SNPP: A Simple Network Payment Protocol
by

Semyon Dukach
B.S. Computer Science
Columbia University

(1990)

Submitted in Partial Fulfillment of the
Requirements of the Degree of

Master of Science
in
Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology
October 1992
(©Massachusetts Institute of Technology 1992

Signature of Author

Department of Electrical Engineering and Computer Science
October 7, 1992

Certified by

” Karen R. Sollins

Thesis Supervisor

Accepted by

LS e au »

Campbell L. Searle
Chag'ﬁ‘ﬁan, Departmental Committee on Graduate Students

ARCHIVES

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

MAR 24 1993

LIBRARIES

SNPP: A Simple Network Payment Protocol
by
Semyon Dukach

Submitted to the
Department of Electrical Engineering and Computer Science
on August 14, 1992
in partial fulfillment of the requirements for the Degree of
Master of Science in Electrical Engineering and Computer Science

Abstract.

A protocol is proposed to securely implement payment transactions be-
tween mutually distrustful parties. This protocol is designed to operate over
an open network, and can be implemented using currently available encryp-
tion technology.

Thesis Supervisor:
Karen R. Sollins
Research Scientist, Laboratory for Computer Science

Acknowledgements

My greatest gratitude goes to Galit P.G. Dukach, my wife and soulmate,
without whom I'd be nowhere at all.

I would like to thank my former advisor, David D. Clark, for helping me
find a topic to titillate my fickle interests, and my final advisor, Karen R.
Sollins for always being there to guide me through my efforts.

I also wish to thank the following individuals, each of whom made a signif-
icant contribution to this endeavor, through technical assistance, motivation,
or inspiration: Ken Hechtman, Jim Morrison, Vladimir Visotski, J. Laurens
Troost, Ethan Rafferty, Adam Kucznetsov, Alex Peshkovski, Christopher
Grewe, David Wetherall, Scott Susin, David Eichberg, Ray Hirschfeld, John
Chang, Mitch Charity, Michele Rizack, Anna Bronstein, Magdalena Leuca,
Inna Dukach, K.J. Madera, Leonid Fridman, Hamish Fletcher, Dina Dukach,
David Dukach, David Tennenhouse, Petros Butler, Nahdiah Wiggins, Bob
Jonas, Harris Gilliam, Arkadi Pershman, Greg Troxel, Henry Houh, Joseph
Elkies, Alan Bawden, J.P. Massar, Derek Williamson, Kim Carter, Tim Shep-
ard, Chuck Davin, Chris Lindblad, Ayn Rand.

1 Introduction

When the Internet was first created, many exciting services and applications
were envisioned. It was widely believed that the network would be used to
fulfill diverse needs and to provide many new capabilities for users around
the world. Powerful services providing news, shopping, entertainment, and
remote computation and storage were believed to be around the corner. Yet
despite the fact that today’s Internet has grown to sufficient scope and speed,
very few advanced services are available at the moment. The large majority
of traffic still consists of simple electronic mail and “news” delivery, remote
logins, and file transfers.

We believe that a major reason why advanced applications have not flour-
ished is the lack of a practical payment facility. Without the ability to
efficiently exchange money, there is insufficient motivation for the develop-
ment of production-quality software. In addition, since further growth of
the Internet seems much less likely to rely on government funding, payment
mechanisms are also needed to enable link owners to efficiently charge their
users.

Informal ad hoc financial transactions have already begun to occur on

the Internet. Most of these, such as sending credit card numbers through
e-mail, are extremely insecure and inefficient. It is instead desirable to allow
individuals with access to the Internet to pay for goods and services directly.

This thesis describes SNPP, a simple payment protocol for secure transac-
tions over an open network. A logical verification of the protocol is included,

as well as a status report on its implementation.
2 Payment Paradigms

The methods of payment in wide use today are cash, credit cards, direct
billing, and checks. All four can potentially be implemented in some form
on the Internet.

The major advantage of cash transactions is the anonymity of the buyer.
Once the money changes hands, no one can discover where it has been.
There are several cryptographic approaches to designing an eiectronic form
of cash, a few of which have already been implemented with some success
[5]. The main disadvantage that they all share is the relative complexity of
the protocols.

A straightforward credit card model can be implemented on the network

securely using some of the authentication and authorization protocols men-

tioned in section 4. But this model contains one undesirable assumption: in
order to be able to receive credit cards payments, one must be officially ap-
proved as a merchant, and in a sense be trusted by the credit card company.
This approval is generally only granted to established businesses, since the
security of the payment protocols relies on the merchant not tarnpering with
the point-of-sale terminal. It would be better to have a ubiquitous method
of payment which anyone with network access can use in order to make or
receive payments with a minimum of overhead formalities.

Direct billing is the most common way available today to pay for informa-
tion. The problem is that it is impractical to provide granularity by billing
for small amounts of money. For example, someone who might only need an
occasional datum must subscribe to the entire service on a monthly basis.

The existing payment paradigm which most closely resembles the protocol
proposed in this thesis is personal checks. Anyone can write checks after
simply opening a bank account, and anyone who can write them can also
receivev them without additional registration. An electronic check can be
cleared with a bank before a product is shipped, but actual payment can be
delayed until the product is received. And since a check will be represented

by a short sequence of data packets, a separate payment can be made for a

6

series of small transactions.
3 Goals

Our payment protocol has been designed to meet the following goals:

e It should provide a secure means for payment transactions between

parties over an open network.

e The parties should not need to trust each other, only their respective

banks.

o A thief with the ability to arbitrarily view, store, and replace messages
among all parties should at most cause denial of service, and should

not be able to embezzle funds, even if allied with one of the parties.

¢ A mechanism should be provided for “holding” the funds during the
sensitive period of a transaction, so that no money is handed over
until a product is received, yet no product is sent out until payment is

assured.

e The protocol should be fully partitionable, in the sense that a customer

should only deal with his merchant, and a merchant only with her

-1

bank. Therefore at each point, further verification could be postponed
for batch processing at the risk of the appropriate party, and without

a separate procedure at the beginning of the authorization chain.

For our initial implementation, the basic requirements are library calls
providing UDP datagram communication, and DES encryption. In addition,
several support functions such as reliable key distribution, stable storage
for used transaction numbers, and workstation authentication will be neces-
sary for an implementation secure enough for experimenting with non-trivial

amounts of real currency.
4 Background

In order to provide the ability to transfer payments in real time, a mechanism
is necessary for secure communication. In 1978, Needham and Schroeder [8]
defined protocols for establishing secure interactive connections by using an
authentication server. The Kerberos [12] authentication system extends the
Needham and Schroeder algorithm to multiple authentication servers. Au-
thorization and accounting schemes can be built on top of the authentica-
tion interface that Kerberos provides. The latest version of Kerberos also

supports an extension defined by Neuman [10] as Restricted Prozies. The

8

recipient of such a proxy is allowed to act with the same rights and privileges
as the grantor of the proxy, subject to an arbitrary set of restrictions. Neu-
man briefly outlines how a payment protocol can be implemented on top of
restricted proxies.

While restricted proxies and Kerberos may prove to be a desirable plat-
form in future implementations, the protocol we are currently proposing has
been designed from scratch, using UDP for communication, and DES for en-
cryption. This has enabled us to give closer consideration to the fundamental
security and performance tradeoffs inherent in the problem of open network
payments. In addition, direct implementations allow the inclusion of several
desirable properties, such as anonymity between the buyer and the seller,
and partitionability of payment verification.

A network payment protocol is only as secure as the end workstations. In
particular, a user has to be able to verify that the workstation is not hostile
before divulging his key. As shown in Abadi et al [1], workstation authen-
tication can only be achieved with a smart card which minimally possesses
a self-powered clock, an internal encryption and decryption capability, and
either a keyboard or a display. In their 1990 report, Bos and Chaum [2]

describe an electronic payment system which employs smart cards capable of

9

DES but not RSA encryption to authenticate host workstations. Since our
goal has been to design a payment system for the immediate future which
does not require any special hardware, the protocol assumes that the user’s
end workstation is secure, without making any assumptions about the secu-
rity of the network.

The proposed protocol will ultimately rely on an adequate solution to
the problems of key distribution and storage. Although a lot of promising
cryptographic work has been done in these areas, [11, 4, 7] SNPP will initially
work fine if the keys are simply distributed physically, and stored in a DES
encrypted file on a unix workstation which has most services turned off.

In order to verify the correctness of our protocol, we make use of A Logic of
Authentication, developed by Burrows, Abadi, and Needham [3]. The proof
of the correctness of SNPP outlined below is analogous to the verification of
Kerberos given as an example in their paper. As demonstrated by Nessett [9],
BAN logic cannot always be safely applied to the privacy aspects of protocols
such as SNPP. Nonetheless, we found BAN verification, and especially the

process of generating the “idealized protocol,” to be very useful.

10

5 Summary of the Protocol

In order to act as either a customer or a merchant, a user must first open
an account with a trusted bank and deposit some funds. At the time an
account is opened, a key is generated for subsequent symmetric encryption,
and is given to the user along with an account number. The bank keeps a
record of each account, indexed by account number. The record contains the
amount and type of currency in the account, a list of holds on the currency,
the aforementioned key, the most recent transaction number, and a list of all
transaction numbers smaller than the most recent one which have not yet
been used. Each hold consists of an amount, an account number/bank id pair
identifying the account for which the money is being held, and a timeout. A
single person can maintain multiple accounts, and each account can be used
for buying as well as for selling.

People who have accounts in different banks can still make payments to
each other, subject to the condition that their banks trust each other, and
have a pre-arranged common key.

The protocol begins when a customer issues a HOLD message to the

merchant, which the merchant in turn forwards to her bank. The merchant’s

11

bank then forwards the HOLD to the customer’s bank, if necessary. If the
funds are available, the customer’s bank adds the hold to the holds list of
the customer’s account, and returns a confirmation to the merchant’s bank.
After the merchant gets notified of the hold by her bank, she sends out the
product to the customer. At this point, the customer sends out a PAY

message to the merchant, and an analogous procedure occurs.
6 Notation

The following notation is used in the detailed presentation of the protocol in

section 7:

o C Customer.

oM Merchant.

» B; Bank of person :.

o A Account number of person ¢, changed periodically. A; need
not be confidential as it grants no privileges without K.

o K; The confidential key corresponding to an account of person
i, changed periodically. K; is also known by B; given A;.

o Kp, B, The common key between bank ¢ and bank j.

12

o N; Transaction number assigned by person ¢ (V; is a nonce
which is incremented after each complete transaction).

o P The product, quantity and price information.
P q y P
o The type and amount of currency.
o {r}g, Message consisting of z encrypted in the key K.

® :=>j:r ¢ sends a message consisting of z over the net to J- A
hostile party may tamper with z in any way.

This notation should not be taken to imply that there can only be one
bank account per person. Further subscripting could clarify this point, but

has been omitted for simplicity.

7 The Protocol

Before the beginning of the payment protocol, the merchant will probably
advertise the product over a mailing list, a newsgroup, or some alternative
method of distribution. The ad will include the bank id and account number
to which the merchant expects the customer to direct his payments. This does
not necessarily disclose any sensitive information about the merchant, since
multiple accounts may be maintained with each bank, and account numbers
can be automatically changed periodically. Once a mutually acceptable price
is established, the protocol proceeds as follows:

13

C=M: P,Bc,Ac, {BM, A, N01$7H0LD}KC

The HOLD symbol within the encrypted portion of the message sig-
nifies that the money is to be held by the bank, and not actually trans-
ferred. The transaction number is needed to keep a thief from storing
messages, and then replaying them again. Since only the customer’s
bank knows K¢, no one along the way can modify the sensitive fields,

such as the amount of money involved.

M= BM : BC,A(;, {BM, AM,N0,$,H0LD}KC

The first two fields need not be encrypted, since forging them would
simply prevent subsequent decryption of the HOLD, and would even-
tually set off alarms. The specific order information encapsulated in P

is not passed on to the bank, since it is not needed.
CIf BM 7,!(: BC then
BM - BC : ACs {BM, AM, NCa $, HOLD}Kc

If By = Be then messages 3 and 4 are of course unnecessary.

14

4. Bc now uses A¢ to find K¢ and decrypt the message. If Ng is greater

than the previous Ng (or if it is on the list of unused skipped transaction
numbers) and if the funds in A¢ are available, Bg places a {Bu, Anr}
hold on the réquested amount. The hold contains a standard timeout,
after which it is automatically released. The following message is then
generated: (If there is not enough currency in the account, replace
HELD by INSUFFICIENT FUNDS, and increment a security alert

counter).

Bc = Bum : {Ac, Am, Npo, $, HELD} g,

. By decrypts the message using the inter-bank key of the bank implied

by the return address. Then Ays is used to look up K, and the address
of M. Alternatively, the merchant’s bank could remember the return
address of the merchant’s request by adding an extra reference field to
message 3 encrypted in the inter-bank key. This would allow a merchant
to initiate transactions from arbitrary addresses, but is omitted here

for simplicity.

BM = M: {BC, ACa NBM1$aHELD}KM

15

=3

The message is now encrypted in the merchant’s key, so that the mer-
chant can verify that the HELD guarantee is legitimate. When the
merchant is able to decrypt this message, she will know that the cus-
tomer must have supplied the correct Aps in the hold request. The
reason that a new transaction number, Ng,,, is used here instead of
Npg, is so that a merchant only has to keep track of transaction num-
bers emanating from one source: her bank. Ac and Bg are included
in this message so that the HELD guarantee can be matched to the

correct HOLD request.

At this point, M delivers the goods or services to C. If C is satisfied,

C= M: P, Bc,Ac, {BM, AM,NC,$,PAY}KC

M = BM : BC,AC, {BM, AM7N07 $aPA'Y}KC

If Byr # Be then
By = Bc : Ac,{Bwm, Am, No, 8, PAY }
The money is first taken from held funds, which are automatically

released as they are paid out. If the PAY is more than the HOLD,

then the rest is taken straight out of the account, if available.

16

A r——ETENCT. WIS O AR W T < amm oy x e g g

9. Bc initiates an out-of-band procedure to transfer the funds to By,.

BC - BM . {AC,AM, NBca $1IOU}KBC,BM

10. By transfers the requested amount into account Aps.

By = M : {B¢, Ac, Ng,,, 3, PAID}g,,

If, after step 6, the customer does not receive the promised product, or is
not satisfied with the quality, the PAY message is never generated, and the
money remains on hold for the length of the timeout period, which should
be chosen to be of sufficient length to allow for any possible disputes to be
resolved. Likewise, if the merchant sends out the product as promised, but
never receives the PAID message with the correct amount back from her
bank, the merchant has not been fully paid, but all the money still remains
held. In such cases, all claims to held funds will be addressed by an out-of-
band arbitration procedure. If one of the parties cannot be contacted, the
money would of course be awarded to the other; and otherwise, some sort of
legal arbitration would occur.

There are other useful messages which should be provided with most
implementations but have not been included here since they are not part

17

B

. W 8% S~ - a

of the core protocol. Some examples are messages that a merchant can
send to release held funds in excess of the final payment before the timeout
expires, messages account holders can send to their banks to receive account
information, and so forth.

In addition to such steps, all users can automatically send out UPDATE
REQUEST packets to their banks at regular intervals. Upon receiving such
a packet, the bank generates a random unused account number and a random
key, encrypts them with the user’s old key, and returns them to the user.
From then on until the next update request, communication will proceed
using the new account number and key, although the old account number
may continue to be referenced as long as there are outstanding holds for that
account. Updating the key, of course,. improves overall security, but updating
the account number serves another function as well: since every customer
will have a different account number every few transactions, mefcha.nts or
network watchers would not be able to compile and sell lists of correlations
between account numbers and purchases.

If the customer trusts that the merchant will deliver the product as
promised, then the first half of the protocol may be skipped; that is, the
customer may begin by sending out a PAY instead of a HOLD message.

18

ey et M 2 B e . e ——————

S — T R NN W vav e

Alternatively, if the merchant wants to save the cost of sending many small
packets over the net, the product could be sent out immediately after step 1.
It would be advisable, however, to proceed with the protocol to verify the
hold for any customer originating from an unfamiliar address. In the same
manner, the merchant’s bank could issue the HELD guarantee message back
to the merchant without bothering to contact the customer’s bank. This
would be more likely if accounts contain credit limits rather than deposited
funds, and the banks use a common method for verifying credit worthiness
and risk.

This partitionability of the protocol is the reason that per-party trans-
action numbers, rather than time, must be used to prevent replay attacks.
If the merchant chooses to verify every Nth request from a particular cus-
tomer, and processes the rest togefher at a later time, then the customer’s
bank will receive message N before messages 1 through N —1, so that merely
comparing times would not be sufficient.

The main problem with the cost-saving scheme outlined in the above
paragraphs is that on an open network, it is impossible to trace return ad-
dresses to individuals, and thus a thief could attempt numerous fake transac-
tions without fear of retribution. One rationale for banks and/or merchants

19

e S et diah e mmmm e

to skip the real-time verification step is the empirical expectation of losses,
which would probably be bounded due primarily to the fact that most of the
Internet maintains some level of security.

The use of transaction numbers within all encrypted messages should
eliminate the risks associated with replay attacks. However, the possibility
of inadvertent exposure of keys poses serious concerns. If a customer’s or
merchant’s key somehow gets stolen, all the funds in the associated account
are at risk of being embezzled. Furthermore, should an unauthorized party
come into possession of an inter-bank key, all of the accounts at the two

banks face potential danger.

8 Verification

To verify the correctness of SNPP we will employ the following constructs

from the BAN Logic of Authentication [3]:

¢ P believes X P believes that X is true, and is therefore free to act
upon this belief.

o Psees X P received a message containing X.
e Psaid X P has sent a message containing X at some point in
the past.

20

¢ fresh(X) X has not appeared in a message processed in any
previous run of the protocol; i.e., X is a nonce.

e P controls X P has the authority to determine X. For example,
a customer has the authority to issue hold and pay
requests from his account, and his bank respects that

authority.
P& Q K is the shared key between P and Q.
o {X} Message X encrypted with the key K.

We will also make use of the following postulates from the logic:

o The message-meaning rule for shared keys:

P believes Q & P, P sees {X}k
P believes @ said X

That is, if P sees a message X encrypted in a key that P shares with
@, then P believes that @ has said X at some point. The logic assumes

that the message was not generated by P itself.

e The nonce-verification rule:

P believes fresh(.X), P believes) said X
P believes) believes X

That is, if P believes that @ has said X at some point, but also believes

that X has never been said in the past, then P must believe that Q

21

has said X in the present run of the protocol, and that at this point,

@ believes X.

o The jurisdiction rule:

P believes @ controls X, P believes Q believes X
P believes X

That is, if P believes that @ is an authority on X, and that Q believes

X, then P can believe X also.

In order to verify SNPP, we must first convert it into the BAN ideal-
ized protocol form. Information sent in the clear is omitted, and all the
information that a customer needs to deliver to his bank in order to place a

particular hold or payment is encapsulated for the purpose of this verification

in a HOLDMSG or PAYMSG variable.
1.C =M : {Nc,HOLDMSG},
2. M = By: {No,HOLDMSG}g,
3. Bu=> Bc : {Nc,HOLDMSG}x,
4. Bo = Bu: {Np,,HELDMSG1}g, ,

5. By=>M : {Ns,,HELDMSG2}y,,

22

PR BTMe GR R WAV B oy - cpet PR — e AT —————— e e e wmier - m — r xn o w .

The second five messages are identical to the first, except the hold request
is replaced by the payment request. The proof is analogous to the one below,
and will not be given here.

The next step in analyzing the protocol is listing the assumptions. The

following statements are assumed to hold when the protocol commences:
| 1. B¢ believes C Ke Be
2. B¢ believes fresh(N)

3. Bc believes (C controls hold-requests)

4. By believes B, Koo2u By
5. By believes fresh(Ng,)

6. By believes (Bg controls held-messages)

7. M believes By, Ky M
8. M believes fresh(Ng,,)

9. M believes (B controls held-messages)

23

SNSCITTE EE W ~ MR - - St - ep g o

In their idealized form, the first three messages simply pass the hold
request along from C' to Bc. When B¢ receives message 3, the following

statement holds, according to the definition of “sees”:
B¢ sees {Ng, HOLDMSG } g

Since we have the assumption that B; believes C' %5 B¢, the message-

meaning rule applies, yielding
Bc believes (C said (N¢, HOLDMSG))

Since we have assumed that B believes fresh(N¢), the nonce-verification

rule applies, and yields
Bc believes (C believes (N, HOLDMSG))
Breaking a conjunction,

Bc believes (C believes HOLDMSG)

Since we have assumed that By believes that C' controls hold-requests,

and since HOLDMSG is an instance thereof,

Bc believes (C controls HOLDMSG)

24

- o - -

The jurisdiction rule now applies, yielding
B¢ believes HOLDMSG

Since B¢ now believes the hold request, it will execute it, provided conditions
such as fund availability are met.
After message 4 is received by By, we again apply the message-meaning,

nonce-verification, and jurisdiction rules just like above, yielding
Bys believes HELDMSG1

Now By can send out message 5 to the merchant, thereby telling her that
it believes in the validity of the hold. When M receives message 5, the same

three rules can again be applied to yield
M believes HELDMSG2

Since in the concrete protocol the HELD message received by the merchant
from her bank contains the amount that the customer has put on hold as
well as information ihdicating that the hold is for an account belonging to
this particular merchant, the merchant now has sufficient confidence in the
hold to send out the product.

The proof of the payment half of the protocol is identical.

25

9 Implementation Status

A prototype implementation of SNPP is currently available for anonymous
FTP from allspice.lcs.mit.edu. The implementation consists of the SNPP
library, the customer, merchant, and bank programs, and various utilities.
The most important functions provided by the library are the ones that
process each of the protocol messages. The merchant and bank programs are
continually listening to UDP sockets for SNPP messages. When a message is
received, the appropriate library routine is called, which may in turn generate
another message.

Two initial applications which will use SNPP are currently in the design
stage. They will serve as a proof of concept for the protocol implementa-
tion, and will provide two different sets of requirements for the application
interface.

The first application will address the problem of collecting small amounts
of money for various social activities in our research group. Although this
application is almost trivial, we believe it will not only provide an initial
testing ground for most of SNPP, but will also make a small but notable

improvement in a typical office environment.

26

The second application that we plan to design is the distribution of stock
quotes and other financial information over the network. We plan to obtain
the information from a commercial source, which charges a periodic fee for
bulk access, and resell the data using SNPP on an individual quote basis.
This will provide a much wider testing ground for the protocol, since both
multiple banks and the holding of funds will be in use. We believe that there
is a great amount of demand for this type of information on the Internet, and
SNPP will for the first time provide a legal way to obtain it without having

to dial up a commercial source directly.

10 Conclusions

We have described a simple, practical protocol for open network payment
transactions. SNPP allows funds to be held during a sensitive period of a
transaction between distrustful parties. At the same time it provides parti-

tionability, so that unwanted real-time verification can be avoided, with the

risks borne by the party that receives the benefits of improved efficiency.
We have employed the BAN Logic of Authentication to verify the cor-

rectness of SNPP. In our experience, the most useful part of the verification

process was not the resulting proof, but the process of generating the ide-

27

alized protocol. The act of abstracting away all implementation dependent
details helped us uncover flaws in earlier versions of SNPP.

We expect that the availability of the protocol presented in this work
could provide the material motivation for the development of many produc-
tion quality services, and SNPP will thus serve to make the Internet a more

useful, practical environment.

28

S et L BN =T - W Tt mm

Appendix I

Complete BAN Proof

‘This proof uses the notation, postulates, and protocol steps listed in Sec-
tion 8, pages 20-23.
When B¢ receives message 3, the following statement holds, according to

the definition of “sees”:
B¢ sees {Nc, HOLDMSG } g,

Since we have the assumption that Bg believes C % B, the message-

meaning rule applies, yielding
B¢ believes (C said (No, HOLDMSG))

Since we have assumed that Bc believes fresh(N¢), the nonce-verification

rule applies, and yields
B¢ believes (C believes (No, HOLDMSG))
Breaking a conjunction,

Bc believes (C believes HOLDMSG)

29

Since we have assumed that B believes that C controls hold-requests,

and since HOLDMSG is an instance thereof,
Be believes (C' controls HOLDMSG)
The jurisdiction rule now applies, yielding
B¢ believes HOLDMSG

Since B¢ now believes the hold request, it will execute it, provided conditions
such as fund availability are met.
After message 4 is received by Byy, the following statement holds, accord-

ing to the definition of “sees”:

BM sees {NBcaHELDMSGl}KBC,BM

Bc B
oM

K
Since we have the assumption that Bys believes B¢ By, the message-

meaning rule applies, yielding
By believes (B¢ said (Ng,, HELDMSG1))

Since we have assumed that By believes fresh(Np,_), the nonce-verification

rule applies, and yields

By believes (B¢ believes (Ng,, HELDMSG1))

30

Breaking a conjunction,
By believes (Bc believes HELDMSG1)

Since we have assumed that Bys believes that Bo controls held-messages,

and since HELDMSG1 is an instance thereof,
By believes (B¢ controls HELDMSG1)
The jurisdiction rule now applies, yielding
By believes HELDMSG1

Since B now believes that Bc is holding the money, it can put its own
guarantee behind the hold by sending message 5 back to the merchant.
After message 5 is received by the merchant, the following statement

holds, according to the definition of “sees”:
M sees {Np,,, HELDMSG2}x,

Since we have the assumption that M believes By, K, pr , the message-

meaning rule applies, yielding
M believes (B said (Ng,,, HELDMSG2))

31

Since we have assumed that M believes fresh(Ng,,), the nonce-verification

rule applies, and yields
M believes (Bys believes (Ng,,, HELDMSG2))
Breaking a conjunction,
M believes (B believes HELDMSG?2)

Since we have assumed that M believes that Bj, controls held-messages,

and since HELDMSG2 is an instance thereof,
M believes (B controls HELDMSG2)
The jurisdiction rule now applies, yielding
M believes HELDMSG2

The merchant now believes that the money is being held, and can safely send
out the product.

The following are the idealized protocol steps for the PAY half of the

protocol, which were not included in the body of the thesis:

1.C = M : {N;,PAYMSG}«,

32

2. M = By: {N¢,PAYMSG},,
3. By= B¢ : {N¢,PAYMSG]}g,
4. Bo = Bys: {NBC,PAIDMSGI}KBOBM

5 By==> M : {Ng,,PAIDMSG2},,

The following three assumptions were also omitted from the body of the

thesis, since they deal only with the PAY half of the protocol:
1. Bc believes (C controls pay-requests)
2. By believes (B¢ controls paid-messages)
3. M believes (Bjs controls paid-messages)

When B receives message 3, the following statement holds, according to

the definition of “sees”:
B¢ sees {N¢, PAYMSG} g,

Since we have the assumption that B; believes C ¥ B¢, the message-

meaning rule applies, yielding

B¢ believes (C said (N¢, PAYMSGQG))

33

Since we have assumed that B believes fresh(N¢), the nonce-verification

rule applies, and yields
Bc believes (C believes (No, PAYMSG))
Breaking a conjunction,

B¢ believes (C believes PAYMSG)

Since we have assumed that B¢ believes that C controls pay-requests, and

since PAYMSG is an instance thereof,
B¢ believes (C controls PAYMSG)
The jurisdiction rule now applies, yielding
B¢ believes PAYMSG

Since B¢ now believes the pay request, it will execute it, provided conditions
such as funds availability are met.
After message 4 is received by Byy, the following statement holds, accord-

ing to the definition of “sees”:

By sees {Np,, PAIDMSG1}k, 5,

34

. . . Kpg,
Since we have the assumption that By believes Bg el By, the message-

meaning rule applies, yielding
By believes (B said (Ng,, PAIDMSG1))

Since we have assumed that By believes fresh(Np_), the nonce-verification

rule applies, and yields
By believes (B¢ believes (Ng,, PAIDMSG1))
Breaking a conjunction,

By believes (Bc believes PAIDMSG1)

Since we have assumed that By believes that Bo controls paid-messages,

and since PAIDMSGT1 is an instance thereof,
By believes (B¢ controls PAIDMSGT1)
The jurisdiction rule now applies, yielding

By believes PAIDMSG1

Since By now believes that Bo will transfer the money, it can put its own
guarantee behind the pay by sending message 5 back to the merchant.

35

o - LR SIS —— a s - B PE—r————n e Ak 2 ek mam me

After message 5 is received by the merchant, the following statement

holds, according to the definition of “sees”:
M sees {NBM,PAIDMSG2}KBM

Since we have the assumption that M believes By &M, M , the message-

meaning rule applies, yielding
M believes (Bys said (Ng,,, PAIDMSG2))

Since we have assumed that M believes fresh(Np,,), the nonce-verification

rule applies, and yields
M believes (B); believes (Ng,,, PAIDMSG2))
Breaking a conjunction,
M believes (Bjs believes PAIDMSG2)

Since we have assumed that M believes that By controls paid-messages,

and since PAIDMSG?2 is an instance thereof,
M believes (B controls PAIDMSG?2)

The jurisdiction rule now applies, yielding

M believes PAIDMSG?2

36

1 CORECHR NN EwaGL teomwmimss ermmcmse———— e ren w8 - oy e e mme e e e

The merchant now knows that the money has been transferred to her account,

and can safely draw upon it.

37

References

[1] M. Abadi, M. Burrows, C. Kaufman, B. Lampson, “Authentica-
tion and Delegation with Smart-cards,” DEC Systems Research Center,
October 1990.

[2] J. N. E. Bos, D. Chaum, “SmartCash: a Practical Electronic Pay-
ment System,” Centrum Voor Wiskunde en Informatica, Report CS-
R9035, August 1990.

(3] M. Burrows, M. Abadi, R. Needham, “A Logic of Authentication,”
Proceedings of the Royal Society of London, Vol. 426, 1989.

[4] L. Harn, T. Kiesler, “Authenticated Group Key Distribution Scheme
for a Large Distributed Network,” Proceedings 1989 IEEE Symposium
on Security and Privacy, May 1989.

[5] R. Hirschfeld, “Electronic Cash” Unpublished Manuscript, 1991.

[6] P. Kirkman, “Electronic Funds Transfer Systems,” Basil Blackwell
Ltd., Oxford, UK, 1987.

[7] C. J. Mitchell, F. C. Piper, “Key Storage in Secure Networks,”
Discrete Applied Mathematics, Vol. 21, No. 3, October 1988.

(8] R. M. Needham, M. D. Schroeder, “Using Encryption for Authenti-
cation in Large Networks of Computers,” Communications of the ACM,
Vol. 21, No. 12, December 1978.

[9] D. M. Nessett, “A Critique of the Burrows, Abadi, and Needham
Logic,” ACM SIGOPS OS Review, Vol. 24, No. 2, April 1990.

(10] B. C. Neuman, “Proxy-Based Authorization and Accounting for Dis-
tributed Systems,” University of Washington at Seattle, Technical Re-
port 91-02-01, March 1991.

[11] E. Okamoto, K. Tanaka, “Key Distribution System Based on Identi-
fication Information,” IEEE Journal on Selected Areas in Communica-
tions, Vol. 7, No. 4, May 1989.

38

[12] J. G. Steiner, C. Neuman, J. I. Schiller, “Kerberos: an Authen-
tication Service for Open Network Systems,” Proceedings of the Winter
1988 Useniz Conference, February 1988.

[13] V. L. Voydock, S. T. Kent, “Security Mechanisms in High-level
Network Protocols,” Computing Surveys, Vol. 15, No. 2, June 1983.

39

