

without those assumptions, and it is useful to attempt to solve the aggregation problem over

the NetKP using a more efficient and scalable approach.

Our bottom-up approach of using a function to map nodes onto parent nodes is similar

in spirit to the generalized scheme for building DHTs proposed by Naor and Wieder [84].

In their scheme, functional mapping is used to build the general DHT infrastructure, while

in our scheme we seek to build a specific tree structure over the underlying NetKP for

aggregation and broadcast. In [132], Zhang et al. built a data overlay independent of the

underlying DHT using a top-down method to implement arbitrary data structure, while our

tree structure is constructed in a bottom-up fashion and takes advantage of the underlying

DHT to maintain the tree.

CoopNet is a distributed streaming media content delivery mechanism [91]. In Coop-

Net, the root node coordinates all tree management functions, including construction and

maintenance. This centralized management makes tree maintenance easy. Trees are con-

structed incrementally, so the position of a node in the treedepends on when it joins the

tree. In our approach, the tree is built in an original bottom-up way. Each node can find

its position in the tree without asking any central point, and its position is determined by

the parent function. Different from CoopNet, we do not consider bandwidth, since our

intention is not for stream media, but for a general light-weight aggregation infrastructure,

whose bandwidth requirement is very low.

With respect to dealing with single points of failure, our approach is similar to Split-

stream ([27]) in building multiple interior-node-disjoint trees. Splitstream builds multiple

interior-node-disjoint trees over SCRIBE [110]. Like most previous work on multicast over

P2P networks, trees are built using the routing table entries, and thus the properties and the

robustness of the multicast tree relies on the underlying networks. In our approach, the tree
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is constructed based on parent functions. Therefore, different applications can build trees

based on their requirements using different parent functions. Another advantage of our tree

construction is that each node maintains its own parent linkand the tree can be repaired

simultaneously. In Splitstream, multiple disjoint trees are built based on the base of the

id space, while our approach is independent of any underlying routing topology, and thus

makes it easier to construct and control the number of trees by simply changing the rootid

and the branch factor.

5.7 Summary

The aggregation and broadcast for the cross-region organization is complicated by the scale

and the dynamics of the NetKP. We propose to construct a robust tree over the regions. We

have presented a new, original approach using a bottom-up construction that is based on

mapping from a continuous function into the discreteid space. The major advantage is

that it has a relatively low overhead and is resilient to nodefailures. Our scheme is also

flexible in that parameters in the parent function can be usedto control the tree structure

and characteristics, such as the height and the branch factor. We also presented the notion

of parent function families to aid in building multiple interior-node-disjoint trees, which

helps to alleviate the problem of single points of failure.

Parent functions play an important role in our bottom-up approach. We have only thus

far discussed several properties of a parent function that help to improve the tree perfor-

mance. By adopting a different parent function, we may be able to improve some aspects

of the system, or at least achieve some tradeoff between various costs and benefits, which

makes our results more widely applicable, since one could conceivably define the cost and

benefit function for a particular application and then find a parent function that maximizes

the benefit/cost ratio.
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Chapter 6

Case Study I: Experiment Management

on Testbed

In this chapter, we present a case study to address how different kinds of knowledge are

collected, maintained, and used in different ways in an experiment management spec-KP.

To demonstrate the effectiveness of this infrastructure, we build experiment management

tools on PlanetLab to facilitate the experiment setup by using the knowledge collected in

the spec-KP.

6.1 Introduction

Network testbeds have become an important facility for researchers to study large-scale

distributed systems. There are several testbeds that are widely used, such as PlanetLab,

Emulab, DETER, etc. PlanetLab [96] is an open platform for developing, deploying and

accessing planetary-scale services. It is composed of morethan 800 nodes at about 400

sites worldwide. At each moment, there are multiple researchers setting up or running their

experiments within their own slices. More than one thousandresearchers at academic insti-

tutions and industrial research labs have used it to developnew technologies for distributed

storage, peer-to-peer systems, overlay networks, etc. An alternative is the Emulab-based

testbeds that reflect a slightly different approach to experimentation [1]. Among them, the

DETER testbed is a public facility of medium-scale repeatable experiments in computer
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security [42]. It has been configured and extended to provideeffective containment of a

variety of computer security experiments. The testbed contains about 300 nodes at two

sites, and the nodes are shared among multiple simultaneousexperiments isolated from

each other. As a result, network testbed and experiment management have become an im-

portant and complex issue, as operators need to manage a large number of nodes where

many users are running different experiments, some involving security issues [95, 21].

Those testbeds provide different styles of experimentation to the researchers. What we

notice is that they have problems in common, including how toset up experiments, how to

pick nodes with desired features, how to monitor the experiment to make sure that it runs

as specified, etc. In this work, we focus on the PlanetLab environment, as PlanetLab has a

large number of nodes widely distributed and thus demonstrates real, complicated network

and node behaviors.

In network testbeds, experiment management usually involves the following steps:

1. Upload the software. The user uploads the software to all the nodes he chooses.

When the number of nodes is large, the user can use tools likepscp[100].

2. Install the software. The user needs to install the software. This may involve in-

stalling additional software due to dependencies.

3. Run the software. The user needs to start the software at multiple nodes. He can use

tools likepssh[100].

4. Monitor the software running. The user needs to monitor the running to make sure

the software works as expected. He may need to debug the code if something is

wrong.

It is time-consuming and error-prone for a user to run a large-scale network experiment,

as this requires significant amount of work not only in writing the code, but also in setting

up the experiment on the testbed nodes and monitoring if it runs as expected. Several

specific problems facing the users are listed below. First, it is very common that when a user

uploads his program to a number of nodes, some of them will notget the program correctly.

There are many possible causes, such as node failures, temporary network problems, etc.
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Second, a user often wants to set up his experiment on a numberof nodes with certain

properties. For example, a DHT designer will want to deploy the experiment to nodes that

demonstrate churns. Third, it is not easy to monitor the status of a distributed system as

many nodes are involved. All these lead to a need for experiment management facilities.

Several research projects address individual management problems, but none provides

a general solution. We believe that the concept of the knowledge plane help us solve the

problems as a whole. We conduct a case study on PlanetLab. In the case study, we propose

to construct a spec-KP on experiment management that manages distributed experiments

on the testbed using knowledge collected and maintained in the spec-KP. The goal is to

speed up experiment setup and help users find a node set with desirable features. To reach

this goal, we study how different kinds of knowledge are maintained and propagated.

The chapter is organized as follows. Section 6.2 discusses the knowledge collection and

distribution related to distributed experiment management problem. Section 6.3 evaluates

how well the spec-KP can help reduce the upload failure and find a node set with desirable

features. We briefly discuss the related work in Section 6.4.Section 6.5 concludes the

chapter.

6.2 Knowledge Management

6.2.1 Goal

In this section, we use the distributed experiment management as an example to demon-

strate how knowledge is collected, maintained, and propagated. The purpose of this case

study is to see how the knowledge plane can help distributed experiment in two aspects: (1)

to speed up the experiment setup by choosing reliable nodes;(2) to automatically choose

nodes with desirable properties. To do so, different agentsplay different roles, and work

together to resolve the requests. We focus on knowledge collection and maintenance in this

section, and request propagation in the next section.
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Property Value
Desired number of nodes≤ total available number
Desired node distribution 0-9
Desired node dynamics 0-9

Table 6.1: Request fields.

6.2.2 User Specifications

When a user wants to run a distributed experiment on a testbed,he specifies the desired

properties of the node set. Currently two features are supported.

1. The distribution of the nodes. Value between 0 and 9 are used to represent the degree

of distribution, where 0 means to choose nodes close to each other while 9 means

widely distributed.

2. The dynamics of the nodes. This refers to the reliability of nodes. Similar to the

above, 0 means to choose most stable nodes while 9 means most dynamic. This is

useful when a user wants to test the system performance understatic or dynamic

environment.

Accordingly, Table 6.1 demonstrates the fields of a request.

6.2.3 Knowledge Collection

The Spec-KP agents run on every testbed node. They monitor the condition of local hosts,

and maintain history records, such as boot time, previous failure causes, etc. Each region

collects aggregated information of the local agents. When anexperiment is being set up,

the spec-KP finds the appropriate nodes based on the user’s requests. During this process,

different kinds of knowledge are needed, and they are maintained differently. There are two

kinds of knowledge we collect for experiment management, according to their locations.

1. Local knowledge about individual hosts and agents. This includes average workload,

bandwidth usage, boot history, etc.
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2. Network knowledge, including the path condition betweentwo agents, network con-

dition within a region, etc.

The first kind of information is much easier to collect, whilethe second often requires

collaboration among agents. Furthermore, while it is easy for each agent to maintain its

local information, it is not obvious how the second kind of information is stored and main-

tained. For the purpose of demonstration, we choose the firstone as a starting place because

it is clear.

6.2.4 Global Map Maintenance

To pick a set of nodes, we first need to know the total number of nodes. To do so, we

can either collect the node set at runtime or maintain a global node map. We choose the

second way as it is faster. The global map is only approximate, representing how many

nodes there are in each region. The map is actively maintained among the leaders, but only

when the change of the region size reaches a certain percentage (20% in our case study)

will the leader broadcast the change to all the other leaders. As the node set of a testbed

is relatively stable, and does not change very often, such information has low maintenance

cost in our setting.

The global map is an example of the knowledge that does not change frequently, and is

widely and frequently used in the experiment setup by all users. Therefore, we choose to

maintain it actively at all regional leaders.

6.2.5 Dynamic Knowledge Maintenance

Unlike the global map, other kinds of knowledge are more dynamic, such as the last reboot

time, average CPU load, network condition, etc. To pick nodeswith desirable features, we

need to maintain such history information as well. However,it is not scalable to maintain

such information in a centralized way. Instead, we propose that each local node maintain

detailed information about itself, and the regional leadermaintain aggregated information

about the nodes in the region. Leaders do not exchange information actively; instead, they

answer requests about it from other agents or leaders.
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As there are many different kinds of dynamic node status and different users need dif-

ferent features, it is not efficient to actively maintain such knowledge at leaders. Instead,

the leaders only maintain historical data about each node’sstatus.

6.3 PlanetLab Experiments

In this section, we evaluate the effectiveness of the spec-KP in terms of setting up experi-

ment on PlanetLab [96] quickly and finding nodes with desiredfeatures.

6.3.1 Experiment Setup

There are about 800 nodes in total on PlanetLab, distributedin 200 ASes. The experiments

run on 200 randomly picked nodes. As one of the experiments needs AS path length infor-

mation, we use RouteViews BGP tables [99] and AS path inference algorithms [56] to find

out all the AS paths.

6.3.2 Upload Success Rate

In a large scale network experiment, it often happens that programs are not uploaded cor-

rectly, either due to node failure or temporary network problem [65]. Therefore, we prefer

a set of reliable nodes to run the experiment. To do so, we leverage the underlying network

knowledge plane in two aspects. First, as described in Section 6.2.4, leaders maintain an

approximate global map. Given this global map, we assign different numbers of nodes to

each region tentatively. The number of nodes assigned to a region is proportional to the

region’s size. Second, each regional leader tries to find themost reliable nodes in its region

using dynamic information. To do so, the leader can either query all members to get the

latest information, or use the history data. We choose the latter to reduce the overhead. The

procedure is described below and shown in Figure 6-1.

1. A user issues an experiment setup request to the local agent, specifying a number of

nodes.

128



2. The local agent forwards the request to the regional leader.

3. The regional leader analyzes the request, assigns different numbers of nodes to each

region using the global map, and sends a request to leaders ineach region.

4. Each regional leader picks the most reliable agents in itsregion using historical data,

and returns the list of agents to the originating leader.

5. The originating leader receives a list of nodes from each region, and returns the

complete list to the local agent.

6. The local agent forwards the list to the user.

3

3 3

3

2

4

4

4 4

1

6

5

agent

leader
region

Figure 6-1: Upload procedure.

Figure 6-2 demonstrates the success rate of program uploading in different experiment

sizes. We compare our method with random pick. The total number of nodes is 200, and

the experiment size starts from 10, increasing by 10 each time. We can see that the random

pick has a very stable upload success rate, which is about 70%, no matter what the size is.

Our method has a decreasing upload success rate, because we have fewer choices when the

size increases. Eventually the two methods meet at 200 nodes.
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Figure 6-2: Upload success rate measurement.

6.3.3 Node Distribution

The second issue during experiment deployment is that very often we want nodes to be

widely distributed in the Internet. To do so, we take advantage of the Autonomous System

information. As regions are organized based on both AS and latency information, we can

take advantage the static AS topology. We define the degree ofnode distribution as the

average number of AS hops between two nodes.

We compare three node-picking methods. The first is random picking, in which nodes

are randomly picked from the global map. The second is “evenly in ASes”, in which we try

to assign the same number of nodes in each AS, as long as there are enough number nodes

there. The third is “greedy”, in which we always pick the nextnode that can maximize

the average AS hops. These procedures are similar to the previous experiment, except for

two steps. First, when the local leader assigns different number of nodes to each region,

it uses the Autonomous System information provided by our ASservice. The service pro-

vides two functions: the IP to AS number mapping and the AS path between two ASes.

We use RouteViews BGP tables [99] and AS path inference algorithms [56] to implement

these two functions. In the second method, the leader alwaystries to pick nodes from dif-
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ferent Autonomous Systems, but does not consider the distance between them; in the third

method, the leader uses a greedy strategy, which has higher computational overhead, and

since the global map is approximate, the leader cannot be toogreedy by choosing all nodes

from a region, which could lead to the problem of insufficientnumber of nodes during the

actual assignment. Second, each regional leader also triesto find nodes widely distributed

in its own region. Figure 6-3 shows how well nodes are distributed using our method com-

pared with random pick. The shape of this figure is similar to Figure 6-2, but the difference

between the two methods is less than 1 AS hop. This is because PlanetLab itself is already

widely distributed. It has about 800 nodes, distributed in 200 ASes, so nodes by the ran-

dom pick are likely to be widely distributed. We can improve the distribution if the leader

considers the distance between ASes, not just ASes themselves.
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Figure 6-3: Node distribution experiment.

6.3.4 Further Improvements

Besides the above functionalities, we plan to add other useful mechanisms. Within each

experiment, agents form a closely coupled region, and sharemore information with each

other. In testbeds like DETER [42] and Emulab [1], the NS script specifies the network
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topology. We implement similar functionality on PlanetLabby allowing a user to specify

not only the overall properties of the node set to run the experiment, but also the differ-

ent roles for each node, as very often nodes have different importance in the experiment.

Agents monitor the experiment and check if the experiment setup matches the specifica-

tions. If something suspicious is found, agents will notifythe user. This process can be

made interactive so that users may provide more informationand agents perform further

diagnosis.

To avoid node failure and accelerate the experiment setup process, when an experiment

is ready to swap in, agents can collaborate with each other topick the nodes with the

best history records, so that the expected swap-in time willbe minimized. During the

actual swap-in process, if an agent notices that a host cannot boot correctly, it will pick

another available node to replace the problematic one. The agent may also notify the testbed

operator about the problematic nodes.

6.4 Related Work

Some recent research projects focus on providing a framework for application manage-

ment. Plush is a configurable application management infrastructure designed to meet the

requirements of distributed applications and execution environments [13]. Plush allows

developers to define the flow of control needed using application building blocks. Through

a resource management interface, Plush supports executionin a variety of environments,

including both live deployment platforms and emulated clusters. Smartfrog consists of a

collection of tools that manage distributed applications and a specification language to de-

scribe the applications. Applications must follow the API to take advantage of its features

[50]. Compared with them, our work is more general in terms of the functionality and

requires less integration between our system and the applications. We focus more on the

efficient organization of the components and distributed ofknowledge among them.

Another category of related work is the efforts to make Emulab-like environment eas-

ier to use [113, 43]. The Emulab Experimentation Workbench is designed for replayable

network experiments [43]. SEER focuses on security relatedexperimentations, especially
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those on the DETER testbed [113]. Both provide convenient and comprehensive facilities

to free users from tedious experiment configuration so that they can focus on the key re-

search issue, which is similar in the spirit of this work. Butunlike PlanetLab, nodes are

located at the same place in the Emulab and the DETER testbed,and as a result, the prob-

lems I addressed in this work, such as improving uploading success rate and finding nodes

with desired features, either do not exist or require different solutions in those environ-

ments.

Some research focuses on failure diagnosis. In [65], researchers analyze the error re-

porting mechanism in Emulab, and propose a new design on structured error reporting that

associates context with each error-type and propagates both error-type and context. They

each solve individual problems, but did not address the experiment management problem

as a whole from the network architecture point of view. Our work leverages the network

knowledge plane to facilitate experiment setup, to reduce upload failures, and to provide

new functionalities that are not possible without the knowledge collection and maintenance.

6.5 Summary

In this work we conduct a case study on experiment setup on PlanetLab. Several issues are

involved, including different agent roles, region formation and maintenance, knowledge

collection and maintenance, etc. More work is needed in the consistency maintenance un-

der network partitioning. The case study demonstrates the effectiveness of the spec-KP for

experiment management. Further improvements include support for experiment monitor-

ing and debugging, which needs some specification language to describe the experiments

in detail, and thus requires a tighter integration between the spec-KP and the experiment

itself.
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Chapter 7

Case Study II: An Intrusion Detection

Framework

The NetKP has provided us a powerful infrastructure to buildthe spec-KPs for various net-

work management and applications. The premise of the work inthis chapter is that it is both

feasible and valuable to design a common framework for intrusion detection on top of the

NetKP to address several simultaneous and often inter-related problems. We identify three

key issues: distributed and broadly valuable knowledge, collected and produced through

analysis or diagnosis; a need to respect privacy, security,and proprietary boundaries in the

process of intrusion detection; a multiplicity of independent discovery and diagnosis capa-

bilities. In this chapter, we lay out an integrated framework for cooperative and extensible

intrusion detection systems. It is our expectation that this framework will facilitate evo-

lution in intrusion detection capabilities, support localprivacy and security policies, and

scale to the size of the Internet. To demonstrate the strengths of this framework, we build a

distributed intrusion detection system on the DETER testbed, and apply different detection

techniques within and among regions.

7.1 Introduction

Increasingly frequently and cleverly, worms and viruses are invading our hosts on the In-

ternet. To address this, we see more and more creative intrusion detection systems ap-
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plying distinctive techniques, using different data structures for their underlying data, and

reporting different kinds of intrusion status [94, 108, 25,63]. Some are based on traffic

patterns, others are based on signatures; some are centralized, and others are distributed.

Each of those has its own strengths and weaknesses. Despite the fact that attacks often

affect multiple domains or organizations simultaneously,the tools used locally may not

support effective collaboration across those boundaries.To date we do not have a way to

integrate those techniques and create a comprehensive intrusion detection approach, so that

intrusion detection systems widely distributed in the Internet can share information easily

and worms be detected quickly. In this work, we propose a knowledge-based framework to

unify those systems and make intrusion detection more effective in the Internet.

We classify agents in this framework into detection enginesand knowledge agents.

Detection engines correspond to the regional leaders, and knowledge agents correspond to

the agent members, but in the context of intrusion detection. In order to meet the needs

of individual clients and allow for a unified approach, the framework posits that a user

contacts one or more detection engines, based on a set of criteria including goals, levels of

trust, etc. Each detection engine, whose task is to detect intrusion, in turn will call on a

set of knowledge agents with various kinds of expertise, ranging from particular detection

techniques to traffic monitoring capabilities. Note that knowledge here includes not only

specific intrusion detection techniques, but also information about network configuration,

local context, etc. We see as central challenges to this framework the ability to share and

discover existing and new knowledge, the choice of an entityto only expose as much or

as little of both its interests and its expertise as it chooses, and a means of organizing and

cooperating efficiently. For this we identify two key technical support issues: a mechanism

for trustworthy private knowledge retrieval, and a scalable organization for agent discovery

and knowledge aggregation, as we discuss below.

In terms of security, we face three intertwined problems. First, an agent or source

of knowledge may, for policy reasons, want to provide only limited or partial access to the

complete set of its possible capabilities. Second, the source of a query may want to disguise

its own particular interests from the source of knowledge and expertise. Third, the parties

want to have reasonable trust in the veracity of their exchange. In order to address the first
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two, we base our work on prior work on Private Information Retrieval, and for trust, on a

protocol for developing a trust model.

In terms of scalability, we propose adivide-and-conquerapproach to global scale or-

ganization. We see a number of distinctive motivations all leading to our region-based

approach, including simple reduction in scale, often leading to exponential decrease in

complexity, and the efficiencies of operating in a homogeneous environment, leading to

performance gained by physical or topological partitioning, etc. These sorts of motivations

lead us to propose an underlying region-based capability toachieve any or all of these.

This chapter is organized as follows. Section 7.2 describesthe framework for com-

posite intrusion detection, then addresses the security issues including protocols of privacy

protection and trust, and discusses the region-based organization for agent discovery and

knowledge aggregation. Section 7.3 presents a case study ondistributed intrusion detection

on the DETER testbed based on the framework. Section 7.4 discusses a selection of related

work. Section 7.5 concludes the chapter and highlights the future work.

7.2 Knowledge-based Intrusion Detection

7.2.1 Intrusion Detection Framework

Overview

The main purpose of our work is to design a general framework so that existing as well

as new knowledge can be integrated into it effectively. The key idea is to treat the result

of any detection method or other information (for instance,result of local computations or

some prior knowledge like the worm’s core code) as a piece of knowledge to be input to

the detection engine. As a general term, knowledge in this framework refers to any useful

information to intrusion detection in the Internet, including that about individual objects in

the network, and the relationships among objects, etc. Figure 7-1 demonstrates this basic

framework.

There are three parties in this framework: users, detectionengines, and knowledge

agents. A user issues an intrusion detection request to a detection engine. The detection
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Figure 7-1: Knowledge-based intrusion detection framework. P.E. refers to “policy en-
forcer” described in Section 7.2.2.

engine analyzes the request, and collects necessary knowledge from knowledge agents and

other detection engines. The knowledge agents provide processed knowledge, such as net-

work traffic, local observations, according to their local policies. After collecting enough

knowledge, each detection engine builds a dependency graphof the collected knowledge,

and then runs inference algorithms on it and reports the result(s) to the user, as demonstrated

in an example at the end of this section. All the parties use the same ontology language

to describe their requests and capabilities, similar to [69]. We describe each component

in detail below. The secure knowledge sharing between parties (dealing with privacy and

trust) is discussed in Section 7.2.2, so here we will just mention it at the relevant places.

User

A user can issue a request to a detection engine directly or through a local knowledge agent.

A request consists of three parts:goal, constraints, andprior knowledge. The goal defines

the task to accomplish, such as determining whether a network is intruded by a worm, etc.

The constraints define the conditions that detection engines must satisfy. Prior knowledge

provides some existing knowledge that may be useful to the detection engines.
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Detection Engine

The task of a detection engine is to detect intrusions. Its role is similar to the regional leader

in the previous discussion in the sense that it coordinates the operations of the knowledge

agents to resolve a request. A detection engine uses all available knowledge from knowl-

edge agents to resolve a request in the following way. When a request is received, the

detection engine analyzes it and figures out which agents arelikely to meet the goal and

constraints. During this process, the detection engine needs to coordinate the knowledge

sharing among agents. Some agents may have relevant techniques, some may have the

data, and others may have the dependency knowledge between the techniques. Those with

the relevant techniques may not have access to the data due toprivacy constraints. The

detection engine needs to find proper agents that can run the technique over the data. Then

it collects the responses from them, makes a final analysis, returns the result to the user, and

caches it for future use. Detection engines are similar to the regional leader discussed in

previous chapters, as they coordinate the operations between agents within a network, and

communicate with other detection engines to exchange information, but unlike regional

leaders, there may be multiple detection engines within a region, as discussed later.

We focus here on the analysis of the detection engine. Once the detection engine has

collected some knowledge, it can start to build a dependencygraph between the knowledge

that it has received so far. During this process, new knowledge from additional knowledge

agents may be added, and the detection engine dynamically adjusts the dependency graph.

With the addition of new knowledge, there are three possibleactions that can result. First,

this addition might produce knowledge that the current dependency graph (in this detection

engine) does not know anything about. In this case, the most natural way to add this into

the current graph is to treat it as new and independent information. Second, this addition

might give knowledge relating several pieces of knowledge that are already in the current

graph. In this case, the probabilistic structure of the graph will be changed to reflect this

new knowledge of the dependency. Third, this addition mightgive knowledge that does

not really change the internal structure of the graph, but instead wraps around it and thus

affects the results of the detection engine.
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Knowledge Agent

Knowledge agents correspond to the agent members in the previous discussion. Knowledge

agents provide various kinds of knowledge, and act as a proxyof users. A knowledge agent

can be an existing intrusion detection system that uses specific techniques on an end host or

on a network, one that contributes a new detection technique, or one that simply provides

any valuable knowledge. We identify four kinds of useful knowledge, as demonstrated in

Figure 7-1.

The first and most important category is existing intrusion detection systems. Here we

view a detection system as a database of results generated byapplying a detection technique

on an end host or on the part of the network it has access to. It includes detection techniques

based on incoming and outgoing traffic such as [63, 70], and signature-based approaches

[25] together with the worm signature databases.

The second is traffic monitor. Such agents monitor the trafficdata for the analysis.

They often reside on vantage points in the network, such as gateways. Note that in our

framework the detection techniques and the data are separate.

The third is local context. This includes network configuration, operating system types,

running services, results of local virus scans, etc. Such knowledge exposes the potential

vulnerability of the network and hosts.

The fourth is dependency knowledge. This describes the dependency between multiple

pieces of knowledge, such as the conditional probability ofincoming and outgoing traffic.

When a knowledge agent receives a query from a detection engine, it first checks its

local policies on exchanging knowledge with this detectionengine. Then it engages in a

secure knowledge exchange with the detection engine to provide the knowledge without

disclosing sensitive information.

Example

We use a simple example to demonstrate how the components interact with each other in

the framework. The example request is to detect whether Code Red intruded the network

1.2.3.4/24 in the past seven days, under the scope constraint that the knowledge agents to
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ask must be within the local ISP. A piece of prior knowledge isthat the operating system

running on most hosts within the network is Windows. The request is shown below. Note

that this is just an example to demonstrate how a detection engine may deal with a request,

and we do not focus on how a request should be precisely definedin this spec-KP.

<Request id=11239045>

<Goal>

<Worm> Code Red </Worm>

<Network> 1.2.3.4/24 </Network>

<TimeRange> 7 days </TimeRange>

</Goal>

<Constraint>

<Scope> Local ISP </Scope>

</Constraint>

<PriorKnowledge>

<OSType> Windows </OSType>

</PriorKnowledge>

</Request>

Figure 7-2 demonstrates the process. The request is sent by auser to a detection engine.

The detection engine parses the request and does the following. We stress again that when-

ever there is a knowledge exchange, the parties involved usethe secure knowledge sharing

protocol as described in Section 7.2.2.

1. As the request is about a specific worm, the detection engine checks whether any

knowledge agent knows the signature or some properties of Code Red. If not, it has

no way to resolve the request, and will return a failure to theuser, together with the

reason. If the request does not specify any worm, then this step is skipped.

2. If the signature and some traffic pattern are available, the detection engine collects

such knowledge, and chooses a number of knowledge agents based on trust, pri-

vacy, and the scope constraint specified in the request, through the agent discovery

mechanism in Section 7.2.3. Suppose that at this point in time, two agents happen

to be chosen, one using signature-based technique, and the other using a traffic pat-

tern based technique. Then the detection engine hands over the knowledge about the

worm to the knowledge agents, respectively.
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3. The two trustful agents analyze some hosts and the recent traffic in the network using

their own techniques, respectively, and return the results. Note that the data analyzed

may come from a third traffic-monitor agent.

4. After receiving the results from the knowledge agents, the detection engine builds

a dependency graph of the results, and runs some inference algorithm, for instance,

Bayesian inference.

As a concrete example, suppose the detection engine employsthe following rule

to integrate the results from the knowledge agents: the detection engine will report

to the user the probability that both results are “No intrusion”. Since there is no

dependency knowledge about the results (yet), the detection engine will assume in-

dependence between them. Therefore, the final result will becalculated as:

P(Intrusion) = 1− P(R1=No & R2=No)

= 1− P(R1=No) · P(R2=No)

5. At this point in time, another relevant agent happens to join the system, giving de-

pendency knowledge relating the signature and the traffic pattern. For instance, this

might be knowledge aboutP(R2=No|R1=No). In this case the result will be revised

as:

P(Intrusion) = 1− P(R1=No & R2=No)

= 1− P(R1=No) · P(R2=No| R1=No)

6. The detection engine reports a final result to the user.

This example demonstrates how a detection engine detects anintrusion with the collab-

oration of multiple knowledge agents, while following the privacy and other constraints,

and how a new piece of knowledge helps the detection engine obtain a better result. Note

that a technique itself is just a piece of knowledge in this framework, and this is especially

useful when a detection engine could not let the agent with that technique analyze the data

directly due to privacy constraints.
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Figure 7-2: The resolution process of a request.

7.2.2 Secure Knowledge Sharing

Different parties may be under different administrations,and would not disclose sensi-

tive information to others. Furthermore, agents have different capabilities and credentials.

Therefore, we need a mechanism for secure knowledge sharingthat protects sensitive infor-

mation for both sides (knowledge provider or receiver) and help establish a trust system to

represent capabilities and prevent cheating. The mechanism discussed in this section is an

important part in the knowledge-based framework, and the following discussion presents

the basic idea of private information retrieval and how it isapplied in this framework, but

more work is needed to make it practical, and this mechanism is not implemented in the

intrusion detection system in Section 7.3.

Private Knowledge Retrieval

Allman et al. proposed a loose private matching scheme for knowledge sharing in [15],

which allows for information sharing about mutually observed network events. Here we

generalize and extend it using Private Information Retrieval (PIR) and policy enforcers.

The goal is as follows. First, PIR enables detection enginesto encode a query in such a

way that knowledge agents can answer the query but do not knowthe query itself. Second,

policy enforcers on the knowledge agents make sure only proper knowledge will be sent to

the detection engines. Therefore, little sensitive information is revealed to both sides.

Private Information Retrieval (PIR) has been extensively studied in theoretical com-
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puter science [32, 68]. For this work we choose a computationally bounded PIR approach

because the alternative requires either complete copies ofthe database at both ends or trans-

mission of the complete database, both infeasible in this work.

Although PIR can protect privacy of both the detection engines and the knowledge

agents, agents often have their own policies about what knowledge can be exposed to which

detection engines. Therefore, each agent needs a policy enforcer (P.E. in Figure 7-1). The

policy enforcer implements the security policy to prevent the exposure of sensitive local

information, but to allow for the report of valuable non-sensitive knowledge to the detection

engines. For instance, an enterprise might not allow any information about local detection,

but might be prepared to allow for a report that it has authoritatively identified an attack

with a particular signature. In return for allowing that information out, it can expect to

receive similar information from other enterprises or business entities, without having to

expose anything about the nature of its network or about the degree of compromise it might

have experienced.

In the face of knowledge sharing between mutually distrustful parties, each detection

engine needs to send queries of some form to knowledge agents(which can be seen as

databases in this respect). However, we do not wish for the knowledge agents to know

which particular entries the detection engine is interested in, lest it provide false informa-

tion. To achieve this, we can apply the ideas of PIR.

We sketch the ideas of PIRs and then move on to describing the application of PIRs to

our setting. Where possible we refrain from providing formaldefinitions and theorems, but

instead describe, at a high level, particular (theoretical) implementations.

As background, a numbery is called a quadratic residue modulon (QR) if there ex-

ists an integerx such thaty ≡ x2 (mod n). Otherwise,y is called a quadratic non-residue

(QNR). It is a number theoretic fact that the product of any number of QRs is still a QR, and

the product of any odd number of QNRs is a QNR. Letn be a composite of the formp · q,

wherep andq are primes of the same size. A particular implementation of PIR [68] relies

on the following cryptographic assumption.Quadratic Residuosity Assumption: without

knowingp andq, no polynomial time Turing machine can distinguish a randomQR (mod-

ulo n) from a random QNR (modulon) while with p, q, it is easy to distinguish them.
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Assuming each entry in the database is a single bit, 0 or 1. Thedetection engine wants

to know the bit at theith entry in the database. The detection engine sends to the database

a query vector which contains a distinct QR for each index other thani and a QNR for the

ith element. The database cannot distinguish which are the QRs and which the QNR. All

it does is to compute the product of all those vector elementsfor which the corresponding

database entry was a 1. The detection engine then can test this product for whether it is a

QR or a QNR and hence know whether theith entry was a 0 or a 1, but the database has no

clue which entry is actually queried.

To make the scheme more practical, we need to use an extensionto the PIR called

private keyword search[31, 46], which allows querying the database if a keyword exists in

it. A particular implementation is to translate private keyword search into the above PIR

scheme, as follows. Assuming the database holdst possible keywords in total, and they

are of the same lengthl bits, the database first sends all thet keywords to the detection

engine. The detection engine replaces thet keywords with their incidence vector, a2l bit

string in which thejth bit is1 iff the jth l-bit string, in the lexicographic order, is one of the

existing keywords. Suppose the keyword the detection engine holds,W , is thekth word in

the lexicographic order. Then it becomes a problem of retrieving thekth bit of the2l bit

string from the database, the same as the basic PIR. The scheme can be made more efficient

with anoblivious walk, which is beyond our discussion. Please refer to [31, 46] fordetail.

More work is needed to make PIR practical so that it can be applied to regular queries.

In the following we will use PIR as a black box and demonstratehow to use it in our

protocol below. Say that a detection engineDE wishes to query the knowledge agents

KA1, KA2, ..., KAm. The protocol is as follows. For concreteness we focus on thepartic-

ular example in which database entries are of the form “(IP, Port, Protocol, Traffic, Time)”:

ProtocolKnowledgeSharing

1. User Input. The user provides the detection engineDE with the goal, constraints,

and prior knowledge. The detection engineDE then contacts each knowledge agent

KAi, i ∈ 1, ...,m that it thinks it would need knowledge from, to inform them to

start the knowledge handshake.
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2. Knowledge Handshake. For eachi ∈ 1, ...,m, KAi checks its local policy regarding

information exchange withDE, thenKAi computes some functionfi on its database

Di based on the policy, to end up withfi(Di). ThenKAi tellsDE the form of queries

allowed.

3. Knowledge Query. DE sends eachKAi a query that it is interested in, as a function

of the user’s inputs, conforming to the form thatKAi deemed as valid. Here the

detection engine can use the PIR mechanism to protect its privacy, if needed.

4. Knowledge Answer. KAi computes and sends the results using the PIR, andDE

extracts the answer using the PIR.

Note that in stepKnowledge Handshake, if KAi has no local policy that restricts infor-

mation exchange withDE, thenfi is the identity function, andKAi would tell DE that

the valid queries are of the form “(IP, Port, Protocol, Traffic, Time)”; if there is a local

policy that only allows aggregate information exchange with DE without disclosing the IP

address, port number, or protocol type, thenKAi would tell DE that the valid queries are

of the form “(TotalTraffic, StartTime, EndTime)”.

Dealing with trust

We have addressed privacy issues by assuming each party tells the truth. However, in

reality our framework consists of many parties with different interests, and adversaries

may intentionally join the framework and provide false information. In this section, we

demonstrate how to integrate trust into our framework, independently of any underlying

trust model. Note that in the literature, usuallytrust is a subjective viewpoint of one’s

capability, defined between two parties, whilereputationis an objective measure for one’s

capability, defined globally [7]. For our purposes we do not (need to) distinguish trust and

reputation. Below we describe how trust is used in our framework:

1. A user chooses a number of detection engines based on theirrankings of trust.

2. Based on the user’s rating, the detection engine may accept or reject the request. If

a request is accepted, the detection engine chooses a numberof knowledge agents to
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ask based on their rankings.

3. Knowledge agents accept or reject the requests from the detection engine based on

the rating.

4. The user rates the detection engines based on the quality of the returned results using

some out-of-band method and sends feedback to the detectionengines.

5. Based on the user’s feedback, each detection engine ratesthe knowledge agents in-

volved in this process, and differentiates them based on thequality of the knowledge

they provided. It also forwards the rating information to the knowledge agents.

6. The knowledge agents rate the detection engine based on the received rating infor-

mation and other available information such as the request rate.

7. The rating process can be interactive by designing an interactive protocol for two

parties to argue about the feedback, either between the userand the detection engines

or between a detection engine and the knowledge agents. The parties periodically

exchange their ratings.

Note that our framework is independent of the trust model we use, except possibly the

feedback mechanism – if the trust model has a feedback mechanism, it could be used in

the protocol described above; otherwise, a feedback mechanism has to be designed for the

particular trust model.

For concreteness, we propose a simple trust model as follows. To start, a user or a

detection engine may trust certain knowledge agents more, such as those officially deployed

by his institution or ISP. Then the rating by userU of detection engineE at timet + 1 will

be:

t+1R
U
E = w1 ·

(

w2 · tR
U
E + (1− w2) ·

∑

i

tR
U
Ui
∗ tR

Ui

E

)

+ (1− w1) · t+1f
U
E

whereU is the current user, theUi are the other users that the current userU knows,E

is the detection engineU is interested in,w1 is the weight to incorporate the feedback,
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0 ≤ w1 ≤ 1, w2 is the weight to incorporate previous rankings,0 ≤ w2 ≤ 1, tR
X
Y is the

trust that partyX has on partyY at timet, fU
E is the feedback fromE at timet + 1. The

above formula shows that the current rating of a detection engine is a weighted sum of its

previous rating from the users and the current feedback. Ratings of other entities including

knowledge agents are calculated in a similar way.

7.2.3 Scaling and Organization

In order for a user to contact useful detection engines, for adetection engine to find expert

agents, and for the knowledge agents to discover and utilizeknowledge, we propose a

rendezvous approach that involves agent discovery and knowledge aggregation. To address

issues of scaling, efficiency, and a variety of policy constraints, we again use theregion to

be a first-class component in the framework. Below we touch first on our region approach

and second on our rendezvous for discovery and aggregation technique.

Region and constraints

For scalability and efficiency, we follow a divide-and-conquer strategy by dividing the

framework into regions. As discussed in previous chapters,the region is a new design

element in the network architecture that encapsulates and implements scoping, subdividing,

and crossing boundaries of sets of entities [117]. Detection engines and knowledge agents

are organized into regions based on four kinds of constraints:

1. Functional constraints. Intrusion detection is conceived as a set of interacting com-

ponents collocated with the knowledge necessary to succeed. Although in our frame-

work detection engines and knowledge agents are distributed, there are constraints

from the knowledge itself as well as the functional subcomponents and their interac-

tions.

2. ”Network” location. In some cases, intrusion detection may by necessity be kept

local to that network, where locality may be defined by a number of metrics, such as

network topology, latency, etc.
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3. Physical location. We separate this from the previous category because the issues

of geographic location or perhaps administrative ownership boundaries are generally

orthogonal to the more performance based network location constraints.

4. Policy and other external constraints. Security constraints are a significant factor

in organizing entities. Furthermore, in order to meet real world requirements, an

organizational strategy must be able to integrate economic, regulatory and other con-

straints.

We propose a simple clustering scheme as a starting point of the regionalization ap-

proach. Based on its own constraints, each entity in the framework decides which other

entities to connect to. Entities connected to each other form a region, and select a leader

for management purpose. Connections among regions are maintained by the leaders.

Discovery and aggregation

We face two complementary problems: agent discovery and request/knowledge aggrega-

tion. There has been a significant amount of work in the areas of publish/subscribe systems

and peer-to-peer systems towards addressing these problems, but scaling and heterogeneity

problems remain. In this effort we intend to build those mechanisms in the context of our

regionalization approach.

In this framework, requests are issued by users directly or through local knowledge

agents. Requests are sent to the detection engines. The detection engine analyzes the

request and sends further requests to the knowledge agents based on their advertised capa-

bilities. We propose an agent discovery scheme similar to that in the NetKP: Each detection

engine maintains a directory service of knowledge agent types and capabilities within the

local region. All the detection engines form a tree structure similar to that in Chapter 5.

When a detection engine cannot find needed knowledge within the local region, it can prop-

agate a request in the tree. The request can be either propagated to the whole tree, or to

detection engines withinn hops in the tree, wheren is determined by several factors such

as priority, cost, etc.
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Aggregation is another important function, as many similarrequests may be issued

when a fast-propagating worm attacks. We take advantage of the region structure and

the cross-region organization in the aggregation. Assume that the detection engines form

a tree structure globally. A simple version of aggregation is a multi-layer aggregation:

First, within a region, if a detection engine receives multiple similar requests from the

local knowledge agents, it does not propagate all of them, but aggregates those requests

and forwards only one request. Second, at the region level, if a detection engine receives

similar requests from other detection engines, it can hold the later requests and waits for

the first one to be answered, and returns the answer to all the requesters.

7.3 A Dependency-based Intrusion Detection System

In this section, we design and implement a collaborative intrusion detection system based

on the framework proposed above. Not all the components in the framework are imple-

mented in this system, and we customize the framework to fit our needs. The goal in this

system is to detect zero-day, slow-scanning worms, for which no existing signatures are

available. We organize end hosts into regions based on existing partitions in the Internet,

which we posit is positively correlated to the existing dependency structure. Detection en-

gines and knowledge agents run on end hosts. Leveraging on this organization, we apply

different intrusion detection techniques within and across regions. We use a hidden Markov

model (HMM) within a region to capture the dependency among hosts, and use sequential

hypothesis testing (SHT) globally to take advantage of the independence between regions.

We conduct experiments on the DETER testbed, and preliminary results show improvement

on detection effectiveness and reduction of communicationoverhead.

Traditionally, intrusion detection is carried out at a central point, usually a gateway, as

it is a natural position to observe incoming and outgoing traffic. This approach is prone to

DoS attacks, and depends on non-local detection of anomalies, prompting a need for new

approaches to monitor and respond to security incidents. Tothat end, host-based distributed

intrusion detection has been a promising direction. A key challenge in such a distributed

intrusion detection system is that end hosts need to be organized efficiently and intrusion
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detection techniques applied effectively, so that an intrusion detection decision can be made

before the worm infects most of the hosts. Many current mechanisms use simple gossiping

protocols or peer-to-peer protocols [76, 40, 30] to aggregate local determinations.

Since the behaviors of zero-day worms are not known a priori,the best location for

initial attention is the local host itself, in the context oflocal behavior and applications

[40, 30]. However, at the local node, one loses the aggregation effect of repeated or si-

multaneous low level anomalies. In addition, it is difficultto make local detectors strong

because they see only a small percentage of the global traffic. Thus, to detect intrusions

effectively, we must aggregate the results of weak local detectors to get a broader perspec-

tive. This work addresses the question of algorithms for effective aggregation. Improving

local detection is a separate problem that we do not address here.

New intrusion detection techniques are needed to deal with different dependency struc-

tures among hosts more effectively, and the work in Section 7.2 provides a suitable frame-

work to do so. We postulate an observable causal relationship between the success like-

lihood of a particular intrusion attempt and network proximity between end hosts. This

is based on the observation that enterprise networks are reflected in topological neighbor-

hoods, and also likely to be supporting many similarly configured and managed machines,

thus repeating the same weaknesses across an enterprise. Thus, if one host in an enterprise

is susceptible in a certain way, it is more likely that its peers are as well. In contrast, ran-

dom hosts far away from each other in the broad Internet are likely to be independent of

each other. Therefore, we can take advantage of different dependency structures between

hosts with different detection techniques. In addition, worms often scan consecutive IP

addresses, which causes another kind of dependency. For example, Code Red II chose

a random IP address from within the class B address space of the infected machine with

probability 3
8
; with probability 1

2
it chose randomly from its own class A; with probability

1
8

it would choose a random address from the whole Internet [119].

We believe that a good distributed intrusion detection system should satisfy two key

requirements: (1) efficient host organization based on network proximity and dependency,

and (2) detection techniques that leverage this host organization and the dependency struc-

ture. In this work, we propose a dependency-based host organization and message propa-
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gation protocol. End hosts are organized into cooperating regions based on their network

proximity and policy boundaries. Then different detectiontechniques are applied at dif-

ferent levels. Each end host runs a weak local detection system. For a region, we use a

discrete-time Hidden Markov Model (HMM) with unsupervisedlearning to estimate intru-

sion status of that region (this captures the dependency) [101]. At the global level, we use

a sequential hypothesis testing (SHT) globally to coordinate findings across regions (this

takes advantage of the independence) [64]. We implement ourmechanism on the DETER

testbed [42], and evaluate the performance of this system and the communication overhead.

Experiment results show that our mechanism can detect intrusion faster, better and cheaper.

In this work we only evaluate time-homogeneous first order HMMs (where the tran-

sition probabilities between the different states do not vary with time), and use a simple

static organization based on both dependency and network proximity. Non-homogeneous

higher order HMMs, based on an adaptive organization utilizing various kinds of network

knowledge, will be considered in future work.

7.3.1 Host Organization

To build an effective intrusion detection system, we propose an agent organization based on

the concept of regions, and discuss the communication mechanism among different types

of agents.

Regions

We organize agents into a two-level hierarchy based on the enterprise network boundaries,

for the following reasons. First, as mentioned before, enterprise networks are likely to

support many similarly configured and managed machines, thus repeating the same weak-

nesses across an enterprise. Second, due to the security andpolicy constraints, hosts within

an enterprise network are allowed to share detailed information, while hosts in different

enterprises usually cannot. Third, enterprise networks are reflected in topological neigh-

borhoods, so hosts in the same enterprise are usually close to each other, and thus the

communication among them is more efficient.
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Second, the leaders organize themselves into a communication structure. If the number

of leaders is small, the leaders form a complete graph; otherwise other organizations the

tree structure proposed in Chapter 5. Figure 7-3 demonstrates a region-based organization.

It consists of three regions. Agents close to each other are clustered into the same region.

Corresponding to the region-based structure, we classify the agents into three kinds of

detectors: local detectors, regional detectors, and global detectors. A local detector resides

on each host. Regional detectors are similar to the regionalleaders. The global detectors

may reside on any hosts. There may be one or more global detectors, depending on the

requirement on robustness and the communication structure.
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Figure 7-3: A region-based organization example.

Communication

Local detectors only communicate with their regional detector. When a local detector de-

tects a potential intrusion attempt, it sends an alert to itsregional detector directly. The

regional detector collects alerts from local hosts, runs its regional detection algorithm, and

then reports to the global detectors. Global detectors waitfor reports from multiple regional

detectors, and run the global detection algorithm.
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Depending on the tradeoff between robustness and overhead,there may be different

communication structures between regional detectors and global detectors. For example,

we can deploy only one global detector, and all the regional detectors report to it. This

centralized method has low communication overhead, but theglobal detector may become

the target of DoS attacks. As another extreme example, we canhave one global detector on

each regional leader, together with the regional detector.Each regional detector multicasts

its report to all the global detectors. Therefore, each region (through its global detector)

has a global view of the intrusion situation. Whenever a global detector has enough infor-

mation to make a decision, it announces its decision to the other global detectors and all

the regional detectors. We could also have chosen an intermediate position in which there

was more than one global detector, but not as many as one per region.

7.3.2 Intrusion Detectors

As mentioned above, there are three kinds of detectors in oursystem: local detectors, re-

gional detectors, and global detectors. Each kind of detector runs the appropriate algorithm,

as described in this section.

Local detector

A local detector is an instantiation of the knowledge agent in the framework in Section 7.2.

It resides on each end host. These are weak in their capability of detecting intrusions, and

as stated earlier the design of local detectors is a separateproblem that we do not address

here. The detection criteria may vary, depending on each host. For concreteness, we use

the following simple local detector in our experiments: when an end host receives a packet

at an un-serviced port, the corresponding local detector triggers an alert to its regional

detector; otherwise, it sends a clean signal. There are two things to note. First, there are

both false positives and false negatives in the signals the local detector sends. Second, there

is a tradeoff between timeliness and detection overhead. Ifthe end host sends one signal

upon receiving every packet, the overhead may be too high. Ifthe end host batches signals,

this causes a delay in the detection. As alerts are more important than clean signals, we can
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send out alerts immediately, but batch clean signals.

Regional detector

A regional detector is an instantiation of the detection engine that collects knowledge within

its region. It diagnoses potential intrusions at the neighborhood level, using discrete-time

Hidden Markov Models (HMMs) to detect intrusion for each region. We choose to use

HMMs instead of SHTs, because, as discussed above, we believe that the probability of

effective intrusion between close neighbors can be dependent on that proximity, and HMMs

allow us to reflect that. The second advantage of the HMM approach is the ability to

capture a notion of time and therefore multiple connection attempts to the same host. In

contrast, SHT systems are particularly easy to game: the worm can make sure that the first

connection attempt to any host is always to a servicing port.This is because SHT systems

can only handle the first connection attempt to any host, lestthe independence assumption

breaks down.

Figure 7-4 demonstrates an HMM for a region. It has four states: 00, 01, 10, 11,

representing a value pair of(infected?, suspicious?). The first bit represents whether there

is a worm in the region, and the second bit represents whetherthere is some host whose

behavior is suspicious. This captures the adaptivity of theworm in the sense that an infected

host can decide to lay dormant for the time being to avoid detection (similarly, a clean host

might accidentally behave suspiciously). Higher order models can be used to capture more

of the adaptivity. In general, the model parameters are unknown and have to be estimated.

Each regional detector uses the reports (alert or clean) from local hosts to Baum-Welch train

the model and to generate the Viterbi path of hidden states [101]. This Viterbi path gives

the most likely sequence of hidden states that could have generated the observed sequence

of triggering of the local detectors, under the current estimated parameters. Note that the

HMM models the current incoming traffic pattern, so it does not matter whether the region

is under one worm attack or simultaneous worm attacks.
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Figure 7-4: Initial Hidden Markov Model at regional detectors. 00 means the region is
clean and its behavior is not suspicious,01 means clean but suspicious,10 means infected
but not suspicious,11means infected and suspicious.

Global detector

The global detector is also an instantiation of the detection engine, except that it collects

knowledge globally and employs a different detection technique. The global detector uses

sequential hypothesis testing (SHT) to determine whether there is an intrusion at the global

level, because we believe that under a good organization, different regions can be assumed

to be independent of each other in terms of intrusion conditions. Therefore, we use SHT

with the independence assumption, and always use the newestinformation from each re-

gion as input to the SHT. The following equation ofL(Ȳ ) defines the likelihood ratio from

the observation vector̄Y = {Y1, Y2, ..., Yn}, given two hypothesesH0 (“no intrusion”) and

H1 (“intrusion”), respectively.Yi indicates whether the regional detector at regioni be-

lieves there is an intrusion (1) or not (0). Note thatP [Yi = 0|H1] is the probability of false

negative, andP [Yi = 1|H0] is that of false positive.

L(Ȳ ) =
P [Ȳ |H1]

P [Ȳ |H0]

=
P [Y1|H1] · P [Y2|H1] · · · P [Yn|H1]

P [Y1|H0] · P [Y2|H0] · · · P [Yn|H0]
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ThenL(Ȳ ) is compared with the lower and upper thresholds. The thresholds, T0 and

T1, are calculated by two parameters: desired detection rate,DD, and desired false alarm

rate,DF , as follows:

T0 =
1−DD

1−DF
, T1 =

DD

DF

If L(Ȳ ) is less thanT0, then the global detector accepts hypothesisH0; if L(Ȳ ) is

greater thanT1, thenH1 is accepted; otherwise, i.e.,L(Ȳ ) is betweenT0 andT1, no con-

clusion is made and further observations are taken. For the details of SHT, please refer to

[125].

Here we just clarify on one potentially confusing aspect of the above equations. If

we have a higher desired detection rate DD, it seems a bit odd that the upper threshold

T1 would increase, because this seems to leave more infectionsundetected. The intuitive

way to explain this is that we also have to look at the lower threshold as well since both

of the thresholds matter, and once the SHT reaches a decisionthe case is closed. The

mathematical way to explain this is that the SHT guarantees certain bounds on the true

detection rate (TD) and the true false positive rate (TF), given the desired ones, as follows:

TF <
1

T1

; TD > 1− T0.

Therefore if DD increases,T1 increases and the upper bound on TF decreases, whereas

T0 decreases and the lower bound on TD increases. So, as to what really happens when

we change our desired rates DD and DF, SHT does not guarantee that increasing DD will

increase TD, only that the lower bound on TD increases.

7.3.3 Performance Evaluation

In this section we present our experiments on the DETER testbed. We choose to do our

experiments on DETER instead of simulation, as the former ismore realistic and may
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provide more insights. Our evaluation consists of two parts. The first is the effectiveness of

our on-line detection mechanism, in which we evaluate the performance of both regional

HMM (rHMM) and global SHT (gSHT). The second is the efficiencyof region-based host

organization, in which we measure the detection speed and communication overhead.

Experiment Setup

Our experiments run on 88 nodes in the DETER testbed. Nodes are clustered into 8 re-

gions, 11 nodes each, and the links between regions are slower than those within a region.

Worms are emulated using WormSim [79], and we implement a special worm that scans

sequentially within a region and randomly chooses the next region to scan, thus creating

dependency with a region and independence between regions.Background (clean) traffic is

generated on each node at a constant rate. There are both false positives and false negatives.

That is, normal traffic may be mistaken as intrusion attempts, and intrusion attempts may

be viewed as clean. Nodes are divided into two categories: vulnerable and non-vulnerable.

Vulnerable nodes will be infected when an intrusion attemptarrives, and then the worm

will propagate from the infected host. Non-vulnerable nodes will issue an alert when re-

ceiving an intrusion attempt. WormSim and local detectors run on all the nodes except the

regional leader nodes. Regional detectors run on the regional leaders, one for each region.

rHMM is implemented using the General Hidden Markov Model library (GHMM) [2]. In

this experiment, there is only one global detector.

Intrusion Detection Performance

In this experiment, we evaluate the performance of our system. The regional detectors run

rHMM, and the global detector runs gSHT over all regions. Table 7.1 lists the parameters

used in rHMM and gSHT. As we described in Section 7.3.2, a regional detector trains the

model and infers a Viterbi path. Given the Viterbi path, there is still a question of how

to determine whether the region is under intrusion or not. Inthis work, we use a simple

empirical algorithm: if the latest six states contain threeconsecutive intrusion states (11

or 10), then there is an intrusion. Recall that11 means that the rHMM thinks that (some

nodes of) this region is infected and suspicious activity isdetected, and10 means that this
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region is infected and currently exhibiting normal behavior.

Regional Hidden Markov Model (rHMM)
Noise level 0.03
Initial transition matrix see Figure 7-4
Initial state probability {0.7, 0.1, 0.1, 0.1}

Global Sequential Hypothesis Testing (gSHT)
False positive 0.10
False negative 0.01
Desire false alarm rate 0.02
Desire detection rate 0.98

Experiment settings
Number of regions 8
Number of nodes per region11
Vulnerable nodes 25%
Worm propagation rate 1 scan/second
Normal traffic rate 1 message/second

Table 7.1: The rHMM and gSHT experiment parameters.
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Figure 7-5: Regional Hidden Markov Model performance.TRUEis the states based on the
true status (no false positive or false negative), andrHMM is that based on the observations
of a regional detector. Gray areas represent actual infection periods.

Figure 7-5 shows the intrusion detection of a region using rHMM. The experiment is

divided into alternate clean periods (blank areas in Figure7-5) and infection periods (gray

areas).0 means clean and1 means infected. The solid line (TRUEin the figure) shows the

true intrusion status (i.e., no false positives or false negatives). The dashed line (rHMM)

shows the detection result of an rHMM using the reports from local detectors. Note that

the time axis is not linear due to data aggregation. We can seethat at the beginning of

the experiment, rHMM makes a few mistakes due to the false positives and the relatively

untrained model. However, it learns to correct the errors very soon. Although there are
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Figure 7-6: Viterbi path of an rHMM and the true state sequence. tp is the true state/event
sequence, andvp is the inferred state sequence by the rHMM. In the dashed line, 0,1,2,3
in Y-axis correspond to the four states in Figure 7-4: clean and not suspicious (CN, corre-
sponds to state 00), clean but suspicious (CS, to state 01), infected but not suspicious (IS, to
state 10), and infected but suspicious (IS, to state 11). In the solid line,0,1,6,7,8represents
an event that a host receives the following packets respectively: a normal packet (true neg-
ative, TN), an alert caused by false positives (FP), a clean signal caused by false negatives
(false negative case 1, FN1), a true alert caused by an intrusion attempt (true positive, TP),
a clean signal from a vulnerable host who cannot/would not distinguish intrusion attempts
from normal traffic (false negative case 2, FN2).

some noticeable lags, overall, rHMM’s performance is very close to the model trained

using the true state sequence, despite the false positives and false negatives. We stress

again that the training of the rHMM is unsupervised.

Due to the large number of data points, Figure 7-5 only shows aggregate results. To

look at how well an rHMM works in detail, we compare a sequenceof true states with

the predicted sequence of states from an rHMM in Figure 7-6, which is between 265 and

433 seconds in Figure 7-5. Local detectors report an alert (1) or a clean signal (0) to the

regional detector, which may be a false positive or a false negative. Corresponding to that,

the solid line shows the true state sequence. Its states labeled 0,1,6,7,8represents that a

host receives the following packets respectively: a clean signal, an alert caused by false

positives, a clean signal caused by false negatives, a true alert, a false negative from a

vulnerable host who cannot tell intrusion. The dashed line shows the transition of states

observed by the rHMM. The states{0, 1, 2, 3} correspond to the four states{00, 01, 10,

11} in Figure 7-4. We can see that at the beginning there are two small spikes, and rHMM

considers it clean but suspicious. When intrusion really happens at 325 seconds, the true

sequence jumps to state 8 and then 7; the inferred Viterbi path first jumps to 1, thinking that
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it might be just a clean host that accidentally acted suspicious. As more alerts are received,

it realizes that the region is under attack, and the state oscillates between states 2 and 3.

This in particular means that when the rHMM thinks the regionis under attack, but normal

packets are received, the rHMM thinks that the worm is layingdormant, as opposed to the

region being clean. After that, it remains between 2 and 3 during the infection period, and

is not affected by the false negatives and normal traffic. Figure 7-7 demonstrates the new

rHMM model after the experiment.
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Figure 7-7: A trained hidden Markov model at a regional detector.

Figure 7-8 demonstrates the detection performance of the global detector using Se-

quential Hypothesis Testing (gSHT): the solid line is the result using the true states and the

dashed line is that using rHMM outputs. Since they are quite close, this shows that as far as

the gSHT is concerned, the rHMM outputs are almost as good as the truth, lagging a little

bit behind.

Compared with Figure 7-5, gSHT does not have the false positives at the beginning and

near 1445 seconds in rHMM. This is because that the global detector collects information

from multiple regions, and the independence of regions helps eliminate the false positives.

Region-based host organization

To evaluate the efficiency of region-based host organization, we compare our method with

a gossiping protocol in three aspects: detection speed, communication overhead, and cost.
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Figure 7-8: Global sequential hypothesis testing performance.gt is gSHT’s decision based
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Gray areas represent actual infection periods.

Detection speed measures how fast hosts make a decision on intrusion detection. Commu-

nication overhead refers to the number of messages that hosts propagate to reach a decision.

Cost is the number of nodes infected by the time of detection.

One set of the experiment results is shown below in Figure 7-9. Gossiprefers to the

gossiping protocol in [30], where hosts/local detectors exchange observations using an epi-

demic spread protocol without any organizing structure, and the local detectors run sequen-

tial hypothesis testing using the received results. The gossiping rate is 2, which means a

local detector forwards the results it computes or receivesfrom others to 2 randomly picked

local detectors.Regionrefers to our region-based protocol. We can see thatRegionout-

performsGossipin all the three metrics.Regionis faster in detection time, because alerts

are aggregated within each region first before being processed at the global detector, while

in Gossipmessages may cross slow links many times between hosts before reaching a de-

cision. Similarly, the number of infected nodes is also smaller in Regionthan inGossip.

Finally, the number of messages transmitted inRegionis significantly smaller than that in

Gossip. The reason for this is because that the number of messages increases almost expo-

nentially among hosts inGossip, while in Regionmessages from end hosts are only sent to

the regional detector, and then processed at the global detector after aggregation.
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Figure 7-9: Detection speed and overhead comparison. Note that the messages do not
include those for maintaining the cooperation among hosts in their methodGossipor mes-
sages for training the rHMMs in our method. The number of messages is in units of 10.

7.3.4 Discussions

Robustness and Flexibility

Our method is semi-centralized, and can be made more robust to DoS attacks in two ways.

First, instead of having only one global detector, multiplewidely distributed regional detec-

tors can exchange information so that everyone has an approximate global view and make

the decision, thus reducing the vulnerability. Second, regional detectors can be periodi-

cally re-selected distributedly, so it is hard for attackers to predict the leaders when attacks

happen.

There are two kinds of dependency to be recognized. One is thedependency between

end hosts, caused by their proximity, similarity of hardware, software, management, and

policy boundaries, etc. Therefore, we assume that network proximity is positively corre-

lated to the dependency structure. The other is the dependency caused by worm scan: for

instance, worms may scan an IP block each time, or intentionally scan hosts distant from

each other. To deal with this, our approach provides for the flexibility to re-organize regions

by considering both kinds of dependency.
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DETER testbed

Our experience with the DETER testbed shows that DETER provides a valuable infras-

tructure for security-related experiments. We suggest several possible improvements here.

First, it would be very helpful if DETER incorporated more security-related facilities, such

as traffic generator based on real traces, worm simulators, etc. This would greatly sim-

plify the design of experiments and provide the basis for comparison of results among re-

searchers. Second, NS extension commands are important to experiment automation. We

hope more commands can be provided in the future. Third, the swap-in process can take

a long time when experiments scale up. A way to automaticallykill the preloaded exper-

imental programs and reload everything without swap-in or rebooting would significantly

reduce the waiting time and speed up the experiment process.

Further Improvements

Our experiments on the DETER testbed suggest that dependency-based host organization

can improve intrusion detection by providing valuable network-layer and application-layer

knowledge to intrusion detection systems. In the future we will follow up with a series of

further experiments:

1. Use HMMs across different regions, to confirm that across different regions, there is

essentially no loss of effectiveness if we assume independence. Worms with different

scanning features will be tested.

2. Use more general HMMs, specifically a non-homogeneous higher order HMM, based

on an adaptive organization utilizing different network knowledge. If a strong global

clock is available, then continuous time HMMs can be used too.

3. Enhance the reporting scheme to record the signature of a worm. This will provide

two improved capabilities. The first is to significantly reduce the impact of false

positives. The second is to improve the reporting of a worm, by allowing for reporting

of a particular worm signature, thus enabling the disentanglement of simultaneous

worm intrusions.
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7.4 Related Work

7.4.1 Intrusion Detection Framework

Lee designed a common architecture for distributed probabilistic Internet fault diagnosis in

[69], where new knowledge can be easily added to the diagnosis process. We adopt a sim-

ilar approach, but unlike fault diagnosis on reachability in Lee’s work, intrusion detection

techniques are more diverse and heterogeneous. In our system, a priori we have no clue of

what the knowledge would be, and dependency relationships can be changed based on new

knowledge. For example, two previously-assumed independent pieces of knowledge may

be discovered to be dependent given new information; or the system might get a piece of

knowledge that it has not seen before.

Several architectures and mechanisms have been proposed todetect intrusion [114, 14,

15, 128]. In [15] Allman et al. proposed a distributed architecture with cross-organizational

information sharing to fight coordinated attackers. Their system consists of “detectives”

and “witnesses”. The detectives are savvy network monitorsequipped with sophisticated

intrusion detection techniques, while witnesses that are widely distributed in the Internet

provide simple observations to detectives. Information sharing between detectives and

witnesses is through loose private matching. Our work improves on three aspects. First,

our framework is more general. Information is generalized and unified as knowledge, be

it the result of heavy-weight detection engines, the resultof simple local detectors, or even

prior information about the network or the attack. We believe that most knowledge comes

from the edges: the existing IDSs. In contrast, the witnesses are relatively simple in their

architecture. Second, information sharing is done by secure knowledge sharing. Third,

we consider (re)organizations of the entities in our framework to improve the efficiency of

agent discovery and knowledge aggregation.

7.4.2 Intrusion Detection Techniques

Our main focus is on zero-day, slow-scanning worms, as in [119, 30, 11]. Such worms

propagate themselves slowly to avoid attention caused by dramatic traffic increase. There

165



are no signatures available as they are completely new.

Many intrusion detection techniques have been developed. Anything based on prior

knowledge, such as signature-based approaches [94, 108, 25], cannot be used against zero-

day worms since there is no prior knowledge available in a zero-day intrusion.

Bayesian network based techniques are used in [40] to imbue end hosts with probabilis-

tic graphical models. With random messaging to gossip stateamong the local detectors,

they show that such a system is able to boost the weak local detectors to detect slowly

propagating worms.

Sequential hypothesis testing (SHT) was first adopted to intrusion detection by Jung

et al. in [64]. The original algorithm was centralized, withdetection performed at the gate-

way. It was decentralized in [30], where hosts exchange their information, and perform

the inference individually in parallel. We identify two issues with this approach. First, it

assumes independence among intrusion attempts and, second, it cannot deal with the case

when a worm interleaves the intrusion traffic with non-intrusion traffic. In our work, we as-

sume dependence among hosts within a region, and assume independence between regions.

To address this dependence/independence, we use a Hidden Markov Model (HMM) to de-

tect intrusion within a region and SHT globally among regions. The HMM allows us to

incorporate our dependency assumption into the regional aggregations, and SHT depends

on our assumption of independence between regions.

Machine learning has been applied to intrusion detection invarious aspects. For exam-

ple, Agosta et al. designed an adaptive mechanism that adjusts the threshold of anomaly

based on traffic [11]. This does not seem to handle alternating traffic either. Our use of the

HMM approach allows us to handle such interleaving, becauseit learns both transition and

emission probabilities from observations, since neither is known a priori.

7.4.3 Communication Protocols

In a centralized intrusion detection system such as [64], all the information is collected and

processed at a central point. In a collaborative intrusion detection system, end hosts need

to communicate with each other to pool their information together.
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Various communication protocols have been applied to distributed intrusion detection

systems. One is centralized where all local detectors report intrusion information to a

global detector. A recent innovation is to use gossiping protocols among local detectors or

multiple global detectors [30, 40].

In [30], decision making is completely distributed. Hosts exchange observations using

an epidemic spread protocol without any organizing structure. When a potential intrusion

is detected by an end host, it forwards an alert tom randomly selected neighbors, and then

each neighbor forwards the alert to itsm neighbors together with its own observations,

and so on. Each host computes the possibility of intrusion using all the information it has

received. This continues unless a decision is made by a host.Usuallym equals 1 or 2 for

scalability reasons. Each host computes the possibility ofintrusion using all the alerts it

has received plus its own conclusion. If a host believes thatthere is an intrusion, it will

broadcast its decision to all hosts. In contrast, a set of global detectors are used in [40] with

a gossiping protocol.

To the best of our knowledge, previous systems have not considered host organization

to achieve more effective detection and efficient communication. Therefore, the commu-

nication can be inefficient. More importantly, intrusion detection techniques often assume

independence in the intrusion attempts amongst all hosts. This is unlikely to be true when

nearby hosts are scanned by a worm. In our method, we make use of the network topol-

ogy and dependency information to organize a region, and consider the dependency among

hosts within each region. In this sense, our method can be seen as a hybrid between a

centralized and a distributed intrusion detection system.

7.5 Summary

The strength of this framework comes from its generality andextensibility to support intru-

sion detection using a wide range of detection techniques and knowledge in a secure and

efficient way. Achieving this goal requires overcoming several challenges, and we address

three key issues: knowledge-based framework, secure knowledge sharing and scalable or-

ganization.
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We developed a prototype to demonstrate the strength of our framework using existing

techniques on the DETER testbed. First, we design a dependency-based host organization

for collaborative intrusion detection. Hosts are clustered into regions based on network

proximity and dependency, and communication among them becomes more efficient.

Second, we apply different intrusion detection techniqueswithin regions and across

regions. At the regional level, due to the proximity and dependency between hosts, we

use a Hidden Markov Model. At the global level, due to the distance and independence

between regions, we use sequential hypothesis testing.

The experiments conducted on the DETER testbed show that ourmechanism can not

only improve the effectiveness of the intrusion detection,but also speed up the detection

process and reduce the communication overhead.

Our experimental results suggest that dependency-based host organization can improve

intrusion detection by providing valuable network-layer and application-layer knowledge

to intrusion detection systems.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The ultimate goal of the knowledge plane is to build a new generation of network that can

drive its own deployment and configuration, that can diagnose its own problems, and make

decisions to resolve them. There are many challenging issues, such as knowledge repre-

sentation and utilization, trust and security, economic incentives, etc. As a step towards the

knowledge plane, in this thesis I propose a network knowledge plane at the network layer,

address several key issues in it, and conduct case studies onthe spec-KPs. According to the

end-to-end arguments [111], only common and essential functions should be put into the

network layer, while in this research I propose to add more functions to the network layer.

I believe that as the Internet becomes increasingly pervasive, more and more applications

need to learn more about network conditions to work correctly and efficiently besides end-

to-end connectivity. Therefore, we need a common infrastructure to provide such network

knowledge and mechanisms, at low cost, for applications, and hence it does not contradict

the end-to-end arguments.

In this thesis, I first propose an architecture that consistsof a network knowledge plane

and, on top of it, several specialized KPs. The NetKP provides network knowledge and

facilities to help construct the spec-KPs. Each spec-KP is specialized in its own area of

interest under application-dependent constraints. I further analyze the organizing criteria

and principles to build such an infrastructure, and proposea region-based organization.
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Second, I focus two important issues in the NetKP. One is cross-region organization. I

design a distributed hash table that leverages network topology knowledge, in which a hy-

brid proximity neighbor selection algorithm helps achievescalability, robustness, efficiency

and non-intrusiveness. The other is a broadcast and aggregation mechanism among regions.

I design a robust tree construction and maintenance protocol using parent functions. The

parent function family allows the efficient construction ofmultiple interior-node-disjoint

trees, thus preventing single points of failure commonly inthe tree structures.

Third, I conduct two case studies on the spec-KPs: experiment management on testbeds

and distributed intrusion detection. In the first case study, I study how to facilitate dis-

tributed experiment management on PlanetLab, specificallyon how different kinds of knowl-

edge are maintained and propagated to resolve node selection problem during the exper-

iment setup. In the second case study, I design a framework for collaboration between

different intrusion detection systems, and implement a distributed intrusion detection sys-

tem on the DETER testbed. The system organizes agents into regions following corporate

network boundaries, applies different detection techniques within and among regions, and

takes advantage of the dependency among hosts.

By designing and implementing the NetKP and conducting casestudies on spec-KPs, I

hope to improve our understanding of the knowledge plane, and to motivate future research

in this area.

8.2 Future Work

The core research in this thesis is to define, design, and demonstrate the network knowledge

plane and its supporting mechanisms that provide the ability to improve network manage-

ment and facilitate network application organization. I have studied several important prob-

lems in the knowledge plane, but many challenging questionsstill need further exploration.

The following is an incomplete list of questions in the future work:

1. Besides providing knowledge and facilities proposed in this work, what other mech-

anisms/utilities should be provided by the NetKP to supportthe spec-KPs? For ex-

ample, anycast or multicast primitives are useful for the spec-KPs to build their own
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specific anycast or multicast mechanisms or the agent discovery mechanism.

2. Spec-KP organization needs to be explored further, especially with respect to request

propagation. Can we find a scalable way to create a gradient forrequest resolution in

the Internet like those in directed diffusion [61]? How do wemanage all dimensions

of knowledge?

3. I believe a standard is needed to describe both facts and cause-effect graphs. This is

important for an agent to be able to figure out, given a problem, what facts to collect,

where to collect those facts, and how to reason using the facts.

4. We made certain choices about the definition of regions. A future piece of research

is to discuss if the choices are the best and what are the alternatives for different

scenarios.

5. There are still many issues we have not addressed in the framework for distributed

intrusion detection, such as the ontology language, a practical PIR method, etc. Al-

though our framework is proposed for intrusion detection, we believe the design is

general enough for many other large-scale network systems that involve different

parties and information sharing among them.
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Appendix A

Convolutions in the Accuracy Analysis

in Chapter 5

As described in Section 5.2.6 in Chapter 5, in order to analyzethe accuracy of this ap-

proach, we make the following assumptions. We divide time into equal intervals of length

Cr, and there will be one refresh/probe in each interval. The time that the refresh/probe

happens is uniformly distributed within each interval. Therefore, the probability density

function (pdf) is constant at1/Cr in each interval. The lifetime of any node follows an

exponential distribution with parameterλl, as the exponential random variable is a good

model for the amount of time until a piece of equipment breaksdown or until an accident

occurs. The aggregation events are a Poisson process with rate parameterλa, as a broadcast

or aggregation request can be considered as an arrival and the Poisson process is natural to

describe probabilistic arrival events.

Consider the beginning of a refresh interval and label that time 0. Let R be the time

interval from 0 until the next refresh. LetL equal the time interval from 0 until the next

failure. Since the lifetime distribution is exponential and thus memoryless, the distribution

of L is again exponential with parameterλl. Let A equal the time interval from 0 until

the next aggregation. Likewise, the inter-aggregation interval is exponentially distributed

and thus memoryless, the distribution ofA is again exponential with parameterλa. For

simplicity, we condition on the aggregation occurring at timea, and that all the different

characteristics of different nodes are independent, unless stated otherwise.
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We consider the conditional probability that the aggregation result is correct from a

single node’s perspective, i.e. its parent has received itsaggregation result.

All the probabilities we talk about below are conditioned bythe fact that the aggrega-

tion occurred at timea. By the total probability theorem, we can split this into different

(sub)cases.

1. Case 1: Parent does not fail within time 0 to timea. Conditioned further on this, the

probability of aggregating correctly for a node is 1. The probability of this case is

P[L > A|A = a] = 1−
∫ a

0
λle

−λlldl = e−λla.

2. Case 2: Parent does fail sometime in between time 0 to timea. The probability

that the parent fails sometime in between time 0 to timea is P[L ≤ A|A = a] =

1 − e−λla. There are two subcases to consider, whether the sequence ofevents is:

failure, refresh, aggregation (Case 2-1), or refresh, failure, aggregation (Case 2-2).

In the latter case the result would be incorrect, so we do not need to calculate it. In

the former case, we make another simplification: the refreshalways has enough time

to complete before the aggregation (so refresh is instantaneous). This can be further

divided into two worlds.

(a) Case A:a ≤ Cr.

In essence the probability we are dealing with now is

P[Aggregation correct for a node|A = a, L ≤ A, a ≤ Cr]

= P[L ≤ R ≤ A|A = a, L ≤ a, a ≤ Cr]

= P[L ≤ R|L,R ≤ a ≤ Cr] · P[R ≤ A|A = a, L ≤ a, a ≤ Cr]

= P[L−R ≤ 0|L,R ≤ a ≤ Cr] · P [R ≤ a|a ≤ Cr]

= P[L−R ≤ 0|L,R ≤ a ≤ Cr] ·
a

Cr

(again,L,R denotes the lifetime and the refreshing-time r.v.s respectively). Let

W denote the random variableL− R. Using graphical calculation of convolu-

tions [22], we identify the following cases:

i. Whenw ≥ a or w < −a, fW is 0 because eitherfL or fR is 0.
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ii. When0 ≤ w < a, the plotfR is shifted to the right. Figure A-1a demon-

strates the integral range ofl in this case.

iii. When−a ≤ w < 0, the plotfR is shifted to the left. Figure A-1b demon-

strates the integral range ofl in this case.

fL

λl

l
a

a

fR

w
r

(a)0 ≤ w < a

0

fL

λl

l

a

a

fR

r
a + w

(b)−a ≤ w < 0

Figure A-1: Convolution in case A. The dashed rectangle showsthe shift offR due tow.

Then we get the following as the pdf ofW after doing the convolutionfW =
∫

l
fL(l)fR(l − w)dl:

fW =































0 if w ≥ a
∫ a

l=w
1
a

1
1−e−λla

λle
−λlldl if 0 ≤ w < a

∫ a+w

l=0
1
a

1
1−e−λla

λle
−λlldl if −a ≤ w < 0

0 if w < −a

Note that in the abovefL(l) andfR(l − w) are under conditionL ≤ a and

R ≤ a, respectively. This evaluates to
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fW =































0 if w ≥ a

1
a

1
1−e−λla

(e−λlw − e−λla) if 0 ≤ w < a

1
a

1
1−e−λla

(1− e−λl(a+w)) if −a ≤ w < 0

0 if w < −a

Therefore,

P[L ≤ R ≤ A|A = a, L ≤ A, a ≤ Cr]

= P[L−R ≤ 0|L,R ≤ a ≤ Cr] ·
a

Cr

=
a

Cr

∫ 0

w=−a

1

a

1

1− e−λla
(1− e−λl(a+w))dw

=
1

Cr

1

1− e−λla
(a−

1

λl

+
1

λl

e−λla)

(b) Case B:a > Cr.

Here, we are after the same probability

P[Aggregation correct for a node|A = a, L ≤ A, a > Cr]

= P[L ≤ R ≤ A|A = a, L ≤ A, a > Cr]

= P[L ≤ R|L,R ≤ a, a > Cr] · P[R ≤ A|A = a, a > Cr, L ≤ R]

= P[L−R ≤ 0|L,R ≤ a, a > Cr] · P [R ≤ a|a > Cr]

= P[L−R ≤ 0|L,R ≤ a, a > Cr] · 1

= P[L−R ≤ 0|L,R ≤ a, a > Cr]

Again, we letW denote the random variableL−R, and carry out the convolu-

tion, and get:

i. Whenw ≥ a or w < −Cr, fW is 0 because eitherfL or fR is 0.

ii. When a − Cr ≤ w < a, the plotfR is shifted to the right. Figure A-2a

demonstrates the integral range ofl in this case.

iii. When 0 ≤ w < a − Cr, the plotfR is shifted to the right. Figure A-2b

demonstrates the integral range ofl in this case.

iv. When−Cr ≤ w < 0, the plot fR is shifted to the left. Figure A-2c

demonstrates the integral range ofl in this case.
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fW =











































0 if w ≥ a
∫ a

l=w
1

Cr

1
1−e−λla

λle
−λlldl if a− Cr ≤ w < a

∫ Cr+w

l=w
1

Cr

1
1−e−λla

λle
−λlldl if 0 ≤ w < a− Cr

∫ Cr+w

l=0
1

Cr

1
1−e−λla

λle
−λlldl if −Cr ≤ w < 0

0 if w < −Cr

Note that in the abovefL(l) andfR(l − w) are under conditionL ≤ a and

R ≤ a, respectively. This evaluates to

fW =











































0 if w ≥ a

1
Cr

1
1−e−λla

[e−λlw − e−λla] if a− Cr ≤ w < a

1
Cr

1
1−e−λla

[e−λlw − e−λl(Cr+w)] if 0 ≤ w < a− Cr

1
Cr

1
1−e−λla

[1− e−λl(Cr+w)] if −Cr ≤ w < 0

0 if w ≤ −a

Therefore,

P[L ≤ R ≤ A|A = a, L ≤ A, a > Cr]

= P[L−R ≤ 0|L,R ≤ a, a > Cr]

=

∫ 0

w=−Cr

1

Cr

1

1− e−λla
(1− e−λl(Cr+w))dw

=
1

Cr

1

1− e−λla
(Cr −

1

λl

+
1

λl

e−λlCr)

We can now calculate the probability of the aggregation being correct from a single

node’s perspective, applying independence:

P[Aggregation is correct for a node|Aggregation occurred ata]

:= P[correct|A = a]

= P[correct|A = a, L > A] · P[L > A|A = a]

+ P[correct|A = a, L ≤ A] · P[L ≤ A|A = a]

= 1 · e−λla + P[correct|A = a, L ≤ A] · (1− e−λla)

177



At this point, depending on whether we are in case A (a ≤ Cr) or case B (a > Cr),

the result is going to be different. Recall that we are fixingA = a, so we are either

in case A or case B.

In case A (a ≤ Cr) we have:

PA = P[correct|A = a]

= 1 · e−λla +
1

Cr

1

1− e−λla
(a−

1

λl

+
1

λl

e−λla) · (1− e−λla)

= e−λla +
1

Cr

(a−
1

λl

+
1

λl

e−λla)

=
1

Cr

(a−
1

λl

) + (1 +
1

Crλl

)e−λla

and in case B (a > Cr) we have:

PB = P[correct|A = a]

= e−λla +
1

Crλl

e−λlCr −
1

Crλl

+ 1

Note that the inter-arrival time between the aggregation events is exponentially dis-

tributed with parameterλa. Therefore, we can combine the two cases and get the final

formula. LetZ be the event that the aggregation is correct for a node. Table5.1 shows the

probabilities of several typical settings.

P[Z] = P[Aggregation is correct for a node]

=

∫ Cr

0

PAfA(a)da +

∫

∞

Cr

PBfA(a)da

=

∫ Cr

0

(
1

Cr

(a−
1

λl

) + (1 +
1

Crλl

)e−λla)λae
−λaada

+

∫

∞

Cr

(e−λla + 1−
1

Crλl

+
1

Crλl

e−λlCr)λae
−λaada

=
1

Crλa

−
1

Cr(λa + λl)
+

λa

λa + λl

−
1

Crλa

e−λaCr +
1

Cr(λa + λl)
e−(λa+λl)Cr

To understand the final result, let us look at several extremesituations:
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1. Whenλl → 0, P[Z] → 1. λl → 0 means the node life time goes to infinity. P[Z]

approaches 1, because the aggregation will always be correct when there is nearly no

node failures.

2. Whenλa → ∞, P[Z] → 1. λa → ∞ means that the inter-aggregation interval goes

to 0. In this case, P[Z] approaches 1 because when the aggregation event happens

very frequently, the probability that it happens before thenode failure approaches 1.

3. WhenCr →∞, P[Z] = λa

λa+λl

. WhenCr goes to infinity, the probability of aggregat-

ing correctly is equal to the probability that the aggregation event happens before the

node failure event. As the two events are modeled as independent Poisson process,

the merged process is a Poisson process with rateλa + λl, and the probability that

the first arrival is an aggregation event isλa

λa+λl

.
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Figure A-2: Convolution in case B. The dashed rectangle showsthe shift offR due tow.
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