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Abstract

We present a dynamic and adaptive decision model for
an autonomous user agent whose task is to dynamically
negotiate and procure wireless access for a mobile user.
A user is assumed to have cognitive and motivational
costs associated to providing subjective preference in-
formation to the agent. Therefore the task of the per-
sonal agent is to dynamically model the user, update its
knowledge of a market of wireless service providers and
select service providers that satisfies the user’s expected
preferences based on minimal, or missing, information
that is derived from a simple user interface. In this paper
we show how this user modeling problem can be repre-
sented as a Markov Decision Process. Adaptive rein-
forcement learning solutions are then evaluated for two
subclasses of tractable MDPs via simulations of some
representative user models.

Introduction
One of the goals of our research is the design of autonomous
single and multi agent decision mechanisms for non-routine,
dynamic and cognitively costly decision contexts or environ-
ments. The domain we consider is the future wireless net-
works where, in contrast to the vertically integrated structure
of the current Internet, more complex network services can
be represented and traded amongst multiple buyers and sell-
ers in a dynamic and open market. However, compared to
the decision problem of a stationary user in a LAN environ-
ment, a nomadic user in wireless network is required to solve
an (access and connection) decision (or trading) problem
for each possible location she visits. Furthermore, the deci-
sions need to be made over complex goods (or network ser-
vices) that may be multi-dimensional and described and rep-
resented in terms of the ontology at the network level. Such
cognitive costs associated with these task-environments can
be usefully reduced through a personal agent. Under such a
scheme a user’s high level requests are then mapped to a per-
sonal agent, referred to as the Personal Router (PR), that dy-
namically selects access to different wireless base-stations.
However, central to this autonomous decision making is an
information model of the user, where in decision contexts
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is equivalent to specification of user preferences over pos-
sible outcomes. Since the task-environment of the user is
cognitively costly, we do not adopt the static, off-line and
single-shot classical preference elicitation solutions but in-
stead seek a mechanism that is dynamic, on-line, incremen-
tal and iteratively improves the model of the user in an adap-
tive manner with minimal information. That is, we seek an
adaptive on-line solution that spreads the costs associated to
one-off and off-line elicitation of the user information model
over time. Central to this is an appropriate user-agent inter-
face that provides useful information for on-line optimiza-
tion task of the agent.

More specifically, we frame this Autonomous User Mod-
eling (AUM) problem task as an adaptive (feedback) control
problem where a personal agent (a controller) takes adaptive
actions (control signals) in an environment (a control sys-
tem) to achieve its goals. Furthermore, as opposed to the
classic approaches where a single optimal decision is made
after eliciting the complete preference structure of the user
(Keeney & Raiffa 1976), the goal of the agent is to find
an optimal strategy over sequences of decisions over time,
where the sequence is composed of elicitation followed by
decision making processes. In such a user-agent coupling,
initially user perceived sub-optimal agent decisions can be
improved over time with additional information acquired by
elicitation via a user-agent interface. A sequential decision
making approach is adopted because the dynamic decision
environment creates a barrier for obtaining a priori informa-
tion about the user and the user cannot be engaged in a costly
elicitation process similar to traditional solutions.

Generally, we are interested in cost and benefit trade-offs
involved between perfect information for a single optimal
decision mechanism against imperfect information and sub-
optimal but iterative and adaptive mechanisms. In this paper
we propose a state-based model that approaches the latter
mechanism.

The paper is organized as follows. A general description
of the PR problem is briefly described in the first section. We
then present a formal model of the service selection prob-
lem. Next we show how the full problem description can be
computationally represented within a Markov Decision Pro-
cess. This is followed by two simpler MDP models of the
PR problem that are motivated by the intractability of the
fully dimensioned model. Next we review how reinforce-



ment learning algorithms can be used to solve the agent’s ac-
tion selection problem. The behaviours of these algorithms
are then evaluated in a set of user model simulations. Finally,
representative related work is reviewed and followed by our
conclusions together with the directions of future research.

The Personal Router
Optimal decision making requires access to a well defined
preference structure of the decision maker that give a mean-
ingful ordering to the set of possible outcomes. Tradition-
ally, solution to such user modeling problems are formu-
lated within the classical utility analysis framework, such as
conjoint analysis (Keeney & Raiffa 1976; Urban & Hauser
1980).

However, although useful for most static and tractable
domains, decision analysis techniques are inappropriate in
wireless network due to the complexity in and dynamicity
of the user’s context (Faratin et al. 2002). The user con-
text is defined by: a) the user’s goals (or activities—e.g.
arranging a meeting, downloading music), b) the class of
application the user is currently running in order to achieve
her goals (e.g. reading and sending emails, file transfer),
c) her urgency in using the service and d) her location
(e.g nomadic or stationary). This context is highly com-
plex not only because a user may have multiple concur-
rent goals/activities but also because different elements of
the user context (goals, locations, running applications, etc.)
may change at different rates. Indeed, we claim that such
complexities necessitate a personal agent-based approach
because on-line agents can learn user’s preferences over time
rather than requiring users to participate in an unrealistic and
expensive elicitation process. For example, the set of service
choices (or outcomes) can change dynamically when current
network connection(s) instantly become unreachable as mo-
bile users change locations. Alternatively, preferences them-
selves can also be dynamic where different services may
be needed as users dynamically change and begin differ-
ent tasks. Furthermore, additional barriers exists for tradi-
tional preference modeling approaches than the complexity
of the user context. For example, due to cognitive costs and
nomadic nature of wireless access users may be reluctant
to engage in costly communications over their preferences,
specially if the elicitation space is combinatorially large. In
the worst case users may be ignorant of their preferences,
a real possibility with network services which the user, un-
like common goods such as bread or milk, has little or no
experience of in order to form a preference over. Indeed, in-
tangibility of network services may necessitate a trial period
before the user can begin to form preferences. Furthermore,
there exists an inherent variability in the network itself re-
sulting in uncertainties by both the buyers and the sellers of
a service as to the guarantees that can be made over the qual-
ity of a service (QoS). To overcome this uncertainty users are
therefore given a user interface to manipulate service fea-
tures as free variables via better and cheaper buttons on the
PR respectively. The assumption we make is that user will
choose better or cheaper services if the current selected ser-
vice is either of poor quality or high price respectively. This
process of interaction with the PR may continue until the PR

learns to select a service that satisfies the user’s current tasks
and goals. Note, because of relatively low wireless service
prices we assume users are tolerant to suboptimal decisions
in service selection because the (monetary) cost of decision
errors are low.

Whereas the action space of the user can be defined by the
agent designer (through the design of user interfaces), the
actions of the PR are not under the control of the agent de-
signer but are instead constrained by what we call the strat-
egy space of the current market mechanism (Rosenschein &
Zlotkin 1994). That is, actions of the agent are assumed to be
defined exogenously by the rules of some interaction mech-
anism (e.g. an auction mechanism). We envisage two pos-
sible mechanisms in wireless networks (see (Clark & Wro-
clawski 2000)): a ”take-it-or-leave-it” or an iterative nego-
tiation mechanism. In the former mechanism the produc-
tion capability of a service provider is assumed to be fixed
and static. Therefore, the rules of such a market only per-
mit the agents to select from a discrete and finite number of
profiles on offer. Conversely, in a negotiation mechanism
the provider is assumed to be capable of (and has the in-
centives to) generating infinitely divisible goods, which in
this domain is bandwidth. Therefore, in such a market the
agents actions are defined as requests for profiles that opti-
mizes their demand profile. The rules of an iterative negoti-
ation mechanism may in turn permit sellers to respond with
actions that optimizes their supply function.

Representing the Problem as a Markov
Decision Process

In this section we present the PR problem within the Markov
Decision Process (MDP) modeling framework (Kaelbling,
Littman, & Moore 1996; Boutilier, Dean, & Hanks 1999).

Problem Elements
We condition each service selection process instance on the
current context of the user. As mentioned above a user con-
text includes the current running application set, the time
deadline and the location of a user for current goal. We let
C represent the set of all possible contexts and Cg ⊆ C be
the set of contexts that are partitioned by the user goal g.
An element c ∈ C is composed of the tuple c = 〈β, γ, δ〉,
where β, γ and δ represent the set of running applications,
user deadlines and locations respectively. Then, a particular
user context cg ∈ Cg , partitioned by the goal g, is defined
by the tuple cg = 〈βg , γg, δ〉, where βg , γg and δ represent
the set of running applications compatible with current goal
g, the user deadline for current goal g and the concrete lo-
cation of the user respectively. The location of a user at any
instance of time is represented by both the physical location
as well as the temporal location.

Next we let P represent the set of all possible service pro-
files, where each element of this set P ∈ P is composed
of n features fi, P = (f1, . . . , fn). Because service pro-
files available at any time change due to both user roam-
ing (given a nomadic user) and changes in service offerings
(given service providers’ uncertainty in the state of the net-
work) then we assume the (physical and temporal) location



δ of a user partitions the set of possible service profiles avail-
able. Therefore we let P δ ∈ P represent the subset of pos-
sible service profiles available to the user in location δ.

Next let the set of all user preferences be given by U. We
then let each element of this set, U ∈ U, represent a unique
orderings over all the possible pairs of service profiles P, or
U = (Pi � Pj , . . . , Pl−1 � Pl)

1 for all combination of l
profiles. Similarly, the current user context and goal parti-
tion the set of all possible preference orderings, or U cg

⊆ U.
The ordering generated by U can then be captured by a

utility function u such that:

u(Pi) > u(Pj) iff Pi � Pj (1)

The MDP Model
An MDP is a directed acyclic graph composed of a set of
nodes and links that represent the system states S and the
probabilistic transitions L amongst them respectively (Bert-
sekas 1987). Each system state S ∈ S is specified by a set
of variables that completely describe the states of the prob-
lem. The value of each state variable is either discrete or
continuous but with the constraint that each state’s variable
values be unique. In our problem each system state S ∈ S

is fully described by the combination of: a) the user context
(cg = 〈βg , γg , δ〉) for goal g, b) the set of profiles available
in the current location (P δ) and c) the user interaction with
the PR, which we will represent by the variable I .

Therefore, a complete description of a system state at
time t is represented by St = (βg , γg, t, locg, P, I), where
βg , γg, t, locg represent the context of the user for goal g.
Note that for reasons to be given below we disaggregate δ,
the user location and time, to two state variables t and locg,
the location of the user in temporal and physical space re-
spectively. We can also specify user goals g in a similar
manner by a subset of system states Sg ⊆ S.

The other element of a MDP is the set of possible ac-
tions A. Actions by either the user, the PR or both will
then results in a state transition, that change the values of
the state variables, to another state in the set of all possi-
ble states S. In an MDP these transitions are represented by
links L between nodes that represent the transition of a sys-
tem state from one configuration to another after perform-
ing some action. Additionally, each link has an associated
value that represents the cost of the action. In our problem
the set of actions A available to the user u are defined by
the set Au = {∆loc, ∆app, ∆I , φ}, representing changes in
the user location, set of running applications, service qual-
ity and/or price demand and no action respectively.2 The
consequences of user actions are changes in values of state

1The operator � is a binary preference relation that gives an
ordering. For example, A � B iff A is preferred to B.

2Note, that since time is an element of the state description then
the system state always changes in-spite of no action by either the
user or the PR or both. Furthermore, the granularity of time is
likely to be some non-linear function of user satisfaction, where
for example time is finely grained when users are not satisfied with
the service and crudely grained when they are satisfied. However,
the granularity of time is left unspecified in our model.

variables βg , γg, t, locg, P, I ; that is, changes in either: a)
the user context (changes in running applications, the time
deadlines for connections, the current time, the user loca-
tion and/or price/quality demands, observed by interaction
with the PR via better and cheaper responses) or b) the set
of currently available profiles or the combination of the state
variables.

The set of actions A available to the PR are defined by
the set APR = {∆Pi→Pj , φ} representing PR dropping ser-
vice profile i and selecting j and no action respectively. The
consequence of a PR action is a change in the likelihood
of future user interaction I , where decreasing likelihoods of
user interactions is more preferred.

Additionally, in an MDP the transitions between states
are probabilistic. Therefore there exists a probability dis-
tribution Praj

(Sk|Sj) over each action aj reaching a state
k from state j.

Finally, we can compute the utility of a service profile i
in context c for goal g (or ucg

(Pi) as the utility of being
in a unique state whose state variables (βg , γg, t, locg, P, I)
have values that correspond to service i in context c =
{βg, γg, t, locg}. The utility of this corresponding state, say
state m, is then referred to as U(Sm).

Aggregated Decision Models
In general MDPs suffer from the “curse of dimensionality”,
where the state-space grows exponentially in the size of the
variables (Bellman 1957). As a result it is computationally
impractical to consider learning the highly expressive model
given above. Thus, there exists some natural computational
bounds on the granuality of the user model that can be repre-
sented and reasoned with. The strategy we adopt to address
this problem is to incrementally search for a computationally
tractable MDP model that increasingly approaches some ac-
ceptable level of expressiveness, derived through ecologi-
cal experiments. Different expressive-computational trade-
off regimes can then be constructed that range from single
state MDPs, with coarse state signals, to richer state signal
MDP, described above, each with relatively different expres-
sive and predictive power. The natural expectation, verifi-
able through ecological experiments, is that richer models
result in more adequate behaviours because they can form
better associations of states to actions (or policies) than sim-
pler non-associative models. In the remainder of the paper
we describe the first step in this strategy where the com-
plex state-space of the above MDP described is “collapsed”,
through disjunction of all of the states, to either a single
state signal or a slightly more complex state signal consist-
ing of service profiles. We show how the former reduced
problem is equivalent to the k armed bandit problem and
review heuristic solution methods for both classes of prob-
lems based on reinforcement learning. Finally, we evaluate
the adequacy of the model through simulations.

Single State PR—a Bandit Problem
The computationally simplest model of the PR problem is
to cast the agent action selection problem as a k armed ban-
dit problem. Bandit problems have been extensively stud-



ied in statistical and mathematical literatures with applica-
tion to medical diagnosis and sequential decision making in
general. In this class of problems an agent has a choice of
pulling one arm of a k-armed bandit machine at each time
step. When the arm i of machine is pulled the machine
pays off 1 or 0 according to some underlying probability pi,
where payoffs are independent events and unknown to the
agent. The game often has a finite horizon where the agent
is permitted to pull h pulls. The goal of the agent is to select
a policy that maximize some function of the total expected
payoffs Rt, typically given by Rt = E(

∑h
t=0 rt), where rt

is the payoff or reward at time t.
Similarly, we model the PR problem as a single state in-

finite horizon MDP where at each discrete time the agent
takes an action (pulls an arm i), receives a reward from the
user for its action and returns to the same state. Generally,
the size of k, or the number of the arms of the bandit ma-
chine, is determined by the rules of the market mechanism
the agent is trading. Thus in a negotiation mechanism the
set of agent actions, or agent’s strategy space, at each state is
given by APR = {LBW, HBW, LP, HP, φ}. That is, un-
der such a mechanism the agent is playing k = 5 one-armed
bandit machines. Furthermore, since we are interested in
continual learning of user preferences the goal of the agent is
to maximize its total rewards over long-run, or infinite hori-
zon, of the game. The reward model in turn is constructed
from the actions of the user with the agent through the in-
terface and not the environment. Thus, we only consider a
subset of user actions Au = {∆I , φ}, where ∆I is changes
in price and bandwidth demands (or “cheaper” or “better”
button presses respectively) by the user and φ is no action.
We map these user actions to binary agent reward values us-
ing the simple binary rule of rt = +1 if φ else rt = −1, rep-
resenting positive rewards for lack of user intervention. We
model the user’s preferences for different agent actions by
a reward probability distribution with mean Q∗(ai) for each
action ai. Finally, if this probability distribution is constant
over time then we say that the user’s preferences is station-
ary. Conversely, if the distribution of the bandit changes over
time then the user’s preferences is said to be non-stationary.
We model this with three parameters: (θ, f, η), the period
between changes, the probability of change and magnitude
of change in Q∗(ai) respectively.

There exist a number of solutions for solving the op-
timal policy for the bandit problems, including dynamic-
programming, Gittins allocation indices and learning au-
tomata (Kaelbling, Littman, & Moore 1996; Sutton & Barto
2002). However, although optimal and instructive these
methods are known not to scale well to complex problems
(Kaelbling, Littman, & Moore 1996). Because our goal is
to incrementally increase the complexity of the problems,
and also because the “forgiveness” of the user to the subop-
timal decisions, we instead concentrate on heuristic action
selection techniques that, although are not provably optimal,
are nonetheless tractable and approximate optimal solutions.
Furthermore, as mentioned above, optimal techniques com-
pute optimal policies given a model (model of the process
that generate Q∗(ai)). In the absence of this information the
agent must form estimates over and update the value of each

action. Therefore, the problem of action selection requires
both a learning phase followed by action selection phase.

One popular method for updating the values of Qk+1(ai),
estimates for Q∗(ai) for action i after k rewards is the expo-
nential recency-weighted average:

Qk+1(ai) = Qk(ai) + αk(ai)[rk+1(ai)−Qk(ai)] (2)

where 0 < αk(ai) ≤ 1 is the step-size, or learning, pa-
rameter for action ai after k selection. If αk(ai) = 1/k then
the learning rate varies at each time step. Under this condi-
tion the update rule 2 implements a sample average method
(Sutton & Barto 2002).

The next step in solving the bandit problem is to se-
lect an action given an estimate of value of actions. We
compare the behaviour of three action selection strategies
given Qk+1(ai): greedy, ε−greedy and softmax. The first
strategy exploits the current agent knowledge by selecting
that action with the highest current value estimate: a∗i =
arg maxaQt(ai). Conversely, as the horizon of interaction
increases then it may be more beneficial to explore the action
space since higher valued longer term rewards may be biased
against by lower valued shorter term rewards (expressed as
non-linearity in the optimization objective function). Explo-
ration, or probability of selecting action a at time t, (Pt(ai)
may be at some constant rate, ε or given by a Gibbs, or Boltz-
mann, distribution:

Pt(ai) =
eQt(a)/T

∑n
a′∈A eQt(a

′ )/T
(3)

where the temperature T cools at rate µ with time t ac-
cording to the equation Tt = T0 (1− µ)

t. Action selection
strategies with constant and variable values of ε are referred
to as ε-greedy and softmax strategies respectively.

Learning the best action can also be achieved not by main-
taining estimates of action value but rather an overall reward
level, called the reference reward, that can be used as a de-
cision criteria. Techniques based on this method are known
as Reinforcement Comparison (RC) methods, precursors to
actor-critic methods (Sutton & Barto 2002). In RC a sepa-
rate measure of action preference for each action at t play
of the bandit, ρt(a), is kept that are used to determine the
action-selection probabilities according to softmax rule 3.
The preferences are updated as follows. After each play of
the bandit the preference for the action selected on that play,
at, is incremented by the error signal between the reward rt

and the reference reward r̄t, by:

ρt+1(at) = pt(at) + α[rt − r̄t] (4)

where α is a positive step-size parameter. Unlike action-
value updates, the reference reward is an incremental av-
erage of all recently recieved rewards independently of the
action taken:

r̄t+1 = r̄t + α[rt − r̄] (5)



where 0 < α ≤ 1 is again some learning rate.
Finally, in Pursuit methods (PM) both action-value and

action-preferences are maintained where the action prefer-
ences “pursue” the action that is greedy according to the cur-
rent action-value estimate (Sutton & Barto 2002). If πt(a)
represents the probability of selecting action a at time t, de-
termined through softmax, and a∗t+1 = arg maxaQt+1(a)
represents the greedy action at play t + 1 then the probabil-
ity of selecting at+1 = a∗t+1 is incremented by a fraction β
toward 1:

πt+1(a
∗

t+1) = πt(a
∗

t+1) + α[1− πt(a
∗

t+1)] (6)

Then the probabilities of selecting other actions are decre-
mented towards zero: πt+1(a) = πt(a) + α[0 − πt(a)] for
all a 6= a∗t+1.

Multi-State PR Problem
As the next step, we consider a multistate model of the PR
problem. In the single state bandit problem described above,
the expected reward received depends solely upon the cur-
rent agent action. In our multistate model, the amount of
reward is based upon both the agent action and the current
service profile, allowing us to model the agent’s attempts to
learn the user’s utility function over the space of service pro-
files.

Formally, we model the PR as a deterministic MDP with
states s ⊂ P δ, the set of currently available service profiles.
In order to model the trade-off between quality and cost, we
define a service profile as a vector of two features (b, h),
where b represents bandwidth and h cost. For simplicity, we
constrain quality and cost to the set of nonnegative integers.

The set of possible agent actions APR remains the same
as before, but in the multistate model the current service
profile may change after every agent action. This transition
function is deterministic and assumes that the agent gets the
service profile it requests if it is available. For instance, If
the state s at time t is (bt, ht), the agent selects action LBW ,
and (bt − 1, ht) ∈ P δ, then st+1 = (bt − 1, ht). If the de-
sired service profile is not in P δ, then the state remains un-
changed. By limiting agent actions to the fixed set APR, we
reduce the complexity of the agent while still enabling the
exploration of the full set of services available.

As in the single state model, at each time step the agent
receives a reward r ∈ {1,−1} depending on the user action
Au. The user action probability distribution p(si) is based
on the utility U(si) of the current service profile si. We
model user utility with the linear function U(q, h) = wqq +
whh, where wq > 0 and wh < 0, expressing a desire for
high bandwidth and low cost. This utility function is easy to
compute while still allowing the description of a wide range
of user preferences.

This multistate model is a natural extension of the single
state MDP model described earlier. Though the service pro-
files and user utility functions in this model have been cho-
sen for ease of computation, the multistate model provides a
substantially more detailed view of the interactions between
the agent and its environment, capturing the relationship be-

tween user utility and user actions as well as the effect of
agent actions on the current service profile.

Due to the multistate nature of this model, however, the
approaches for solving the single state bandit problem can-
not accurately learn the optimal agent actions. The bandit
solutions can learn which action yields the greatest reward
for any given state, but in order to maximize the total return
the agent must take into account the value of other states as
well.

Possible solutions for this problem include dynamic pro-
gramming, Monte Carlo methods, and TD learning (Sutton
& Barto 2002). Dynamic programming is not appropriate
because the rewards at each state are not known a priori.
Monte Carlo approaches are inadequate because they learn
policies off-line; the non-episodic nature of the PR prob-
lem requires an on-line solution that can learn a policy as
it interacts with the user. In contrast to the other two ap-
proaches, TD learning works well for non-episodic tasks
with unknown rewards. Of the TD(λ) solutions, we choose
to examine the 1-step backup methods as an initial approach.

Many 1-step backup TD control methods exist, including
Sarsa, Q-learning, and actor-critic methods. Q-learning is an
off-policy method that learns the optimal policy regardless
of the policy used. In contrast to Q-learning, Sarsa is an
on-policy method that takes the current policy into account
in its action-value estimates. It operates according to the
following update rule:

Q(st, at) ← (1− α) Q(st, at)

+α [rt+1 + ρQ(st+1, at+1)] (7)

where st ∈ P δ is the current state, st+1 is the next state,
at ∈ APR is the current agent action, at+1 is the next agent
action according to the policy, α is a constant weight, rt+1

is the reward received in the next time step, and ρ is the
discount factor.

Both learning methods work well with a wide range of
policies, including ε-greedy methods and Gibbs softmax al-
gorithms. The advantage of Sarsa is that its action-value
estimates accurately reflect the action values of the policy
used, whereas Q-learning always learns estimates for the op-
timal policy. If the policy converges to the greedy policy,
however, then Sarsa will eventually learn the optimal policy.

Simulations
Single State Bandit Model
In order to demonstrate the agent’s ability to learn user pref-
erences using reinforcement learning, we simulated the sin-
gle state bandit solutions described in section . To illustrate
a wide range of different approaches, we have selected an ε-
greedy method, two Gibbs softmax methods with initial tem-
perature T0 = 10 and cooling rates µ = {0.05, 0.01}, a pur-
suit method, and a reinforcement comparison approach. All
of these implemented exponential averaging with α = 0.1
except for the µ = 0.01 softmax which uses α = 1/k, giv-
ing equal weight to all samples. For clarity, some plots have
been smoothed using cubic spline interpolation.
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Figure 1: Stationary Bandit User Model

Figure 1 shows the observed results for stationary user
preferences. The plot shows the average of 10,000 tasks,
each consisting of 1000 plays, or time steps. At the start
of each task, the reward probabilities Q∗(ai) are initialized
with random values between −1 and 1 for each of the five
agent actions ai ∈ APR. The plot shows the percentage of
optimal actions for each play, where the optimal action is
defined as the action providing the greatest expected reward.

The figure shows how the choice of learning method af-
fects the speed at which the optimal action is learned as well
as the long term average reward. The ε-greedy and pur-
suit methods improve very rapidly initially, but soon reach
asymptotic levels at approximately 80%. In contrast, the
Gibbs softmax method with µ = 0.01 makes poor selections
in the first few hundred plays while it explores, but eventu-
ally selects the optimal action 95% of the time. The other
algorithms achieve optimality at various speeds in between
these two extremes. In summary, the data shows the trade-
off involved between exploration and exploitation; the more
time the agent spends exploring, the better the policy it can
learn in the long run.

Figure 2 and 3 show the observed behavior for nonsta-
tionary preferences that change occasionally. In these simu-
lations, the agent begins with knowledge of the user’s prefer-
ences and must relearn them as they change. Figure 2 shows
a periodic user model in which the user’s preferences ran-
domly increase or decrease by η = 0.4 every 100 plays. The
periodic user model clearly illustrates the behavior of the
learning models when user preferences change regularly and
infrequently. The ε-greedy method has the best performance
because it can rapidly relearn the new user preferences after
every change. The Gibbs softmax with α = 1/k performs
most poorly because it uses a sample average method and
cannot adapt to change.

In figure 3, user preference changes follow a Poisson dis-
tribution: at each play, there is a f = 0.1 probability of ran-
domly increasing or decreasing Q∗(ai) for each action by a
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Figure 2: Periodic User Model, θ = 100, f = 1, η = 0.4

reinforcement comparison, α = 0.1
pursuit, α = 0.1

softmax, µ = 0.01, α = 1/k
softmax, µ = 0.05, α = 0.1
ε-greedy, ε = 0.1, α = 0.1

%
O

pt
im

al
ac

tio
n

Plays
10008006004002000

100%

80%

60%

40%

20%

0%

Figure 3: Poisson User Model, θ = 1, f = 0.1, η = 0.2

constant magnitude of η = 0.2 (see section ). In the steady
state, the ε-greedy method performs the best, selecting the
optimal action about 58% of the time. The nonstationary
data shows that when the user’s preferences change the agent
must use recent observations in its estimates and does not
have much time to explore. With nonstationary user prefer-
ences, the ε-greedy approach quickly finds a good action and
exploits it, but the reinforcement comparison method spends
too much time exploring. The α = 1/k Gibbs softmax al-
gorithm yielded the best results in the stationary case, but
performs poorly in both nonstationary cases because it fails
to discount old observations.

One would expect that as the rate of user preference
change increases it becomes more difficult for the agent to
learn their preferences. Figure 4 confirms this expectation
by showing the effect of f (frequency of change—see sec-
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Figure 4: Poisson User Model, η = 0.2

tion ) on performance. For chosen values of f between 0
and 1, we simulated each agent model for 5000 tasks and
1000 plays using η = 0.2. For those values of f , the plot
shows the average percentage of optimal actions over the
last 300 plays. At the left when preferences change infre-
quently, it is similar to the stationary case: softmax with
µ = 0.01 performs the best while ε-greedy performs more
poorly. As preferences change more frequently, the relative
performance of the ε-greedy method improves while the ac-
curacy of the the Gibbs softmax method degrades.

Multistate MDP Model

We have seen that in the single state case, the agent can
learn user preferences for stationary and nonstationary user
preference models. The reinforcement learning methods
described in allow us to learn these preferences in multi-
state models as well. Figure 5 contrasts the performance
of a Sarsa TD learning approach with a single state bandit
method in a simulation over 10,000 tasks. In this simulation,
the set of service profiles P δ consists of all integer band-
width/cost pairs (b, h) within a 3 unit radius of the initial
service profile s0 = (5, 5). At the start of each task, the user
utility function U(q, h) = wqq+whh is initialized randomly
with 0 < wq < 1 and −1 < wh < 0. The expected reward
is given by the function r(si) = 1− 2

1+e−U(si)
. Though the

ε-greedy bandit method learns the rewards for each action, it
does not accurately compute the long term value as well as
the Sarsa method. The advantage of TD learning becomes
even more apparent as the state space increases; when the
radius is 5, the Sarsa approach obtains 2.5 times the reward
of the bandit method, illustrating the effectiveness of a TD
learning approach over a bandit method in a multistate PR
model.

radius 5 bandit, ε = 0.1, α = 1/k
radius 5 Sarsa, ε = 0.1, α = 0.2

radius 3 bandit, ε = 0.1, α = 1/k
radius 3 Sarsa, ε = 0.1, α = 0.2
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Figure 5: Multistate Stationary User Model

Related Work
The MDP model presented above is similar to solutions such
as fast polyhedral conjoint analysis that extend classical so-
lutions to a sequential decision making paradigm (O. Toubia
& Hauser 2002). However, motivated by solving the com-
binatorial size of the elicitation space, fast polyhedral tech-
niques still require additional a priori information over the
utility of elicitation question at each stage of decision mak-
ing. We are, on the other hand, interested in dynamic deci-
sion contexts, such as dynamic access to wireless networks,
where there is little or no a priori information and the user
cannot be engaged in costly elicitation process similar to tra-
ditional solutions. Minimal user interaction during prefer-
ence elicitation is also sought by Chajewska et.al. where
the UM problem is viewed as a classification problem (Cha-
jewska, Koller, & Parr 2000). A myopically optimal elic-
itation strategy is constructed to ask the single query with
the greatest expected value of information with respect to a
distribution of clusters of utility functions. The uncertainty
over this distribution is then refined as users answer queries.
However, the hillclimbing nature of myopic strategy can fail
to ask appropriate questions because future values are ne-
glected when determining the value of current questions.
Boutilier’s extension of the above model to a Partially Ob-
servable Markov Process (POMDP) (Boutilier 2002), imple-
ments a sequential decision problems with multistage looka-
head. However, although also modeling the elicitation pro-
cess as a sequential decision making problem this model as-
sumes a priori belief model (although any arbitary model)
for optimization.

Conclusions and Future Work
In this paper we described a user-modeling problem for the
domain of wireless services. An agent, called a Personal
Router, was proposed as a solution to this problem. We
showed how the nature of the problem bounds the informa-
tion set of the agent. We then presented a formal model of



the service selection problem and showed how it can be cap-
tured in an MDP representation. Heuristic solutions from
reinforcement learning were then empirically evaluated for
two simpler MDP models of the PR problem.

There are a number of future directions. Our first goal is
to continue to empirically evaluate different learning algo-
rithms for increasingly more complex MDPs. The perfor-
mance of the resulting agents will then be evaluated for eco-
logical validity in controlled user experiments, the outcomes
of which will be used for further (re)design-simulation-user
experiment development, followed by field testing. Finally,
our longer term goal after achieving a satisfactory level of
performance of the agent is to extend the single agent deci-
sion mechanism to multi-agent systems (MAS) . In particu-
lar, we envisage two direction of future MAS research. On
the one hand, MAS mechanisms (such as distributed rep-
utation, gossiping, epidemic and/or collaborative filtering
mechanisms) can be useful information sources for param-
eters of the agent decision model. For example, some of
the model updating mechanisms presented above are biased
by their initial Q0(a) values meaning that the behaviour of
model is dependent on the initial belief states that must be
specified as a parameter of the model. In absence of domain
expertise another strategy for deriving Q0(a) is to deduce
its value from estimates of a group of other user agents. Fi-
nally, the single agent decision mechanism must be extended
to represent and optimize over other the states and actions of
rational decision makers (or service providers) that the agent
interacts with during negotiation of services. Markov games
have been proposed as one potential solution to this compu-
tational mechanism design problem.
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