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Abstract

In designing and building a network like the Internet, wetomre to face the problems of
scale and distribution. With the dramatic expansion ineseald heterogeneity of the Inter-
net, network management has become an increasingly diffask. Furthermore, network
applications often need to maintain efficient organizaaomong the participants by col-
lecting information from the underlying networks. Suchiindual information collection
activities lead to duplicate efforts and contention fomwak resources.

The Knowledge Plane (KP) is a new common construct that gesvknowledge and
expertise to meet the functional, policy and scaling rezugnts of network management,
as well as to create synergy and exploit commonality amongymatwork applications.
To achieve these goals, we face many challenging probleralsiding widely distributed
data collection, efficient processing of that data, widelakdity of the expertise, etc.

In this thesis, to provide better support for network mamaget and large-scale net-
work applications, | propose a knowledge plane architectbat consists of a network
knowledge plane (NetKP) at the network layer, and on top,ahiiltiple specialized KPs
(spec-KPs). The NetKP organizes agents to provide valuaideledge and facilities
about the Internet to the spec-KPs. Each spec-KP is spesmain its own area of in-
terest. In both the NetKP and the spec-KPs, agents are agghiito regions based on
different sets of constraints. | focus on two key designessin the NetKP: (1) a region-
based architecture for agent organization, in which | desig efficient and non-intrusive
organization among regions that combines network topology a distributed hash table;
(2) request and knowledge dissemination, in which | desigobast and efficient broad-
cast and aggregation mechanism using a tree structure aragians. In the spec-KPs,
| build two examples: experiment management on the Plabetitsitbed and distributed
intrusion detection on the DETER testbed. The experimesulte suggest a common ap-
proach driven by the design principles of the Internet andenspecialized constraints can
derive productive organization for network managementagppulications.

Thesis Supervisor: Karen R. Sollins
Title: Principal Research Scientist, Computer Science artifidal Intelligence Labora-

tory
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Chapter 1

Introduction

1.1 Background

The Internet began in the 1960s. At that time, multiple nekeacoexisted, including
ARPAnet, UUCP, etc. TCP/IP was developed to unify these nésweo that they could
communicate with each other. With the commercializatiothefInternet in the late 1980s
and early 1990s, the Internet has grown exponentially isatde and heterogeneity. The
number of users has increased from a few in 1960s to more thamiion by 2007; the
coverage has expanded from a few universities in the U.9nos every country in the
world; the devices connected to the Internet have evolvad & few terminals to millions
of computers, PDAs, cell phones, robots, and even coffednimes; the applications have
increased from email to web, file sharing, online busineasjigg and many others. The
Internet has become an indispensable component of ourtgocie

Due to its extraordinary success, the Internet has becocneasingly global, crossing
domains of responsibility, as well as having been pusheplg&®o our daily life and very
personal environments. It has also evolved from a smallplenand friendly network to a
large and complicated environment where entities haverifft and sometimes conflicting
objectives. Viruses, worms, and spams also leverage teenkitto propagate themselves
to their advantage. Today the Internet infrastructure isdefation of more than 15,000
routing domains, each of which is under its own operationadinistration. The Border

Gateway Protocol (BGP) connects those networks into theeriet.

17



1.2 New Challenges

Traditional network management has been focusing on magdge elements in the net-
work such as routers and switches. With the increasing tleasd expansion of the net-
work, the problem space is becoming much larger and more Bxnpnd has clearly
expanded into domains of supporting network applicatiohiserefore, bynetwork man-
agementwe mean a much broader set of problems than the traditiomaladoof core
network management.

For purposes of explanation, we partition the space of nétw@anagement into man-
aging the network resource and supporting network appdicat We will talk about these
two topics separately. We further discuss an example, Isedatas an interesting feature:
It essentially happens in the domain of application levehaggement, but it crosses the
boundary into the traditional network management as well.

To facilitate the discussion, | use the term “agent” to diégca participant that works
together with others to perform a task. Agents function dmeieof users, service providers,
etc, and they do a broad range of tasks, ranging from simplgatng packet traces to run-
ning sophisticated intrusion detection techniques. Amagan be a local intrusion detector
on an end host, a traffic monitor on a gateway, a daemon thaide® network topology
information, etc. An agent may issue requests to other agextrequest” is a message
that looks for an answer to a problem, or asks for an actioretortgertaken. For example,
a request may be sent by a local detector to collect intrudeiaction status from many
other detectors for an aggregate analysis. | will discussdherms in detail in Chapter 3.
The problem we address in this thesis is organizing agentsder to achieve a broader

definition of network management.

1.2.1 Network Resource Management

The Internet was originally designed to be a decentralimaalti-administrative structure
that combines a simple, transparent network with rich grsdesn functionality [34, 111].
The core network is simple and transparent in the sensettbatyi deals with one task:

to carry packets without knowing what is in the packets. Rind-system functionality is

18



achieved by end hosts at the edge of the Internet, who ulatkersthat the goal is and what
the applications do in their contexts. This transparend/rach end-system functionality,
however, becomes a nightmare for network operators who geatie network at the low
level, because they cannot specify the high level goal on eskate the high level goal to
the low level operations. This gap leads to a difficulty wHemédge recognizes a problem
but the network has no idea about what should happen. Toadity, network analysis,
diagnosis, and management have been done manually by asmrdier of people. As the
Internet continues to grow in reach and in density, therdrameasing problems with un-
derstanding how it works, where it runs into problems, and tenaddress those problems.
As a result, those traditional manual approaches require@easing number of people to
be involved, and the management task itself becomes inogdasomplex. Furthermore,
some problems are not in the unique domain of network managenthe definition of
network managemeid expanding. Even within the scope of the netwar&twork man-
agementefers to a broader spectrum of problems that is not limibe@titer configuration

and other traditional network management tasks.

Let us consider a network diagnosis example. When a web bragsxperiencing
slow access to a web page, how can the root cause of the praglédentified and fixed,
if possible? If network operators or IT support staff are ietiately available, they may
be called upon. However, this is usually not the case; otiserwnany more support staff
will be needed. If a user wants to diagnose the problem by difimse can first check
whether the local host is misconfigured. If not, he needs éxkkvhether the website’s IP
address is correct, i.e., whether the DNS is working. Thecheeks whether the path from
the end host to the website is working, and finally whethentiee server is overloaded.
We can see that considerable knowledge about the netwofigacation and conditions
and real-time measurement are needed for the diagnosise ageb access requires many
interdependent components to work together correctly. €oamponents are not easy to
measure or diagnose from the user side, such as the pathtioaraind the status of the
web server. Therefore, more powerful and intelligent metdras are needed to provide

the necessary knowledge about each component and to aettiteatiagnosis process.

Actually the problem is even worse, because in general tbkl@m can be caused by

19



an aggregate behavior of multiple components, as opposeditmle component analyzed
above. For example, if every link has a small packet loss theeaggregation of the link
losses can cause the path to fail intermittently. This faalinot be traced back to any
single device, and requires collecting information fromltiple places (links along the

path in this example).

Another diagnostic approach is for agents on end hosts talbmwhte with each other
to confine the scope and the cause of the problem. For exarhpiany end hosts visiting
the web server from different places of the Internet all eigrece slow browsing, then it
might be concluded that the root cause is very likely a probhath the web server itself;
if only a set of neighboring hosts are having the same profileen it is likely a local area
network problem. Therefore, it is very valuable to have a Ina@ism that helps agents

discover each other and collaborate together based on rlessope/topology.

Part of the problem space that has received lots of attestidar is single source fault
diagnosis. | am more interested in the other side of suchl@nad In this thesis, | study
problems that involve multiple components simultanegustyl focus on the collaboration

among many agents in order to solve problems more effegtivel

1.2.2 Network Application Support

An orthogonal issue to network management is the suppodeteby new network appli-

cations. Those applications are widely distributed actbednternet, and often maintain
their own connectivity graphs among their participants.amples include overlay net-
works, content distribution networks, end system multicpser-to-peer networks, pub-
lish/subscribe systems, etc [16, 33, 49, 67, 102]. Routireglays build their own routing

graphs to route around congested paths with comparablecorlestter performance [16];
end-system multicast constructs the application-layeltioast tree to transmit video ef-
ficiently [33]; nodes in peer-to-peer networks probe eadteoto find nearby neighbors
to improve lookup performance [49]. Currently each appilarabuilds and maintains its
own connectivity graph by probing latency, available baiutilay loss rate or other met-

rics actively between hosts, which often incurs significast in the network as redundant
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operations are performed by them individually. Due to leditnetwork resources, such
redundant operations cause contentions for resourceabihty of the network traffic, and
many other potential problems [10].

To summarize, the new features common in many network agipits are as follows:

e The systems are widely distributed in the Internet, and amaéd as a set of entities

that collaborate to achieve certain functionality undensaonstraints;

e They need information from the network layer to organizenbkelves efficiently, and
there is a commonality in the structure and nature of theepathat it is both useful

and possible to abstract out;

e They involve a variety of expertise and reasoning in ordehaodle widely dis-

tributed, incomplete, possibly contradictory and inaeteiinformation.

1.2.3 A Motivating Example

For motivation, let us consider a specific example: intrasletection. Please note that this
is just an example used to demonstrate the challenges waddikss in this thesis. These
challenges are common in many other problems in today’sfiate The same example will
be carried out through the following chapters, and | willadiss it in depth in Chapter 7.

In this example, we focus on zero-day and slow-scanning wofnich worms are es-
pecially difficult to detect due to two features. First, therms are completely new, which
means no existing signatures or behaviors are known. Thasy rexisting intrusion de-
tection systems that depend on signatures do not work. Secaiike traditional worms
that propagate aggressively in the Internet, slow-scaywiorms propagate slowly to hide
themselves from detection. Although a gateway is a natdealepto inspect aggregated
traffic, without knowing the signature beforehand, it isch&w observe strong traffic pat-
terns from those slow-scanning worms. To that end, sincbe¢haviors of zero-day worms
are not known a priori, the best location for initial att@mtis the local host itself, because
only the end node can possibly know whether slightly anomstmaffic is a potential attack

or only a new application, in the context of local behaviarwever, at the local node,
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one loses the aggregation effect of repeated or simultanleaulevel anomalies. In addi-
tion, it is difficult to make all local detectors strong enbugecause they see only a small
percentage of the global traffic and cannot devote many ressuo detection. Therefore,
there is a need for those weak local detectors to collabeffitgently, so that the system
can aggregate the results of weak local detectors to getalergerspective and to find

stronger signals. This idea is appearing increasingly eioplaces as well [59, 60].

Based on the above analysis, we face the following chalengeese challenges are
common in many network management and network applicaiiotmslay’s Internet. First,
a more effective detection approach is needed. As discudseek, detectors at the gate-
ways cannot detect such worms effectively, nor can an iddadi local detector, so we
propose to aggregate information from many local dete@ndsconduct an aggregate anal-
ysis. To generalize this idea, let us think about the ageritss Internet and the knowledge
they have. There are many detectors with various capa&siiand many different kinds
of useful knowledge in the network. For example, some ag®iatg have the expertise to
analyze aggregate data, and some may have knowledge akoutiiork topology and
configuration information that can be used to cluster thalldetectors together. Examples
of questions to be analyzed are: How can those local detest@gents with similar inter-
ests find each other in the first place? How can the detectalsifennecessary knowledge
and techniques to conduct the aggregate analysis? To adtie=e questions, we discuss
the agent organizing criteria and principles in Chapter 3.fiiner propose a mechanism
that supports an agent to issue a broadcast request to geraisao that those with similar

interests can find each other.

Second, the overhead of the detection approach must be l@@od approach should
not overburden the network. We want to minimize messageimmssd avoid flooding
schemes that generate excessive redundant messages. @te aeaso is to organize
detectors based on their network proximity. For instanogmrise networks are reflected
in topological neighborhoods and we can cluster detectotise same enterprise networks
together, and detectors outside the enterprise networksbeaorganized based on the
Autonomous System boundaries. In this way, most commuaoitaappens among nearby

nodes. Such network knowledge is useful in many other amad) as server selection,
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application layer multicast, and file sharing [49, 58]. Téfere, we propose to build a
new infrastructure to provide knowledge about the Interastdiscussed in Chapter 3. We
further discuss how to achieve efficiency and non-intrusdgs in the organization of a
large number of agents in Chapter 4.

Third, the approach should not create a bottleneck in thear&tor cause huge traffic
explosion at a single point. For example, if we constructeg tstructure to aggregate
information and each local detector is a node in the tree, @etwo ensure that there
iIs good load-balancing, in the sense that no node in the treald be responsible for
forwarding a disproportionate amount of network traffic @vé a large number of child
nodes to take care of. We present a broadcast and aggrega¢icdmanism based on a
balanced tree structure to propagate requests and knosviedghapter 5.

Finally, if detectors belonging to multiple parties areatwed, very often local control
is needed to determine what information to be exposed, as thay be various kinds of
constraints, such as security, policy and economics intpbge¢hose parties. For example,
an agent may allow the complete packet trace to be sharedvhiéns, while another may
only allow the sharing of packet headers or even just repbsther it detects an attack.

We discuss this issue in Chapter 7 to ensure those policieseffective way.

1.3 The Knowledge Plane

The work presented here falls into the paradigm of the kndgdeplane. To make the
network more intelligentthe knowledge planwas proposed by Clark et al. in [35]. In
network architecture, we recognize two architecturalsloms: a data plane over which
data is transported, and a control plane that manages theldate. The knowledge plane
(KP) is a new higher level construct in network architectwentrasting with the data and
control planes. Its purpose is to provide knowledge and rigeeto enable the network
to be self-monitoring, self-analyzing, self-diagnosiagd self-maintaining. At an abstract
level, the knowledge plane gathers observations, constrand assertions, and applies
reasoning to these to generate observations and respaigas. physical level, it runs on

hosts and servers within the network on which knowledgedsest The KP is a loosely
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coupled distributed system of global scope. The KP brings. mqmber of challenging
problems, such as knowledge representation and disseampatcorporation of Al and
cognitive techniques, conflict resolution, trust and siguhow to design a distributed
knowledge base for the networks, how to incorporate intdrdw@mework pre-existing sets
of specialized data and tools for network management, etc.

We believe that the knowledge plane is an appropriate asctsto address the new
challenges from network management and network appligsitiddased on the types of
knowledge at the network layer and the upper layer, as weli@srganization suitable for

those layers, | propose an architecture that consists dbtlwsving components:

1. Anetwork knowledge plane (NetKHhe NetKP is an application-independent mech-
anism at the network layer that provides knowledge abowtaorttopology, condi-

tions, policies, etc. The NetKP supports network managésrah applications.

2. Specialized KPs (Spec-KPshhe spec-KPs are application-specific, and specialize
in various areas, to achieve certain functionality of neknmanagement or applica-

tions, under a set of constraints.

To design and build the NetKP and the spec-KPs, we identéyfalowing design re-
guirements: scalability, to address the size and scopesdhtiernet; efficiency, to provide
responsiveness to requests; robustness, to enable theddRtioue to function as best pos-
sible, even under incorrect or incomplete behavior; ndnigiveness, to keep the KP from
impinging significantly on the resource usage intendedHerdustomers of the network.
Spec-KPs also need to satisfy additional constraints fioegir bwn areas of interest, and
have local control to support local networks and resourngbeir needs for privacy and
other forms of local control, while enabling them to cooperfor mutual benefit in more

effective network management.

1.4 Thesis Contributions

In this thesis, | make the following contributions.
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First, | propose a new architecture for network managemedtagpplications based on
the concept of the knowledge plane. The architecture ctenefsa network knowledge
plane and, on top of it, multiple specialized KPs. The Netk#¥ies network knowledge
and facilities to help construct the spec-KPs. Each spedskpecialized in its own area
of interest under functionality, policy and other congttai

Second, | analyze the criteria and principles to organizeNbtKP and the spec-KPs,
and propose a region-based agent organization to suppzse ttriteria and to operate
within the principals.

Third, | address two important issues in the NetKP. One iscthss-region organiza-
tion, in which | design a distributed hash table that levesagetwork topology knowl-
edge to achieve efficiency and non-intrusiveness. The atleebroadcast and aggregation
mechanism among regions, in which design a robust and eiffitiee construction and
maintenance protocol using a novel idea of the parent fancti

Fourth, I conduct two case studies on the spec-KPs: expetima&nagement on testbeds
and distributed intrusion detection. In the first case studstudy how to facilitate dis-
tributed experiment management on PlanetLab, specifioallyow different kinds of knowl-
edge are maintained and propagated to resolve the nodéselgoblem during the exper-
iment setup. In the second case study, | design a knowledgeddframework for collabo-
ration between different intrusion detection systems,iemmement a distributed intrusion
detection system on the DETER testbed.

Fifth, during the research | also developed several insigfeit are not limited to the
knowledge plane and can be applied to many other areas iardpe-$cale distributed sys-

tems.

e Latency approximation. | use the number of Autonomous Jyg#&S) hops as an
approximation of the end-to-end latency, and take the A8rbgeneity into consid-
eration. The proposed hybrid proximity neighbor seleci@gorithm achieves the
lookup performance comparable to proximity neighbor seecwhile significantly

reducing the probing traffic.

e Parent function. The parent function provides a flexible wagonstruct and main-
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tain a tree structure, as the tree properties are tunabhg uke parameters in the
parent function. The parent function | proposed forms aruadd tree that is robust
to node churn and can be optimized according to network tapolit also allows an

efficient construction of multiple interior-node-disjobittees, thus alleviating single

points of failure.

e Dependency-based intrusion detection. To detect zer@adglow-scanning worms,
| design an approach that allows for partitioning along @olboundaries and that
applies different detection techniques within and acreggons to capture the de-

pendency among end hosts.

1.5 Roadmap of the Dissertation

The dissertation is organized as follows. Chapter 2 dissusssearch work in several re-
lated areas, including network architecture, overlay oekvorganization, and our previous
research on regions. Chapter 3 presents the system arah&ectd the organizing princi-

ples of the NetKP and the spec-KPs. Chapter 4 presents aregiss-organization in the

NetKP that combines network topology knowledge and a disteid hash table. Chapter 5
designs an aggregation and broadcast mechanism for reapobkhowledge dissemination
among regions in the NetKP. Chapter 6 presents a case stud§periraent management
on PlanetLab, to demonstrate how different types of knogeéegre maintained and prop-
agated based on their features. Chapter 7 proposes an amtrsiection framework, and
presents a distributed intrusion detection system on th&HMEtestbed. Chapter 8 con-

cludes the dissertation and discusses the future work.
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Chapter 2

Related Work

There are many categories of related work to the knowledgaeeylas many issues are
involved in this work. In this chapter, | present an overvieinetwork architecture, over-
lay networks, broadcast and aggregation mechanisms. Me@fe related work to each

chapter will be discussed in those chapters.

2.1 Network Architecture and Management

In the original Internet architecture, distributed managet of networks under different
administrations was not given high priority, as other gpsailgh as multiplexed utilization
of existing interconnected network, survivability, angbpart for multiple types of service
[34]. However, as the Internet increases its size and hgeesty, and becomes an indis-
pensable part of the infrastructure, network managemenbbeome a hard problem. That
is why the knowledge plane is proposed to make the netwoflnsahageable [35].

New architectures have been proposed to meet the challengesvork management.
Greenberg et al. proposed a clean-slate approach to neteatkol and management, the
4D architecture [51]. 4D employs a centralized top-downhudtguided by three prin-
ciples: Specify network-level objectives for performanoaiability, and policy; Collect
timely and accurate network-wide views of topology, trafind events; Use direct control
on switches instead of hardwired logic. 4D decomposes thetifons of network control

into four planes: a decision plane that is responsible feating a network configuration; a
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dissemination plane that gathers information about nétwtate to the decision plane, and
distributes decision plane output to routers; a discovéane that enables devices to dis-
cover their directly connected neighbors; and a data planéfwarding network traffic.
4D separates the decision making and the placement of themafion and the execution,
and suggests a centralized method for the decision makieg.ofncur with the value of the
separation of the functionalities, and focus in this workhonv the expertise is organized
efficiently in a distributed way. 4D is proposed for netwodatrol and management within
an administration, while our work aims at the global Inténvbere thousands of different
administrations coexist. As a result, our focus is more ow hgents are organized into
regions and how regions collaborate to resolve network Iprab and facilitate network

applications.

Feamster takes a different approach towards network mamage specifically on In-
ternet routing [45]. Instead of fixing the problems afterdsrhe proposes to define a
specification for correct behavior of a routing protocol @rhs of path visibility, route
validity, and safety. Furthermore, he develops techniqoeheck whether a routing pro-
tocol satisfies the correctness specification within a ndtwead whether the interactions

of multiple networks violate the correctness.

iPlane [75] is a common infrastructure for collecting netkwdata. Compared with
many of its predecessors, iPlane provides a richer set ébqpeance characteristics using
several clustering techniques. iPlane and many otherndse#orts, including this work,
realize that there is a set of common functions that shoulgrtw@ded to network manage-
ment and applications, instead of letting each individymdli@ation implements its own
functions. iPlane only focuses on network performancermédion, while the work in this
thesis provides a broader set of functions. iPlane emplagntalized way to manage and
disseminate the knowledge, which may not scale to a largébrunf participants. In this
thesis, we choose a distributed model to organize agentsemadve requests, as not all
gueries go to the same place and the set of resource to examyaot overlap with each

other.

Lee proposes CAPRI, a common architecture for distributedtbgbilistic fault diag-

nosis on the Internet [69]. CAPRI addresses several chaemgluding the extensible
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representation and communication of diagnostic inforamgtithe description of diagnos-
tic agent capabilities, and efficient distributed inferenét is an open question where the
knowledge comes from. This thesis does not address thierends problem, and rather
focuses on scalable and efficient agent organization faregiopnd knowledge dissemina-

tion.

Steinder et al. discuss various techniques and algorithmisiternet fault diagnosis
in [121]. The diagnosis algorithms come from many differ&alds including decision
trees, neural networks, graph theory, etc. They also pepokierarchical partitioning
of the problem space [120]. In that approach, a diagnose geardivide the diagnosis
into multiple domains, and each domain performs local disgnseparately. Then local
diagnosis results are collected and analyzed by the managkeaw a global conclusion.
In a similar spirit but more broadly, | propose to diagnosswork failures from the end-
to-end point of view, so our approach crosses multiple ngtwayers and services, not just

about routing.

Ballani et al. propose Complexity Oblivious Network Managgin(CONMan), a net-
work architecture in which the management interface of-gi¢aiae protocols includes min-
imal protocol-specific information [19]. CONMan restrictgetoperational complexity of
protocols to their implementation and allows the managemkme to achieve high level
policies in a structured fashion. Thdetwork Managers (NMsjre similar to theagents
in our work that manage network management. So far CONMan ées focusing on a
single NM and its modules. Our work in this thesis tries toredhe scalability problem
when we have many (maybe millions) of agents distributedhénlhternet, instead of the
implementation of specific agents. Furthermore, CONMan doédeal with non-locality,
and is limited to a local domain. In contrast, we addressigmwork how agents organize
themselves into regions, and how agents collaborate with ether within a region and

among regions.
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2.2 Agent Organization and Overlay Networks

A research effort closely related to the NetKP is the routingerlays [82, 83]. Routing
underlays use network topology information to eliminatduredant virtual links in over-

lays to achieve scalability. Both routing underlays andNleeKP try to expose network
topology knowledge to the applications. However, theresareeral differences. First, the
NetKP is designed to be part of the KP under a general framewad is to be extended to
accommodate other kinds of knowledge. Second, it providae tiknowledge than routing
information. Third, it aims to help many applications infdient ways, not only routing

overlays.

Many peer-to-peer networks provide a robust and scalagkeazation among dynamic
nodes. Based on how the nodes are connected to each othemgRa&kks are classified
into two kinds: unstructured, such as Napster [85], GnatplB], KaZaA [66], Freenet
[36], and structured, such as CAN [104], Chord [122], TapeElB8], or Pastry [109].
In unstructured P2P networks, nodes are connected someawndiaarily, often without a
strict or well-defined structure. Structured P2P netwodspecially distributed hash tables
(DHTSs), employ a globally consistent protocol to ensure émy node can efficiently route
a search to its peers. A DHT is a distributed resolution mersma for P2P systems that
manages the distribution of data among a changing set osrtmdmapping keys to nodes.
DHTs allow member nodes to efficiently locate stored resesity name without using
centralized servers. A large number of DHTSs, such as CAN Chtagestry and Pastry,
have been proposed. These systems are expected to evebeeiime the fundamental
components of large scale distributed applications in & future, and would therefore
require an aggregation/broadcast functionality. In thagky | use a combination of the

DHT and network topology in our region organization, as désd in Chapter 4.

Another related work is large-scale measurement and mamitonfrastructures, which
usually manage a large number of monitoring hosts. Many oreagent and monitoring
infrastructures have been proposed and built so far [5738]. ITAMI [57] is a measure-
ment infrastructure that is both topology-aware and suigpeaarious scheduling mecha-

nisms. But the topologies in TAMI are source and sink tredg, anainly for bandwidth
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measurement purposes. Those infrastructures only suppseit operations among their
members, mostly monitoring and probing. Our mechanism make of network topology
such as autonomous systems information. Agents are oegghbased on their topological
locations. In contrast with the simple behaviors in the pmes measurement and moni-
toring infrastructures, agents in the knowledge plane cdlalzorate to perform intelligent
reasoning. The prototype mechanism in this thesis is aimde ta step forward from the
simple infrastructure and distributed query processimgara the KP. KP will need to build
on these and new measurement monitoring capabilities asrpimdings as well as possi-
bly supporting the management and organization of suchlalis¢d tools. NetProfiler [89]
uses a peer-to-peer organization to facilitate end-tofeultl diagnosis using aggregation.
Semantic overlay networks [124, 37, 26] are similar to tilseés we have in organizing
agents in the network applications in that both focus on tissemnination and sharing
of complicated knowledge that requires semantic undedstgn Interest-based overlay
networks such as [118] are similar to this work in that peeesgy to connect with others
with similar interests. In that work, a node caches the mi@tion about other peers which
provided useful results to recent queries, as those pegesdieown similar interests, and

are likely to provide good results for the future queries.

2.3 Propagation and Aggregation

Publish/subscribe systems address problems similar te [@1, 102]. There are three
kinds of pub/sub systems: unicast, single-identifier ma#t and content-based multicast.
Unicast systems transmit notifications directly to sulisms over the Internet’s existing
mechanisms. Single-identifier multicast systems sendagessto discrete message chan-
nels to which customers with identical interests subscriige most popular approach is
content-based multicast systems, which forward messaggedion the text content of the
messages. The problem in the KP is more closely related teetbased multicast than
the other two in that in our problem, requests and knowledggdrto match each other
based on content. However, our problem is more complicagmélse there are many

heterogeneous knowledge sources with different inteeesiscapacities.
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Search has been an important component in many networkeensysespecially in
peer-to-peer systems. For example, Distributed Hash Jalsle hashed IDs to find specific
files [122, 104, 133]. Gnutella [49] uses scoped broadcastegfwords to search for
contents, which is similar to our propagation problem. Hesvein the KP, more complete
representations of requests and knowledge, and more siophesl search functions are

needed, such as range search, fuzzy pattern match, etc.

Content routing networks support name-based routing inrterret [52, 9]. In [52],
routers need to support name-based routing which requaneerbased aggregation. How-
ever, the current name aggregation mechanism is not sealéhé KP does not require the
routing infrastructure changes, but we will need similag@gation functionality to aggre-
gate requests among agents in both the network layer anggtieation layer. Intentional
naming system (INS) [9] integrates name resolution and agesdelivery by constructing
a spanning-tree overlay for anycast and multicast. INS eyggllate binding”, where the
binding between the name and the network location is madessage delivery time rather
than at the request resolution time, to handle mobile andmynisituations. However, INS
is designed for intra-domain deployment and does not sodleet Internet scope, and the

“late binding” is expensive for content distribution.

Directed diffusion is an important data dissemination gayan in sensor networks [61,
73]. In directed diffusion, a sensing task is disseminatedughout the sensor network as
an interest for named data, and this process sets up gradoeditaw events that match the
interest. Then events start flowing towards the originatbthe interest. We have a similar
goal in the knowledge plane: how agents organize themstlvesolve requests. However,
sensor networks are different from the Internet in that sengtworks are smaller in the

scale and simpler in the structure.

The semantic web is a task force aimed to make web pages tengable by com-
puters, so that websites can be searched in a standardized WM potential benefits
are that computers can harness the enormous network ofriaf@n and services on the
Web. The semantic web uses the descriptive technologiesirmsDescription Framework
(RDF) and Web Ontology Language (OWL), and the data-cerdtisiomizable Extensi-
ble Markup Language (XML), to address the machine-reaitgipitoblem. These existing
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techniques help us with the knowledge representation enepbut they cannot solve the

propagation problem.

2.4 Region Research

In my previous research, the Region Project [98, 117] ideell#o this thesis. In that work, |
designed and implemented a region mechanism for peerdpsgstems to improve lookup
and replication performance using Autonomous System inédion [71]. Theregionsin
that work can be viewed as a simplified prototype of the KR,esnegions provide the appli-
cations with the underlying network topology informatidat lacking in the sophisticated
support that the KP provides.

Similar ideas have been proposed in other research fieldseXample, in sensor net-
works, there have been research on microprogramming aiohmédevel [86]. In [86], a
region represents a collection of signals, and is defineénmg of broadcast hops. Our
regions exist at both the network level and applicationllemed can be defined in different
criteria. Whitehouse et al. proposes the concept of “Hood12Y]. In Hood, a neighbor-
hood is fundamentally a local construction at each nodegirirast to the regions in our

work where membership is shared and manipulated amongeatidbes in the group.

2.5 Summary

| have discussed several research areas that are relatee kmawledge plane. In some
later chapters | will discuss related work specific to theeagsh problems addressed by

those chapters in more detail.
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Chapter 3

System Design

To address the challenges in network management and neappiications, | propose to
construct an application-independent network knowledgegat the network layer, and
on top of it, to build the application-dependent spec-KRghis chapter, | present the sys-
tem architecture, and describe each component in the ecttwe. Section 3.1 presents an
overview of the system architecture, and defines severabitapt concepts. Section 3.3
describes the network knowledge plane in detail. SectiémBefly discusses how to orga-
nize the spec-KPs using network knowledge and area-spkoibiwledge and constraints.

Section 3.5 summarizes this chapter.

3.1 System Architecture

3.1.1 Overview

The knowledge plane provides us a unified approach that eages edge involvement
from a global prospective. Based on the idea of the knowlegilgee, | propose to build
a network knowledge plane (NetKP) at the network layer andopnof it, multiple spe-
cialized KPs (spec-KPs), each specialized for one netwakagement task or a network
application. Their relationship is demonstrated in Fig8f&. Both the NetKP and the
spec-KPs are composed of agents, and agents may be in alsihglemultiple KPs at the

same time. In each KP, agents are organized into regionsdtalslity and efficiency.
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We propose the division between the NetKP and the spec-K@sftollowing reasons.
First, the NetKP is at the bottom level of the Internet, andas dependent on any other
layers. In order to do that, we base its organization on tliedying, pre-existing network
structure, specifically network topology. On the other hdretause the spec-KPs are built
on top of the existing structure, we allow for more diversifierganization based on high

level requirements, more sophisticated functionality eodstraints.

Network Applications Spec—KPs

Network Management
Spec—-KPs

Network Knowledge Plane
(NetKP)

Figure 3-1: The system architecture. The underlying is tretKIR that provides
application-independent network knowledge and facgit@n top of it, there are two parts:
network management spec-KPs and network application Kpsc-Network management
spec-KPs is needed to support some network applicationrlspsc

The NetKP is designed to provide an increasing set of capabito network man-
agement and applications in a scalable and efficient way.khbe/ledge provided in the
NetKP includes network topology, network conditions (fety bandwidth, etc), policy
information, etc. The NetKP also provides facilities toghafients in the spec-KPs to dis-
cover each other, organize themselves, and communicattaredt ways (unicast, broad-
cast, etc). For example, the performance downgrade disgmoShapter 1 can use the
knowledge provided by the NetKP to find out network condiicimd others who are ex-
periencing similar problems, and collaborate to figure ¢t toot cause. To build such
an infrastructure, | will address two problems: one is therdgorganization using net-
work knowledge, and the other is a broadcast and aggregatgmmanism for knowledge
dissemination. Those two topics are addressed in the nextihapters.

On top of the NetKP, there are multiple specialized KPs fawonek management and
applications, using the knowledge and facilities provididthe NetKP. The organiza-

tions of the spec-KPs are constructed and maintained usmdriowledge provided by
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the NetKP, knowledge in their specific areas, and other canss. Each spec-KP spe-
cializes in one network management task or application. example, agents interested
in the fault diagnosis form a spec-KP that helps diagnose&ar&tfailures or performance

downgrade, while agents interested in security form amugim detection spec-KP.

Note that we treat network management as the spec-KPs orf tbhp bletKP, instead
of part of the NetKP, for the following reasons. The NetKPygoiovides basic knowledge
and primitives about the network conditions, and does ndopa sophisticated reasoning.
Network management requires the understanding of higél-levjectives and constraints
that cannot be easily captured by the NetKP. Therefore, @at tretwork management as

separate spec-KPs on top of the NetKP.

3.1.2 Agents

An agent-based model is a conceptual paradigm for analymolglems and for design-
ing systems, for dealing with complexity, distribution,daimteractivity, while providing

a new perspective on computing and intelligence [18, 24, WH choose an agent-based
model for the following reasons. First, entities in our gystare autonomous and represent
different parties. Some represent end users, some represgyork operators, some rep-
resent network application developers, and each has itsgpah Second, entities collect
and manage knowledge, learn, and reason, based on theirapabitties. Third, entities
interact with each other to achieve their goals. Therefareagent-based model fits our

needs.

Both the NetKP and the spec-KPs are composed of agentsslinésisan agenis de-
fined as an autonomous entity in the Internet that managesgl&dge, performs reasoning,
and interacts with other entities in the NetKP or the spes-K&yents are responsible for
collecting, storing, sharing and distributing requestd Enowledge. Arequestis a mes-
sage that looks for an answer to a problem, or asks for anrattiibe undertaken. Agents
also manage a distributed knowledge base. The knowledgaddistributed among agents
since the network knowledge is distributed and managedfisreint parties in the Internet.

The NetKP is composed of agents at the network layer, andohe KPs are composed of
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agents in their specific areas of interest.

| believe that there are two aspects of an agent; each agentps at least one of these.
One is request propagation, and the other is request remulufhere are two reasons to
separate these two aspects. First, propagation is a conmaskrirt the KP, and they are
similar in all the agents. Second, request resolution akguires reasoning and inference
techniques, which are different in different agents. Dejoem on their capacity, willing-
ness, and availability, agents may have one or both of thgpoaents. These two separable
aspects reflect the fact that different agents may haveréifteoles and capabilities in the
KP: some agents are responsible for receiving requestsespdmding to them, and some
manage the knowledge, and some do both.

Agents are deployed by different parties, such as end uk&s, application devel-
opers. Agents have access to different kinds of knowledge.irfstance, in the intrusion
detection example in Chapter 1, an end user may run an agemn$ eornputer as a weak
local detector, while the corporate can deploy agents onceestl machines who collect
and analyze the reports from many such local detectors atdhéive access to the gateway

information as well.

Some agents are stable, while others may join and leavedrglyu For example, an
agent for fault diagnosis may only join the system and coltate with others when it
discovers some problems, while an agent for intrusion dieteen a corporate network
may run for a long time keeping monitoring the network andnexwing information with

other agents. Therefore, a robust organization among ageneeded.

3.1.3 Region

Due to their large number, agents need a scalable and effmiganization. | follow the
divide-and-conquer strategy by dividing the agents ingpars. A region is an entity that
encapsulates and implements scoping, subdividing, arssiog boundaries of sets of en-
tities that share common features or constraints [117].gloreis a new design element in
the network architecture for large scale, wide distributamd heterogeneous networks. In

this work, | use the region as the building block of the Netkld the spec-KPs, for the fol-
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lowing reasons. First, due to the large scale of the knovdqagne, we need to introduce
some organizing structure to achieve scalability and efficy, and a region is a natural
structure that fits our needs. Second, as a general and #aex@tvorking mechanism, a
region or set of regions can be tuned to match the Internattsire which consists of tens
of thousands of different administrative domains, or matehinherent structures of the
spec-KPs.

Agents are organized into regions for scalability and edficy. Agents are grouped
into different regions according to certain criteria, suh network proximity, interest,
etc, as we will discuss in the following sections. In the Netkve organize agents into
regions based on network topology and other network-lemestraints. In the spec-KPs, a
region is defined by a bunch of constraints, both applicaitiolependent and application-
dependent. In the intrusion detection example, due to gg@mnd policy concerns, agents
can collaborate closely with only those in the same orgdinizaso the regions are formed
based on policy boundaries, such as enterprise networksviN\@iscuss the constraints in

both the NetKP and the spec-KPs in detail later.

Agent Types

According to their roles in the regions, we classify agents three kinds in our system:
member agents, regional leaders, and global agents. Tdssifitation applied to agents

both in the NetKP and in the spec-KPs.

1. Member agentA member agent has three tasks. First, it maintains theesziiom
with neighboring agents and the leader in its region. Secdnesolves requests
using its knowledge. Third, it acts as a proxy to resolve #giests from local users.
Some agents may specialize in some areas, such as netwotkggmr geography

knowledge service.

2. Regional leaderEach region has a leader. The regional leader maintaiss af lall
the agents in its region. It helps a new agent join its regpproviding information

about existing agents. It also maintains connections whieroregional leaders. A
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leader is a hub that connects the member agents in the lagahréo the outside

world.

3. Global agent Global agents are those who provide global services tthhalagents.
Currently there is only one such kind of global agent: the glalirectory agent.
The global directory agent maintains a list of existing &, and helps a new agent
find appropriate regions to join. It also helps to detect imgistency caused by agent
failures or network partitions. Note that global agents roerequired in agent or-
ganization, and can be replaced by any other bootstrap mecha All the other

functions can be provided by leaders themselves.

Agents can also be classified into three categories baseteinawners and privi-
leges. One is the authoritative agents deployed by ISPuitiens and organizations in
their own networks. They may have (limited) access to seesiformation, such as the
BGP information at the border gateways, and may enforcaicepolicy when exposing
this knowledge. Another is the agents residing on end hoBlgese agents are proxies
for the users, and collaborate with each other to resolvaesty. A third category from
the perspective of a region is the agents outside the reQmth, peers and other kinds of
agents. In this work, we deploy multiple agents with BGP deaitgeographic data to act as

authoritative agents.

In the intrusion detection example, when a user sends a setpi& regional leader
(regional detector) about whether there are any intrusitemgpts, the regional leader needs
to collect knowledge from local agents (local detectors)it sends new requests to many
local detectors in its region in the intrusion detectioncspd. The local detectors in the
spec-KP use packet traces to make local decisions. Thogetpaaces are collected by
local agents in the NetKP. The regional detector in the $ff@enakes a regional decision
using the information collected from the local detectohsyst creating new knowledge.
Note that the regional detector performs both request gafp@n and resolution functions

in this case.
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Philosophical Aside

In designing such a system, for many important issues teem®re than one design choice.
We take particular positions on that spectrum of those dssignd do not guarantee that

they are the best ones, but they solve our problems in thik.vikey choices are:

1. At least one agent is needed for a region to exist. In thikwegions are formed
in a bottom-up way, which is appropriate as the regions aeel tis manage agents.
There are other models in which a region can be empty. For pbearwe can create
a region first, and then put agents or assign members intcsiam®ther example, if
regions are defined by the distance to some landmarks, tgenseexist whether or

not there are agents in them.

2. Agents are static. Note that | assume static agents thsteaobile agents in this
work, and communication between agents is through messeggeng. In the future
we may evaluate the need for mobile agents. Depending ondfieittbn of the
regions, mobile agents can introduce much complexity ih®region formation.
For example, if a region is defined by the distance from theeturleader, then the

membership changes as the leader moves.

3.1.4 Knowledge

Knowledgeas a term is more common in the Al community than in the netimgrkin this
thesis, knowledge refers to any useful information in thermet, including the information
about individual objects in the network, and the relatiopstbetween objects. There are
various kinds of knowledge in the Internet. There are two sva@ycategorize knowledge.
First, based on the subject matter of the knowledge, we assify knowledge into two
kinds: network knowledge at the network layer, and specifioviiedge in different areas
at the application layer. Second, based on the form of thevleuge, we can classify it into
facts and relationships. Sources of knowledge include mubgings, measurements and
monitoring, and inference, reasoning and learning. A dmation of a knowledge domain

is usually defined in some ontology languages, such as XMLR BDOWL [53, 126].
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Due to the distributed and heterogeneous nature of the latgelin the networks and
its large amount, we need a distributed knowledge base. | lagdress issues including
knowledge collection and distribution in the following seas, but note that the knowledge

base is not the focus of this thesis.

Knowledge Credibility

Credibility is an important issue in the knowledge plane,gasnas who provide the knowl-

edge come from different organizations and each has its ntengst. Agents must be pre-
pared to deal with knowledge with different credibility. \WWiscuss briefly several problems
related to credibility below, including completeness, dlimess, consistency, and correct-

ness.

1. Completeness. It is always better to have complete kngelelout sometimes it is
not possible. Agents may need to deal with incomplete kndgde For example,
an agent may need to figure out the latency between two hagtg,ib only able to
get the latency of several links along that path. In the Biom detection example
that we will discuss in detail in Chapter 7, regional leadeesdesigned to work with

incomplete and even contradictory knowledge using stedidearning techniques.

2. Timeliness. Some knowledge is time sensitive, and expieey soon. For example,
an agent may need a prediction on the condition of a path iroan lif the answer

comes after an hour, it may not be useful any more.

3. Consistency. Even if all agents are honest, we still needmsider the knowledge
consistency from different agents. An agent may receivieiht answers from
different agents. The differences may be due to many reas@angxample, a multi-
homed agent may find multiple AS paths between itself and atetrost, and it has
to be able to tell which one is what it wants (maybe both). Astler example, an
agent is likely to receive different answers from differagents about the latency
between two hosts, as agents at different locations mayitiseetit methods to ob-

tain the latency. In the intrusion detection example, beedocal agents see different
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traffic, their responses may appear to be inconsistent veithh ®ther, and we must

be able to operate in such an environment.

4. Integrity. An agent needs to figure out whether the knogésitireceives is corrupted

or not.

Accordingly, we face challenges such as the provider'snitid@, scaling, efficiency,
etc. An ISP may be reluctant to admit failures within theirrometworks. As another
example of a desire to hide the local state, consider agesitding on end hosts. An agent
that represents an end user may want to hide the fact thatsvaniginate from his machine
due to his negligence. Furthermore, the amount of knowlétlgege, and how can we find
what we need in a scalable and efficient way?

In this prototype network knowledge plane, we set aside gimls intentions. That
is, agents may provide incomplete knowledge, but we asstmewill not provide false
knowledge intentionally. As future work, a trust model issded that considers both au-
thentication and reputation. In Chapter 7 we will considastrand private information

retrieval in collaborative intrusion detection.

3.2 Key Design Issues

To build the NetKP and the spec-KPs, which are distributesdesys of global scale like

the knowledge plane, the following requirements must be met

1. Scalability The number of agents is large and they are distributed all the Inter-
net, so is the knowledge. We need to organize the agents alabse way to support

request and knowledge dissemination.

2. Efficiency The NetKP and the spec-KPs are supposed to respond quodidguests,
and distribute knowledge to where it is needed efficientlyrtliermore, in many
cases knowledge, such as the available bandwidth of a paty pecome outdated
very soon. Therefore, we need efficient knowledge collecaod dissemination

mechanisms.
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3. RobustnessThe knowledge plane functionalities are often most needeen the
network is not working correctly. Therefore, agent orgatian must be robust to

network failures, partition, and instability.

4. Non-intrusivenessThe knowledge plane needs to collect, share and distribtge
amounts of knowledge, without adding too much burden to #tevark. Therefore,
a non-intrusive propagation mechanism is needed for kriydeand requests so as

to reduce network traffic overhead.

There are other properties we need to consider. We shouigrdéee KP for trustwor-

thiness, longevity, and heterogeneity, but they are notabes of this thesis.

In both the NetKP and the spec-KPs, there are three tasksmmoao: (1) agent or-
ganization; (2) request and knowledge dissemination; (@wedge management. The
first task, agent organization, refers to how agents disoeaeh other and organize them-
selves together. The second task, request and knowledgendisation, deals with how
to propagate requests so that they can be resolved quicHlgfficiently and how to dis-
seminate knowledge so that agents interested in that kdgelean receive it in a timely
fashion. The first two tasks are tightly related to each gthecause agent organization
largely determines how requests and knowledge can be patghgrlhe third task, knowl-
edge management, addresses the question of how agentsentleia¢pcal knowledge and
learned knowledge. For example, agents may maintain akdisgd knowledge base. The

first two tasks are the focus of this thesis.

As discussed earlier, | propose a region-based structumganize the NetKP and
the spec-KPs. The concept of a region is the central organ@mponents in this work
[117]. Agents are organized into regions to achieve scltiabind efficiency. In the NetKP,
regions are constructed following network topology, sustAatonomous Systems (ASes)
and corporate network boundaries. For efficiency, agentslarge Autonomous System
may be divided into several regions, while agents in neangllsASes may be in the same
region. In the spec-KPs, agents with similar interests foFgions based on both network

topology and area-specific knowledge and constraints.
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3.3 Network Knowledge Plane

The NetKP is an application-independent distributed sydteat provides network knowl-
edge to help construct the spec-KPs for network managenmehajpplications. For ex-
ample, the intrusion detection example needs packet trhoeghe agents in this spec-KP
do not collect the traces themselves; instead, they getdtefdbm the NetKP. Initially,
this information will be the basic information, measurenseand other kinds of network
specific information, both reasonably static and oftenegditnamic. The NetKP may be
seeded with basic information, but quickly it will also beexded with new, more accurate,
more complete, or otherwise more extended information.

In the following, I first describe the functions and intedahe NetKP provides, then
discuss the agent organization that follows the Interngbltmgy, request propagation and

resolution, and knowledge collection in the NetKP.

3.3.1 Network Knowledge and Functions

We divide network knowledge into three categories: configjan, operation, and control
knowledge. Network knowledge is provided by the agents enNletKP to the agents in
the spec-KPs. A set of functions is defined in the followingaadingly. Note that this is a

set of examples, and more will be added as needed.

1. Configuration knowledge. This kind of knowledge includesaork topology, geo-
graphic location, etc, which are configured to make the ne¢wmrk. Such knowl-
edge is stable, and changes infrequently. The followingtions are defined to
provide network topology knowledge. They correspond tordtgiests that an agent

receives from others in the NetKP or in the spec-KPs.

* getASN(IP)Given an IP addred®, return the AS number to which the IP address

belongs. This tells the topological location of an agent.

* getASPath(AS1, ASZpiven two AS numberdS1landAS2 return the AS path from

AS1to AS2 This gives a measure of the topological distance betweerAiBes.
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* getLocation(IP, [metric]) Given an IP addred®, return its geographic location in

the form of ametric Currently we use city and state for this metric.

2. Operation knowledge. This refers to the network condgior the realized net-
work performance, which includes latency, available badthy loss rate, etc. Such
knowledge usually changes frequently with time, and needsetmeasured at run-
time unless a recent measurement is cached; in contrasiga@tion knowledge is
stable, and can be easily replicated and stored at multycktibns. The following

examples are defined below:

* getLatency(IP1, IP2, [time])Given two IP addresséB1 andIP2, return the latency

from IP1to IP2 attime andtimeis an optional parameter.

* getBandwidth(IP1, IP2, [time])Given two IP addresses, return the bandwidth from
IP1to IP2. We usaperf[62] to measure bandwidth.

* getLossRate(IP1, IP2, [time, accuracy{¥iven two IP addresséB1 andIP2, return
the packet loss rate frot®1 to IP2. As loss rate is often small and hard to measure,

accuracyspecifies how accurate the returned result should be.

3. Control knowledge. The Internet consists of thousanddofimistration domains,
and each domain defines its own policy on route announcerrfestsall rules, etc.

We provide the following examples on control knowledge:

* isPortBlocked(port, AS)Given a port number and an AS number, this function re-

turns whether that port is blocked by that AS.

* getCost(IP1, IP2, metric)Return the cost of the path between IP1 and IP2 in term

of the cost metric, such as monetary cost.

The function set above is just one example set. Additionalokk knowledge will be
provided in future work, and more sophisticated functioas be built on top of the primi-
tives. For example, given two pairs of IP addresses, we caget#\SPatho determine if

the paths between the two pairs of IP addresses intersemtnat AS. This is helpful when
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studying the interaction between traffic or building ovgdgavith no overlapping paths. As
another example, agents can collaborate with each otheotiton the networks, and lo-
cate possible failures in the network [130]. Therefore, weeet that more functions will

be added to the NetKP as required by network management afidadons.

3.3.2 Agent Organization in the NetKP
Organization Based on Network Topology

As the NetKP consists of agents widely distributed in therimet, a natural way to organize
agents is to follow the network topology. Here a region agjpnately corresponds to an
administrative domain in the Internet, which is either atiogidomain like an autonomous
system, or an intranet such as the HP corporate network. fdmous Systems are very
heterogeneous, and in some cases we may need to divide agenkzrge Autonomous
System into several regions. We follow the following rulégst, agents are organized into
regions based on network topology. Specifically, agenteénsame Autonomous System
are grouped into one region. Second, if a region covers t@e lan area or contains too
many agents, it will be split into multiple smaller regiofsird, regions that contain only
a few agents will be merged with a nearby region. Fourth, eagion has a leader, selected
from the agents under certain criteria, who is in charge efdbmmunication with other
regions. There are about 17,000 ASes in the Internet [9%hesoumber of regions in the

NetKP will be in the same scale.

Within-Region Organization

Different regions may choose different organizations. \Wendt impose any specific orga-
nization within a region, because we believe that a propgairization should be based on
many factors, including the number of agents in the regiany blosely they collaborate
with each other, the requirement on robustness, etc. Antadagcheme is as follows.
When the number of agents is small, they form a complete gtaght is not scalable. As
the number of agents increases, we can maintain the cowityeatnong agents by forming

a connected graph. To do that, each agent connects to a nofiegirby agents, and the
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leader makes sure that the graph is not partitioned. Anatedidate is a distributed hash
table [104, 122, 109, 133].

Cross-Region Organization

Agents in different regions need to collaborate with eadtrepin order to address the
problems that span the regions. Unlike the organizatiohiwih region where each region
may choose its own organizing structure, we need a unifietbapp among regions.

We have at least two options for the organization among themnal leaders. The first
choice is a topology-based structure. In this structuresgion connects to other regions
that are in the same AS and the neighboring ASes. Neighbé&@es include its providers,
customers and peers. The second choice is a distributedditalen(DHT). DHTs provide
a robust and efficient self-organizing infrastructure. Wease a structure that combines
network topology and distributed hash tables. We will addithis in detail in Chapter 4.

To resolve requests and disseminate knowledge, an aggnegeid broadcast mecha-

nism is needed at the region level. We will discuss this imitlet Chapter 5.

3.3.3 Agent and Region Operations

Agent operations and region maintenance are dependenteoorglanization within and
among regions. As we do not impose any specific agent orgamzaithin a region, and
will discuss cross-region organization in Chapter 4, we $oon the generic operations

within a region and among regions in this section.

Joining

We assume there is a global agent that manages a directorgesen the existing regions.
This centralized global agent may be replaced by a clustagenfts. A new agent joins the
system by contacting a well-known global directory agert anbmitting its constraints.
The directory agent matches the constraints with the regiorthe region directory, and
returns a number of regions that match the constraints. Eaeagent then compares its

constraints with the collected regions, and decides whig(%) to connect to. Then the
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new agent checks the latency between itself and the caediégional leaders that are in
the same AS, and chooses the closest one that matches itsaguss Then it registers at

the regional leader, and retrieves from the leader a liseafiy agents to connect to. If no
appropriate regions exist, the new agent will create a ngione connect to a number of

neighboring regions, and register at the global directtmthis case, the agent automati-
cally becomes the leader of the new region.

We realize that the global directory neither scales noriglesenough reliability. There-
fore, instead of relying on the well-known global directagyent, an alternative is to design
a distributed service. For example, we can set up authiwgtagents in each network, just
like the DNS system, and new agents can join the NetKP threugbarby authoritative
agent. We will see that by using the mechanisms proposed ipt€hé and 5, the global

directory is not needed.

Connection maintenance

A member agent periodically sends out heartbeat messagssedgional leader and nearby
agents that it has connected to. If an agent does not recgkwealedgments from some of
its neighbors, a repair procedure starts to find more neighieomaintain the connectivity.
If it cannot reach the leader, a new leader will be selectedrgnthe member agents ac-
cording to certain criteria such as the capability and liocatlf one cannot reach the leader
due to network partition, those agents who cannot reachetiaer will form a new region.
As discussed before, agent organization within a regionbeadone in different ways. In
this work, each agent connects to a number of nodes, anddberlelecides in a way so
that all the agents in the region are connected, even if wittiee leader. This is important,
as it allows all the remaining agents to find a new leader ie ch$eader failures. A repair
may or may not be needed when one cannot connect to a neiglgpanding on whether
this will cause a potential partition or not.

A regional leader contacts the directory service peridtictp let the service know the
current status of the region. It also maintains connectwitts a number of other leaders,
depending on the structure of the cross-region organizafmew leader is responsible for

connecting to existing leaders. Leaders organize thereséiva way so that all the leaders
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form a connected graph, as we will discuss in Chapter 4.
The directory agent is a rendezvous point. It passively taais the region information.

We do not place too many responsibilities on it to avoid ting/l& point of failure.

Connection repair

Agent organization needs to be repaired when agents chawegrecbnstraints or some
neighbors leave. In the first case, an agent will ask the nedil@ader to find appropriate
regions, or contact the global directory agent. In the sd@ase, if an agent cannot contact
some of its neighbors, it first checks if more neighbors aexled to maintain connectivity.
If so, it will contact the current neighbors to find more aggiirr ask the leaders.

If a regional leader becomes unresponsive, the agent wheztdethis notifies other
agents in the region, and they work together to select a nadelewithin the region. As
mentioned earlier, the new leader needs to reconstrucetiierr information, which may
require broadcast to all the agent members.

The connectivity among leaders is maintained based on tlyalvey are organized. If
the number of leaders is small and they form a complete grdgam each change needs
to be broadcast to all the leaders. If they form a distribdtash table, the connectivity is
maintained according to the DHT protocol, as described inp@hal.

Note that we assume the global directory service is alway&iwg, so no maintenance
or repair is needed for it. We can make it more robust by priogdnultiple directory

agents.

Agent departure

There are two kinds of agent departure: graceful or not. Imazeful leaving, an agent
notifies the regional leader, and the leader removes it flmarlist. If the departing agent
is a regional leader, then other agents need to select a ae\erleand the old leader hands
over the region information to the new leader. If the depariagent is the last one in
the region (and thus it must be the leader), then it will yotither leaders and the global

directory agent.
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For an ungraceful leave, if it is a member agent, this will leéedted by its neighbors
and the regional leader due to the heartbeat timeout. Ifatresgional leader, then when
a member agent notices it, a leader needs to be selected aagents in the region, and
when another leader notices it, a repair is conducted. Theleeder needs to reconstruct
the region information including the agent membership ertigion. If the departing leader
is the only agent in the region, then this region will simpigappear, and be removed from

the global directory.

Region Creation and Removal

There are two cases when a new region is created. As mentgarkelr, a region is created
when a new agent cannot find an appropriate region to join,tla@chew agent becomes
the leader automatically. A region may split into two smahegions when the number
of agents becomes too large. In this case, the current |dsmdemes the leader in one of
the two regions, and a new leader will be selected for theratggon. In addition to the
above two cases, a region could be created because of ndailarks, which is discussed
in region merging and splitting.

There are two cases when a region is removed. The first is wihéimeaagents in it
leave. Then the region is removed from the global directggmd. The second is when two
regions merge. One of the two leaders will become the neweleadtify the neighbors,

and update the region information at the global directomrag

Region Merging and Splitting

As agents join and leave, regions may need to be split or rddmachieve a proper size.
We use two simple threshold§:1 and72. If the number of agents in a region is fewer
thanT1, then the region can merge with a nearby region, as long gsatiedn neighboring
Autonomous Systems. A new leader will be selected betweermptevious leaders in each
region. If the number of agents is greater tha? then the region should be split, based
on network proximity. The previous leader continues to leeléader in a new region, and
another leader will be selected in the region without thevipres leader.

Once in awhile, the network may be partitioned, and thiseagsmplications in region
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maintenance. Assume two partitionsand B, are made within a region, and the regional
leader is in partitiond. Then all agents im, including the regional leader, think they are
fine although their neighbors iB seem to have left. Agents iB will think they need to
select a new leader, under the same region ID. This will cethie global directory agent
as it sees two regions with the same region ID but differegioreal leaders. If the global
directory agent just tolerates this, when the network recg\there will be more confusions
between agents id and B. The global directory agent can ask the region with the new
leader,B in this case, to change the region ID to form a new region.

In an alternative network partition case, two agentndb may not be able to talk to
each other, but another agemnmnay be able to talk to both of them. If two regions are going
to be formed, then one solution feiis to choose a region to join.

In short, problems with individual agents are easier tocetad fix than network prob-
lems. We need a robust design mechanism to be able to eitt@raiée the inconsistency

or tolerate it to some extent. Future research is neededsdiisgue.

3.3.4 Request Propagation in the NetkKP

A key function of the NetKP is to resolve requests for netwknowledge. We briefly
discuss the way a request is resolved in the NetKP. Most stgfie network knowledge
can be resolved by following the network topology to find tgefat who knows the answer.
There have been other research efforts using similar appesa such as iPlane [75]. In
this thesis, we do not focus on this type of request, but onoadwast and aggregation
mechanism for requests that cannot be resolved by follotagetwork topology and for
initializing spec-KPs, as discussed in Chapter 5.

Requests for network knowledge can be issued by differestitag Agents in the NetkKP
issue requests to obtain certain knowledge so as to orgm@ngselves into regions; agents
in spec-KPs also issue requests for network knowledge tstrart their efficient connec-
tivity graphs, such as routing overlays, multicast treés, e

Requests can be about properties of different entitiesam#tworks. A simple request

example is the latency between two hosts, while complicagdests can hisPortBlocked

52



or the network condition, such as the degree of network cetye In the latter case,
sometimes it is not clear which agents are responsible feaarresolve the request, and
an agent that receives the request may initialize the aparahd work together with other
agents to resolve the request. Such an operation can beicategland costly, and may
require authorization. Here | start with simple requests| will address more complicated

issues like broadcast in Chapter 5.

A request for simple network knowledge is resolved by thal@gent as follows. For
some requests, the agent resolves them directly and reéhegmesponses to the requesters,
without consulting other agents. This occurs when the lenalvledge base already con-
tains the necessary knowledge. Examples of such requegst&SNandgetASPatlwhen
the source IP is in the local AS, as the local BGP table costdia mapping between IP
addresses and AS numbers and the AS paths originating freho¢hl AS to all the other
ASes.

For requests that require non-local network knowledgehasthe AS path between
two remote agents, the local agent forwards such requetiis tments that have the knowl-
edge to get the answers. Because the local agent has theeklyandf AS paths from the
local AS to all other ASes, it can figure out which agents inakbAS(es) should be able to
resolve the request. Therefore, it forwards the requekivihg the corresponding AS path
to an agent in a neighboring AS, and that agent again forwthmlgequest to its neighbor-
ing AS following the same AS path until the request reachesgamt in the destination AS.
The agent returns the answer to the source agent followiegdme AS path in reverse,
and agents along the path may cache the answer. By follolwmgelverse path instead of
the default AS path and agents caching along the path, wdraohan implicit aggrega-
tion tree, which helps to resolve similar requests morelduiin the future, because agents
along the AS path may resolve the request if they happen ® teshed previous answers.
Figure 3-2 shows the resolution procedure.

So far we have briefly discussed how requests for network lketiye are resolved by
following the network topology in the NetKP. Those requestsexplicitly or implicitly
specify the location where they should be sent. Not all tiggests can be resolved in this

way, such as a request to check if the local network is undaession attempts. Further-
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— links between ASes - - > request forwarding
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Figure 3-2: Request resolution in the NetKP. Agenssues a request for the AS path
between ASA andB. Agents forwards the request to agents along the AS path, until it
reaches agertin AS A, as shown in the dashed arrow lines. Agerhecks its local
knowledge base, and returns the corresponding AS path, agnsim the dotted arrow
lines.

more, requests from spec-KPs about non-network knowledgeat resolvable by follow-
ing the network topology, such as a request to find a specificsion detection technique.
In Chapter 5, | focus on a global broadcast and aggregatiommamésm among regions to

propagate this kind of request.

3.3.5 Network Knowledge Collection

We briefly discuss how the three kinds of knowledge, configomaoperation, and control
knowledge, are collected in our system in this section.

First, agents collect configuration knowledge from the I&a. To do so, agents need
authorization to access BGP tables from local border reutéfe believe that BGP infor-
mation is usually not sensitive, so organizations may bkngito disclose this information,
and agents can employ policies when exposing such infoomé&i others. Network topol-
ogy is also stable, so it can be stored locally and updateedoéntly. In this work, we use
BGP data from multiple sources to construct an AS-level nétwopology as complete as

possible, as was done by He et al. [56].
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To provide configuration knowledge, especially networkalogy knowledge, some
agents maintain two kinds of network topology knowledgehat Autonomous System
level: (1) the AS number to which an IP address belongs; A& path between the local
AS and another AS.

Some AS information is already available [17]. Other reskars have successfully
retrieved BGP information. For example, PlanetLab [96] liempented an application sup-
port layer to provide BGP information. To do this, a Plandtlserver is matched with a
BGP router. They are configured to provide a one-way infoiomalow from the router
to the PlanetLab node [81]. This does not require implemegnginy special interface to
the routers. Furthermore, a set of servers in PlanetLalecnlely construct a peering AS
graph. A PlanetLab node also implements a PLUTO BGP Sensafaoe to provide ap-
plications an easy access to BGP information [115]. Noteitlepossible to replicate the
service of the mapping between IP addresses and their ASemsritbeach region, as the
data set is not large. For example, the compressed data et RiouteViews BGP tables
is only 13MB.

In this way, an agent only maintains the local view of the imég, which represents the
reachability of the local network to the rest of the Intern&his is due to the following
reasons: First, itis hard to get an accurate global view tiiak topology, but it is easy to
obtain the local view; Second, such local network knowlestgauld be able to satisfy local
requests most of the time; Third, remote network knowledaye loe obtained from other
agents through request resolution. Note that restrictiag be applied to the parameters
of those functions. For example, an application may not lweveld to query the AS path

between any two ASes, due to the privacy concerns of routiftigmation of those ASes.

Geographic information is another kind of network knowledge are interested in.
Geographic information provides physical location infation, which is often directly
related to network performance, such as latency. It alsblesaa large set of location-
aware applications. It is not trivial to obtain accurate graphy information today, but
approximate location is enough to organize agents in thikkwdVe use data from the
GeolP Database [41] for this purpose, and plan to leveraigéirgx techniques like [90] in

the future. Agents can run the geography service, and exdis¢ service at the regional
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leaders. However, it gets complicated if an agent is moble set aside the mobility issue

in this work.

Second, operation knowledge may be more costly to obtainradtain than configu-
ration knowledge. Among different kinds of operation knedde, latency is usually easy
and lightweight to measure using measurement tools sugings Unless the latency to
a large number of hosts or an average over a long time periadadged, real-time mea-
surement will work because of its simplicity and low overtie®ther information, such as
bandwidth and loss rate, can be obtained through measutevitermore overhead. Many
tools have been developed to measure network status, antboksaare being developed.
Agents can use those tools and share performance knowlédgeguest for performance
knowledge between two hosts is resolved by agents near #ig. Her example, the latency
between two hosts can be approximated by the latency betiweesgents plus the latency
between each host and its nearby agent, similar to [55]. Athan example, agents may
infer the property of a new path by segmentation and comiposiising previous measure-
ment results. This is similar to network tomography [28]. €istency is another important
issue here. Agents at different locations may return dffieanswers to the same request,
and the same request asked at different times may get diffareswers, even if it is not

time sensitive.

Note that the performance and geographic knowledge may p@@mate instead of
accurate. First, the performance knowledge changes frélyudeven if we obtain accu-
rate measurement results, it may be outdated when it isnedutio the requester. Second,
in many situations it is enough to have approximate inforomatFor example, a stream-
ing video application only needs to know the class of bantw{tigh, medium, low) to

determine the appropriate encoding method.

Third, control knowledge, such as policies, is usually vieayd to obtain directly or
infer. Sometimes we may discover it partially. For example,can test if an ISP blocks
any port. But generally this knowledge is hard to observenfoutside. We focus on simple

policy information in this thesis.
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3.4 Spec-KPs for Network Management and Applications

For the purpose of network management and applications,ragope to build multiple
spec-KPs, one for each specific service. In this sectiorsdusis briefly the general issues
in the spec-KP organization. Note that in the following dission, without special spec-
ification, agents refer to those in the spec-KPs, not in thiKRel will present two case

studies on the spec-KPs in detail in Chapter 6 and Chapter 7.

3.4.1 Constraints on the Spec-KP organization

Similar to the NetKP, agents in the spec-KPs are organizedégions, but under a differ-
ent set of criteria. Agents in the spec-KPs register théarmation in the NetKP, but may
not participate in the activities in the NetKP.

The set of orthogonal constraints for organizing the sp@s-Kall into five categories.
The primary one is the functionality that defines the specaki how the functionality
is partitioned. A spec-KP is likely to, although not necebgaun on multiple agents to
achieve the functionality by composition. Those agentseeitlo the same task at different
places or participate in different parts of the problem. &ample, if we design a diagnosis
system for the DNS system, the naming hierarchy and the ziouetgre will inevitably
play an important role in such a spec-KP. As another exanpiiejsion detection itself
does not impose any constraints on the corresponding spetif due to security and
privacy reasons, such a system is often organized basedporate network boundaries.

A second and obvious constraint is the physical locationreetdiork topology. When
a spec-KP is to be instantiated, the authority on whose bel&happening may have an
interest in constraining it to run only in some part of thewmrk or in some other location
based region, such as geographical. For example an ISP nketaanager might want
to run a particular spec-KP within the scope of the ISP nétwsimply due to network
topology reasons. A simple version of this may be AS or IP Baketerms of geography,
such a specification may be as general as named geograpioic ce@s specific as ranges
of longitude and latitude.

The third kind is external policy constraints. They are s#gipolicies, pricing or
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economic policies, and other incentive-based policiesuBty policies specify hard con-
straints on which information and functionality can and matnbe made available across
specified boundaries and by whom. Pricing constraints altovperhaps a sliding or de-
gree based decision. Other forms of incentives may be degigpecifically to encourage

cooperation, in the face of proprietary and other secumtystraints.

The fourth kind is performance. Applications may have towith a set of efficiency
criteria, which may determine the placements of agents.ekample, if it is important to
have low latency, then paths between agents should beegtlecthat basis; if the amount
of network traffic should be low, then agents may be collatatethe same nodes as much
as possible.

The fifth kind is shared resource usage. This requires tiesgplec-KPs, in determining
their organizations, know enough about others which mayhaeirsg resources to make
a possible compromise in order that the spec-KPs not imeetianecessarily with each,
as best possible. We take a lead from previous work, begiwith a set of information
similar to that of CoMon [93] from PlanetLab. CoMon provides anttoring statistics for
PlanetLab at both a node level and a slice level. It can be tassele what is affecting the
performance of nodes, and to examine the resource profileslividual experiments. In
the longer run, it will be necessary for this sort of informatto be distributed in the KP,

unlike what is currently being built in PlanetLab.

3.4.2 Agent Organization in Spec-KPs

Generic agent and region operations in the spec-KPs arlastmthat in the NetKP. Within

aregion, agents can be organized in different ways, depgrati the size of the region and
the distribution of the distance metrics. When the size islisradull mesh will suffice.

That is, each one knows all the others. When the size is largeuetured peer-to-peer
organization, such as distributed hash table, may be peefem general, we want to limit
the size of a region so as to simplify its organization an@nemend a full mesh structure.
There is no single answer to the region size. It will dependvbat they are doing under

what conditions. Cross-region organization in the spec-#é&fsends on the nature of the
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spec-KP itself. In Chapter 6 and 7, we present two case sttaliégsmonstrate different

organizations for different tasks.

An important issue in the spec-KPs is how to discover aganthe same problem
domain when an agent joins. There are two steps. The first ifitioa spec-KP that
matches its interest, and if no such spec-KP exists, toemaew spec-KP. This can be
done using the broadcast mechanism presented in Chapter&atdast the request to all
the regional leaders in the NetKP. Note that all the specHi€Bister their information in
the NetKP.

The second is to find an appropriate region after the specsk®Buind or formed. If
there are multiple regions formed in order to partition tle¢ ef agents, when an agent
comes into existence, the choice of how regions are defingdiig to drive which region
the agent will end up with. In this work, the discovery procesl uses the underlying
NetKP. Each region in the NetKP maintains a list of local ag@mthe spec-KPs and their
interests. A request looking for agents with similar insgseis propagated from the local
region to neighboring regions. In most cases there is ajraagpec-KP with this interest,
and the new agent only needs to find one that is already in ¢tvgank to join the spec-KP.
Furthermore, a high-level task may involve multiple agdm$onging to different spec-
KPs. For example, to diagnosis a web access failure, we nepdrom agents on DNS
diagnosis, routing diagnosis, server status monitorihg, €o find those agents, we need

to first find local agents in the NetKP, and then search for tsgareach spec-KP.

3.4.3 Request Propagation in Spec-KPs

Request resolution in a spec-KP depends on the nature opdekP itself. A simple
example is as follows. When an agent issues a request, it pagabed to all agents in
the same region, and also to one or a few agents in every regibim a certain number of
region hopssayn. When a piece of knowledge is issued, it is also disseminatdgtisame
way. Therefore, the knowledge withinregion hops is guaranteed to be found by a request.
Figure 3-3 shows an example witk2. This shows how regions help to improve scalability

and efficiency. To further extend this, we can consider mawyoks, such as the location
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Figure 3-3: Request and knowledge propagation in the sg-Krhis shows a request
from agentmand a piece of knowledge from agentneet at agent.

of an agent, the cost model, and even the diameter of a speda{P, etc. In Chapter 6
and Chapter 7, | present different propagation mechanisssdoan the functionality and

constraints of the spec-KPs.

3.5 Summary

In this chapter, | discuss the design criteria and prinsigte the knowledge plane, and
propose an architecture that consists of the NetKP and preispec-KPs. Based on the
criteria and principles, | design a region-based agentrorgdéion, and discuss the opera-
tions of agents and regions. The insights of the NetKP aréotadio One is that valuable
knowledge at the network level is exposed to network managemnd applications. The
other is that the overhead of this exposure is amortized gmetwork applications. To
do so, we need an efficient agent organization. In the nextciwapters, | address two
key issues in the NetKP: cross-region organization, anddwast and aggregation among

regions, both in the NetKP.
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Chapter 4

Cross-Region Organization

In this chapter, | focus on a network-topology-based disted hash table for cross-region
organization among the regional leaders, and present adhgbighbor selection mecha-
nism using Autonomous System information. We find that, bylsiming the distributed

hash table and network topology knowledge effectively, &e bave a scalable, efficient,

robust and non-intrusive organization among regions.

4.1 Design Rationale

Cross-region organization is a core issue in the NetKP, astage different regions need
to collaborate with one another in order to address the problthat span the regions.
Unlike the organization within a region where each regiory miaose its own organizing
structure, we need a unified approach among regions.

As mentioned in Section 3.2, four properties are importarihé agent organization in
the NetKP: efficiency, scalability, robustness, and ndrusiveness. Section 3.3.2 briefly
discusses two options for the organization among the regi@aders, and we elaborate
them here. The first is a network-topology-based structureéhis structure, regions con-
nect to each other following the network topology. Specilica region connects to other
regions that are in the same AS and the neighboring ASes. digalmoring ASes include
its providers, customers and peers, or ASes that are closasy of the three kinds. The

advantage of this approach is that this structure followsigtwork topology naturally, and

61



thus is efficient for aggregating information and suppmgsedundant requests. However,
there are several problems with this structure. First, #iiproach may lead to an unbal-
anced structure. We know that the Internet topology at theedamous System level can
be described efficiently with power laws, where some ASe® lmany neighbors while
many other ASes have only one or a few neighbors [116, 123]a fesult, this approach
may lead to a structure in which some regions may have to @brtoea large number of
regions, while some can only find a few. For example, a regicetop-tier AS may have
hundreds of neighboring regions, while a region in a smaiidmo-tier AS may only con-
nect to its provider. Second, it is hard to maintain this&ute in case of churn. If a region
disappears due to agent departures, region merging or riepantitions, its neighboring
regions will need to discover other regions to maintain thenectivity. Third, when the
regions are sparse in the Internet, the connectivity ofgtriscture is not well defined. For
example, if there are no regions in the provider's AS, a negieeds to find other regions
in two or more AS hops. All these problems can be fixed, butalslly a more robust and

clean design is needed.

The second choice is a distributed hash table (DHT). Disteith Hash Tables, such as
CAN [104], Chord [122] , Pastry [109], and Tapestry [133], pd®/a scalable and robust
organization, in which any information is guaranteed to deated in a limited number
of steps (usually)(logn)). These systems provide a robust self-organizing infuastire
that is expected to become the fundamental component @&-krgle distributed systems.

However, a pure DHT structure is not enough for our purpose.

DHTs provide scalability and robustness, but they ofteypaalactive probing to achieve
efficiency. Most topology-aware DHT lookup algorithms pospd so far, such as proxim-
ity neighbor selection and proximity routing [54], requigach peer to probe other peers
directly to discover proximity. Such probing generates asiderable amount of network
traffic. Similarly, many network applications and servicesch as end-system multicast
[58], DHT-based DNS [103], and content delivery network®][Tequire efficient organi-
zation among the participants, and several previous relsedforts focus on constructing
network overlays in order to route traffic optimally, suchRON [16]. They all rely on

active probing using ping or traceroute to measure pathityuahd to detect anomalies
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[130, 39]. As aresult, 1GB of ping traffic was observed daityRdanetLab in 2003, which
equals to one ping per second per node [82]. As another exafR@IN periodically mea-
sures all inter-node paths to discover link failures; dukstprobing traffic, a 50-node RON
requires 33Kbps bandwidth for each node, which prevent®ihfscaling to a large size.
As overlay networks grow in popularity and sizes, this madléo a significant increase in

network traffic and contention for network resources, whidy cause network instability.

We choose a hybrid structure that combines network topoéogydistributed hash ta-
bles. DHTs provide scalability and robustness, and we nedesegn for efficiency and
non-intrusiveness. In this chapter, we demonstrate thefusetwork topology knowledge
to improve the efficiency of the DHT-based cross-region oizgtion, while maintaining
low overhead. Specifically, we design a hybrid proximitygidior selection algorithm that
uses Autonomous System information to estimate netwodn@t Proximity neighbor
selection (PNS) in DHTs is, given a number of neighboringléra, which ones a node
should choose as the neighbors in its DHT routing table. ¥han important issue, as
it determines the efficiency of the region-level organ@atamong leaders. We use the
AS-path length as a proxy for network latency to filter outikely candidates without
probing them during the selection process, and only a snuatiber of leaders who pass
the filtering will be probed. Compared with those approaclasgt on active probing, our
algorithm can significantly reduce the amount of probindfitavithout greatly undermin-
ing DHT lookup performance, and our savings on probing tdffcrease with network
size, as demonstrated in the experiments. Note that in tig@n@zation, each regional
leader also maintains a number of its topological neightgpregional leaders, as it is con-
venient to resolve the requests that follow network topplfenever possible, but this list

of neighbors is not required.

The rest of the chapter is organized as follows. Sectiondd4a3 present an overview
on distributed hash tables and the Internet topology, iyedy. Section 4.4 presents
a hybrid PNS algorithm using network topology informatio8ection 4.5 evaluates the
performance of our approach. Section 4.6 discusses theypoiplication of our approach.

Section 4.7 reviews related work. We conclude in Section 4.8
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4.2 Distributed Hash Tables

4.2.1 DHT Routing

The explosion of peer-to-peer applications, originallg fiharing such as Napster [85],
Gnutella [49] and BitTorrent [23], has inspired the moraistured peer-to-peer networks.
Structured peer-to-peer networks, such as CAN [104], Chog2][1Pastry [109], and
Tapestry [133], provide a scalable distributed hash taibleyhich any piece of data is
guaranteed to be located in a limited number of steps. Thesteras provide a robust
self-organizing infrastructure that is expected to evaltytbecome the fundamental com-
ponent of large-scale distributed applications. In thidisa, we present some background
on structured P2P networks and the standard proximity theigselection.

DHTs provide an efficient and scalable routing mechanismre/zelookup opera-
tion can be performed in typicall® (log n) steps and each node maintains only typically
O(logn) states, where is the number of nodes. Many geometries have been proposed
in DHTs to achieve the balance between the number of statethemumber of lookup
steps [54]. For instance, CAN uses a hypercube [104], Chorsl aising [122], Viceroy
forms a butterfly network [77], and Pastry combines a tree amithg [109]. Figure 4-1

demonstrates two examples.

Fingers:
0 1,2,4

2,3,5 7 0 6
8 9 5 4
6 2
2
1
3
O "
(a) Chord (b) CAN

Figure 4-1: DHT geometry examples. (a) shows the finger sa€Chord, and (b) shows
how nodes divide the name space in CAN. The numbers are thardde
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O
20332

20012
(a) Routing entries (b) Lookup procedure

Figure 4-2: Pastry routing. In (a), the circle representsthme space, and the arrows
show the entries in the routing table of na@i#311, which is also shown in Table 4.1. (b)
shows a lookup procedure 102311 to find node20012.

We use Pastry [109] as an example to demonstrate the DHThgpWRiastry is a generic
P2P infrastructure. Each Pastry node has a unique ID in alaird28-bit name space.
A node is responsible for storing data whose keys are betwezpresent node and its
predecessor. All nodes together form an overlay network, atookup query is routed
through the overlay to a destination by a series of forwayditeps based on routing tables.
Each node keeps track of its neighboring nodes that arestlosthe name space in its leaf

set.

For the purpose of routing, each node maintains a routinig thlat contains a number
of nodeids and their IP addresses. Node IDs are considered as a sequfedigits in
base2’. A routing table is organized int@i—8 rows and2’ columns. The entries in row
refer to nodes who share the fiistligits with the present node, and the+ 1) digit of
a node in rowi and columnj equals;. Table 4.1 and Table 4.2 shows simplified routing
table examples of two nodes. Figure 4-2 demonstrates thimgogeometry of Pastry and a
lookup procedure. In Figure 4-2b2311 checks its routing table to fingB010, which has
the longest matching prefix witt0012, and forwards a lookup message t@it010 checks
its routing table for a longest prefix match20012, which is20332. It is guaranteed to find
a node with longer matching prefix, due to the routing geoynetrPastry. This process

continues unti0012 is reached.
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X 12001| 23010| 32301
00120| 01112 X 03232
02011 02231 X
X 02330
X 02312

Table 4.1: A Pastry routing table of node311. In this example, the name space is 10-bit,
and each digit consists of 2 bitX refers to the entries that match the present node’s ID.

Some entries are empty because the present node has notfgomugriate nodes for them.
The IP address of each node is not shown here.

02311 12001, X 32301
20332| 21003| 22102| X

X 23211
23001 X 23030
X 23012

Table 4.2: The routing table of no@8010.

X l**** 2**** 3****
00*** 01*** X 03***
020** | 021** | 022** X
0230* | X 0232* | 0233*
02310, X 02312| 02333

Table 4.3: A generalized Pastry routing table of noda11. In this example, the name
space is 10-bit, and each digit consists of 2 bits« x+x means that a node whose ID begins
with 03 fits that entry.X refers to the entries that match the present node’s ID.
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4.2.2 Proximity Neighbor Selection

Although given a DHT geometry the average number of stepsesl fithe actual latency
of a lookup is also determined by the latency of each stepxifity neighbor selection
(PNS) is an effective method to reduce the lookup latencyS F\based on the fact that
multiple peers may be suitable for a routing table entry.l§&@b3 shows the flexibility of
the routing table entries. Note that the flexibility is thglest at the top row, and decreases
to none at the bottom row. In PNS, peers adjust their routibtetentries for proximity by
periodically exchanging them with its neighbors (thoset&routing table). After getting
multiple candidates, the present node probes all the catedido find the closest ones to fill
in its routing table entries. PNS requires the node to algtipeobe all candidates, which
generates significant network traffic. We use Pastry as amgea Suppose the network
size isN, and each entry receivéscandidates on average. Since the routing table size is
O(log N), the total number of probing messages of the netwofk(isNlog N') during each

neighbor selection period. This situation would only detete with the network sizes.

4.3 Network Topology

As discussed in Chapter 3, we classify network knowledge tintee kinds: configura-
tion knowledge, operation performance, and control kndgée Configuration knowledge,
such as network topology, is relatively static and coamséngd. Operation knowledge,
such as network performance, is fine-grained and dynamitrepresents accurate condi-
tion of the Internet, and may change dramatically over tidentrol knowledge refers to

the policies imposed by the network providers.

This classification helps us think about how cross-regi@anization can obtain and
take advantage of different types of knowledge in diffeneaiys. Operation knowledge
provides accurate network conditions, but usually reguaretive probing, and thus adds to
the Internet traffic. On the other hand, configuration knalgke can be provided without
real-time measurements, as it is more stable. In this sgatie discuss the accuracy of the

AS-path length as a proxy for network latency.
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4.3.1 AS Topology Information

Interconnected ASes together comprise an AS-level Intdop®logy. However, the AS-
level topology cannot be simply drawn as an undirected grbphause there are several
complications. First, there is a large number of ASes; itifSadlt to collect complete,
accurate, and timely topology information. Second, ASdiake not undirected. For ex-
ample, a multi-homed customer AS will not transit trafficieeén its providers. Third, AS
connectivity is not transitive. For example, suppose tlagesthree ASesd, B andC. A
andB peer with each other, an is C’s customer. In this configuration, usualB/will not
accept traffic fromA whose destination i€'. Fourth, network errors such as link failures

may affect the actual AS topology, and it is hard to deteattiea timely fashion.

For the first problem, it turns out that BGP routing tables attiple vantage points al-
ready contain most ASes of the Internet [82, 123]. For exanipbuteViews data contain
more than 15,000 ASes [99]. To deal with the second problestead of using an undi-
rected graph, we can construct the AS topology as a direatgehg In this way, we can
distinguish the in-degree and out-degree of an AS, whicke$ul when considering replica
placement, as discussed in next section. Furthermore ettend and the third problems
interact with each other. For example, in the same AS scemarithat in last paragraph,
B’s out-degree is 2, ifA andC' are B’s only neighboring ASes. Howeved usually only
accepts traffic from3 whose destinations are ih or A’s customers, because the link be-
tweenA and B is a peering link; therefore, the out-degree 2 is deceptiihat B’s links
to its peerA and its providelC' are not equal in their importance of providing connectiv-
ity. Fortunately, peering links are much fewer than providestomer links. According to
[123], only 4.75% links in the Internet are peering linksdanany of them are links be-
tween backbone ASes who have no providers. Therefore, ievbehis problem is minor.
In the current work, we do not treat peering links speciatijthe AS topology, and we
plan to consider this problem in the future work. Finallyisinot necessary to construct a

completely accurate AS-level topology before we are ableswthis information.

There are several advantages of using AS information. ,Rirsier our assumption,

AS information can be obtained locally, which adds littldnternet traffic. Second, such
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information is usually stable and static, and thus can kigcatly stored, easily retrieved,
and infrequently updated. Third, AS information can be extitd in an aggregate way
by the local server and provided to clients, so that appboatdo not have to probe the

Internet individually.

4.3.2 Relationship between AS-path and Latency

BGP [107] was designed for reachability and policy rathemtlmouting efficiency, but
previous research shows that the AS-path length correlatbsnetwork latency to some
extent [88, 4]. An intuitive reason is that the longer an Afhps, the more ASes a packet
has to go through. This is also because routing within an Agislly efficient and well
managed, and many anomalies occur on the links between AFed/g reconfirm these
results using the RouteViews data [99] and the Skitter daja YWe retrieve end-to-end
latency information from the Skitter data. For each pair @iirse and destination in the
latency information, we search the RouteViews data to fireddbrresponding AS path
using IP prefix matching. Figure 4-3 shows the relationsl@wieen the number of AS
hops and latency. We also sum up the percentage of differ8apath lengths based on
the Skitter data. We can see that the average latency isvebgitelated to the lengths
of AS paths. Note that the maximum number of AS hops in thet&kiataset is 7, but
the maximum number of AS hops in the Internet will be largertHis figure, the average
latency of 7 AS hops is lower than that of 6 AS hops, becausarti@unt of data for 7 AS

hops is very small and the average latency for it may not bg regresentative.

However, what is not shown in Figure 4-3 is the standard diewiaf latencies with the
same AS-path length, which turns out to be very large. Theetation coefficient between
the raw AS hops and the latency is 0.24. That means we caryhadithe AS-path length
directly as a proxy for network latency. There are severasoms why the AS-path length
does not reflect latency very well. First and most imporiatSes are very heterogeneous
in terms of geographic size. A large AS may span one contjirenbne such AS hop
contains many router-level hops, and its latency may besldrgcontrast, the latency of a

small AS hop is much smaller. Even worse, if two nodes residevo small neighboring
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ASes, the latency between them may be lower than two distasesin a large AS. In
that case, 1 AS hop is shorter than 0. Second, AS-path leagéhgery coarse-grained.
The AS-path lengths vary from 0 to tens of hops, while netwat&ncy varies from a few

milliseconds to a few seconds. These two are the most impoiéators that affect the

accuracy.
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Figure 4-3: Relationship between AS hops and latency.

4.4 Leveraging Network Knowledge

In order to validate our proposition that there is benefiteghined for the cross-region or-
ganization by using network topology information, we explbow to improve the lookup
performance without incurring significant amount of praptraffic. Our goal is to maintain
lookup performance comparable to the standard proximitghi®r selection algorithm,

but to greatly reduce the network traffic generated by prgbin
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4.4.1 Hybrid Proximity Neighbor Selection
Algorithm

We propose a hybrid proximity neighbor selection algoritinrthis section. The key idea is
to use the AS-path length as a proxy for the end-to-end Igtandhat a node does not have
to probe all the candidates during proximity neighbor sb&c As in the standard PNS,
nodes exchange routing table entries periodically. Afteeiving multiple candidates for
each entry, a node performs the hybrid PNS algorithm.

Our hybrid scheme consists of two steps. First, when a namaves several candidates
to fill in a routing table entry, it does not probe all of themeditly. Instead, it first calculates
the AS-path length between itself and each candidate. Theses the AS-path lengths to
filter out those that are unlikely to be close, leaving a mustiuced set of candidates.
Filtering candidates can be done in many ways, as descrdmed s

Second, the node probes the remaining candidates to findetrest one. The clos-
est node found is used for the corresponding routing taliey.efhis is the same as the

standard PNS. Algorithm 1 shows the pseudo code of our hy}x8 algorithm.

Filtering Functions

As mentioned in Section Il, there are several complicatibias make the AS-path length
not a completely accurate proxy for latency. To addresswieadlesign filtering functions.

Filtering functions are used to deal with the problems that AS path cannot address,
such as network dynamics. In Algorithm 1 , the filtering prexeés implemented as a
separate procedure in which different filtering choicesraegle. There are many options
for the filtering functions, each of which has its own filteyioriteria. Two extremes of

the filtering functions are presented as follows. One is tectenodes solely on basis of
the AS-path lengths. In this case, we can choose those edadidith the shortest AS-
path length. If there are multiple nodes with the shortestp&g length, we pick up one
randomly from them. That is based on an optimistic belief tha shortest AS-path length
corresponds to the shortest latency. In that case, we doawet to probe any candidate,

and thus save all the probing traffic. However, the found whatd may not be the closest
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Algorithm 1 The hybrid proximity neighbor selection algorithm.

owner: the present node that perfornms the sel ection.

N: a set of candidates to be sel ected.

A: an array of AS-path |engths between the present node
and the candi dat es.

R the set of candidates after the filtering.

get ASPat hLengt h(i,j): return the AS-path | ength between
nodes i and j.

Node hybri dPNS (){
/[l first step
For each node n in N
A[i] = get ASPat hLength (owner, n);
NodeSet R = Filter (N, A);
/'l second step
mn = infinity;
For each node rR {
| at ency = ping(r);
if (latency < mn) {
mn = |atency;
selected = r;
}
}

return sel ected;

}

NodeSet Filter (NodeSet N, int[] A){
threshold = the shortest AS-path |ength anong all the candi dates;
For each nin N
if (A[i] == threshol d)
R = R+{n};
return R

}
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one. The other extreme is to ignore the AS-path length in&tion and to probe every
candidate, i.e., the standard PNS algorithm. It can alwayktfie closest candidate, but
requires the maximum number of probing messages.

Between the two above extremes, there are many other chdi@esexample, in Al-
gorithm 1, the filtering function is defined to choose thosedidates with the shortest
AS-path length and filter out the others. More sophisticat@temes can be employed. In
our simulation, one of the filtering functions tested is dedino be that all candidates with
the shortest AS-path length or an AS-path length that is onk more than the shortest
length will pass the filtering. The assumption in this filtkgyifunction is that due to the
heterogeneity of ASes, candidates with one more hop thasihbegest one could still be
the closest, so we do not filter out such candidates. But ifde80AS-path length is two
or more than the shortest one, it is very unlikely to have atehd¢atency.

There is a tradeoff between the lookup performance and tleaiahof probing traffic.
The more the nodes are filtered out, the less traffic the pgobiti generate, but the more
likely that the finally found node is not the closest one. Hesvethe found node will
usually still be very close to the present node. That pravithe flexibility for each node
to decide the efforts it wants to take to improve the lookuggrenance, considering its

bandwidth restriction.

4.5 Performance Evaluation

In this section, we present the simulation results of ouraggh by comparing them with
those currently used in the DHTs. We first describe the sitimriasetup. Then we present
the lookup performance in terms of the latency, the numb&Shops, and the amount of

the traffic, respectively.

4.5.1 Experiment Setup

We employ the Pastry structure among the leaders. Our siiomlégs configured in the
same way as Pastry, with keep-alive messages for leaf s@tezy routing table repairs

[5]. The simulation is divided into discrete time periods1 dach period N queries are
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issued, wheréV is the network size. The querying node and the lookup ID andaaly
chosen in the name space. Every 10 periods leaders exchagigeouting table entries
to perform proximity neighbor selection. To do this, eacld@sends each row in the
routing table to neighbors in that row. The leaf set is setdpahd each node probes all its

neighbors in every period.

We evaluated our schemes on both synthetic Internet toms@nd a topology gener-
ated from the real Internet data. The synthetic topologiegganerated using the BRITE
Topology Generator [48]. The topologies are two-layer reks. The first level is the AS
level, and the second is the end host level. The BRITE Gemeaatigns latency to each
link. Due to space limitation, only the results on one sytiti®pology and the real topol-
ogy are shown in this chapter. That topology consists of 1S@®interconnected using the
Waxman model and each AS contains 100 nodes interconnectad power law model.

The topology is undirected, and the routing between ASdseishortest AS-path routing.

Second, we generated a real Internet topology from the Riawes data and the Skitter
data. We calculated the weight vector using the two data aats normalize the weight
to be between 0 and 1. We built an Internet topology contgiminout 10,000 hosts by
randomly choosing nodes in the Skitter data. We also geszrbia undirected AS-level
topology and a database that contains the mapping betwgeefiRes to AS numbers. For
the host pairs appeared in the Skitter data, we infer the Alslpetween two hosts using the
traceroute information; for other pairs, we use the shoés path as an approximation.
In this way, we can find the AS-path length between any pairagfes. Note that we
make two simplifications here. In reality, AS links are diest, and the policy-based AS-
level routing does not always match the shortest AS-paticeSt is not our focus here
to construct directed AS topologies with commercial relaships and to generate policy-
based routing, we make the simplifications and plan to coasinore realistic topologies

in our future work.
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Name | Best Looser NoProbe

Filter | If the AS-path length All candidates with the Only the  AS-path
between a candidateshortest AS-path lengthlength is used to dis
and the present nodeor an AS-path length tinguish candidates. |
is less than 2, such jathat is only 1 more than multiple nodes are with
candidate will pass thethe shortest length canthe shortest AS-pat
filtering, and others are pass the filtering; otherslength, then a randon
filtered out; otherwise| are thrown away. one is chosen.

if all the AS-path
lengths are more than
1, then only those with
the shortest AS-path
length will be probed.

Naming| In the evaluation we It allows more candi{ This scheme does not
found that it achieved dates to pass the filter-require any probing, st
a good balance betweenng than Best, so it is| itis called NoProbe.
the lookup performance called Looser.
and the probing traffic
Soitis calledBest.

) — b b oY T

(=)

Table 4.4: Filtering functions.

4.5.2 Organization Efficiency Evaluation

As lookup is the key function in DHTs, we compare differerdkap schemes in this sec-
tion. The goal is to show that our hybrid PNS schemes can aeho®kup performance
comparable to the standard PNS, but with much less probeafigctr

Five schemes are compare@uw, PN S, and three hybrid PNS schemes with different
filtering functions. TheRaw scheme implements a generic Pastry network without any
optimization, in which a node sets up its routing table wahdomly chosen nodes. This
is the basis of comparisor? N S refers to the standard proximity neighbor selection used
in Pastry. Best, Looser, and NoProbe refer to three hybrid PNS schemes that use the
AS hops but with different filtering functions, as descrilbedable 4.4. They are different
in the strictness of filtering. BesideS,P (Shortest Path) is the direct end-to-end metric
between the source and the destination.

Table 4.5 summarizes the performance/aV .S and the three hybrid PNS schemes,

on the synthetic topology and the real topology with bottD00,nodes. We can see that
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Network Size Filter | Latency (ms)| AS Hops| Probing Traffic
PNS 78.4 7.03 100%
Synthetic Looser 78.8 6.94 22.2%
10,000 nodes Best 80.2 6.53 8.0%
NoProbe 90.1 6.46 0%
PNS 143.5 11.8 100%
Real Looser 159.6 7.52 67.2%
10,000 nodes Best 173.9 5.72 11.9%
NoProbe 296.3 4.77 0%

Table 4.5: Summary of lookup performance.

on both topologies, the order of lookup latency is, from lanhigh, PN.S < Looser <
Best < NoProbe. The order of the number of the AS hops per lookup is the santieeas
order of the traffic percentage, which is, from low to highy Probe < Best < Looser <
PNS. On the synthetic topology3est and Looser both perform very well in terms of

lookup latency and save significant probing traffic.

Figure 4-4 to 4-9 show in detail the average lookup perforreant different schemes
under the network sizes from 1,000 to 10,000 nodes on thedpaldagies. Note that the
performance does not significantly downgrade with the ngtwize, as nodes are randomly

chosen from the same node set.

Figure 4-4 and 4-7 show the average lookup latency on thedpadgies.S P (Short-
est Path) refers to the average end-to-end latency betweesotirce and the destination.
In both topologies, th&aw scheme performs the worst; its latency is much higher thian al
the others.PN S performs the best (SP is not regarded as a scheme). Beti#eerand
the PN S, the lookup latency, from low to high, Booser, Best, andNoProbe. Best and
Looser perform very close taP N S, especially in Figure 4-4, where they are hardly dis-
tinguishable. In Figure 4-7, the average lookup latencyest is about 20% higher than
thatin PNS. NoProbe performs worse than the other two filtering functions, sincaly
uses AS-path lengths to choose nodes. From the results, weeeathat the hybrid PNS
schemes with a proper filtering function can significantlyprove the lookup performance

compared withRaw, and some are almost as effective as#€S scheme.
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Figures 4-5 and 4-8 compare the average number of AS hopsadokaip. SP refers
to the length of the direct AS path between the source and ¢sénétion. The hybrid
PNS schemes achieve shorter AS-path lengths tharb does, since they take the AS-
path length into consideration when filling the routing &abT'he average numbers of AS
hops of all schemes excepluw are similar to each other on the synthetic topology, but
they are quite different on the real topology. On the reabtogy, PNS requires about 9
AS hops per lookup when the network size is above 8000. Irrast)Best requires about
only 5.5 AS hops. A benefit of shorter AS paths is to reduce the&sibility of lookup
failures due to BGP anomalies. It also implies a better ma&ttveen agent activities and
the administrative boundaries. Comparing Figures 4-4, &cb&7, 4-8, we can see that
the latency and the AS-path lengths correlate better in yhéhstic topology than in the

real topology.

Figures 4-6 and 4-9 show the percentage of probing traffibertiybrid PNS schemes,
compared withP N'S. The number of probing messageitV S is considered to be 100%.
We can see that a proper filtering function can significarejuce network traffic, and the
traffic decreases with the network size. For example, onghétopology with a network
size of 1,000 nodes (Figure 4-9Best only require about 20% of probing messages of
PN S, and it decreases as the network size increases, finallpesd@% when the network
size is 10,000 nodes. In contragiposer requires about 75% of probing messages of
PN S on average.NoProbe does not require any probing; hence it falls on the x-axis.
The percentage of probing traffic goes down as the netwokkisimeases, because as the
network size gets bigger, there are more candidates foreaicyy and the filtering is more
effective with more candidates. Comparing Figure 4-6 and#@®percentage of messages

in Figure 4-6 is much lower than that in Figure 4-9.

To evaluate the gains we obtain from saving probing traffie,need to know the per-
centage of traffic that is generated by probing messages atveork, compared with the
total amount of control messages. Control messages comgilitroessages that are used
to maintain the cross-region organization and routingeximness, and traffic generated by
lookup and data transfer is not included here. This pergentiepends on several factors,

including the churn rate, the frequency of routing tableeekchange, the number of en-
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tries exchanged, leaf set size, the frequency of keep-atessages, etc. As mentioned
before, our simulation is configured in the same way as Pagthykeep-alive messages
for leaf sets and lazy routing table repairs [5]. Under sumfifiguration and a network size
of 10,000 nodes, we observe that the number of probing messagounts for about 40%
of the total number of messages in tAé/.S scheme. In Figure 4-9, when the network size
is 10,000, probing messages Hest is about 12% of that ilrP N'S. Therefore, if all the
other messages are the same, the total number of messadpesHnast scheme is about
64.8% of that in the® N'.S scheme.

Comparing Figures 4-4 to 4-9, we can see that the hybrid PNé&ses perform better
on the synthetic topology than on the real topology in bottuoeng lookup latency and
saving probing traffic. The reason for this is that the sytith®pology is more homoge-
neous than the real one. In the synthetic topology, each Ao the same number of
nodes, and the latency on a link within an AS is set to be smtilbn that between two
ASes. In contrast, the real Internet is more heterogeneohbsth the number of nodes in
an AS and latency distribution. In the real topology, sevbig ASes may contain many
nodes. As a result, a node in such an AS cannot tell the difteréetween its neighboring
nodes just based on AS-path lengths, so the filtering doewoidt as well as that on the
synthetic topology where nodes are uniformly distributed8es. The latency distribution
is not as uniform as that in the synthetic topology eithert \Be can see that even on the
real Internet data, the hybrid PNS schemes still work quié and save a large percentage
of probing messages. For exampl&;st can use 12% probing messages to achieve lookup

latency only 20% longer thaR N S.

The simulation results show that even with some simple ifiigefunctions, we can
achieve similar lookup performance to the standard PN$) avinuch reduced number of
probing messages. The results also show that there is afféééween improving lookup
performance and reducing probing traffic. The more we prdiepetter performance we
can obtain. Different nodes may also adopt different fittgrcriteria. For example, if a
node is in a backbone AS, then it should uses a filtering fondthat does not distinguish
between 0 and 1 AS hop, because a node in the same AS that vgaaframm the present

node will probably have a long latency. Furthermore, fitigrfunctions provide a node
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the opportunity to control the amount of probing. A peer chaase a filtering function to
balance its requirement on lookup performance and the bigitislaonsumption.

Currently we only use very simple and coarse-grained AS-paigths. With more
fine-grained information, we can expect the filtering fuont based on such information
will achieve better performance. For example, if we know tbeter-level hops or the
structure of points of presence (PoPs) in ASes, we can make auzurate estimate on
network latency using this static information. But thisuegs more efforts to retrieve the

underlying network information. Again, there is a tradduodtween cost and benefit.
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Figure 4-4: Synthetic topology: Average lookup latency.

4.6 Discussion

With the prosperity of overlay networks, the interactiortvibeen overlays and ISPs be-
comes an important issue [10]. To form a synergistic coeris, overlays and ISPs must
coordinate their interests and behavior. Our preliminasufts have showed that AS in-
formation can help to match overlay activities (agent aio#ig in this work) with the ISP

policies.
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Figure 4-5: Synthetic topology: Average lookup AS hops.

Simulation results show that our schemes can reduce tlie trdfile maintaining com-
parable lookup performance. These are attractive feafares/erlays and end users, who

therefore would probably use such techniques in network@gimns.

Furthermore, we also show in the performance evaluationdba methods achieve
shorter AS hops in the lookup. This implies that our schenagsrally shift overlay activ-
ities with respect to administrative boundaries. Therfdwy using our techniques, users
tend to keep overlay traffic within nearby ASes. This chamgedffic pattern is beneficial

to ISPs, as such traffic crosses fewer ASes and thus may desiéSs.

We can push further to match overlay/agent activities withe8. A straightforward
method is to fill the routing table with nodes in the same AS néwer possible. As a
result, most lookup hops will be restricted within the loé&8. Furthermore, we need to
consider the data flow between the requesting node and theare@ur AS-based client
clustering uses the mapping from IP address to their AS nurabe places an additional
replica in the AS from which many requests come. Therefar®yré requests from the
same AS will find the replica in their local AS, and the dowrnlgy activities are within

the administrative boundary.
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In return, such traffic pattern will motivate ISPs to exposarenAS-level routing and
topology information to overlays and applications willipg In this way, we hope that

overlays and ISPs can become more aware of each other anddeavexist peacefully.

4.7 Related Work

This chapter focuses on achieving efficiency and non-intea®ss in the cross-region or-
ganization. In DHTs, many lookup optimizations on have bg@posed, such as proxim-
ity neighbor selection, proximity routing, topology-bdsk assignment and hierarchical
routing, but they all require active probing of the netwosK ], as we explain below.
Pastry employs proximity neighbor selection to improvekigo performance [109].
The idea is to build a topology-aware P2P network. In thibmégue, each peer sets up its
routing table using nearby nodes that satisfy the entryirement in ID prefix. The effect
of this method depends on the flexibility of each routingeadattry in choosing nodes, i.e.,
the length of the prefix. As shown in Table 4.1, the higher roithe routing table require

shorter prefix, thus have more flexibility in choosing nod&his method does not affect
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Figure 4-7: Real topology: Average lookup latency.

the total number of hops in a lookup. This technique can aésagplied to Chord with
minor modifications by allowing each finger to point not to @afic position but one in a

range in the name space.

Chord uses proximity routing [122]. Unlike proximity neighibselection, proximity
routing does not require each node to set up its finger talahg uearby peers. Proximity
routing happens during a lookup process. At each step oflafmdhere may be multiple
next hops that are closer to the destination ID than the numede in the name space.
Therefore, the current node can choose the closet next haipysical networks among all
possible ones, or one that is a good tradeoff between thegathgistance and the progress
in the name space. This technique improves the lookup pedoce. However, it is limited
by the number of available next hops. Furthermore, unlikexipnity neighbor selection,
always choosing the shortest next hop may lead to an incredlse total number of hops,

which affects the lookup performance.

Ratnasamy et al. introduces landmarks as topology signaI#\N [106]. With land-
marks, a node can map its logical ID to its location in the pdaisretworks, so that neigh-

bors of a node in the overlay network are close to it in the maysietwork. In this way,
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Figure 4-8: Real topology: Average lookup AS hops.

a lookup can reach the destination without going throughestaraway nodes. But such
topology-based ID assignments violate the uniform distidn of node IDs, which leads
to load-balancing problems. Neighboring nodes are alshfito suffer correlated failures.
Such a technique cannot be applied to those using one-diomah:iame space such as

Chord and Pastry.

Brocade adds a secondary overlay on top of the P2P netwosk [TBe secondary layer
consists of super nodes, which are nodes near the netwodsapoints such as routers.
Each super node manages a set of local nodes, and netwdik isakduced. But super

nodes may become the bottleneck, and thus the system dossatetery well.

Xu et al. propose to build Expressway [129]. Expressway iawadiliary network on top
of the structured P2P network, based on AS-level topologivel@ from BGP tables. An
Expressway network consists of nodes near network accésts pleat have good network
capacity. It uses routing advertisement similar to theadlistzector algorithm to improve
routing performance in the Expressway. None-expresswagsase their local express-
way nodes to route messages. This approach requires ttrahede know all nodes in the

same AS. Furthermore, the cost of distant-vector routingeetsement under a dynamic
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environment is not clear.

Another category of related work is synthetic coordinatstems [87, 38]. Such sys-
tems allow hosts to predict end-to-end latencies usinghgjiat coordinates without prob-
ing each other, which can be used by the P2P lookup to avotdciimg distant hosts. GNP
[87] relies on a set of landmarks, and each host computesdasimates using the laten-
cies between itself and all the landmarks. Vivaldi does aqtire fixed landmarks [38]. In
Vivaldi, a host can compute its coordinates after collegtatency information from a few
other hosts. Compared with those systems, our approach bas&8-path length is less

accurate, but can help to match P2P activities with ISPs.

4.8 Summary

In this chapter we have examined and evaluated algorithmghéoleader organization
between regions using network topology knowledge andiddiged hash tables. This con-
trasts with the current approaches used in DHTs which arergéy based on the discov-

ery of latencies between peers by active probing. We demairghat there are significant
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advantages to our approach. The first is the significantlyeed probing traffic and perfor-
mance improvement. Using our hybrid proximity neighboesébn scheme with the AS
hop method, we can achieve nearly the same lookup perforerasithe standard proximity
neighbor selection with only 9% of probing messages on tinehgyic topology, and 16%
longer average lookup latency with only 12% of probing mgssaon the real topology.
Perhaps even more importantly, the AS infrastructure refl@dministrative boundaries
in the Internet. Algorithms such as those presented in tiapter allow for restricting agent
activities to either individual or sets of ASes that refleatts boundaries. We conclude
that with more study, one can generalize these ideas moegllyrto the Internet layered

architecture, with significant performance and policy bgne
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Chapter 5

Aggregation and Broadcast

Aggregation and broadcast are two important functions daders in the region organi-
zation. First, as discussed in Chapter 3, not all requestshearesolved by following
network topology, and some need to be broadcast to all thermeg Second, similar re-
quests or knowledge can be aggregated to scale to the Ihtermge. Third, a new agent
may need to broadcast in the NetKP to find a spec-KP that matthmterest or to find
relevant agents to form a new spec-KP. Finally, the brodagrabaggregation functionality
is needed in many spec-KPs. Therefore, the NetKP shoulcbsiugificient broadcast and
aggregation mechanisms at the region level. In this chabpeesent an aggregation and
broadcast mechanism based on the tree structure, and desityee maintenance protocol.
In Chapter 4, | have presented a network topology basedlis#dl hash table for cross-
region organization. DHTs represent an effective way toesirdormation, since there are
no central points of failure or bottleneck. However, the 8ide to their distributed and
dynamic nature is that it is not trivial to aggregate and Hoaest global information effi-
ciently. As aggregation and broadcast are fundamentaicg=rin the NetKP, we design a
novel algorithm for this purpose in this chapter. Specificale propose to build an aggre-
gation/broadcast tree in a bottom-up fashion by mappingsadd their parents in the tree
with a parent function This approach also allows us to construct multiple intenode-
disjoint trees, thus preventing single points of failurentoonly in the tree structures. In
this way, we provide regions with an ability to collect angsminate knowledge effi-

ciently on a global scale.
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5.1 Introduction

In this chapter, our goal i design and implement aggregation and broadcast function
alities among regionsWe believe that a good aggregation and broadcast schemieefor t
regions must satisfy three criteria: accuracy, scalgbifind robustness. In terms of ac-
curacy, we want the scheme to be able to provide aggregatamation with a certain
accuracy in a dynamic environment (where nodes and reg@nsapd leave from time to
time). With respect to scalability, we want to minimize megs passing and avoid flood-
ing schemes that generate excessive redundant messagedkaohe scheme scalable to a
large network. We also want to ensure that there is good badancing, in the sense that
no node among the leaders should be responsible for form@eddisproportionate amount
of network traffic. In terms of robustness, a scheme shoulabiient to the dynamics of

nodes joining, leaving, and failing arbitrarily among le&sl

The tree is a natural and efficient structure for aggregatimhbroadcast for the follow-
ing reasons. To broadcast information, the root can sendtbienation to all its immediate
children, and then each child broadcasts in its subtreatitety, until leaves are reached.
During this process, each node only receives the informatiace, so there is no redun-
dant transmission. When the tree is properly designed, eadé has approximately the
same number of children, and thus the workload is evenlyibiged among nodes and the
process completes in the logarithmic number of steps indehihe tree size. The same

argument applies when the information is supposed to aatieesink.

Therefore, we propose to build and maintain an efficient abdst tree structure among
the regional leaders. In the Chapter 4, | have presented ameeffidistributed hash ta-
bles using network topology knowledge, and thus we haverad ha efficient DHT-based
cross-region organization with a circular and continuoaisia space. With this underlying
infrastructure, we propose a bottom-up approach that oactstand maintains the tree us-
ing soft-state, in which a node dynamically determines @sept using garent function
The particular parent function family we provide allows #iécient construction of mul-
tiple interior-node-disjoint trees, thus preventing $engoints of failure in tree structures,

and also distributes the aggregation and broadcast loadyesmong nodes. With such an
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aggregation/broadcast structure, our approach only géera small amount of network
traffic compared with those based on gossiping or floodingd,isnobust to node failures.
The rest of the chapter is organized as follows. In Secti@nlSirst give an overview
of cross-region organization, and define parent functiorfadilitate our discussion. Then
| present a bottom-up tree construction and maintenanagitdg, and analyze aggre-
gate accuracy under node failures. Section 5.3 discussesble properties that a good
parent function should have, gives a sample parent funéf@mnily), and examines its fea-
tures. We also look at how parent functions provide a corar@mway to construct multiple
interior-node-disjoint trees, thus preventing singlent®iof failure. Section 5.4 discusses
implementation issues. Section 5.5 presents the simaolaéisults on the properties and
performance of our scheme. Related work is discussed inddest6. Section 5.7 con-

cludes the chapter and highlights current areas of ongoorg.w

5.2 A Bottom-up Tree Building Algorithm

In this section, we first give an overview of the cross-regioganization, and define par-
ent functions. Then we describe bottom-up tree constmaind maintenance protocols
in detail, and discuss the advantages of such protocolsllfinve analyze the aggrega-

tion/broadcast accuracy in case of node failures.

5.2.1 Cross-Region Organization Overview

Because the organization of regional leaders from Chaptebdsed on a distributed hash
table, it inherits three key features, which are the basbefiesign. First, the name space
of the regional leaders is circular and continuous, alttogmme are one-dimensional, and
some are multiple-dimensional such as CAN. Second, thisnagaon provides efficient
lookups. It can resolve a lookup (log ) or fewer steps, where is the number of the
leaders/regions. Finally, this structure is resilient tale failures in that they automatically
repair the organization when nodes leave or fail.

With these three features (continuous name space, effidektip, and robustness),

our goal is to build an efficient and robust aggregation/boaat tree among regional lead-
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ers. As nodes are often used to describe the entities in Datiswe focus on the DHT
formed by regional leaders in this chapter, we make nodesemu®rs exchangeable in the

following discussion.

5.2.2 Parent Function Definition

The key idea in our bottom-up tree-building algorithm is &ew many-to-one function,
P(zx), to map each node uniquely to a parent node in the tree baséd @hx. More
specifically, the parent node for a nodds the node which owns thal P(z). If node

x owns P'(z) fori = 1,--- , 00, thenz is the root of the tree. Note thdt’(x) refers to
function iteration of P(x). If we consider nodes in a DHT as nodes in a graph and the
child-parent relations determined #(z) to be directed edges, the resulting graph is a
directed tree converging at the root. A tree example on th@ Deime space is shown in
Figure 5-1. In the following we first define the parent funati@nd will present a parent

function example in Section 5.3.2.

Figure 5-1: A tree example. The circle represents the naraeesf is the root, and the
arrows show the directed edges of the tree from a child toatemt. In this figure, node
P(z) is nodex’s parent, node”?(z) is P(z)'s parent, and so on.

Definition 1. A Parent FunctionP(z), is a function that satisfies the following conditions:
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Pla) = « (5.1)
P*(z) = o,V (5.2)
Distance(P™'(z),a) < Distance(P'(x),a),

Vi>0,P(r)#a (5.3)

wherea is anid owned by the root of the tree,is any valid noded, and Distance(x, «)
is the logical distance betweéd x and the rootn, which is essentially the level af x in

the tree.

The above three conditions guarantee that all nodes u3ing will converge to the

root in a finite number of steps, and we prove it in the follogvtheorems.

Theorem 1. If a function P(x) satisfies the above conditions, there is a directed path from

all nodes to the node that owns th&a, which is the root.

Proof. Theorem 1 is a direct consequenceGaindition (5.2) Given an arbitrary node,
we know that there is a path fromto P’(z), V i > 0. SinceP>(z) = a, there must be a

path fromz to a. O

Theorem 2. If a function P(z) satisfies the above conditions, all nodes will converge to

the root node in a finite number of steps in a finite network.

Proof. From Condition (5.3) we know that a node that owrd®'(z) (V ¢ > 0) is closer
to the roota than its childz in terms ofdistance defined in the parent function. Since
there are a finite number of nodes, a node will converge todbein a finite number of
steps, if there is no loop (either back to itself or to a nods th even further away from
the parent). We prove that it is impossible to have a loop bytredliction. Without loss
of generality, suppose there is a loop in whieh(z) = = (k > 0,2 # «). It implies that

Distance(P*(z),a) = Distance(z, «). This contradictsCondition (5.3) O

Note that the name space of the leaders, like that of DHTs,ushntarger than the

number of leaders/regions. For example, Chord [122] use&bitGhame space, which
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can theoretically hold up t8'%° nodes. In contrast, in the widely-deployed P2P network
Gnutella, only about0, 000 peers were observed at a time anglM/ nodes over an 8-day
period [112], which is only a small fraction of the name spaldeerefore, a node in a DHT

is usually responsible for a range @fs, instead of its owrid only. Like in Chord [122]
and many other DHTs, we assume a node is responsible farither keys between its
predecessor (exclusively) and itself (inclusively), anel hode is called th&l's successor

or owner. Accordingly, we do not require that a node with an exatof P(x) exists.
Instead, as long as a node is currently responsiblédfé?(xz) according to the underlying
DHT, the node represents theé P(x). This rule also applies to the roatsuch that any
node that is currently responsible fat « is the root, but usually the root of a tree is the

node that initializes this tree and should be alive throlghetggregation/broadcast process.

5.2.3 Tree Construction Protocol

With a parent functionP(x), we can construct an aggregation/broadcast tree by having
each node determine its parent node. The tree construatiwogol describes how a node

joins an existing tree as follows, illustrated in Figure 5-2

1. When a new leader, say joins the system, we assume that it should already know
some existing leaders from which it can set up its state.dlisis from the introducing
nodes that node learns about the parent functioR(x), usually parameterized by

the rootid .

2. After nodez joins the system, it learns thd range that it is responsible for. &
is within this range, node knows that it has become the new root of the tree. The
former root also knows this since nodes its immediate neighbor, and neighbor set
maintenance in the cross-region organization guarankeegte former root knows
the joining of noder. The former root will take actions according to the tree rein

nance protocol in Section 5.2.4.

3. If nodex is not the new root, it must find its parent node usin@). If P(x) falls

into its ownid range,P?(x) is computed and checked if it is still in its owd range.
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This continues untiP*(z) is found not in its range. This is guaranteed to end and a

Pi(z)(i > 0) will be found in a finite number of steps Bheorem 2

4. Nodez then performs a lookup for the’(z). The lookup resulting node, say node

y, will becomez’s parent in the tree.

5. After finding nodey, nodez sends a message containiRgz) to y to register itself

asy'’s child.

6. After receivinge’s register message, nogewill add nodex to its list of child nodes
together with the received’(z). If nodey already has too many children to handle,
it will use some admission control to redirect nodé& other nodes, as described in

the tree maintenance protocol in Section 5.2.4.

Note that in step 3, a nodecan usually find its parent by computitfg =), but due to
the sparsity of the leaders compared with the name spas@atisible thaP(z) is covered
in its ownid range. In such a case, nodeeeds to comput®(x)(: > 0) wherei is the
minimum number of times tha® has to be applied to so thatP?(x) maps to a node other
thanz itself. It can always find its parent in this way unless it is tbot. A node can easily
figure out whether it is the root by checking if the radtis covered in itgd range.

A remaining problem is how to set up the first tree among thedes because we need
to inform all nodes of the parent function and its paramefiess We choose to build and
maintain a default tree with a default parent functiBfr) at a default rootd « when
the NetKP is initialized. We can also depend on either appbos or some out-of-band

methods to flood the parent function when we want to consttice.

5.2.4 Tree Maintenance Protocol

We need to maintain an aggregation/broadcast tree carefuthe cross-region organi-
zation where leaders may join and leave dynamically, becausingle node failure may
cause the subtree rooted at the failed node to lose connegtth the other parts of the
tree. Therefore, it is crucial to maintain a robust tree t&at recover quickly from node

failures. The key idea is to let each node maintain its linkggarent node independently
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id

p(x)
p(y) y

Figure 5-2: The node joining procedure. The circle represtre name space,is the root
id, and the arrows show the directed edges of the tree from d thiits parent. In this
figure, nodey is nodez’s parent in terms of(x). Nodez is y's parent in terms oP(y).

based on the parent function. Although the parent functivesyise to multiple interior-
node-disjoint tree (as will be described in Section 5.3)etvee focus on the robustness of
a single tree, since this can be easily extended to a varfatyuttiple-tree maintenance

protocol. The tree maintenance protocol is as follows.

1. After a nodez joins the tree, i.e., registers at its parent node, it is béorth x's
responsibility to contact its parent noggeriodically to refresh its status reliably as
a child node. The frequency of the refreshment depends oty faators, such as
node failure rate and the requirement of applicationg.fHils to hear fromz after a

specified expiry duration; will be deleted fromy’s children list.

2. If nodey decides to leave the NetKP, it can notify its children angbéeent. To do
this, y notifies the children and tells them about its successorw$iould be their
new parenty will also inform its parent, and its parent will simply dedef from its

children list. Ify leaves without notification, it is considered as node failur

3. If nodey fails, its childx will detect nodey’s failure when it tries to refresh its status

with y. Thenz will perform another joining procedure to find its new parent

4. Nodey will discover that it is no longer responsible for tix@ P’(z) when a new
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node, say:, happens to join betweeR’(z) andy, and takes oveP’(z). In such a
casey will inform z that it is no longer its parent in terms &f () and to its best
knowledge,z should be its new parent. After receivigés messager will contact

. Based on the receivell’(z),  may either add: to its children list, or tellr that

to its best knowledge, another nodeshould ber’'s new parent, if it knows that’ is
betweenP(x) andz. This recursive procedure continues until a proper newrgare

is found. Figure 5-3 shows an example.

. Nodez may notice that it should change the parent. This happens wheurrent
parentis found in terms d?’(z) (V¢ > 1), which implies that”’ (x), j = 0,1, ...,i—

1 are covered in’s id range. Ifx notices that a new node has joined as its neighbor
and is responsible foP*(z)(0 < k < i), 2 will switch to the new node and simply

stop refreshing its status with its former parent. Figur#e €hows an example.

. Ifthe current root node finds that a new node has joinegaighbor and it happens
to cover the rootd, the old root knows that the new node will take over the root

responsibility, so it will find its parent using the parenhétion.

. If a parent node is overloaded because it has too manyrehijldr cannot handle all
children due to capability changes, it will ask some chitdi@switch to other nodes.
The way for the children to find other parents can be based @pahent function,

and we will discuss it in detail in Section 5.3.2.

5.2.5 Discussion

As mentioned before, we maintain a default tree over thedesadWe treat it as a light-

weight aggregation/broadcast infrastructure, and as a tmasonstruct other special pur-

pose trees, such as trees for media streaming. To keep ilesim@ do not consider factors

such as bandwidth or proximity in the default tree. Sinceréieeshing message is small,

we can use it to aggregate and broadcast some general Ndimation. For example,

we can piggyback the size of the subtree in refreshing messag that the root will ob-

tain the size of all its subtrees and learn the NetKP sizenThe root can piggyback the
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id

Figure 5-3: The first case of parent change due to node jailNiegey is nodex’s current
parent in terms of(x). Nodez is a new node which joins and covep$x). Thusz should
bexz’s new parenty can easily discover this by observing thdtecomes its neighbor.

NetKP size in the acknowledgments to its children, so thahtally each node will learn
the NetKP size. Other types of aggregate information camlascollected cheaply in the
similar way.

There are several advantages of our algorithm over prewieasonstruction and main-
tenance schemes. First, our tree based on the parent fametonstructed and maintained
in a distributed bottom-up way. A parent only needs to pabgimaintain a list of children
without any active detection of their status. Each nodespwoasible for contacting only
one node, i.e., its parent. Therefore, the tree maintenemstas evenly distributed among
all nodes.

Second, a node’s parent is determined by the parent funatidmode distribution in
the name space, so each node can find its parent independdmitke some previous tree-
based broadcast and multicast systems where the tree regaires coordination of the
root or multiple nodes [91, 132, 27], our tree can be repasietiltaneously by each node
that detects a failure of its parent. Therefore our tree @repaired easily and efficiently
in case of node failure.

Third, parent changes can be detected and completed easilyexplained in Sec-
tion 5.2.4, there are two cases when a node should changaréatp Both cases can be

detected by either the child or the parent by simply obseritsneighbor change, as shown
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Figure 5-4: The second case of parent change due to nodagoiris current parent ig,

in terms of P?(z), because there are no nodes betweand P(z). Later,z joins and takes
over P(x) and thus should be’s new parent.x can easily discover this by observing that
2 becomes its neighbor.

in Figure 5-3 and 5-4. The first case happens when a new natenear the parent node.
Suppose that a child registers at its parent in terms of P‘(z). Later, a new node may
join aty’s neighborhood and take ovét(z). It is definitely inefficient to have each node
keep detecting whether its correspondifigz) is now covered by another node. Instead,
notice that in this case the parent change is triggered byghlber changaear the parent
node and neighbor maintenance already exists in the cross#iegganization as in many
DHTSs. Suppose thatis responsible for aid range(y,, y|. If y observes that some nodes
have joined between its predecesggand itself, it checks whether the new nodes are be-
tween P'(z) andy. If so, it knows that its child: should switch to a new parent. This
detection costs nothing since in the cross-region orgénizaach node actively maintains
its successor and predecessgrthen notifiesr about this change. Note that there may
be multiple nodes joining the system simultaneouslyy seay not know which new node
takes overP’(x) and the responsibility rests anitself to disambiguate and find out its
new parent. The second case happens when a new node@anghe child Supposer’s
current parent is found in terms &f (z)(: > 1), which implies that?’ (z), (0 < j < 7) are
covered inz’s own range. Later, it notices that a new node joins at its neighborhood and

takes overP*(z)(0 < k < 1), x knows that it should switch to the new node. Therefore,
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tree maintenance cost on parent changes is very low.

5.2.6 Accuracy Analysis

A general aggregation operation consists of three stepst, i request is sent by a node
to the root. Second, the request is broadcast down alongaééa all nodes from the root.
Third, all nodes aggregate data of their own subtrees anddteflow up along the tree
to the root. Note that in the first step, a request can follosvtike to reach the root, or be
sent directly to the root if the requester knows the rootgbample, via the parent function

presented in Section 5.3.

Although the tree maintenance protocol tries to recovanfrmde failures and maintain
arobust tree, in an extremely transient environment whergraficant fraction of the nodes
can be down within a short period of time, it is very likely thmodes will fail during the
broadcast and aggregation procedure. Node failures dffiecaccuracy in two ways— a
node can either fail before forwarding the aggregation estj@o its children or before
forwarding the aggregated result of its subtree to its parém both cases, without any
recovery mechanism, the final result received by the rodtheiimissing information from
the lost subtree. Below we consider the effect of one typeodvery mechanism, namely
refreshing, on the conditional probability that the aggtemn result is correct, given that
the aggregation did occur.

In order to analyze the accuracy of this approach, we mak#tlosving assumptions.
We divide time into equal intervals of lengthi., and there will be one refresh/probe in
each interval. The time that the refresh/probe happensifisrarly distributed within each
interval. Therefore, the probability density function {pis constant at /C,. in each in-
terval. The lifetime of any node follows an exponential dimition with parameten;, as
the exponential random variable is a good model for the amotiime until a piece of

equipment breaks down or until an accident occurs. The ggtjon events are a Poisson

process with rate parametgy, as a broadcast or aggregation request can be considered as

an arrival and the Poisson process is hatural to describdapiiistic arrival events.

Consider the beginning of a refresh interval and label thaéti. Let R be the time
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interval from O until the next refresh. L&t equal the time interval from O until the next
failure. Since the lifetime distribution is exponentialdaimhus memoryless, the distribution
of L is again exponential with parametg&y. Let A equal the time interval from O until
the next aggregation. Likewise, the inter-aggregatioari@l is exponentially distributed
and thus memoryless, the distribution 4fis again exponential with paramet&y. For
simplicity, we condition on the aggregation occurring ateia, and that all the different
characteristics of different nodes are independent, ardtzded otherwise.

We consider the conditional probability that the aggrematiesult is correct from a
single node’s perspective, i.e. its parent has receiveabgsegation result.

All the probabilities we talk about below are conditionedthg fact that the aggrega-
tion occurred at time:. By the total probability theorem, we can split this intofelient

(sub)cases.

1. Case 1: Parent does not fail within time 0 to timeConditioned further on this, the
probability of aggregating correctly for a node is 1. Thelability of this case is
PIL>AlA=a]=1— [ Ne Mdl = e e,

2. Case 2: Parent does fail sometime in between time 0 to &md&he probability
that the parent fails sometime in between time 0 to tirie P[L < A|A = a] =
1 — e~ There are two subcases to consider, whether the sequemsemt is:
failure, refresh, aggregatiorCase 2-}, or refresh, failure, aggregatiolCése 2-2.
In the latter case the result would be incorrect, so we do eetrio calculate it. In
the former case, we make another simplification: the refedshys has enough time
to complete before the aggregation (so refresh is instaoias). This can be further

divided into two worlds.

(a) Case Aia < C,.
In essence the probability we are dealing with now is
P[Aggregation correct foranotlé = a, L < A,a < (]
=P[L<R<AA=a,L<a,a<C,
=P[L<RIL,R<a<C,]-PR<A|A=a,L <a,a<C,]
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=P[L-R<O0|L,R<a<C,] PR <ala <]
=P[L-R<O|L,R<a<C] &

(again,L, R denotes the lifetime and the refreshing-time r.v.s respay). Let
W denote the random variable- R. We get the following as the pdf 07 after
doing the convolutioryy = [, f.(I) fr(l — w)dl. Please see the Appendix A

for the details of the convolutions.

;

0 ifw>a

Sl bt e Mdl ifo<w<a
=w a 1

l—e

at+w 1 1 1 e
=0 al—e"MNo Ale dl |f a S w < 0

fw =

0 if w< —a

\

Note that in the abovg; (/) and fr(I — w) are under conditio, < « and

R < a, respectively. This evaluates to

0 ifw>a
bl (e - ) o< w<a
fw = L Lol —e M) if a<w<0
\ 0 if w< —a

Therefore,

PIL<R<AA=a,L<Aa<C,l

—P[L-R<O0[L.R<a<(C] —
a [ 1 1 \
_ S (1 s N(atw)
n C’r w=—q @ 1—eNa (1 ¢ )dw

11 1.,
C.1— e Na (a oy * >\le )

(b) Case B.a > C,.

Here, we are after the same probability
P[Aggregation correct for a nolé = a, L < A,a > C,]
=P[L<R<AA=a,L<Aa>C,
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=P[L<R|L,R<a,a>C,]-PIR<AlA=a,a>C,,L<R]
=P[L-R<O0|L,R<a,a>C,] PR <ala>C,]
=P] -1

Pl

]
L—-—R<O0|L,R<a,a>C,]
L—-—R<O0|L,R<a,a>C,|

Again, we letlV denote the random variable— R, and carry out the convolu-

tion, and get:
( .
0 if w >a
fliw CL 1—elﬂza Ne~Mdl ifa—-C,<w<a
c, - _
fw = z:w+w o he Mdl if0<w<a—C,
c, B _
o E e Ml if = <w <0
w if w< —C,

Note that in the abovg; (/) and fr(I — w) are under conditio. < « and

R < a, respectively. This evaluates to

0 if w>a

C%« l—el’/\l“ [e A — e ] ifa—C,<w<a
fw = C% 1—el—Aza [e= N — e~ NEH] if ) <w < a—C,

[l — e O] O <w <0

0 if w<—a

Therefore,

PL<R<AA=a,L<Aa>C]

P[L—-R<O0|L,R<a,a>C,]

We can now calculate the probability of the aggregation dgpemrrect from a single
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node’s perspective, applying independence:

P[Aggregation is correct for a nofieggregation occurred at|

:= P[correctA = a|
= P|correctA = a, L > A] - P[L > A|A = qa]
+ P[correctA = a, L < A] - P[L < A|A = q]

=1-e ™M+ PlcorrectA = a, L < A] - (1 — e M%)

At this point, depending on whether we are in casexA{(C,) or case B ¢ > C,),

the result is going to be different. Recall that we are fixihg= a, SO we are either

in case A or case B.

In case A ¢ < C,) we have:

P4 = P[correctA = qa]

1 1 1 1
—1. -Na o _— = (T o Na) |, 1—
e +Cr1—e—/\la(a >\l+/\l€ ) (
1 1 1

— —-Na . - _ —\a

A G Wi Wl

1 1 1
— - 1 —\a

3 (a )\l) + CMl)e

and in case Bd > C,) we have:

Pp = P[correctA = q]

1 1
- 7)\1(1 7)\[07“
=e + ——ce ——+1
Cr\ Cr\

e—Ala)

Note that the inter-arrival time between the aggregatioenty is exponentially dis-

tributed with parameteh,. Therefore, we can combine the two cases and get the final

formula. LetZ be the event that the aggregation is correct for a node. Talblshows the
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probabilities of several typical settings.

P[Z] = P|Aggregation is correct for a no¢le

Cr %)
:/ PAfA(a)da—i—/ PBfA(CL)dCL
0

o

S| 1 1
= / (=(a——)+(1+ Ye MY N e M da
0

TRDY Coh
o 1
—\a 1 — -\ Chr A 7)\aad
+/CT (e + Cr)\l+—cr>\le YA€ a
1 1 Aa I e 1 —(Aat+A)Cr
B VRGN § Vs W LS Wy VS WL o N WIS W

To understand the final result, let us look at several extreitnations:

1. When);, — 0, P[Z] — 1. \; — 0 means the node life time goes to infinity. P[Z]
approaches 1, because the aggregation will always be terhen there is nearly no

node failures.

2. When)\, — oo, P[Z] — 1. A\, — oo means that the inter-aggregation interval goes
to 0. In this case, P[Z] approaches 1 because when the agjgregaent happens

very frequently, the probability that it happens beforenloee failure approaches 1.

3. WhenC, — oo, P[Z] = 2=—. WhenC, goes to infinity, the probability of aggregat-

Ao+
ing correctly is equal to the probability that the aggregagvent happens before the

node failure event. As the two events are modeled as indepefbisson process,
the merged process is a Poisson process withxate )\;, and the probability that

the first arrival is an aggregation eventxiaé;—m.

5.3 Parent Function

The protocols in Section 5.2 help to construct and maintaieein the cross-region orga-
nization, but they do not determine the shape of a tree arat pthperties: those properties
are determined by the parent function. Parent functiong @laentral role in the proper-

ties of an aggregation/broadcast tree. In this section,is@ids the desirable features that
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Setting Probability
C, )\% )\% Prob

100| 10 | 5000 99.8%
100 | 100 | 5000 98.6%
100 | 200 | 5000 96.9%
10 | 500| 10000| 95.3%
10 | 100| 1000 91.3%

10 | 20 | 100 86.8%

Table 5.1: The probability of aggregation being correctrira single node’s perspective
under different settings. Note thél{ Is the average node life time, arfg is the average
aggregation interval time.

a parent function should have. Then we present a sample tpfargstion family, show
that it satisfies our definition (i.e. satisfies the three meglconditions mentioned in Sec-

tion 5.2.2), and analyze its properties.

5.3.1 Desirable Features

A parent function determines the properties of the constditree. We believe that, due
to the scale and potential dynamics of the leaders, a googhp&unction should have
the following features to be efficient and flexible, besides three required conditions
mentioned in Section 5.2.2.

First, for the purpose of load balancing, a good parent fonchould make sure that
each parent node has approximately the same number of ehildiven that nodes are
uniformly distributed in the name space. This helps to baildalanced tree. Note that
the tree is built on top of the DHT-based cross-region ozgtion, and the assumption of
uniform distribution is common in many distributed hashlésb so this assumption does
not affect the cross-region organization.

Second, node joining and leaving should not significantfeafthe structure of an
established tree. We identify that two features of the eregon organization make it
hard to stabilize a tree. One is that, it may sound appeatingate nodes at each level

of a tree be evenly distributed in the name space. Howevemtimber of the leaders is
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much smaller than its name space, so it is very likely thatdaof P(x) will map to the
node that followsP(z). A well-intended parent function that makes nodes at eagdl le
of a tree evenly distributed will inevitably lead to chaosaimeal tree due to the sparsity
of the name space. Therefore, a good parent function shaachgtee an approximately
balanced tree structure under this circumstance. The &haure that makes it difficult to
maintain a stable tree is that a node may change its pareet e to nodes joining and
leaving. For example, suppose a nadeith a large subtree attaches to a parent npdea
higher level. Then a new nodgoins as a leaf node in a low level. 4fshould switch from

y to z according to the parent function, then the resulting trdebei very unbalanced.

Third, a good parent function should support branch batajpm a dynamic environ-
ment. Although statistically a good parent function carabaké the number of children
each node has, it is unavoidable that some nodes may be edgmm many children to
handle due to the dynamics of the NetKP and variance in nogtehiition. There are
two aspects of branch balancing: admission control andmymadaptation. In admission
control, a parent decides whether to accept a child whenttih tries to register. Admis-
sion control is not enough since a parent’s condition mayghauch that it can no longer
handle all children, and in such a case, a dynamic adaptatiomeded. In both cases, the
key problem is how the refused or abandoned children find tiev parents. If a node’s
current parent is overloaded and it has multiple parenticiatels, it can switch to another

parent.

Fourth, a parent function should allow a child node to piclkaeept node optimized ac-
cording to performance or other metrics. For example, the ttan be optimized according
to network topology for performance improvement or accogdio Autonomous System

relationship for economic reasons.
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5.3.2 A Parent Function Example

There are many functions that satisfy Conditions (5.1) t8)(& Section 5.2.2. The fol-

lowing is an example adopted in this wérk

(

a+ {WJ (modm),

for 0 < (z — ) (modm) < %
a— {m—(m—a) (mOdm)J (mOd m)’

k

for % < (z — ) (modm) < m

wherez is theid of the present nodey is the rootid, k is a parameter that determines the
branching factor of a treé; > 1, andm = 2°, wheres is the number of bits for the address
space, i.ean is the size of the name space.
As shown in Figure 5-5, a tree resulting from this functionasted at a node that owns

theid o. The expected branching factor of a spanning tree constiueith this function

is approximatelyk if the nodes are uniformly distributed in the name space dpkdor
the root). The expected heightd¥log, n), wheren is the number of the leaders. Before
proving these properties in theorems 4 and 5 respectiveyirat show thaP;(z) is indeed

a parent function, as per definition 1.

Theorem 3. P,(x) is a parent function.

Proof. This follows from lemmas 1, 2, and 3. O
Lemma 1. P,(x) satisfies the first condition of definition 1, iB,(a) = «.

Proof. Direct substitution yields the desired result. O
Lemma 2. P,(x) satisfies the second condition of definition 1, P& (x) = «, V x.

Proof. The essence of this parent function is that after each iiterahe distance between
the root and the current! P;(z) is reduced by branching factér To make it simple, we

make the following substitution.

!Note that the modulo operation on negative numbers M(z) is defined as follows:
amodb=b— (—a) modb,if —b<a<0.
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Figure 5-5: Aggregation pattern of the sample parent fmctiThe circle represents the
name spacey is the rootid, m is the size of the name space, and the arrows show the
directed edges from a child to its parent in the tree.

Let d; be the distance between the curréhtind the rootr after: iterations. We can

convert the parent function as follows.

1. When0 < (z — a) (modm) < 3, we have:

dy = (z— ) (modm);
d;
diy1 = E;

= P!/(z) = (a+d;) (modm).
Itis easy to see that, = 9. Wheni — oo, d; — 0, and thusP!(z) — a.
2. Similarly, wheny < (z — o) (modm) < m, we have:

dy = (m—(z—a)) (modm);

di
diy1 = ?;

— Pi(z) = (a—dy;) (modm).
Itis easy to see that = ©. Wheni — oo,d; — 0, and thusP:(z) — a.

ThusP!(z) — « in both cases. O
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Lemma 3. P,(z) satisfies the third condition of definition 1, i.Bistance( P (), a) <

Distance(P!(x),«), Vi > 0, whereDistance(z, ) :=

(x — a) (modm), for 0 < (z — ) (modm) < &
m — (r —a) (modm), for ¢ < (z —a) (modm) < m

Proof. In the proof of property 2, it is easy to see thiat; < d; in both cases, and therefore
we have
Distance(P™(x), o) < Distance(P!(z), a), ¥ i > 0. O

ThereforeP;(z) is indeed a parent function. We now move on to discuss thectsge

branching factor and the expected height of a tree constiucsingP; ().

Theorem 4. If the node distribution in the name space is identical, peledent, and uni-

form, thenk is the expected branching factor of the tree constructed Rith).

Proof. Asn nodes are identically, independently and uniformly dmtted in a discretél
range [0,m-1], we can use the results in Section 2.5 in Gatladpook [47]. LetX be the
interval/distance between two neighboring nodes, then:

m—1—4d
m

P(X >d) =

—~

)n

—_

3
L
3

3

EX] = ST (-F) =S Px>d) =S L ~

n
0 0 0

=3

=)
Il
.
Il
a
Il

The number of nodes within an interval of lengthas discussed Section 2.5 in the
book, is a binomial distribution with probability of sucee$. The interval of lengthr
corresponds to an interval of lengthwith regard to the parent function. Leé€ be the
number of children of a non-leaf node, aidbe the id range between the parent node and

its predecessor. By law of iterated expectation, we have:

E[N] = E[EIN[X]] = Efn- 0] = MEpy = 20y
m m ™m n
Therefore, the expected number of children for a non-leaensk. O
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Theorem 5. If the node distribution in the name space is uniform, tli&tog, n) is the

expected height of a tree constructed witfiz), wheren is the size of the network.

Proof. With the previous property, we know that each non-leaf ncakedn expected num-
ber of k£ children. Suppose thaY; is a random variable that denotes the number of nodes
at the tree level. Note that a non-leaf node has an expedtetiildren according to Theo-

rem 4. Let the height of the tree be a random varidibleThen we have the following:

E[N,] = fo
E[N:] = E[E[N:|Ni1]] = E[k - N;_1] = k- E[N;_4], fori >0
E[n] = n=E[E)Y NIH]=E[l+k+k;+ - +k"] = E[%}

Then we have the following inequalities based on Jenseapuality:

k’H+1 -1
k—1
> E[KY]

n = E ]

> LEH

= E[H] < log,n

Therefore, given that nodes are uniformly distributed in the name space, the eéggdec

height of the formed tree is less thamg, n. O

With the above theorems, we now briefly discuss how our sapauient functionP; ()
satisfies the three desirable features we discussed ir8éc8.1.

First, our parent function builds a balanced tree. Accagdim Theorem 4, each non-
leaf node has an expected numbertothildren. The expected tree height(§log, n),
wheren is the number of nodes.

Second, the tree constructed from our parent function isigesto node dynamics,
because, according to the proof of Theorem 4, neighboringsare at the same level or

the adjacent levels in the tree, and such parent changesisudlly move children from
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a node to another node at the same or an adjacent level ofethe @n the other hand, if
a parent function maps nodes’ parents evenly in the nameessiadree will tend to be
unbalanced.

Third, our parent function does not provide natural suppartoranch balancing, but
can be easily enhanced as follows. In case of overloadiegydinent will ask some of the
farthest children in the name space to move. An alternatwerg candidate will be found
by moving stepwise one neighbor of the parent away from tlo¢, i@peatedly until an
underloaded node is found. This is guaranteed to termiretause a leaf node will even-
tually be found in the worst case. After a certain time, thevetbchildren will recompute
the parent function, and move back to their normal parentsicA property of our parent
function for branch balancing is that this has little impawtthe height of the tree, because
nodes near each other are in the same level or adjacent l&viie tree and thus those
temporary parents are probably in the same level as thenatigiarent. As a result, the
convergence time will not be affected significantly, andriba will not receive redundant
information from different aggregation paths.

Fourth, tree optimization according to network topologyptirer metrics can be achieved
with a simple extension. Our parent function determinesiguenparent for a given node
id, and thus does not provide the flexibility for performancémzation. For example, a
child and its parent determined by the parent function maydrg distant in the network.
One extension is again to take advantage of the propertyntighboring nodes are at the
same level or the adjacent levels. A child node still uses#ree parent function, but the
parent returns a list of its neighbors, and the child choesesof them as its parent, for
example, the closest one in terms of latency. During thedbréalancing process, a parent
will ask the most distant children to move first. This allovestain degree of optimization

while maintaining the original tree structure.

Overcoming Single Points of Failure

A common problem of using trees for aggregation and brodde#sat trees are inherently
vulnerable to single points of failure. The bottom-up ammio will experience periodic

glitches in a highly dynamic network.
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To address this problem and improve the robustness, we dalhrbultiple trees, and
compute the same aggregation/broadcast function over. tigyndistributing theids of
these trees over the name space uniformly and adopting soararg system or by aver-
aging over the estimates obtained from several trees, waicder improve the robustness

of the aggregation/broadcast.

Depending on their features, some parent functions mayigeav convenient way to
build multiple interior-node-disjoint trees, such as tlaegnt function we proposed above.
Here we show that our sample parent function can easily ke toseonstruct disjoint trees
as follows. The key is to adjust parameters in a parent fanctso that we can get a
family of similar parent functions. Trees constructed gdimat family of parent functions
do not overlap in most of their interior nodes. Note that doghte randomness in the
node distribution, this approach does not guarantee a aimgisjointness, especially at
the boundaries of each level in the name space. We only camtid situation with high

probability.

Let us consider our parent function. If a tree is rooteddad, then according to the
parent function, its non-leaf nodes will be mostly in [B] and [m — 5, m — 1], which is
arange of length in the name space. This is because nodes that are most diistarthe
root( are aroundd 7, and thus their parents are the non-leaf nodes at the logxesdf bnd
the parentds are around; andm — g, respectively, based on the parent function. Nodes
in the other areas are all leaf nodes. Generally, under #resp function, non-leaf nodes in
a tree rooted atr are mostly in f — 5z (modm), a + gz (modm)], and all other nodes are
leaf nodes. Therefore, if we chooksimilar parent functions and the distance between two
neighboring roots ig*, we can construgt interior-node-disjoint trees, because paths from
any two roots to a node in the two trees are disjoint. In thig,wee can greatly increase the
tolerance of node failures and guarantee that with highatsdity every node will receive

the message at least once. Figure 5-6 demonstrates twontlisges wherk = 2.
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Figure 5-6: Two disjoint trees. Heteis 2, and the two roots are at 0 afjd respectively.

5.4 Extensions

The construction and maintenance protocols and the pareation help us build a robust
tree as a default aggregation/broadcast mechanism. Thesegeral other issues, which

are addressed in this section.

5.4.1 Two Operation Modes

As we mentioned before, the tree maintenance messagestheerefreshment and ac-
knowledgment messages, can be used for some light-weifgitrmiation aggregation and
broadcast. For example, we can compute the network sizesm#hy, since it adds little
to bandwidth consumption. This is an aggregation/broadonake background, which we
call thedefault mode

However, a node may need to perform a special aggregatioroadbast that is useful
only for the node itself, for example, searching for files wmames contain certain key
words. We call this then-demand modérhe on-demand mode of aggregation consists of

the following:

1. When a node wants to perform an aggregation using the tigemds a request to the

root.

2. Upon receiving a request, the root broadcasts it to itsedhiate children in the tree,
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which in turn forward the request to their children.

. When a leaf node receives the request, it performs the sfpmreling aggregation
operation, and sends back the result with a time stamp toaitsnp. If the child
does not receive an acknowledgment from its parent withieream time interval, it
determines its new parent and sends the results. Note tiakies some time to find

the new parent.

. A parent node waits for results from all its children. Itltes not hear from a child
after an expiry time, it will delete this child and not wait fitcs data. After receiving
data from all children, the parent node performs the agdesgperation, attaches a

time stamp, and forwards the aggregate result to its parent.

. If a node receives data from a new child after having serddggregate result, it will

compute and forward the new result to its parent.

. If a node receives data from a child several times, but difflerent timestamps, it

will compute the latest result and forward it to its parent.

. After the root receives results from all children, it withit for an additional amount
of time that is long enough to allow information delayed byepa failures to reach
the root. In our implementation, the time equals the heighhe tree times the
average round trip time. Then the root processes all celtedata and computes the

final aggregation result. Finally, it sends the result tordopiest node.

5.4.2 Constructing Multiple Trees

Sometimes we need the capability to set up trees rooted iataayinodeids to distribute

the load of a root and to provide robustness. Depending ocifgpapplications, we can

either rely on the application to disseminate or embed tbéidentifier, or have one per-

manent tree rooted at a pre-determined well-knaésvn,, as described in Section 5.2.3. We

focus on the second case. In this case, if a nodey sagnts to construct a new tree rooted

at itself, it will send a message to the root of the default tepecifying the parent function

113



with the rootid as its ownid. The message will then be broadcast down the default tree.
All nodes will eventually receive this message, and parétz in the new tree rooted at

When a new node joins the network, it will get a list of all exigttrees from its parent
node. Nodes also periodically exchange information on #igtiag trees. In this way, all
nodes will eventually discover and participate in all exigttrees.

When the root node of a tree wishes to tear down its tree, itsintiply broadcast a
message to tell all nodes that the tree should be torn dowanndéfde does not receive the
tear-down message due to its parent failure, it will stilt gevhen it detects the parent
failure and switches to a new parent which has already reddive message. Therefore,
the message is guaranteed to reach all nodes eventuallyodt &ils without notification,
subsequent messages will end up at a succeeding node whadvelis that it has become
the root of a tree that it did not set up. It can decide eithéetp the tree or to broadcast a

message to tear it down.

5.5 Performance Evaluation

In this section, we evaluate the performance of our bott@nree-building algorithm using
the parent function in Section 5.3.2. As an example of usagesvaluate the estimation of
available network storage under the default mode, and ttma&tson of the network size

under the on-demand mode.

5.5.1 Experiment Setup

Our experiments are divided into discrete time periods.acheperiod, a number of nodes
join the network according to a Poisson distribution withgmaeter) ;. At the point when a
node joins, its departure time is set according to an expaadetstribution with parameter
A;, and nodes are removed from the network when their lifesgapge. In the default
mode, each node sends a refreshment message that cont¢saiggitbgate information to its
parent in each period. In the on-demand mode, a node refd@shaatus under a uniform

distribution with paramete€’,, and the aggregation time follows a Poisson distribution
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with parameter\,. In all experiments, we use the parent function in Sectié25. The

rootid o is setto 0, and is 4, unless stated otherwise.

5.5.2 Tree Properties

In the first experiment, we evaluated the overhead of ourdoestruction and maintenance
algorithm in terms of network traffic by counting the numbéneessages sent in the tree
construction process. In this experiment, the node failate is approximately, = 10%
per time period, and about 10% new nodes join the network Tdns keeps the network
size roughly stable. During each period, each node refeeighstatus with its parent once.
The communication cost in terms of messages sent as a foraftimetwork size is shown
in Figure 5-7.

The total number of messages in each period is at least thEaétwork size, be-
cause each node sends a refreshment message to its pareatainds an acknowledg-
ment (except for the root). Note that refreshment messagesilso be used to aggregate
and broadcast information in the default mode. Additionaksages are needed for new
nodes to join, to repair the tree in case of nodes failured,fanoverloaded nodes to do
branch-balancing. Figure 5-7 shows that the number of mxhdit overhead messages (in-
cluding tree-repair messages, branch-balancing messagésiode-joining messages) is
small, compared with the total number of messages.

An important property is the number of branches or childrenan-leaf nodes, as it
reflects the overhead of a parent node. Ideally, we woulddlkthe intermediate nodes to
have approximately the same number of children.

In the simulation, we define an overloaded node as having tharek, i.e. 8 children.
We use the branch balancing algorithm discussed in Sect®,3vhich moves additional
children to its neighbor towards the leaf side. We find thathewut branch balancing, there
are 3% of overloaded nodes in each period, and the overlgddsts about 3 periods on
average. Overloading is automatically resolved when ohildeave or new nodes join to
take over some children from the current parent. The bramtdnging procedure usually

propagates within 2 neighbors. Figures 5-8 shows the oglstiip between the network size
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Figure 5-7: Communication overhead for tree construction.

and the branches. We can see that without branch balancirayesloaded node can take
as many as 48 children in a network with about 12800 nodeswéhdbranch balancing,
the maximum branch is only 8, which is the upper bound of thalmer of children a node
can have.

The height of the resulting tree affects the performanceesindetermines the time it
takes for the information to propagate from leaf nodes tortdwt. Figure 5-9 shows the
average tree heights with or without branch balancing uniifégrent network sizes. We
can see that our branch balancing scheme does not increaseitiht of the tree, even
though the branch balancing affects the tree structureesindoes not obey the parent

function.

5.5.3 Aggregated Knowledge Estimation

As an example of usage, we use our bottom-up tree to estimmatevblution of the avail-
able network storage in the default mode, which aggregatesruously. We estimate the

network size in a similar way.
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Figure 5-8: Tree branches against network size.

Figure 5-10 shows the evolution of the network storage edgrnand the network size
estimate at the root of the tree with a node failure rate,of 5% per time period. The
storage on each node keeps changing according to an appteynGaussian distribution
with a mean of 50MB and a standard deviation of 20MB. The satnoh consists of three
stages: increasing, stable, and decreasing. From Figlifg e can see that the average
estimation is very close to the true value. Specificallyhmincreasing stage, the estimates
tend to be smaller than the actual network storage becaase itha lag between the esti-
mate and the actual value. Similarly, during the decreasiage, the estimates are usually
higher than the actual storage size. The spikes are caust#tbgilure of intermediate
nodes high up in the tree, leading to temporary losses oi@ipk in the storage informa-
tion. The results demonstrate that our algorithm is resperie network storage changes,

and recovers rapidly from such failures.
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Figure 5-9: Tree heights against network size.

5.5.4 On Demand Estimation

We also evaluate the accuracy of on-demand estimation isithelation. In this setting,
C, =10, )\, =50, and\; = 200. The average estimation over 20 trials is plotted. We se
up an initial network of 10000 nodes. During the aggregateonertain fraction of nodes
fail. Figure 5-11 shows the simulation results under vaginade failure rateBefore Ag-
gregationrefers to the actual network size before aggregation Adtet Aggregationmefers

to the actual network size after aggregation. Since it takese time for an aggregation
procedure to complete, we consider that an estimated valaerrect if it is between the
original network size and the network size at the end of agggren. From Figure 5-11 we
can see that in most cases the estimation is within the doaege. When node failure rate

reaches 15%, some estimates start falling out of the range.
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Figure 5-10: Network storage and network size estimatiohe $olid curve at the top
shows the evolution of the actual network storage, and tlsheth curve with spikes at
the top shows the estimation of network storage. The dashedt the bottom shows the
evolution of network size, and the dotted line with spikethatbottom shows the estimation
of network size.

5.6 Related Work

Many large-scale distributed systems need to collect,egde, or broadcast information.
For example, in a P2P storage system ([80]) or a Grid-likerenment ([92]) it is valuable
to learn about aggregate available storage or computasipahilities. In particular, some
recently proposed randomized DHT topologies, like Vicerog] and Symphony [78], re-
quire network size estimates to tune routing performangeldd other circumstances, life-
time distribution and other characteristics may be valeaBroadcasting can also be used
to search for arbitrary semi-structured queries that atesnpported by the current DHT

lookup. Other applications, such as median distributi@gdthis functionality, too.

There is a large body of literature in the area of broadcasgeheral, existing schemes
can be categorized as flooding-based approaches ([72,18¥{pp-down spanning-tree ap-

proaches ([44, 29]). A major drawback of the former is thageherates redundant traffic,
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Figure 5-11: On demand estimation under various node taates.

while a major drawback of the latter is that when nodes faihim middle of the hierarchy,
large sections of the original spanning tree will lose conteith the root, and reconstruc-
tion of the subtrees requires significant efforts. In costirave address the problem under
more dynamic conditions, and our bottom-up approach ngtenébles fast recovery from
such failures, but also provides an easy way to build matipgtes with disjoint paths so

that all nodes can be reached with high probability.

Most of previous overlay multicast systems, such as SCRIB#eBx, etc ([110, 135,
105, 44, 131]) are tightly coupled with underlying overlagtworks. For example, in [44],
El-Ansary et al. discussed how to use routing tables to cocish broadcast tree, which can
be viewed as a special case of our scheme. The advantagegfasting table information
is that the child maintenance cost is saved by retrievingdam from the routing table,
which is always kept updated by the underlying DHT networkise disadvantage is that
the tree structures are constrained by the underlying Dipolties and thus not flexible.
Compared with these systems in which it is hard for a node tasadhe number of its

children based on its capability, our bottom-up tree scheniedependent of underlying
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overlay and its structure is determined by the parent fonctivhich is flexible in building
trees according to different requirements.

In [20], Bawa et al. proposed top-down flooding-based aggrey schemes over un-
structured P2P networks, which require a known universatimam delay and a known
upper bound to the network diameter. With the progress uctired P2P networks, we
believe that it is feasible to build and maintain a robustasfructure at relatively low cost
without those assumptions, and it is useful to attempt teesible aggregation problem over

the NetKP using a more efficient and scalable approach.

Our bottom-up approach of using a function to map nodes oateryp nodes is similar
in spirit to the generalized scheme for building DHTs pragmbby Naor and Wieder [84].
In their scheme, functional mapping is used to build the gdri@HT infrastructure, while
in our scheme we seek to build a specific tree structure ovewutiderlying NetkKP for
aggregation and broadcast. In [132], Zhang et al. built a daerlay independent of the
underlying DHT using a top-down method to implement arlpytidata structure, while our
tree structure is constructed in a bottom-up fashion andstakivantage of the underlying
DHT to maintain the tree.

CoopNet is a distributed streaming media content deliverghraeism [91]. In Coop-
Net, the root node coordinates all tree management fursstiooluding construction and
maintenance. This centralized management makes treeenaite easy. Trees are con-
structed incrementally, so the position of a node in the tiegends on when it joins the
tree. In our approach, the tree is built in an original bottophnway. Each node can find
its position in the tree without asking any central pointd &s position is determined by
the parent function. Different from CoopNet, we do not coaesidandwidth, since our
intention is not for stream media, but for a general lighigi# aggregation infrastructure,
whose bandwidth requirement is very low.

With respect to dealing with single points of failure, oupegach is similar to Split-
stream ([27]) in building multiple interior-node-disjditrees. Splitstream builds multiple
interior-node-disjoint trees over SCRIBE [110]. Like mostyious work on multicast over
P2P networks, trees are built using the routing table es)taed thus the properties and the

robustness of the multicast tree relies on the underlyirigyowéks. In our approach, the tree
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is constructed based on parent functions. Therefore,rdifteapplications can build trees
based on their requirements using different parent funstid\nother advantage of our tree
construction is that each node maintains its own parentdimi the tree can be repaired
simultaneously. In Splitstream, multiple disjoint treee &uilt based on the base of the
id space, while our approach is independent of any underhoagmg topology, and thus
makes it easier to construct and control the number of trgesnply changing the roatd

and the branch factor.

5.7 Summary

The aggregation and broadcast for the cross-region orgtmizis complicated by the scale
and the dynamics of the NetKP. We propose to construct a toi@esover the regions. We
have presented a new, original approach using a bottom-pgtrewtion that is based on
mapping from a continuous function into the discrélespace. The major advantage is
that it has a relatively low overhead and is resilient to ntaeires. Our scheme is also
flexible in that parameters in the parent function can be wsentrol the tree structure
and characteristics, such as the height and the branch.faéoalso presented the notion
of parent function families to aid in building multiple imter-node-disjoint trees, which
helps to alleviate the problem of single points of failure.

Parent functions play an important role in our bottom-uprapph. We have only thus
far discussed several properties of a parent function talgt to improve the tree perfor-
mance. By adopting a different parent function, we may be &bimprove some aspects
of the system, or at least achieve some tradeoff betweeausdosts and benefits, which
makes our results more widely applicable, since one coulde@wably define the cost and
benefit function for a particular application and then findaagmt function that maximizes

the benefit/cost ratio.
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Chapter 6

Case Study I: Experiment Management

on Testbed

In this chapter, we present a case study to address howaliffeinds of knowledge are
collected, maintained, and used in different ways in an exnt management spec-KP.
To demonstrate the effectiveness of this infrastructure bwild experiment management
tools on PlanetLab to facilitate the experiment setup bypgigihe knowledge collected in

the spec-KP.

6.1 Introduction

Network testbeds have become an important facility for aes®ers to study large-scale
distributed systems. There are several testbeds that aedywised, such as PlanetLab,
Emulab, DETER, etc. PlanetLab [96] is an open platform foretigping, deploying and

accessing planetary-scale services. It is composed of thare800 nodes at about 400
sites worldwide. At each moment, there are multiple redezncsetting up or running their
experiments within their own slices. More than one thousasdarchers at academic insti-
tutions and industrial research labs have used it to devedoptechnologies for distributed
storage, peer-to-peer systems, overlay networks, etc. ltdmative is the Emulab-based
testbeds that reflect a slightly different approach to expentation [1]. Among them, the

DETER testbed is a public facility of medium-scale repelgtaxperiments in computer
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security [42]. It has been configured and extended to progftective containment of a
variety of computer security experiments. The testbedainatabout 300 nodes at two
sites, and the nodes are shared among multiple simultareqgsiments isolated from
each other. As a result, network testbed and experiment geament have become an im-
portant and complex issue, as operators need to manageeanangber of nodes where
many users are running different experiments, some inuglgecurity issues [95, 21].

Those testbeds provide different styles of experimematcahe researchers. What we
notice is that they have problems in common, including hogetioup experiments, how to
pick nodes with desired features, how to monitor the expenitto make sure that it runs
as specified, etc. In this work, we focus on the PlanetLalbrenment, as PlanetLab has a
large number of nodes widely distributed and thus demotestr@al, complicated network
and node behaviors.

In network testbeds, experiment management usually iegdive following steps:

1. Upload the software The user uploads the software to all the nodes he chooses.

When the number of nodes is large, the user can use toolpsig 100].

2. Install the software The user needs to install the software. This may involve in-

stalling additional software due to dependencies.

3. Run the softwareThe user needs to start the software at multiple nodes. Resa
tools like pssh[100].

4. Monitor the software runningThe user needs to monitor the running to make sure
the software works as expected. He may need to debug the tedenething is

wrong.

Itis time-consuming and error-prone for a user to run a legae network experiment,
as this requires significant amount of work not only in wigtithe code, but also in setting
up the experiment on the testbed nodes and monitoring ifnis s expected. Several
specific problems facing the users are listed below. Firstvery common that when a user
uploads his program to a number of nodes, some of them wiljetthe program correctly.

There are many possible causes, such as node failures, i@y petwork problems, etc.
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Second, a user often wants to set up his experiment on a nushlperdes with certain
properties. For example, a DHT designer will want to deploy éxperiment to nodes that
demonstrate churns. Third, it is not easy to monitor theustaf a distributed system as

many nodes are involved. All these lead to a need for expatimanagement facilities.

Several research projects address individual managemeliems, but none provides
a general solution. We believe that the concept of the kndgdeplane help us solve the
problems as a whole. We conduct a case study on PlanetLdie tate study, we propose
to construct a spec-KP on experiment management that msudégjabuted experiments
on the testbed using knowledge collected and maintainederspec-KP. The goal is to
speed up experiment setup and help users find a node set withlule features. To reach

this goal, we study how different kinds of knowledge are rteimed and propagated.

The chapter is organized as follows. Section 6.2 discussdgatowledge collection and
distribution related to distributed experiment manageinpeoblem. Section 6.3 evaluates
how well the spec-KP can help reduce the upload failure andfinode set with desirable
features. We briefly discuss the related work in Section &éction 6.5 concludes the

chapter.

6.2 Knowledge Management

6.2.1 Goal

In this section, we use the distributed experiment manageasan example to demon-
strate how knowledge is collected, maintained, and prdeagal he purpose of this case
study is to see how the knowledge plane can help distributgérament in two aspects: (1)
to speed up the experiment setup by choosing reliable n¢g8ety automatically choose
nodes with desirable properties. To do so, different agplatg different roles, and work
together to resolve the requests. We focus on knowledgeatmh and maintenance in this

section, and request propagation in the next section.
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Property Value
Desired number of nodes< total available number
Desired node distribution 0-9

Desired node dynamics 0-9

Table 6.1: Request fields.

6.2.2 User Specifications

When a user wants to run a distributed experiment on a testisedpecifies the desired

properties of the node set. Currently two features are su@por

1. The distribution of the nodes. Value between 0 and 9 areé ieseepresent the degree
of distribution, where 0 means to choose nodes close to ethen while 9 means

widely distributed.

2. The dynamics of the nodes. This refers to the reliabilitypades. Similar to the
above, 0 means to choose most stable nodes while 9 means ynastid. This is
useful when a user wants to test the system performance wstakgr or dynamic

environment.

Accordingly, Table 6.1 demonstrates the fields of a request.

6.2.3 Knowledge Collection

The Spec-KP agents run on every testbed node. They mongaotidition of local hosts,
and maintain history records, such as boot time, previollgréacauses, etc. Each region
collects aggregated information of the local agents. Wheaxaeriment is being set up,
the spec-KP finds the appropriate nodes based on the ussuissts. During this process,
different kinds of knowledge are needed, and they are maidadifferently. There are two

kinds of knowledge we collect for experiment managemerapgatng to their locations.

1. Local knowledge about individual hosts and agents. Tuludes average workload,

bandwidth usage, boot history, etc.
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2. Network knowledge, including the path condition betweeo agents, network con-

dition within a region, etc.

The first kind of information is much easier to collect, whihee second often requires
collaboration among agents. Furthermore, while it is easyefich agent to maintain its
local information, it is not obvious how the second kind dbimation is stored and main-
tained. For the purpose of demonstration, we choose thefiesas a starting place because

it is clear.

6.2.4 Global Map Maintenance

To pick a set of nodes, we first need to know the total numberodes. To do so, we
can either collect the node set at runtime or maintain a ¢lobde map. We choose the
second way as it is faster. The global map is only approximragresenting how many
nodes there are in each region. The map is actively mairdaineng the leaders, but only
when the change of the region size reaches a certain pegee(®8% in our case study)
will the leader broadcast the change to all the other lead&ssthe node set of a testbed
is relatively stable, and does not change very often, suchnnration has low maintenance
cost in our setting.

The global map is an example of the knowledge that does noigehfrequently, and is
widely and frequently used in the experiment setup by altsis€herefore, we choose to

maintain it actively at all regional leaders.

6.2.5 Dynamic Knowledge Maintenance

Unlike the global map, other kinds of knowledge are more dyisasuch as the last reboot
time, average CPU load, network condition, etc. To pick nadds desirable features, we
need to maintain such history information as well. Howeitasg not scalable to maintain
such information in a centralized way. Instead, we propbaéeach local node maintain
detailed information about itself, and the regional leadaintain aggregated information
about the nodes in the region. Leaders do not exchange iat@mmactively; instead, they

answer requests about it from other agents or leaders.
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As there are many different kinds of dynamic node status dffereint users need dif-
ferent features, it is not efficient to actively maintain slkmowledge at leaders. Instead,

the leaders only maintain historical data about each nadatss.

6.3 PlanetLab Experiments

In this section, we evaluate the effectiveness of the sg@drkterms of setting up experi-

ment on PlanetLab [96] quickly and finding nodes with desfezdures.

6.3.1 Experiment Setup

There are about 800 nodes in total on PlanetLab, distribnt280 ASes. The experiments
run on 200 randomly picked nodes. As one of the experimergd1AS path length infor-
mation, we use RouteViews BGP tables [99] and AS path interatgorithms [56] to find
out all the AS paths.

6.3.2 Upload Success Rate

In a large scale network experiment, it often happens thagrnams are not uploaded cor-
rectly, either due to node failure or temporary network peof [65]. Therefore, we prefer
a set of reliable nodes to run the experiment. To do so, wedgesthe underlying network
knowledge plane in two aspects. First, as described in @eét2.4, leaders maintain an
approximate global map. Given this global map, we assigerdiht numbers of nodes to
each region tentatively. The number of nodes assigned tgiarrés proportional to the
region’s size. Second, each regional leader tries to findnibst reliable nodes in its region
using dynamic information. To do so, the leader can eithergall members to get the
latest information, or use the history data. We choose titerlto reduce the overhead. The

procedure is described below and shown in Figure 6-1.

1. A userissues an experiment setup request to the local,apecifying a number of

nodes.
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2. The local agent forwards the request to the regional leade

3. The regional leader analyzes the request, assignsafiffaumbers of nodes to each

region using the global map, and sends a request to leadeasimregion.

4. Each regional leader picks the most reliable agents negi®n using historical data,

and returns the list of agents to the originating leader.

5. The originating leader receives a list of nodes from eaaion, and returns the

complete list to the local agent.

6. The local agent forwards the list to the user.

[ leader © region

Figure 6-1: Upload procedure.

Figure 6-2 demonstrates the success rate of program uppaddifferent experiment
sizes. We compare our method with random pick. The total rerrobnodes is 200, and
the experiment size starts from 10, increasing by 10 eaoh tive can see that the random
pick has a very stable upload success rate, which is about @@%hatter what the size is.
Our method has a decreasing upload success rate, becauagemMewer choices when the

size increases. Eventually the two methods meet at 200 nodes

129



09 | TR .
0.8 N 4

0.7 + E)

Upload Success Rate

0.6 —

Success rate with random pick —+—
Success rate IWith knowledge ---x--- |

0 50 100 150 200
Testbed size

0.4

Figure 6-2: Upload success rate measurement.

6.3.3 Node Distribution

The second issue during experiment deployment is that viéeyy ave want nodes to be
widely distributed in the Internet. To do so, we take advgeataf the Autonomous System
information. As regions are organized based on both AS aeads information, we can
take advantage the static AS topology. We define the degreed# distribution as the
average number of AS hops between two nodes.

We compare three node-picking methods. The first is randakim, in which nodes
are randomly picked from the global map. The second is “gvierASes”, in which we try
to assign the same number of nodes in each AS, as long as teegragh number nodes
there. The third is “greedy”, in which we always pick the nextde that can maximize
the average AS hops. These procedures are similar to theopsegxperiment, except for
two steps. First, when the local leader assigns differentber of nodes to each region,
it uses the Autonomous System information provided by ousA&ice. The service pro-
vides two functions: the IP to AS number mapping and the A% patween two ASes.
We use RouteViews BGP tables [99] and AS path inference idthgos [56] to implement

these two functions. In the second method, the leader alwi@gsto pick nodes from dif-
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ferent Autonomous Systems, but does not consider the distagtween them; in the third
method, the leader uses a greedy strategy, which has highgrutational overhead, and
since the global map is approximate, the leader cannot bgresaly by choosing all nodes
from a region, which could lead to the problem of insufficianmber of nodes during the
actual assignment. Second, each regional leader alsddriegl nodes widely distributed
in its own region. Figure 6-3 shows how well nodes are diated using our method com-
pared with random pick. The shape of this figure is similariguFe 6-2, but the difference
between the two methods is less than 1 AS hop. This is becdaisetPab itself is already
widely distributed. It has about 800 nodes, distributed@0 ASes, so nodes by the ran-
dom pick are likely to be widely distributed. We can improte distribution if the leader

considers the distance between ASes, not just ASes thessselv

10 T T T

AS Distanace
~
T
*
1

with random pick —+—
evenly in ASes ---x---
greedy ------

4 1 1 1

0 50 100 150 200
Testbed size

Figure 6-3: Node distribution experiment.

6.3.4 Further Improvements

Besides the above functionalities, we plan to add otheruiseéchanisms. Within each
experiment, agents form a closely coupled region, and ghare information with each
other. In testbeds like DETER [42] and Emulab [1], the NScspecifies the network
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topology. We implement similar functionality on PlanetLiay allowing a user to specify
not only the overall properties of the node set to run the expant, but also the differ-
ent roles for each node, as very often nodes have differgmbitance in the experiment.
Agents monitor the experiment and check if the experimettpsematches the specifica-
tions. If something suspicious is found, agents will nottig user. This process can be
made interactive so that users may provide more informatimh agents perform further
diagnosis.

To avoid node failure and accelerate the experiment setugeps, when an experiment
is ready to swap in, agents can collaborate with each otheicto the nodes with the
best history records, so that the expected swap-in time beilininimized. During the
actual swap-in process, if an agent notices that a host tdram correctly, it will pick
another available node to replace the problematic one. géetanay also notify the testbed

operator about the problematic nodes.

6.4 Related Work

Some recent research projects focus on providing a frametasrapplication manage-
ment. Plush is a configurable application management infretsire designed to meet the
requirements of distributed applications and executiovirenments [13]. Plush allows
developers to define the flow of control needed using apphicdiuilding blocks. Through
a resource management interface, Plush supports exedntemariety of environments,
including both live deployment platforms and emulated s Smartfrog consists of a
collection of tools that manage distributed applicationd a specification language to de-
scribe the applications. Applications must follow the ABkake advantage of its features
[50]. Compared with them, our work is more general in termshaf tunctionality and
requires less integration between our system and the apipiis. We focus more on the
efficient organization of the components and distributekinmiwledge among them.
Another category of related work is the efforts to make Ertlike environment eas-
ier to use [113, 43]. The Emulab Experimentation Workbersctidsigned for replayable

network experiments [43]. SEER focuses on security relatgebrimentations, especially
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those on the DETER testbed [113]. Both provide conveniedtcamprehensive facilities

to free users from tedious experiment configuration so they tan focus on the key re-
search issue, which is similar in the spirit of this work. Ruilike PlanetLab, nodes are
located at the same place in the Emulab and the DETER testhdds a result, the prob-
lems | addressed in this work, such as improving uploadingess rate and finding nodes
with desired features, either do not exist or require défersolutions in those environ-

ments.

Some research focuses on failure diagnosis. In [65], reBees analyze the error re-
porting mechanism in Emulab, and propose a new design octsted error reporting that
associates context with each error-type and propagatésdair-type and context. They
each solve individual problems, but did not address the raxiget management problem
as a whole from the network architecture point of view. Ourkveverages the network
knowledge plane to facilitate experiment setup, to redytdead failures, and to provide

new functionalities that are not possible without the kremge collection and maintenance.

6.5 Summary

In this work we conduct a case study on experiment setup areRlab. Several issues are
involved, including different agent roles, region fornmatiand maintenance, knowledge
collection and maintenance, etc. More work is needed in éimsistency maintenance un-
der network partitioning. The case study demonstratesfthetweness of the spec-KP for
experiment management. Further improvements includestpgr experiment monitor-

ing and debugging, which needs some specification languadestribe the experiments
in detail, and thus requires a tighter integration betwdenspec-KP and the experiment

itself.
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Chapter 7

Case Study II: An Intrusion Detection

Framework

The NetKP has provided us a powerful infrastructure to bililspec-KPs for various net-
work management and applications. The premise of the wdtksrchapter is that it is both
feasible and valuable to design a common framework for gmrudetection on top of the
NetKP to address several simultaneous and often intetecef@oblems. We identify three
key issues: distributed and broadly valuable knowledgéected and produced through
analysis or diagnosis; a need to respect privacy, secantyproprietary boundaries in the
process of intrusion detection; a multiplicity of indepentidiscovery and diagnosis capa-
bilities. In this chapter, we lay out an integrated framewiar cooperative and extensible
intrusion detection systems. It is our expectation thag framework will facilitate evo-
lution in intrusion detection capabilities, support lopaivacy and security policies, and
scale to the size of the Internet. To demonstrate the stisraftthis framework, we build a
distributed intrusion detection system on the DETER tekthad apply different detection

techniques within and among regions.

7.1 Introduction

Increasingly frequently and cleverly, worms and virusesiavading our hosts on the In-

ternet. To address this, we see more and more creative imrgetection systems ap-
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plying distinctive techniques, using different data staues for their underlying data, and
reporting different kinds of intrusion status [94, 108, B3]. Some are based on traffic
patterns, others are based on signatures; some are cagdradind others are distributed.
Each of those has its own strengths and weaknesses. Ddspifact that attacks often
affect multiple domains or organizations simultaneousig tools used locally may not
support effective collaboration across those boundafiesdate we do not have a way to
integrate those techniques and create a comprehensiusionrdetection approach, so that
intrusion detection systems widely distributed in the tnét can share information easily
and worms be detected quickly. In this work, we propose a kedge-based framework to

unify those systems and make intrusion detection moretaféein the Internet.

We classify agents in this framework into detection engiaed knowledge agents.
Detection engines correspond to the regional leaders, aodIkdge agents correspond to
the agent members, but in the context of intrusion detectlarorder to meet the needs
of individual clients and allow for a unified approach, thanfrework posits that a user
contacts one or more detection engines, based on a setafaiiicluding goals, levels of
trust, etc. Each detection engine, whose task is to deteaision, in turn will call on a
set of knowledge agents with various kinds of expertisegiragmfrom particular detection
techniques to traffic monitoring capabilities. Note thabwhedge here includes not only
specific intrusion detection techniques, but also inforomaabout network configuration,
local context, etc. We see as central challenges to thiseinark the ability to share and
discover existing and new knowledge, the choice of an etditynly expose as much or
as little of both its interests and its expertise as it chepaad a means of organizing and
cooperating efficiently. For this we identify two key tecbtali support issues: a mechanism
for trustworthy private knowledge retrieval, and a scagadniganization for agent discovery

and knowledge aggregation, as we discuss below.

In terms of security, we face three intertwined problemsrsti-ian agent or source
of knowledge may, for policy reasons, want to provide ontyiled or partial access to the
complete set of its possible capabilities. Second, thecemira query may want to disguise
its own particular interests from the source of knowledge axpertise. Third, the parties

want to have reasonable trust in the veracity of their exgbain order to address the first
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two, we base our work on prior work on Private Information ifal, and for trust, on a
protocol for developing a trust model.

In terms of scalability, we proposedivide-and-conqueapproach to global scale or-
ganization. We see a number of distinctive motivations ediding to our region-based
approach, including simple reduction in scale, often legdio exponential decrease in
complexity, and the efficiencies of operating in a homogeseenvironment, leading to
performance gained by physical or topological partitignietc. These sorts of motivations
lead us to propose an underlying region-based capabilighieve any or all of these.

This chapter is organized as follows. Section 7.2 describedramework for com-
posite intrusion detection, then addresses the secusigssincluding protocols of privacy
protection and trust, and discusses the region-based imggienm for agent discovery and
knowledge aggregation. Section 7.3 presents a case stutigtabuted intrusion detection
on the DETER testbed based on the framework. Section 7.4s#iss a selection of related

work. Section 7.5 concludes the chapter and highlightsuhed work.

7.2 Knowledge-based Intrusion Detection

7.2.1 Intrusion Detection Framework
Overview

The main purpose of our work is to design a general frameworthat existing as well
as new knowledge can be integrated into it effectively. Teg iklea is to treat the result
of any detection method or other information (for instarresult of local computations or
some prior knowledge like the worm’s core code) as a piecenofedge to be input to
the detection engine. As a general term, knowledge in thiméwork refers to any useful
information to intrusion detection in the Internet, indlugl that about individual objects in
the network, and the relationships among objects, etc.r€&igtl demonstrates this basic
framework.

There are three parties in this framework: users, deteaingines, and knowledge

agents. A user issues an intrusion detection request toeatet engine. The detection
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Figure 7-1. Knowledge-based intrusion detection framéwd?.E. refers to “policy en-
forcer” described in Section 7.2.2.

engine analyzes the request, and collects necessary kigsvieom knowledge agents and
other detection engines. The knowledge agents provideepsed knowledge, such as net-
work traffic, local observations, according to their localipies. After collecting enough
knowledge, each detection engine builds a dependency gfaple collected knowledge,
and then runs inference algorithms on it and reports thdt(e}to the user, as demonstrated
in an example at the end of this section. All the parties usesdme ontology language
to describe their requests and capabilities, similar td.[68e describe each component
in detail below. The secure knowledge sharing betweengsa(tiealing with privacy and

trust) is discussed in Section 7.2.2, so here we will justtioant at the relevant places.

User

A user can issue arequest to a detection engine directlyaugih a local knowledge agent.
A request consists of three partgoal, constraints andprior knowledge The goal defines
the task to accomplish, such as determining whether a netwantruded by a worm, etc.
The constraints define the conditions that detection esgimést satisfy. Prior knowledge

provides some existing knowledge that may be useful to thectien engines.
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Detection Engine

The task of a detection engine is to detect intrusions. l&sisssimilar to the regional leader
in the previous discussion in the sense that it coordinde®perations of the knowledge
agents to resolve a request. A detection engine uses aldblaknowledge from knowl-

edge agents to resolve a request in the following way. Whergaest is received, the
detection engine analyzes it and figures out which agentbkafg to meet the goal and

constraints. During this process, the detection enginedsi&e coordinate the knowledge
sharing among agents. Some agents may have relevant taeengpme may have the
data, and others may have the dependency knowledge betieetacthniques. Those with
the relevant techniqgues may not have access to the data gu&doy constraints. The

detection engine needs to find proper agents that can ruec¢haitjue over the data. Then
it collects the responses from them, makes a final analysis;ns the result to the user, and
caches it for future use. Detection engines are similar ¢orégional leader discussed in
previous chapters, as they coordinate the operations batagents within a network, and
communicate with other detection engines to exchangenmdton, but unlike regional

leaders, there may be multiple detection engines withimgere as discussed later.

We focus here on the analysis of the detection engine. Orecddtection engine has
collected some knowledge, it can start to build a dependgraggh between the knowledge
that it has received so far. During this process, new knogédidom additional knowledge
agents may be added, and the detection engine dynamicalistathe dependency graph.
With the addition of new knowledge, there are three possbtens that can result. First,
this addition might produce knowledge that the current depacy graph (in this detection
engine) does not know anything about. In this case, the nadatal way to add this into
the current graph is to treat it as new and independent irdbom. Second, this addition
might give knowledge relating several pieces of knowledge are already in the current
graph. In this case, the probabilistic structure of the grewdl be changed to reflect this
new knowledge of the dependency. Third, this addition mgte knowledge that does
not really change the internal structure of the graph, bstieiad wraps around it and thus

affects the results of the detection engine.
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Knowledge Agent

Knowledge agents correspond to the agent members in thepsadiscussion. Knowledge
agents provide various kinds of knowledge, and act as a pbugers. A knowledge agent
can be an existing intrusion detection system that usesfepechniques on an end host or
on a network, one that contributes a new detection techpiguene that simply provides
any valuable knowledge. We identify four kinds of useful Wwhedge, as demonstrated in
Figure 7-1.

The first and most important category is existing intrusietedtion systems. Here we
view a detection system as a database of results generatgublyyng a detection technique
on an end host or on the part of the network it has access twlitdes detection techniques
based on incoming and outgoing traffic such as [63, 70], agbsure-based approaches
[25] together with the worm signature databases.

The second is traffic monitor. Such agents monitor the traféita for the analysis.
They often reside on vantage points in the network, such tesvggs. Note that in our
framework the detection techniques and the data are separat

The third is local context. This includes network configiomat operating system types,
running services, results of local virus scans, etc. Suadwkerdge exposes the potential
vulnerability of the network and hosts.

The fourth is dependency knowledge. This describes theralgmey between multiple
pieces of knowledge, such as the conditional probabilitpodming and outgoing traffic.

When a knowledge agent receives a query from a detection enigifirst checks its
local policies on exchanging knowledge with this detectmigine. Then it engages in a
secure knowledge exchange with the detection engine tadedlie knowledge without

disclosing sensitive information.

Example

We use a simple example to demonstrate how the componeatadhivith each other in
the framework. The example request is to detect whether CederRruded the network

1.2.3.4/24 in the past seven days, under the scope congtrairthe knowledge agents to
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ask must be within the local ISP. A piece of prior knowledgéhst the operating system
running on most hosts within the network is Windows. The esjus shown below. Note
that this is just an example to demonstrate how a detectigimemay deal with a request,

and we do not focus on how a request should be precisely defirths spec-KP.

<Request id=11239045>
<Coal >
<Wr > Code Red </ Worme
<Networ k> 1. 2. 3.4/ 24 </ Networ k>
<Ti meRange> 7 days </ Ti neRange>
</ Goal >
<Constraint >
<Scope> Local | SP </ Scope>
</ Constrai nt >
<Pri or Know edge>
<OSType> W ndows </ OSType>
</ Pri or Know edge>

</ Request >

Figure 7-2 demonstrates the process. The request is sentdgy t0 a detection engine.
The detection engine parses the request and does the fofjoMie stress again that when-
ever there is a knowledge exchange, the parties involvethessecure knowledge sharing

protocol as described in Section 7.2.2.

1. As the request is about a specific worm, the detection engiecks whether any
knowledge agent knows the signature or some properties o @edl. If not, it has
no way to resolve the request, and will return a failure touker, together with the

reason. If the request does not specify any worm, then tagsistskipped.

2. If the signature and some traffic pattern are availabke diétection engine collects
such knowledge, and chooses a number of knowledge agered bastrust, pri-
vacy, and the scope constraint specified in the requestighrthe agent discovery
mechanism in Section 7.2.3. Suppose that at this point ig,ttmo agents happen
to be chosen, one using signature-based technique, anthétreusing a traffic pat-
tern based technique. Then the detection engine handshe/knowledge about the

worm to the knowledge agents, respectively.
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3. The two trustful agents analyze some hosts and the reedit in the network using
their own techniques, respectively, and return the reshlitée that the data analyzed

may come from a third traffic-monitor agent.

4. After receiving the results from the knowledge agents, dbtection engine builds
a dependency graph of the results, and runs some inferegegthim, for instance,

Bayesian inference.

As a concrete example, suppose the detection engine emipley®Ilowing rule

to integrate the results from the knowledge agents: thectieteengine will report
to the user the probability that both results are “No intousi Since there is no
dependency knowledge about the results (yet), the deteetigine will assume in-

dependence between them. Therefore, the final result wibbrulated as:

P(Intrusion) = 1 — P(R1=No & R2=No

=1 — P(R1=No) - P(R2=Nog)

5. At this point in time, another relevant agent happens ito lee system, giving de-
pendency knowledge relating the signature and the traftiega For instance, this
might be knowledge abot(R2=NgR1=No). In this case the result will be revised

as:

P(Intrusion) = 1 — P(R1=No & R2=Nog

=1 — P(R1=No) - P(R2=No| R1=No)

6. The detection engine reports a final result to the user.

This example demonstrates how a detection engine detestgasion with the collab-
oration of multiple knowledge agents, while following thevacy and other constraints,
and how a new piece of knowledge helps the detection engitaénod better result. Note
that a technique itself is just a piece of knowledge in thasrfework, and this is especially
useful when a detection engine could not let the agent wahtdcthnique analyze the data

directly due to privacy constraints.
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Figure 7-2: The resolution process of a request.

7.2.2 Secure Knowledge Sharing

Different parties may be under different administratioasd would not disclose sensi-
tive information to others. Furthermore, agents have wbfiie capabilities and credentials.
Therefore, we need a mechanism for secure knowledge shthahgrotects sensitive infor-
mation for both sides (knowledge provider or receiver) aaplestablish a trust system to
represent capabilities and prevent cheating. The meahastiscussed in this section is an
important part in the knowledge-based framework, and thevitng discussion presents
the basic idea of private information retrieval and how iapplied in this framework, but
more work is needed to make it practical, and this mechanssnoi implemented in the

intrusion detection system in Section 7.3.

Private Knowledge Retrieval

Allman et al. proposed a loose private matching scheme fomdedge sharing in [15],

which allows for information sharing about mutually obssivnetwork events. Here we
generalize and extend it using Private Information Re&li€PIR) and policy enforcers.
The goal is as follows. First, PIR enables detection engioesicode a query in such a
way that knowledge agents can answer the query but do not &mequery itself. Second,
policy enforcers on the knowledge agents make sure onlygoiapowledge will be sent to

the detection engines. Therefore, little sensitive infation is revealed to both sides.

Private Information Retrieval (PIR) has been extensivélygied in theoretical com-
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puter science [32, 68]. For this work we choose a computatipibounded PIR approach
because the alternative requires either complete coptbe afatabase at both ends or trans-

mission of the complete database, both infeasible in thikwo

Although PIR can protect privacy of both the detection eagiand the knowledge
agents, agents often have their own policies about what kattme can be exposed to which
detection engines. Therefore, each agent needs a polioycenfP.E. in Figure 7-1). The
policy enforcer implements the security policy to prevdm exposure of sensitive local
information, but to allow for the report of valuable non-siive knowledge to the detection
engines. For instance, an enterprise might not allow aryrimnétion about local detection,
but might be prepared to allow for a report that it has authtiviely identified an attack
with a particular signature. In return for allowing that anfnation out, it can expect to
receive similar information from other enterprises or Imesis entities, without having to
expose anything about the nature of its network or aboutéigess of compromise it might

have experienced.

In the face of knowledge sharing between mutually distulgtlrties, each detection
engine needs to send queries of some form to knowledge afehitsh can be seen as
databases in this respect). However, we do not wish for tleevledge agents to know
which particular entries the detection engine is inteidate lest it provide false informa-

tion. To achieve this, we can apply the ideas of PIR.

We sketch the ideas of PIRs and then move on to describingoghleeation of PIRs to
our setting. Where possible we refrain from providing formefinitions and theorems, but
instead describe, at a high level, particular (theoreticaplementations.

As background, a numbeyris called a quadratic residue modulo(QR) if there ex-
ists an integer: such thaty = 2% (mod n). Otherwisey is called a quadratic non-residue
(QNR). Itis a number theoretic fact that the product of angnber of QRs is still a QR, and
the product of any odd number of QNRs is a QNR. Ldte a composite of the form- ¢,
wherep andq are primes of the same size. A particular implementationlBf B8] relies
on the following cryptographic assumptioQuadratic Residuosity Assumptiowithout
knowingp andg, no polynomial time Turing machine can distinguish a rand@/ (mod-

ulo n) from a random QNR (modula) while with p, ¢, it is easy to distinguish them.
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Assuming each entry in the database is a single bit, 0 or 1 d€kextion engine wants
to know the bit at théth entry in the database. The detection engine sends to thbade
a query vector which contains a distinct QR for each indexothan; and a QNR for the
ith element. The database cannot distinguish which are thea@g which the QNR. All
it does is to compute the product of all those vector elemiemt&hich the corresponding
database entry was a 1. The detection engine then can tegtrtiauct for whether it is a
QR or a QNR and hence know whether ibieentry was a 0 or a 1, but the database has no

clue which entry is actually queried.

To make the scheme more practical, we need to use an exteastbe PIR called
private keyword searc|81, 46], which allows querying the database if a keywordesin
it. A particular implementation is to translate private weyd search into the above PIR
scheme, as follows. Assuming the database holosssible keywords in total, and they
are of the same lengthbits, the database first sends all thkeywords to the detection
engine. The detection engine replacestthkeywords with their incidence vector,24 bit
string in which thejth bit is 1 iff the jth [-bit string, in the lexicographic order, is one of the
existing keywords. Suppose the keyword the detection engatds, IV, is thekth word in
the lexicographic order. Then it becomes a problem of ratigethe kth bit of the 2! bit
string from the database, the same as the basic PIR. The sd@mnibe made more efficient

with anoblivious walk which is beyond our discussion. Please refer to [31, 46{i&tail.

More work is needed to make PIR practical so that it can bei@gpd regular queries.
In the following we will use PIR as a black box and demonstfade/ to use it in our
protocol below. Say that a detection engiRé” wishes to query the knowledge agents
KA, KA,, ..., KA,,. The protocol is as follows. For concreteness we focus opantc-

ular example in which database entries are of the form “(&#, Protocol, Traffic, Time)”:

ProtocolKnowledgeSharing

1. User Input The user provides the detection engibé’ with the goal, constraints,
and prior knowledge. The detection engibé’ then contacts each knowledge agent
KA;,i € 1,...,m that it thinks it would need knowledge from, to inform them to

start the knowledge handshake.
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2. Knowledge Handshak&or each € 1,...,m, KA; checks itslocal policy regarding
information exchange with £/, thenK A; computes some functiofy on its database
D, based on the policy, to end up with( D;). Thenk A, tells D E the form of queries

allowed.

3. Knowledge QueryD E sends eaclik A; a query that it is interested in, as a function
of the user’s inputs, conforming to the form th&t4; deemed as valid. Here the

detection engine can use the PIR mechanism to protect vaqyriif needed.

4. Knowledge Answer K A; computes and sends the results using the PIR,/2aAd

extracts the answer using the PIR.

Note that in steiKnowledge Handshaké K A; has no local policy that restricts infor-
mation exchange witlh F, then f; is the identity function, and{ A; would tell DE that
the valid queries are of the form “(IP, Port, Protocol, T@fflime)”; if there is a local
policy that only allows aggregate information exchangewiitr without disclosing the IP
address, port number, or protocol type, thén; would tell D E' that the valid queries are

of the form “(TotalTraffic, StartTime, EndTime)”.

Dealing with trust

We have addressed privacy issues by assuming each pasythelltruth. However, in
reality our framework consists of many parties with difierenterests, and adversaries
may intentionally join the framework and provide false imf@tion. In this section, we
demonstrate how to integrate trust into our framework, petelently of any underlying
trust model. Note that in the literature, usualtyst is a subjective viewpoint of one’s
capability, defined between two parties, whidgputationis an objective measure for one’s
capability, defined globally [7]. For our purposes we do maed to) distinguish trust and

reputation. Below we describe how trust is used in our fraor&w
1. A user chooses a number of detection engines based omahkings of trust.

2. Based on the user’s rating, the detection engine may aocegject the request. If

a request is accepted, the detection engine chooses a nahkpewledge agents to
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ask based on their rankings.

3. Knowledge agents accept or reject the requests from tleettn engine based on

the rating.

4. The user rates the detection engines based on the quahty eturned results using

some out-of-band method and sends feedback to the detecignes.

5. Based on the user’s feedback, each detection enginethatésowledge agents in-
volved in this process, and differentiates them based oguhéty of the knowledge

they provided. It also forwards the rating information te #tmowledge agents.

6. The knowledge agents rate the detection engine basecardhived rating infor-

mation and other available information such as the reqast r

7. The rating process can be interactive by designing amaictige protocol for two
parties to argue about the feedback, either between thendehe detection engines
or between a detection engine and the knowledge agents. artiegperiodically

exchange their ratings.

Note that our framework is independent of the trust model s& except possibly the
feedback mechanism — if the trust model has a feedback mischait could be used in
the protocol described above; otherwise, a feedback mesrhdras to be designed for the
particular trust model.

For concreteness, we propose a simple trust model as follGwsstart, a user or a
detection engine may trust certain knowledge agents mocé,as those officially deployed
by his institution or ISP. Then the rating by ugéiof detection enginé’ at timet + 1 will
be:

Ry = wy - <w2 R+ (1 —ws) - Zthi * tR%)

]

+ (1 —wy) - 41fp

whereU is the current user, th&; are the other users that the current uSeknows, £/

is the detection engin& is interested inw; is the weight to incorporate the feedback,

147



0 < w; < 1, wy is the weight to incorporate previous rankings< w, < 1, Ry is the
trust that partyX has on partyt” at timet, fY is the feedback front’ at timet¢ + 1. The
above formula shows that the current rating of a detectiginenis a weighted sum of its
previous rating from the users and the current feedbackn&aof other entities including

knowledge agents are calculated in a similar way.

7.2.3 Scaling and Organization

In order for a user to contact useful detection engines, figtaction engine to find expert

agents, and for the knowledge agents to discover and ukliwsvledge, we propose a

rendezvous approach that involves agent discovery andlkdge aggregation. To address
issues of scaling, efficiency, and a variety of policy coastis, we again use thregionto

be a first-class component in the framework. Below we toush &n our region approach

and second on our rendezvous for discovery and aggreg&ibnigue.

Region and constraints

For scalability and efficiency, we follow a divide-and-comq strategy by dividing the
framework into regions. As discussed in previous chapties,region is a new design
element in the network architecture that encapsulatesaplgéiments scoping, subdividing,
and crossing boundaries of sets of entities [117]. Deteaimgyines and knowledge agents

are organized into regions based on four kinds of conssaint

1. Functional constraintsintrusion detection is conceived as a set of interacting-co
ponents collocated with the knowledge necessary to sucéderbugh in our frame-
work detection engines and knowledge agents are distdbtitere are constraints
from the knowledge itself as well as the functional subcongmis and their interac-

tions.

2. "Network” location. In some cases, intrusion detection may by necessity be kept
local to that network, where locality may be defined by a nunabenetrics, such as

network topology, latency, etc.
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3. Physical location We separate this from the previous category because thesiss
of geographic location or perhaps administrative owngrbloiundaries are generally

orthogonal to the more performance based network locatmstcaints.

4. Policy and other external constraintsSecurity constraints are a significant factor
in organizing entities. Furthermore, in order to meet reatld requirements, an
organizational strategy must be able to integrate econaegeilatory and other con-

straints.

We propose a simple clustering scheme as a starting poiriteofetgionalization ap-
proach. Based on its own constraints, each entity in thedveork decides which other
entities to connect to. Entities connected to each othen foregion, and select a leader

for management purpose. Connections among regions areaima&dtby the leaders.

Discovery and aggregation

We face two complementary problems: agent discovery andestitknowledge aggrega-
tion. There has been a significant amount of work in the arépsldish/subscribe systems
and peer-to-peer systems towards addressing these plidanscaling and heterogeneity
problems remain. In this effort we intend to build those natbms in the context of our

regionalization approach.

In this framework, requests are issued by users directlyhmugh local knowledge
agents. Requests are sent to the detection engines. Traiaetengine analyzes the
request and sends further requests to the knowledge agesed bn their advertised capa-
bilities. We propose an agent discovery scheme similarabiththe NetKP: Each detection
engine maintains a directory service of knowledge agergsyand capabilities within the
local region. All the detection engines form a tree struetsimilar to that in Chapter 5.
When a detection engine cannot find needed knowledge withilotal region, it can prop-
agate a request in the tree. The request can be either ptedagathe whole tree, or to
detection engines within hops in the tree, where is determined by several factors such

as priority, cost, etc.
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Aggregation is another important function, as many simitquests may be issued
when a fast-propagating worm attacks. We take advantagkeofegion structure and
the cross-region organization in the aggregation. Assuratthe detection engines form
a tree structure globally. A simple version of aggregatisraimulti-layer aggregation:
First, within a region, if a detection engine receives nmidtisimilar requests from the
local knowledge agents, it does not propagate all of therhagregates those requests
and forwards only one request. Second, at the region levaldetection engine receives
similar requests from other detection engines, it can hioddlater requests and waits for

the first one to be answered, and returns the answer to aletheesters.

7.3 A Dependency-based Intrusion Detection System

In this section, we design and implement a collaborativeigibn detection system based
on the framework proposed above. Not all the componentsdrfrimework are imple-
mented in this system, and we customize the framework to fineads. The goal in this
system is to detect zero-day, slow-scanning worms, for whia existing signatures are
available. We organize end hosts into regions based onrexigartitions in the Internet,
which we posit is positively correlated to the existing degency structure. Detection en-
gines and knowledge agents run on end hosts. Leveragingortianization, we apply
different intrusion detection techniques within and asn@gions. We use a hidden Markov
model (HMM) within a region to capture the dependency amargd) and use sequential
hypothesis testing (SHT) globally to take advantage of tidependence between regions.
We conduct experiments on the DETER testbed, and prelimneaults show improvement
on detection effectiveness and reduction of communicah@rhead.

Traditionally, intrusion detection is carried out at a ecahpoint, usually a gateway, as
it is a natural position to observe incoming and outgoinfficcaThis approach is prone to
DoS attacks, and depends on non-local detection of ancsnaliempting a need for new
approaches to monitor and respond to security incidentghdieend, host-based distributed
intrusion detection has been a promising direction. A keglleinge in such a distributed

intrusion detection system is that end hosts need to be izeghefficiently and intrusion
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detection techniques applied effectively, so that an sitnudetection decision can be made
before the worm infects most of the hosts. Many current meisinas use simple gossiping

protocols or peer-to-peer protocols [76, 40, 30] to aggeegzcal determinations.

Since the behaviors of zero-day worms are not known a pribe,best location for
initial attention is the local host itself, in the contextlotal behavior and applications
[40, 30]. However, at the local node, one loses the agg@uyatifect of repeated or si-
multaneous low level anomalies. In addition, it is diffictdtmake local detectors strong
because they see only a small percentage of the global traffias, to detect intrusions
effectively, we must aggregate the results of weak locaatets to get a broader perspec-
tive. This work addresses the question of algorithms faeatife aggregation. Improving

local detection is a separate problem that we do not addezss h

New intrusion detection techniques are needed to deal widrent dependency struc-
tures among hosts more effectively, and the work in Secti@rprovides a suitable frame-
work to do so. We postulate an observable causal relatiprisgtiveen the success like-
lihood of a particular intrusion attempt and network proiyrbetween end hosts. This
is based on the observation that enterprise networks asxted in topological neighbor-
hoods, and also likely to be supporting many similarly camfégl and managed machines,
thus repeating the same weaknesses across an enterpuse ifdme host in an enterprise
is susceptible in a certain way, it is more likely that its yze@e as well. In contrast, ran-
dom hosts far away from each other in the broad Internet kedylito be independent of
each other. Therefore, we can take advantage of differgrerdéency structures between
hosts with different detection techniques. In additionmws often scan consecutive IP
addresses, which causes another kind of dependency. FmpéxaCode Red Il chose
a random IP address from within the class B address space afificcted machine with
probability £; with probability 3 it chose randomly from its own class A; with probability
% it would choose a random address from the whole Internet][119

We believe that a good distributed intrusion detectioneysshould satisfy two key
requirements: (1) efficient host organization based on otywroximity and dependency,
and (2) detection techniques that leverage this host artgian and the dependency struc-

ture. In this work, we propose a dependency-based hostiaegaon and message propa-
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gation protocol. End hosts are organized into cooperaggns based on their network
proximity and policy boundaries. Then different detecttenhniques are applied at dif-
ferent levels. Each end host runs a weak local detectiorisysfFor a region, we use a
discrete-time Hidden Markov Model (HMM) with unsupervidedrning to estimate intru-
sion status of that region (this captures the dependen&)[JAt the global level, we use
a sequential hypothesis testing (SHT) globally to coordirfendings across regions (this
takes advantage of the independence) [64]. We implemenneahanism on the DETER
testbed [42], and evaluate the performance of this systehtheencommunication overhead.
Experiment results show that our mechanism can detecsiomdaster, better and cheaper.
In this work we only evaluate time-homogeneous first orderMBV(where the tran-
sition probabilities between the different states do noy weith time), and use a simple
static organization based on both dependency and networinpity. Non-homogeneous
higher order HMMs, based on an adaptive organization utgixarious kinds of network

knowledge, will be considered in future work.

7.3.1 Host Organization

To build an effective intrusion detection system, we pr@pas agent organization based on
the concept of regions, and discuss the communication meshaamong different types

of agents.

Regions

We organize agents into a two-level hierarchy based on ttexise network boundaries,
for the following reasons. First, as mentioned before, mmige networks are likely to
support many similarly configured and managed machines, ripeating the same weak-
nesses across an enterprise. Second, due to the securfiglasydconstraints, hosts within
an enterprise network are allowed to share detailed infaanawhile hosts in different
enterprises usually cannot. Third, enterprise networksreflected in topological neigh-
borhoods, so hosts in the same enterprise are usually aosach other, and thus the

communication among them is more efficient.
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Second, the leaders organize themselves into a commumcstucture. If the number
of leaders is small, the leaders form a complete graph; wikerother organizations the
tree structure proposed in Chapter 5. Figure 7-3 demonstaategion-based organization.
It consists of three regions. Agents close to each otherlastered into the same region.

Corresponding to the region-based structure, we class#fatents into three kinds of
detectors: local detectors, regional detectors, and glbdtactors. A local detector resides
on each host. Regional detectors are similar to the regieaders. The global detectors
may reside on any hosts. There may be one or more global detedepending on the

requirement on robustness and the communication structure

O  end host/local detector N global detector

® region leader/detector O region

Figure 7-3: A region-based organization example.

Communication

Local detectors only communicate with their regional deiecWhen a local detector de-
tects a potential intrusion attempt, it sends an alert toeitgonal detector directly. The
regional detector collects alerts from local hosts, russagional detection algorithm, and
then reports to the global detectors. Global detectorsfaareports from multiple regional

detectors, and run the global detection algorithm.
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Depending on the tradeoff between robustness and overtiza@, may be different
communication structures between regional detectors &imhdetectors. For example,
we can deploy only one global detector, and all the regioetéators report to it. This
centralized method has low communication overhead, buglthteal detector may become
the target of DoS attacks. As another extreme example, waaamone global detector on
each regional leader, together with the regional dete&ach regional detector multicasts
its report to all the global detectors. Therefore, eachaedthrough its global detector)
has a global view of the intrusion situation. Whenever a dldie#ector has enough infor-
mation to make a decision, it announces its decision to therajlobal detectors and all
the regional detectors. We could also have chosen an intkateeposition in which there

was more than one global detector, but not as many as onegienre

7.3.2 Intrusion Detectors

As mentioned above, there are three kinds of detectors irsyatem: local detectors, re-
gional detectors, and global detectors. Each kind of detechs the appropriate algorithm,

as described in this section.

Local detector

A local detector is an instantiation of the knowledge agertihe framework in Section 7.2.
It resides on each end host. These are weak in their capatifilitetecting intrusions, and
as stated earlier the design of local detectors is a sepamaipdem that we do not address
here. The detection criteria may vary, depending on each @8 concreteness, we use
the following simple local detector in our experiments: wlan end host receives a packet
at an un-serviced port, the corresponding local detectggers an alert to its regional
detector; otherwise, it sends a clean signal. There arehuagd to note. First, there are
both false positives and false negatives in the signalttad tletector sends. Second, there
is a tradeoff between timeliness and detection overheathelend host sends one signal
upon receiving every packet, the overhead may be too highelénd host batches signals,

this causes a delay in the detection. As alerts are more tanidhan clean signals, we can
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send out alerts immediately, but batch clean signals.

Regional detector

Aregional detector is an instantiation of the detectionieathat collects knowledge within
its region. It diagnoses potential intrusions at the negghbod level, using discrete-time
Hidden Markov Models (HMMs) to detect intrusion for eachicgg We choose to use
HMMs instead of SHTs, because, as discussed above, we édiat/the probability of
effective intrusion between close neighbors can be depeioaehat proximity, and HMMs
allow us to reflect that. The second advantage of the HMM agtras the ability to
capture a notion of time and therefore multiple connectitterapts to the same host. In
contrast, SHT systems are particularly easy to game: thenwean make sure that the first
connection attempt to any host is always to a servicing gdris is because SHT systems
can only handle the first connection attempt to any hostthesindependence assumption

breaks down.

Figure 7-4 demonstrates an HMM for a region. It has four sta@®, 01, 10, 11
representing a value pair ¢hfected?, suspicious?Yhe first bit represents whether there
is a worm in the region, and the second bit represents whétleee is some host whose
behavior is suspicious. This captures the adaptivity oftbem in the sense that an infected
host can decide to lay dormant for the time being to avoidadiete (similarly, a clean host
might accidentally behave suspiciously). Higher order eil®dan be used to capture more
of the adaptivity. In general, the model parameters are owkrand have to be estimated.
Each regional detector uses the reports (alert or clean looal hosts to Baum-Welch train
the model and to generate the Viterbi path of hidden sta@%][IThis Viterbi path gives
the most likely sequence of hidden states that could havergtad the observed sequence
of triggering of the local detectors, under the currentreated parameters. Note that the
HMM models the current incoming traffic pattern, so it doesmatter whether the region

is under one worm attack or simultaneous worm attacks.
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Figure 7-4: Initial Hidden Markov Model at regional detersto00 means the region is
clean and its behavior is not suspicioQ4,means clean but suspiciou€) means infected
but not suspiciousl1 means infected and suspicious.

Global detector

The global detector is also an instantiation of the detactiogine, except that it collects
knowledge globally and employs a different detection tégph@. The global detector uses
sequential hypothesis testing (SHT) to determine whetteetis an intrusion at the global
level, because we believe that under a good organizatitieret regions can be assumed
to be independent of each other in terms of intrusion comasti Therefore, we use SHT
with the independence assumption, and always use the ne@shation from each re-
gion as input to the SHT. The following equationiafY’) defines the likelihood ratio from
the observation vectdr = {Y1,Y5, ..., Y, }, given two hypotheseH, (“no intrusion”) and
H; (“intrusion”), respectively.Y; indicates whether the regional detector at regidre-
lieves there is an intrusion (1) or not (0). Note ti#gY; = 0| H,] is the probability of false

negative, and’[Y; = 1|H,] is that of false positive.
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Then L(Y) is compared with the lower and upper thresholds. The thidsh®, and
T,, are calculated by two parameters: desired detection fatg,and desired false alarm

rate,DF, as follows:

_1-DD DD

T 1-DF '~ DF

If L(Y) is less thanTy, then the global detector accepts hypothdgis if L(Y) is
greater thari, then H, is accepted; otherwise, i.e(Y") is betweeri, and T}, no con-
clusion is made and further observations are taken. Foretalsl of SHT, please refer to
[125].

Here we just clarify on one potentially confusing aspecthd aibove equations. If
we have a higher desired detection rate DD, it seems a bit lvaldthhe upper threshold
T, would increase, because this seems to leave more infeciimetected. The intuitive
way to explain this is that we also have to look at the loweeshold as well since both
of the thresholds matter, and once the SHT reaches a dedisooase is closed. The
mathematical way to explain this is that the SHT guarantegmio bounds on the true

detection rate (TD) and the true false positive rate (TR)egithe desired ones, as follows:

1
TF < —;TD >1-1Tj.
T

Therefore if DD increas€s; increases and the upper bound on TF decreases, whereas
T, decreases and the lower bound on TD increases. So, as to ediigt mappens when
we change our desired rates DD and DF, SHT does not guardmratem¢reasing DD will

increase TD, only that the lower bound on TD increases.

7.3.3 Performance Evaluation

In this section we present our experiments on the DETER edsthVe choose to do our

experiments on DETER instead of simulation, as the formandse realistic and may
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provide more insights. Our evaluation consists of two pdrte first is the effectiveness of
our on-line detection mechanism, in which we evaluate théopeance of both regional
HMM (rtHMM) and global SHT (gSHT). The second is the efficiemfyregion-based host

organization, in which we measure the detection speed amdemication overhead.

Experiment Setup

Our experiments run on 88 nodes in the DETER testbed. Nodeslastered into 8 re-
gions, 11 nodes each, and the links between regions arerdloarethose within a region.
Worms are emulated using WormSim [79], and we implement aiap&orm that scans
sequentially within a region and randomly chooses the negibn to scan, thus creating
dependency with a region and independence between reddankground (clean) traffic is
generated on each node at a constant rate. There are betpdsitives and false negatives.
That is, normal traffic may be mistaken as intrusion attermgotsl intrusion attempts may
be viewed as clean. Nodes are divided into two categorideevable and non-vulnerable.
Vulnerable nodes will be infected when an intrusion atteampives, and then the worm
will propagate from the infected host. Non-vulnerable rodall issue an alert when re-
ceiving an intrusion attempt. WormSim and local detectarsan all the nodes except the
regional leader nodes. Regional detectors run on the ratieaders, one for each region.
rHMM is implemented using the General Hidden Markov Modetdry (GHMM) [2]. In

this experiment, there is only one global detector.

Intrusion Detection Performance

In this experiment, we evaluate the performance of our sysihe regional detectors run
rHMM, and the global detector runs gSHT over all regions. |&abl lists the parameters
used in rHMM and gSHT. As we described in Section 7.3.2, eoreidetector trains the
model and infers a Viterbi path. Given the Viterbi path, thés still a question of how
to determine whether the region is under intrusion or notthia work, we use a simple
empirical algorithm: if the latest six states contain theemsecutive intrusion state$l(
or 10), then there is an intrusion. Recall thEt means that the rHMM thinks that (some

nodes of) this region is infected and suspicious activityagected, and0 means that this
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region is infected and currently exhibiting normal behavio

Regional Hidden Markov Model (rHMM)
Noise level 0.03
Initial transition matrix see Figure 7-4
Initial state probability {0.7,0.1,0.1,0.1
Global Sequential Hypothesis Testing (QSHT))
False positive 0.10
False negative 0.01
Desire false alarm rate 0.02
Desire detection rate 0.98
Experiment settings
Number of regions 8
Number of nodes per region11
Vulnerable nodes 25%
Worm propagation rate 1 scan/second
Normal traffic rate 1 message/second

Table 7.1: The rHMM and gSHT experiment parameters.

rHMM detector output and true infection state

>
o
2

o

Infected or not

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Figure 7-5: Regional Hidden Markov Model performan€&UEis the states based on the
true status (no false positive or false negative), &fdM is that based on the observations
of a regional detector. Gray areas represent actual ioieg@riods.

Figure 7-5 shows the intrusion detection of a region usinlkH The experiment is
divided into alternate clean periods (blank areas in Figu& and infection periods (gray
areas) 0 means clean animeans infected. The solid lin@ RUEIn the figure) shows the
true intrusion status (i.e., no false positives or falseatiegs). The dashed lineHMM)
shows the detection result of an rHMM using the reports frooal detectors. Note that
the time axis is not linear due to data aggregation. We caritsgeat the beginning of
the experiment, rHMM makes a few mistakes due to the falséipes and the relatively

untrained model. However, it learns to correct the errony w®on. Although there are
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True Model Viterbi path of Baum-Welch trained rHMM and True state sequence
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Figure 7-6: Viterbi path of an rHMM and the true state seqeetis the true state/event
sequence, andp is the inferred state sequence by the rHMM. In the dashed Oiyig2,3
in Y-axis correspond to the four states in Figure 7-4: cleadh ot suspicious (CN, corre-
sponds to state 00), clean but suspicious (CS, to state ®dgtexal but not suspicious (IS, to
state 10), and infected but suspicious (IS, to state 11hdrsolid line,0,1,6,7,8epresents
an event that a host receives the following packets resfdgtia normal packet (true neg-
ative, TN), an alert caused by false positives (FP), a clearabcaused by false negatives
(false negative case 1, FN1), a true alert caused by an iotrastempt (true positive, TP),
a clean signal from a vulnerable host who cannot/would nsitrdjuish intrusion attempts
from normal traffic (false negative case 2, FN2).

some noticeable lags, overall, rHMM'’s performance is vense to the model trained
using the true state sequence, despite the false posiinte$atse negatives. We stress

again that the training of the rHMM is unsupervised.

Due to the large number of data points, Figure 7-5 only shayeggemate results. To
look at how well an rHMM works in detail, we compare a sequeoté&ue states with
the predicted sequence of states from an rHMM in Figure 7+8¢chvis between 265 and
433 seconds in Figure 7-5. Local detectors report an alg¢mra clean signalQ) to the
regional detector, which may be a false positive or a falgatiee. Corresponding to that,
the solid line shows the true state sequence. Its statekethdd.,6,7,8represents that a
host receives the following packets respectively: a clegnas, an alert caused by false
positives, a clean signal caused by false negatives, a leug a false negative from a
vulnerable host who cannot tell intrusion. The dashed lm@as the transition of states
observed by the rHMM. The staté§, 1, 2, 3 correspond to the four stat¢60, 01, 10,
11} in Figure 7-4. We can see that at the beginning there are tvedl spikes, and rHMM
considers it clean but suspicious. When intrusion reallypleag at 325 seconds, the true

sequence jumps to state 8 and then 7; the inferred Viterhifprat jumps to 1, thinking that
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it might be just a clean host that accidentally acted suspgiAs more alerts are received,
it realizes that the region is under attack, and the statdlaies between states 2 and 3.
This in particular means that when the rHMM thinks the regguander attack, but normal
packets are received, the rHMM thinks that the worm is laylogmant, as opposed to the
region being clean. After that, it remains between 2 and &duhe infection period, and
is not affected by the false negatives and normal trafficufeg-7 demonstrates the new

rHMM model after the experiment.

Figure 7-7: A trained hidden Markov model at a regional detec

Figure 7-8 demonstrates the detection performance of thleayjldetector using Se-
guential Hypothesis Testing (QSHT): the solid line is theuteusing the true states and the
dashed line is that using rHMM outputs. Since they are quites; this shows that as far as
the gSHT is concerned, the rHMM outputs are almost as gookeasuth, lagging a little
bit behind.

Compared with Figure 7-5, gSHT does not have the false pesitivthe beginning and
near 1445 seconds in rHMM. This is because that the globatti®tcollects information

from multiple regions, and the independence of regionssheliminate the false positives.

Region-based host organization

To evaluate the efficiency of region-based host organiaati@ compare our method with

a gossiping protocol in three aspects: detection speedntmrcation overhead, and cost.
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gSHT on rHMM outputs from each region vs. gSHT on true states from each region
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Figure 7-8: Global sequential hypothesis testing perforteagt is gSHT’s decision based
on rHMM outputs, andyv is gSHT’s decision based on the true states from each region.
Gray areas represent actual infection periods.

Detection speed measures how fast hosts make a decisiotrasion detection. Commu-
nication overhead refers to the number of messages that piagiagate to reach a decision.

Cost is the number of nodes infected by the time of detection.

One set of the experiment results is shown below in Figure G8ssiprefers to the
gossiping protocol in [30], where hosts/local detectorshexge observations using an epi-
demic spread protocol without any organizing structurel, thie local detectors run sequen-
tial hypothesis testing using the received results. Theigog) rate is 2, which means a
local detector forwards the results it computes or recenan others to 2 randomly picked
local detectors.Regionrefers to our region-based protocol. We can see Regfionout-
performsGossipin all the three metricsRegionis faster in detection time, because alerts
are aggregated within each region first before being preckasthe global detector, while
in Gossipmessages may cross slow links many times between hostelewrhing a de-
cision. Similarly, the number of infected nodes is also $enah Regionthan inGossip
Finally, the number of messages transmitte@Ragionis significantly smaller than that in
Gossip The reason for this is because that the number of messagesases almost expo-
nentially among hosts i@ossip while in Regionmessages from end hosts are only sent to

the regional detector, and then processed at the globaltdetdter aggregation.
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Figure 7-9: Detection speed and overhead comparison. Natetlle messages do not
include those for maintaining the cooperation among hostisair methodsossipor mes-
sages for training the rHMMs in our method. The number of ragss is in units of 10.

7.3.4 Discussions

Robustness and Flexibility

Our method is semi-centralized, and can be made more rabsi$ attacks in two ways.
First, instead of having only one global detector, multipldely distributed regional detec-
tors can exchange information so that everyone has an apmateglobal view and make
the decision, thus reducing the vulnerability. Secondioreg detectors can be periodi-
cally re-selected distributedly, so it is hard for attackir predict the leaders when attacks

happen.

There are two kinds of dependency to be recognized. One iddpendency between
end hosts, caused by their proximity, similarity of hardeyasoftware, management, and
policy boundaries, etc. Therefore, we assume that netwaxkimity is positively corre-
lated to the dependency structure. The other is the depepadanised by worm scan: for
instance, worms may scan an IP block each time, or interlitjosean hosts distant from
each other. To deal with this, our approach provides for #nealllity to re-organize regions

by considering both kinds of dependency.
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DETER testbed

Our experience with the DETER testbed shows that DETER gesva valuable infras-
tructure for security-related experiments. We suggestisgyossible improvements here.
First, it would be very helpful if DETER incorporated morecgety-related facilities, such
as traffic generator based on real traces, worm simulattes, Ehis would greatly sim-
plify the design of experiments and provide the basis for ganson of results among re-
searchers. Second, NS extension commands are importaxppéareent automation. We
hope more commands can be provided in the future. Third,wag@8n process can take
a long time when experiments scale up. A way to automatidalllyhe preloaded exper-
imental programs and reload everything without swap-inetsooting would significantly

reduce the waiting time and speed up the experiment process.

Further Improvements

Our experiments on the DETER testbed suggest that depenthased host organization
can improve intrusion detection by providing valuable natwlayer and application-layer
knowledge to intrusion detection systems. In the future wWefallow up with a series of

further experiments:

1. Use HMMs across different regions, to confirm that acraereént regions, there is
essentially no loss of effectiveness if we assume indepaed&Vorms with different

scanning features will be tested.

2. Use more general HMMs, specifically a non-homogeneousehigrder HMM, based
on an adaptive organization utilizing different networlokiedge. If a strong global

clock is available, then continuous time HMMs can be used too

3. Enhance the reporting scheme to record the signature @i wrT his will provide
two improved capabilities. The first is to significantly reguthe impact of false
positives. The second is to improve the reporting of a wolyrgllmwing for reporting
of a particular worm signature, thus enabling the disere&angnt of simultaneous

worm intrusions.
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7.4 Related Work

7.4.1 Intrusion Detection Framework

Lee designed a common architecture for distributed prdiséibilnternet fault diagnosis in
[69], where new knowledge can be easily added to the diagposcess. We adopt a sim-
ilar approach, but unlike fault diagnosis on reachability ee’s work, intrusion detection
techniques are more diverse and heterogeneous. In oungyatgriori we have no clue of
what the knowledge would be, and dependency relationship®e changed based on new
knowledge. For example, two previously-assumed indep@naleces of knowledge may
be discovered to be dependent given new information; oryktes might get a piece of
knowledge that it has not seen before.

Several architectures and mechanisms have been propodetets intrusion [114, 14,
15, 128]. In [15] Allman et al. proposed a distributed arebitire with cross-organizational
information sharing to fight coordinated attackers. Thgstem consists of “detectives”
and “witnesses”. The detectives are savvy network mon#éqgrspped with sophisticated
intrusion detection techniques, while witnesses that adely distributed in the Internet
provide simple observations to detectives. Informatioarsiy between detectives and
witnesses is through loose private matching. Our work imgsoon three aspects. First,
our framework is more general. Information is generalizad anified as knowledge, be
it the result of heavy-weight detection engines, the resfudimple local detectors, or even
prior information about the network or the attack. We bedi¢ivat most knowledge comes
from the edges: the existing IDSs. In contrast, the witnesse relatively simple in their
architecture. Second, information sharing is done by seknpwledge sharing. Third,
we consider (re)organizations of the entities in our framwo improve the efficiency of

agent discovery and knowledge aggregation.

7.4.2 Intrusion Detection Techniques

Our main focus is on zero-day, slow-scanning worms, as i®,[BD, 11]. Such worms

propagate themselves slowly to avoid attention caused dyalic traffic increase. There
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are no signatures available as they are completely new.

Many intrusion detection techniques have been developad/thing based on prior
knowledge, such as signature-based approaches [94, 1J08aB&ot be used against zero-
day worms since there is no prior knowledge available in a-zizy intrusion.

Bayesian network based techniques are used in [40] to imulb@sts with probabilis-
tic graphical models. With random messaging to gossip stateng the local detectors,
they show that such a system is able to boost the weak locattdet to detect slowly
propagating worms.

Sequential hypothesis testing (SHT) was first adopted tosiin detection by Jung
et al. in [64]. The original algorithm was centralized, withtection performed at the gate-
way. It was decentralized in [30], where hosts exchange thearmation, and perform
the inference individually in parallel. We identify two igss with this approach. First, it
assumes independence among intrusion attempts and, séowanthot deal with the case
when a worm interleaves the intrusion traffic with non-isian traffic. In our work, we as-
sume dependence among hosts within a region, and assunpent#ce between regions.
To address this dependence/independence, we use a Hidakov\l4odel (HMM) to de-
tect intrusion within a region and SHT globally among regioiThe HMM allows us to
incorporate our dependency assumption into the regiorgeggtions, and SHT depends
on our assumption of independence between regions.

Machine learning has been applied to intrusion detectiomiious aspects. For exam-
ple, Agosta et al. designed an adaptive mechanism thattadpesthreshold of anomaly
based on traffic [11]. This does not seem to handle altemataific either. Our use of the
HMM approach allows us to handle such interleaving, becaulsarns both transition and

emission probabilities from observations, since neited&miown a priori.

7.4.3 Communication Protocols

In a centralized intrusion detection system such as [64ihalinformation is collected and
processed at a central point. In a collaborative intrusietection system, end hosts need

to communicate with each other to pool their informationettbggr.
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Various communication protocols have been applied toidigied intrusion detection
systems. One is centralized where all local detectors teptiusion information to a
global detector. A recent innovation is to use gossipingquols among local detectors or
multiple global detectors [30, 40].

In [30], decision making is completely distributed. Hostsleange observations using
an epidemic spread protocol without any organizing stmectdhen a potential intrusion
is detected by an end host, it forwards an alemtandomly selected neighbors, and then
each neighbor forwards the alert to itsneighbors together with its own observations,
and so on. Each host computes the possibility of intrusiamguall the information it has
received. This continues unless a decision is made by a bigsiallym equals 1 or 2 for
scalability reasons. Each host computes the possibiliiptofision using all the alerts it
has received plus its own conclusion. If a host believesttieie is an intrusion, it will
broadcast its decision to all hosts. In contrast, a set dfajldetectors are used in [40] with
a gossiping protocol.

To the best of our knowledge, previous systems have not derexd host organization
to achieve more effective detection and efficient commuiana Therefore, the commu-
nication can be inefficient. More importantly, intrusiortelgion techniques often assume
independence in the intrusion attempts amongst all hostis. i3 unlikely to be true when
nearby hosts are scanned by a worm. In our method, we makef tise vetwork topol-
ogy and dependency information to organize a region, andidenthe dependency among
hosts within each region. In this sense, our method can he a&a hybrid between a

centralized and a distributed intrusion detection system.

7.5 Summary

The strength of this framework comes from its generality exignsibility to support intru-

sion detection using a wide range of detection techniqudskanowledge in a secure and
efficient way. Achieving this goal requires overcoming saVehallenges, and we address
three key issues: knowledge-based framework, secure kwig®lsharing and scalable or-

ganization.
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We developed a prototype to demonstrate the strength ofraomeiwork using existing
techniques on the DETER testbed. First, we design a depeypdiased host organization
for collaborative intrusion detection. Hosts are clusteir@o regions based on network
proximity and dependency, and communication among therarbes more efficient.

Second, we apply different intrusion detection techniqwéhin regions and across
regions. At the regional level, due to the proximity and degency between hosts, we
use a Hidden Markov Model. At the global level, due to theatise and independence
between regions, we use sequential hypothesis testing.

The experiments conducted on the DETER testbed show thahednanism can not
only improve the effectiveness of the intrusion detectiout, also speed up the detection
process and reduce the communication overhead.

Our experimental results suggest that dependency-bast¢dfganization can improve
intrusion detection by providing valuable network-lay@daapplication-layer knowledge

to intrusion detection systems.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The ultimate goal of the knowledge plane is to build a new gaian of network that can
drive its own deployment and configuration, that can diagntssown problems, and make
decisions to resolve them. There are many challenging sssueh as knowledge repre-
sentation and utilization, trust and security, economieirtives, etc. As a step towards the
knowledge plane, in this thesis | propose a network knowdgalgne at the network layer,
address several key issues in it, and conduct case studibe spec-KPs. According to the
end-to-end arguments [111], only common and essentiatibmeshould be put into the
network layer, while in this research | propose to add morefions to the network layer.
| believe that as the Internet becomes increasingly pemagsiore and more applications
need to learn more about network conditions to work coryeatid efficiently besides end-
to-end connectivity. Therefore, we need a common infrasiime to provide such network
knowledge and mechanisms, at low cost, for applications hemmce it does not contradict
the end-to-end arguments.

In this thesis, | first propose an architecture that consikésnetwork knowledge plane
and, on top of it, several specialized KPs. The NetKP pravitetwork knowledge and
facilities to help construct the spec-KPs. Each spec-KPegialized in its own area of
interest under application-dependent constraints. h&rranalyze the organizing criteria

and principles to build such an infrastructure, and proossgion-based organization.
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Second, | focus two important issues in the NetKP. One isseregion organization. |
design a distributed hash table that leverages networkdgpdnowledge, in which a hy-
brid proximity neighbor selection algorithm helps achieealability, robustness, efficiency
and non-intrusiveness. The other is a broadcast and aggnegaechanism among regions.
| design a robust tree construction and maintenance prbtsiog parent functions. The
parent function family allows the efficient constructionratiltiple interior-node-disjoint
trees, thus preventing single points of failure commonlshtree structures.

Third, I conduct two case studies on the spec-KPs: expetimanagement on testbeds
and distributed intrusion detection. In the first case studstudy how to facilitate dis-
tributed experiment management on PlanetLab, specifioallyow different kinds of know!-
edge are maintained and propagated to resolve node selg@rtblem during the exper-
iment setup. In the second case study, | design a frameworkditaboration between
different intrusion detection systems, and implement &ibigted intrusion detection sys-
tem on the DETER testbed. The system organizes agents gitmesfollowing corporate
network boundaries, applies different detection techesguwithin and among regions, and
takes advantage of the dependency among hosts.

By designing and implementing the NetKP and conducting sasies on spec-KPs, |
hope to improve our understanding of the knowledge plang&t@motivate future research

in this area.

8.2 Future Work

The core research in this thesis is to define, design, and m&nate the network knowledge
plane and its supporting mechanisms that provide the ybditmprove network manage-
ment and facilitate network application organization. \"datudied several important prob-
lems in the knowledge plane, but many challenging quesstihaeed further exploration.

The following is an incomplete list of questions in the figwvork:

1. Besides providing knowledge and facilities proposedhis work, what other mech-
anisms/utilities should be provided by the NetKP to suppwoetspec-KPs? For ex-

ample, anycast or multicast primitives are useful for thecsPs to build their own
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specific anycast or multicast mechanisms or the agent ddsgarechanism.

. Spec-KP organization needs to be explored further, édpewith respect to request
propagation. Can we find a scalable way to create a gradiergdoest resolution in
the Internet like those in directed diffusion [61]? How do manage all dimensions

of knowledge?

. | believe a standard is needed to describe both facts arsezffect graphs. This is
important for an agent to be able to figure out, given a problehat facts to collect,

where to collect those facts, and how to reason using the.fact

. We made certain choices about the definition of regionsutAré piece of research
is to discuss if the choices are the best and what are thenafies for different

scenarios.

. There are still many issues we have not addressed in theevvark for distributed
intrusion detection, such as the ontology language, aiped®IR method, etc. Al-
though our framework is proposed for intrusion detectior, believe the design is
general enough for many other large-scale network systéatsirivolve different

parties and information sharing among them.
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Appendix A

Convolutions in the Accuracy Analysis

In Chapter 5

As described in Section 5.2.6 in Chapter 5, in order to analligeaccuracy of this ap-
proach, we make the following assumptions. We divide tinte @gual intervals of length
C,, and there will be one refresh/probe in each interval. Theetthat the refresh/probe
happens is uniformly distributed within each interval. Téfere, the probability density
function (pdf) is constant at/C, in each interval. The lifetime of any node follows an
exponential distribution with parametgy, as the exponential random variable is a good
model for the amount of time until a piece of equipment breddwn or until an accident
occurs. The aggregation events are a Poisson process wthaiametel,,, as a broadcast
or aggregation request can be considered as an arrival arRbisson process is natural to
describe probabilistic arrival events.

Consider the beginning of a refresh interval and label thaeti. Let R be the time
interval from O until the next refresh. L&t equal the time interval from O until the next
failure. Since the lifetime distribution is exponentialdaimhus memoryless, the distribution
of L is again exponential with paramet&r. Let A equal the time interval from O until
the next aggregation. Likewise, the inter-aggregatioarir@l is exponentially distributed
and thus memoryless, the distribution .fis again exponential with paramet&s. For
simplicity, we condition on the aggregation occurring ateiz, and that all the different

characteristics of different nodes are independent, sritzded otherwise.
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We consider the conditional probability that the aggrematiesult is correct from a
single node’s perspective, i.e. its parent has receiveatjgsegation result.

All the probabilities we talk about below are conditionedthg fact that the aggrega-
tion occurred at time:. By the total probability theorem, we can split this intofeient

(sub)cases.

1. Case 1: Parent does not fail within time 0 to timeConditioned further on this, the
probability of aggregating correctly for a node is 1. Thelability of this case is
PIL>AlA=a]=1— [ Ne Mdl = e e,

2. Case 2: Parent does fail sometime in between time 0 to éim&he probability
that the parent fails sometime in between time 0 to timie P[L < A|A = a] =
1 — e ™2 There are two subcases to consider, whether the sequemsett is:
failure, refresh, aggregatiorCése 2-}, or refresh, failure, aggregatiolcése 2-2.
In the latter case the result would be incorrect, so we do eetrio calculate it. In
the former case, we make another simplification: the refedshys has enough time
to complete before the aggregation (so refresh is instaotas). This can be further

divided into two worlds.

(a) Case Aua < C,.
In essence the probability we are dealing with now is
P[Aggregation correct foranolé = a, L < A,a < ]
=P[L<R<AA=a,L <a,a<C,]
PIL<R|L,R<a<C,]-PR<AA=a,L<a,a<C,]
PIL-R<O0|L,R<a<C,] PR <ala<C]
PIL-R<O0LR<a<C] &

(again,L, R denotes the lifetime and the refreshing-time r.v.s resypag). Let
W denote the random variable— R. Using graphical calculation of convolu-

tions [22], we identify the following cases:
i. Whenw > a orw < —a, fi is 0 because eithefi;, or fr is O.
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ii. When0 < w < a, the plotfg is shifted to the right. Figure A-1a demon-

strates the integral range bin this case.

iii. When —a < w < 0, the plot fy is shifted to the left. Figure A-1b demon-

strates the integral range bin this case.

Iz
A
l )
a a
fat 5 fr
| - —
| l r r
w a 0 at+w a
@0<w<a (b)y—a<w<0

Figure A-1: Convolution in case A. The dashed rectangle shbeshift of f;z due tow.

Then we get the following as the pdf & after doing the convolutiorfy, =

J; fo(D) fr(l — w)dl:

(

0 ifw>a

fli 1 1_A a)\le_Alldl fo<w<a
fW — =w a l—e M

atw 1 1 “\l .
=0 al—c Na e dl if—a<w<0

0 if w< —a

\

Note that in the abovég; (/) and fr(I — w) are under conditio. < a and

R < a, respectively. This evaluates to
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0 if w>a

—e™e) fo<w<a

1

I—Lm(l—e M) if —a<w<0
0 if w< —a
Therefore,

PIL<R<AA=a,L<Aa<C,

a

C,
a [ 1 1 N
== 5 —17_)”(1 —e l(a+w))dw
r Ju=—q @l —ee
11 11,
CC.1—eNe (a oy * )\l6 )

—P[L—-R<O0|L,R<a<C,k

(b) Case B.a > C.,.

Here, we are after the same probability

P[Aggregation correct for a nolé = a, L. < A,a > C,]
=P[L<R<AA=a,L<Aa>C
=P[L<R|L,R<a,a>C,]-PIR<AlA=a,a>C,,L<R]
=P[L-R<O0|L,R<a,a>C,] PR <ala>C,]
=P[L-R<O0|L,R<a,a>C,]-1
=P[L- R<O0|L,R <a,a>C,]

Again, we letlV denote the random variable— R, and carry out the convolu-

tion, and get:

I. Whenw > a orw < —C,., fw is 0 because eithef;, or fr is 0.

ii. Whena — C,. < w < a, the plot fg is shifted to the right. Figure A-2a

demonstrates the integral rangel @ this case.

iii. When0 < w < a — C,, the plot f is shifted to the right. Figure A-2b

demonstrates the integral rangel a this case.

iv. When —-C, < w < 0, the plot f is shifted to the left. Figure A-2c

demonstrates the integral rangel @ this case.
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¢
0 if w>a

a 1 1 _ .
fl:w ron e Ml ifa—C.<w<a

1—e M@
fw = li;jw C% 1_e]-_)\la)\l€_>\lldl ifo<w<a-—C,
li:)w c% 1,el—xla)\16_’\lldl if —C, <w<0
0 if w< —C,

\

Note that in the abov¢, (/) and fz(l — w) are under condition, < a and

R < a, respectively. This evaluates to

0 if w>a
C% 1—@1_)‘l0‘ [e—/\lw — e"\la] ifa—C,.<w<a
_ 1 1 - - i

fW - Cr 1—e~ M@ [6 A — € )\l(cr—i_w)} f0<w<a—-Cr
CL’I‘ 1—61*/\111 [1 - 67Al(cr+ll))] If _CT S w < O
0 if w<—a

\
Therefore,

PIL<R<AA=aL<Aa>C,

P[L—-R<O0|L,R<a,a>C,]

/0 1 1 (1 -\(C +w))d
—— (1 —e Y w
w=—C) C»,- 1 — e’)‘l“

11 11 .
STl il vl v

We can now calculate the probability of the aggregation dpemrrect from a single

node’s perspective, applying independence:

P[Aggregation is correct for a nofieggregation occurred at|
:= P[correctA = a]
= P[correctA = a, L > A] - P[L > A|A = q]
+ P[correctA = a, L < A] - P[L < A|A = q]

=1-e M 4 PlcorrectA = a, L < A] - (1 — e %)
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At this point, depending on whether we are in casetA(C)) or case B¢ > C,),
the result is going to be different. Recall that we are fixihg= a, so we are either

in case A or case B.

In case A ¢ < C,) we have:

P4 = PJcorrectA = d]

1 1 1
-1 Ala . —\a 1 —\a
e +Crl—e*’\l“( )\l+>\le ) (1 —e M%)
1 1
— —\a - = _—Na
e + c (a N + )\le )
1 1 I e
:F(a—xl)‘i‘(l C}\l)e M
and in case Bd > C) we have:
Pp = P[correctA = q]
1 1
— —\a *)\lcr _ 1
e + —Or )\le By +

Note that the inter-arrival time between the aggregatioeney is exponentially dis-
tributed with parametei,. Therefore, we can combine the two cases and get the final
formula. LetZ be the event that the aggregation is correct for a node. Tahblshows the

probabilities of several typical settings.

P[Z] = P[Aggregation is correct for a notle

C, 00
=/ PAfA(a)da+/ Ppfa(a)da
0 .

= [y s e e
=& a y o e € a
S o
—\a 1 — -\ Cr /\a —)\aad
—I—/CT (e + Cr)\l+—cr>\le JAq€e a
— 1 . 1 )\a . 1 _>\aC7' 1 _()\a+)\l)cr
RS RGN W W WS V& W o N W W

To understand the final result, let us look at several extreitnations:
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1. When), — 0, P[Z] — 1. \; — 0 means the node life time goes to infinity. P[Z]
approaches 1, because the aggregation will always be tarhen there is nearly no

node failures.

2. When)\, — oo, P[Z] — 1. A\, — oo means that the inter-aggregation interval goes
to 0. In this case, P[Z] approaches 1 because when the agigregaent happens

very frequently, the probability that it happens beforenbee failure approaches 1.

3. WhenC,. — oo, P[Z] = Aj—m When(C, goes to infinity, the probability of aggregat-
ing correctly is equal to the probability that the aggregagvent happens before the
node failure event. As the two events are modeled as indepémtbisson process,
the merged process is a Poisson process withXxate \;, and the probability that

the first arrival is an aggregation eventﬂg—h.
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0 C.+w C,
(c)-C.<w<0

Figure A-2: Convolution in case B. The dashed rectangle shiogvshift of fz due tow.
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