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Preface

This is a book about how to design an Internet. I say an Internet rather than
the Internet because the book is not just about the Internet we have today,
but as well about possible alternative conceptions of an Internet–what we
might instead have designed back then, or might contemplate in the future.
I take the word “Internet” to describe a general purpose, global intercon-
nection of networks designed to facilitate communication among computers,
and among people using those computers. The book concerns itself with
the implications of globality, the implications of generality, and the other
requirements that such a network would have to meet. But it does not take
the current Internet as a given–it tries to learn from the Internet of today,
and from alternative proposals for what an Internet might be, to draw some
general conclusions and design principles about networks.

Those design principles I will call architecture. So this book is as well about
architecture. There are lots of little design decisions that shape today’s
internet, but they could have been made differently and we would still have
an Internet. It is the basic design decisions that define the skeleton of
the design, on which subsequent, more specific decisions are made. I am
concerned with the question of what the essence of the design is–what defines
a successful skeleton, if you will.

This is a very personal book. It is opinionated, and I write without hesitation
in the first person. It is a book-length position paper–a point of view about
design. I have drawn on lots of insights from lots of people, but those people
might well not agree with all of my conclusions. In this respect, the book
reflects a reality of engineering–while engineers hope that they can base their
work on sound, scientific principles, engineering is as well a design discipline,
and design is in part a matter of taste. So what this book talks about is
in part matters of taste, and if I can convince the reader about matters of

xi



xii PREFACE

taste, so much the better.

The inspiration for this book arose out of the NSF-sponsored Future In-
ternet Architecture program, and its predecessors, the Future Internet De-
sign program (FIND) and the Network Science and Engineering (NetSE)
program. These programs challenged the network research community to
envision what an Internet of 15 years from now might be, without being
constrained by the Internet of today. I have been involved in this program
for its duration, and I have had the chance to listen to several excellent
groups of investigators discuss different approaches to designing an Internet.
These conversations have been very helpful in bringing into focus what is
really fundamental about an Internet. There have also been similar projects
in other parts of the world, in particular Europe, which have contributed
to my understanding. Just as one may perhaps come to understand one’s
language better by the study of a foreign language, one may come to under-
stand the Internet better by the study of alternative approaches. Chapter 5
provides an introduction to these various projects.

An Internet is deeply embedded in the larger social, political and cultural
context. Assuming that we aspire to build a future global internetwork,
we must accept that different parts of the world will present very different
contexts into which the technology must fit. So this is not a book just
about technology. Indeed, technology is not center stage at all. Much of
the book centers on the larger issues, the economic, social and political
considerations that will determine the success or failure of a system like this
that is so woven into the larger world. If this book provides some insights
into how the technical community can reason about this larger set of design
constraints, it will have been a success from my point of view.

Because the Compute Science community has co-opted the word “archi-
tecture” I begin the book with a discussion of that concept. The book
then...@@



Chapter 1

Introduction

1.1 What is “architecture”

This is a book about architecture. So to get off on the right foot, it is
important to understand what is meant by that word. It is perhaps overused,
and used in a variety of contexts; without having a shared understanding
between writer and reader there is a risk of failing to communicate. So what
does the word mean?

Architecture is a process, an outcome and a discipline. As a process, it
involves putting components and design elements together to make an entity
that serves a purpose. As an outcome, it describes a set of entities that are
defined by their form. The architectural form we know as “gothic cathedral”
is characterized by a set of recognized design elements and approaches–the
purpose may have been “place of worship”’, but “gothic cathedral” implies
a lot more. And finally, as a discipline, architecture is what architects are
trained to do. The field of computer science borrowed the term from the
discipline that designs physical things like building and cities, where there
is a well-understood process of training and accreditation.

All three of these faces of architecture apply both to “real architecture” and
to computer science.

1



2 CHAPTER 1. INTRODUCTION

As a process: There are two important parts to the definition: putting
components together and for a purpose.

• Putting components together: this is what computer scientists are
doing when they consider issues such as modularity, interfaces, depen-
dency, layering, abstraction and component reuse. These are design
patterns that we are trained to consider as we contemplate one or
another design challenge.

• For a purpose: The process of design must be shaped by the intended
purpose of the artifact: a hospital is not a prison, and a low-power
processor is not a super-computer. As a part of architecture, the de-
signers must address what the system cannot do (or do well) as well as
what it is intended to do. In computer science, there is a peril in sys-
tem design so well-known that it has a name: second system syndrome,
the tendency, after having built a first system that perhaps does a few
things well, to propose a replacement that tries to do everything.

As an outcome: In the practice of designing buildings, the design nor-
mally results in one copy of the result. There are exceptions, such as tract
houses, where one design is constructed many times, but there is only one
copy of most buildings. The term “architecture”, when describing an out-
come, normally implies a class of design, typified by its most salient features
(e.g., flying buttresses). The term is applied to this abstraction, even though
the architect has had to specify the building down to a very fine level of detail
before the construction team takes over.

When computer science co-opted the term architecture, they slightly re-
defined it. With respect to the Internet, there have been many different
networks built based on the same design: the public global network we call
“the Internet”, private networks belonging to enterprises, militaries, and
the like, and special use networks such as financial networks. In this context
the word “architecture” only describes part of what is built, and much of
the design process for a given instantiation occurs at a later point, perhaps
specified by a different group.

As a discipline: “Real” architects–those who design building–go to school
to learn their trade. Looking over the fence at what they do is instructive.
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Architecture (as opposed to structural engineering) is not a design discipline
built on an underlying base of science and engineering principles. Architects
do not normally concern themselves with issues such as strength of materials;
they leave that to others. Of course, technical considerations may need to
enter the design process early, as the architect deals with such issues as en-
ergy efficiency or earthquake resistance, but architects are primarily trained
in the process of design. They do not study engineering, but buildings. They
learn by case study–they look at lots of buildings and how (or not) they are
fit for purpose. Do they meet the needs of the user? Are they considered
visually attractive? How were the design trade-offs handled? And so on.

In computer science, we tend to hope that we can base our designs on strong
engineering foundations, theories that give us limits and preferred design
options, and so on, but (at least in the past) most of the business of system
architecture has more resembled that of the building architect: learning from
previous designs, asking what worked well and what did not, asking if the
design was fit for purpose, and so on. We train computer scientists in both
theory and practice, but we tend to deprecate the study of prior designs as
“not science” or ”not based on fundamentals”. This book is unapologetically
a study of design, not a book centered on a discipline with quantifiable
foundations, like queueing theory or optimization. I am personally excited
by attempts to make architecture more “rigorous”, and I will discuss some
examples where progress has been made, but we should not deprecate what
we do today with phrases like “seat of the pants” design. [[[Confirm I did
that.]]]Ours is a design discipline, just as is building architecture, and we
should strive to excel at it, not dismiss it.

So if the “architecture” of the Internet is not the complete specification,
but just a part of that specification, what is included in the architecture?
We can say what is not included–we can look at all the different examples
of networks based on Internet technology, or different regions of the global
Internet, and note all the ways in which they differ. We see differences in
performance, degree of resilience, tolerance of mobility, attention to security
and so on. So design decisions at this level build on the core architecture,
but are not specified by the core architecture. So what should we see as
being in that core architecture?

Issues on which we must all agree for the system to function. For
example, the Internet architecture is based on the use of packets, and the
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assumption that the packet header will the same everywhere. (A different
design might allow different formats in different regions, in which case the
architecture might choose to describe what sort of architectural support is
provided for the necessary conversion.)

When we first designed the Internet, we thought that the design depended
on having a single, global address space. It is now clear that this assump-
tion was not necessary–there need not be global agreement on a uniform
meaning of addresses (think about Network Address Translation). It is in-
teresting to note that once we realized that we could build a network out
of regions with different address spaces, there was no rush to extent the
architecture to provide any support or guidance as to how disjoint address
spaces are interconnected. How “NAT boxes” maintain enough state to map
addresses is taken as a local matter. Of course, many view this state of af-
fairs as deplorable, since it prevents certain sorts of applications from being
deployed easily, but the “Internet architects”, whoever they are, have not
responded with a set of globally agreed conventions by which NAT state can
be managed to facilitate the support of a broader suite of applications.

There are a few other points where global agreement is necessary. Even
if there were a region of the Internet that did not use BGP for intercon-
nection, it is probably unavoidable to agree on the existence and meaning
of Autonomous System numbers. And within the global address space of
the core of the Internet, it is necessary to agree on the meaning of certain
address classes, such as multicast. It is worth noting that both multicast
addresses and Autonomous System numbers were not conceptualized as part
of the Internet’s original design, but were designed later. In some sense, they
have earned the right to be considered part of the core architecture exactly
because a critical mass have agreed to depend on them. Things that the
original designers thought were mandatory, such as a global address space,
have turned out not to be mandatory, and other things that they were not
contemplating have crept in and acquired the status of “that on which we
must all agree”.

Issues on which it is convenient to agree. There is no requirement
that applications use the DNS, but since essentially all applications are
designed based on the assumption that the DNS exists, it has become es-
sentially mandatory as a part of the Internet.
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The basic modularity of the system. For example, the specification
of the Internet Protocol (IP) defines two sorts of module interfaces. It
defines layer interfaces, for example the service interface on top of which
higher level services are built, and it defines (implicitly and partially) domain
interfaces: the interface among the different regions of the Internet. The
service interface is the best effort packet-level delivery model of the Internet:
a packet handed in to the Internet at one interface with a valid destination
IP address in the packet will be forwarded to the interface defined by that
IP address to the extent the network can do so at the moment. This service
definition defers issues such as reliability onto higher layers. The other
modularity interface in the Internet architecture is much less well-defined,
and is in fact hardly visible in the early architectural specification–this is the
modularity that corresponds to the different Internet Service Providers that
make up the Internet. When ISPs interconnect, the packets they send and
receive are indeed defined by the IP specification, but that is hardly enough
to make a viable Internet. Protocols for routing are a minimum requirement,
but the architecture left this as a later exercise. The emergence of Border
Gateway Protocol (BGP) as a convention to hook Autonomous Systems
together (which only occurred in the 1990’s, as part of the transition of the
Internet to a commercial undertaking) might seem to have the status today
of “that on which we must all agree”, but in fact that agreement is probably
more a convenience than a necessity–a region of the Internet could deploy
and use a different protocol, so long as it complied with a few more basic
conventions–the role of AS numbers and routing on IP prefix blocks.

Aspects of the system that are viewed as long-lasting. In a system
like the Internet, we know that much will change. Indeed, the ability to
change, and to upgrade and replace aspects of the system, are a key to
successful longevity. (See chapter 6 for an extended discussion of these
issues.) But to the extent that there are aspects that seem like durable
invariants, specifying them as part of the design may provide stable points
around which the rest of the system can evolve.

1.2 The role of interfaces

Interfaces are the specification of how modules are interconnected to make
up the overall system. Interfaces become fixed points in the architecture–
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points that are hard to change precisely because many modules depend on
them. Kirschner and Gerhart [Kirschner and Gerhart, 1998] develop the
idea of interfaces as “constraints that deconstrain”: points of fixed function-
ality that separate modules so that the modules can evolve independently,
rather than being intertwined. Their work is in the context of evolutionary
biology, but seems to apply to man-made systems, whether the designers
are clever enough to get the interfaces right from the beginning, or whether
the interfaces in this case also “evolve” to reflect points what stability is
beneficial, and evolution elsewhere is also beneficial.1 One could argue that
the original Internet architecture posited that certain semantics of addresses
were fixed points–the single global address space–and over time the system
has evolved away from that constraint. But the syntax of the header–that
addresses are 32 bits long–is proving very hard to change, since so many
actors depend on it. IPv6 has been “trying to happen” for a painful number
of years now.

1.2.1 Layering

Layering is a particular kind of modularity, in which there is an asymmetry
of dependence. A system is layered, or more specifically two modules have
a layered relationship, if the function of one module (the lower layer) does
not depend on the correct function of the higher-layer module. Operating
systems display a layered structure: the system itself should not be harmed
or disrupted if an application running on the system crashes. Similarly,
networks like the Internet are conceived as being layered–the basic packet
forwarding service should not be affected by the applications running on top
of it.

The idea of asymmetry of dependency may helps with the overall concep-
tion of a system, but is often not quite accurate in practice. One issue is
performance–different applications can interact because they compete for
resources, and in networking we see extreme examples of this in what are
called Distributed Denial of Service attacks, in which a malicious actor tries
to send enough traffic that a host on the network or a region of the network
itself is precluded from making progress. One response to this would be to
say that the design of a layer, if it is truly a “layer” with no dependence

1John Doyle and his co-authors [?] have developed and defended this conception of
architecture. Dolye has described constraints as “ hour-glasses” for interfaces that divide
layers and “bow-ties” for interfaces that connect peer modules, like different ISPs.
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on what the modules above it do, must include mechanisms to protect itself
from malicious applications and to isolate the different applications. The
very simple service model of the Internet, of course, has no such protec-
tions in its architecture. One network architecture I discuss in this book,
the Framework for Internet Innovation (see Chapter 5 includes a specific
mechanisms for mitigation of DDoS.

1.3 Summary–Thinking about architecture

I have sketched a basic conception of what I will mean by the word “archi-
tecture”. In my view (and as I warned in the preface, this book is a personal
point of view) a key principle is architectural minimality. In the computer
science context, the architecture of a system should not try to specify every
aspect of the system. This conception of architecture seems perhaps at vari-
ance with the architecture of buildings. When the architect of a building
hands off the plans to the builder, the specification is complete down to the
small details–not just the shape and structure but where the power outlets
are. But it is not clear that all of these decisions should be classified as
“architecture”. As I said above, one of the distinctions between the archi-
tecture of a building and the architecture of an artifact like the Internet is
that there are lots of networks built out using the same Internet technol-
ogy, not just one. There are obvious benefits if it is possible to use Internet
technology in different contexts: commercial products are cheaper and likely
to be more mature, the relevant software is found in almost all computer
systems and so on. However, these networks may not have exactly the same
requirements–they may have different requirements for security, resilience,
and so on. So the power of architecture is not that it defines exactly what
the network should do (as building plans specify exactly how the building
is built) but that it allows these requirements to be met, but perhaps in
different ways in different contexts.

I will argue, to paraphrase Einstein, that architecture should be as minimal
as possible, but no less. One might argue that the most fundamental aspect
of the architecture of the Internet as I characterize it is its preference for
minimality. Given that point of view, the scope of what we take as the
architecture of a network system should include only those aspect that fit
within the framework I have laid out here, given the requirements that
architecture sets out to address.
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The next step in understanding how to define the architecture of an Internet
is to return to the first point of the chapter, that architecture is the putting
together of components for a purpose. We must ask: what is the purpose of
an Internet. That is the topic of the next chapter.



Chapter 2

Requirements

2.1 Fitness for purpose–What is a network for?

In the previous chapter, we talked abstractly about “architecture”, and
about the architecture of an internet, assuming some common understand-
ing of what it is that an internet actually does. But if we are to be both
concrete and precise, we need to start with a specification of what such a
system is expected to do. In this chapter I review a number of possible
design requirements for the Internet (or for an Internet), which will set the
stage for several of the following chapters.

The first requirement for an Internet is that it provide a useful service. The
service model of the original Internet, while perhaps never carefully written
down, is pretty simple. The Internet was expected to deliver a packet (of
a certain maximum size) as best it could from any source to a destination
specified by an IP address. This specification tolerated failure of the delivery,
and indeed it was a rather explicit decision not to include in the specification
any bound on the rate of failure. If the network is “doing its best”, then so be
it–the user can decide if this service is better than nothing. The “meaning”
of the IP address is not a part of the specification–it is just a field used
as an input to the forwarding algorithm in the routers. The limitations on
our ability to design highly scalable forwarding algorithms imposes “soft”
constraints on the use of IP addresses–they have to be allocated in ways that
they can be aggregated into block that the routing protocols can process, as
opposed to having the routing and forwarding mechanisms deal with each

9
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address separately.1 But there is no outright prohibition against having the
routing protocols deal with a single address as a routed entity.

As I will detail in Chapter 3, there were good reasons for this rather weak
specification of what the Internet was to do. Had the initial designers chal-
lenged themselves with a much more constraining specification that set limits
on such things as loss rates, throughput, etc., it is possible that the network
would never have been built successfully in the beginning. However, as I
will discuss in Chapter 7, this weak specification, which among other things
is totally silent on what the network should not do, opens the door to a
number of malicious behaviors we see on the Internet today. In that chap-
ter, I will explore in more depth whether it would be practical and desirable
to start with a more restrictive specification that precludes classes of bad
behavior. [[[Confirm I did that.]]]

2.1.1 Should the network do more?

Part of the appeal of thinking about a “new” Internet is the challenge of de-
vising new services that would make the network more useful–make it easier
to design applications, or make it possible to serve a broader class of appli-
cations, or for the network to function in a wider range of circumstances.

Adding more complex functions to the network might make it easier to
deploy new classes of applications, but obviously adds complexity to the
network itself. There is thus a tradeoff between what “the network” should
do, and what a service layer on top of the network could do for a class of
applications. This tradeoff is a recurring one in system design–the early
history of operating systems was marked by functions initially being imple-
mented by applications and then migrating into the kernel as their value
was proven.2 So several threads of network research today are exploring the
addition of new functionality to the network.

Over time, new services have been added to the specification of the Internet.
An IP address originally referred to a single destination, associated with a
network interface on a specific machine. However, IP addresses can now be

1[Caesar et al., 2006] provides an assessment of the practicality of relaxing this con-
straint. The conclusions are not optimistic.

2The operating system on the IBM 1620, in the mid-1960’s, did not include support
for a file system, but left disk management to the application. The system would continue
to run if the disk was powered down during operation.
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used in different ways. The concept of anycast is that multiple destinations
can have the same IP address, and the routing protocols will direct the
packet to the “closest” one. The concept of multicast is that multiple desti-
nations can have the same IP address and the routing protocols will direct
copies of the packet to all of them. Multicast is distinctive in that it requires
a different set of routing and forwarding algorithms to be implemented in
the system–whether to use the multicast or the unicast forwarding algo-
rithm is determined by the prefix of the addresses. Another possible service
objective would be that the network could tailor the parameters of delivery
to the requirements of the application. This concept, which today is com-
monly called Quality of Service (QoS), requires more complex scheduling
in the forwarding mechanisms and/or more complex routing mechanisms.
Without debating here the merits of either multicast or QoS forwarding, we
can note their implications on overall network design–if there are alternative
treatments that different packets receive, there has to be some signal, either
in the packet or stored as state in the router, that indicates which treatment
each packet gets. With respect to QoS, the original design of the Internet
contemplated such a scheme and used the Type of Service field in the header
to trigger different services. With respect to multicast, which was not ini-
tially contemplated, a set of distinct addresses had to be set aside to trigger
the desired behavior.

Implicit in the specification of the original Internet was that a router could
only forward a packet or drop it. The idea that it might store the packet
was hardly even discussed, since memory was scarce in the 1970’s, and the
unstated assumption was that the goal of the Internet was rapid delivery–an
important early application was remote login. Storing packets in the network
if they cannot be forwarded both adds complexity to the network (should
the specification define how long packets should be stored, and under what
circumstances) and as well complexity to the behavior that the application
sees. However, allowing storage as a part of the network behavior might
make it possible to design a new class of applications directly on top of the
network, as opposed to requiring the deployment of storage servers on the
network as a part of the application.3

One of the more innovative ideas now being explored with respect to a future
Internet is that the basic service objective should be rethought–rejecting the
idea that the correct service is delivering a packet to a destination specified

3The Delay/Disruption Tolerant Network community represents one example of this
approach, as does the Mobility First FIA project. See Chapter 5.
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by an address. One alternative is that the packet should be delivered to
a more abstract conception of a destination, a service. In some respects,
this proposal is a generalization of the anycast concept I mentioned above;
for this to be practical the routing and forwarding schemes must be pre-
pared to deal with a very large number of such addresses (with the current
current anycast mechanism, such addresses are exceptions and are few in
number). Another alternative idea is that the goal of the network is to de-
liver to the requester a packet of contents, without the requestor knowing
anything about the location of the contents. The equivalent of the “network
address” in this conception is the name of the content that is to be returned.
This concept, called Information Centric Networking (ICN), has profound
implications both for the network and the application. The network must
be able to forward packets based on the name of the desired content, rather
then the address of the destination. Applications may or may not find this
a natural model of network behavior, but since it is a very different model,
application designers must learn to work with it.

I return to this design question in Chapter 4: how can we reason about the
range of services that the network might usefully offer to the higher layers
that exploit the network. I will discuss providing generality in the packet
header (the syntax of the network, perhaps) to trigger a range of behaviors
(the semantics of the network. In chapter 5 I return to the design of ICNs.

2.2 Generality

One of the reasons that the Internet has been successful is that it was de-
signed with the goal of generality. In fact, there are two important aspects
of generality that are represented in the Internet: generality with respect to
the applications that run over it, and generality with respect to the sorts of
network technology out of which it can be built.

2.2.1 Generality of purpose

The Internet was conceived to be a“general purpose” network. It is suited
to email, watching a video, playing a computer game, looking at Web pages,
and a wide variety of other applications. This generality seems a natural
way to structure a network that hooks computers together: computers are



2.2. GENERALITY 13

general-purpose devices and since the Internet hooks computers together,
it too was intended to be general. When the Internet was initially being
designed, however, this preference for generality was not uniformly accepted.
Indeed, this idea was quite alien to the communications engineers of the time,
who worked for the telephone companies. They asked what to them was an
obvious question: how can you design something if you don’t know what it
is for? The telephone system was designed for a known purpose: to carry
telephone calls. The requirements implied by that purpose drove all the
design decisions of the telephone system, and the engineers from the world
of telephone systems were confounded by the idea of designing a system
without knowing what its application would be. One can understand the
early history of the Internet by noting that it was designed by people who
came from a computing background, not a classical networking (telephony)
background. Most computers are designed without knowing what they are
for, and this mind-set defined the Internet’s design.

But this generality has its price. The service it delivers is almost certainly
not optimal for any particular application. Design for optimal performance
does not end up in the same place as design for generality. (There is thus
perhaps a tension between design preferences such as generality, optimality,
minimality and the like, to which I will return from time to time.) And it
may take more effort to design each application than if the network were
tailored to that application. Over the decades of the Internet’s evolution,
there have been a succession of dominant applications. In the early years
of the Internet, it was equated to email, and to ask someone if they were
“on the Internet” was to ask if they had an email address. Email is a very
undemanding application to support, and if the Internet had drifted too far
toward supporting just that application (as was happening to some degree),
the Web might not have been able to emerge. But the Web succeeded,
and the emergence of this new application reminded people of the value of
generality. Now this cycle repeats, and the emergence of streaming audio
and video tested the generality of an Internet that had drifted toward a
presumption that now the Web, and not email, was “the application”. Now
“the application” that drives the constant re-engineering of the Internet is
streaming, high quality video. And it is easy once again to assume that “now
we know what the Internet is for”, and optimize it for streaming video. In
my view, the community that designs the Internet should always be alert to
protect the generality of the Internet, and allow for the future in the face of
the present.
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2.2.2 Generality of technology

The other dimension of generality that was critical to the Internet’s suc-
cess is that it was structured so that it could work over a wide range of
communications technologies. The early Internet interconnected three com-
munications technologies: the original ARPAnet, SATnet (the Wideband
experimental multi-point Atlantic satellite network) and a spread spectrum
packet radio network (PRnet). Because the goal was to operate over as
broad as possible a selection of technologies, the architecture made minimal
assumptions about what these technologies could do. Had the design tar-
geted a known communications technology, it might have been possible to
exploit the particular features of that technology (for example, some wireless
systems are inherently broadcast), which might have led to a more efficient
outcome. But the decision to architect an Internet that could operate over
“anything” allowed new sorts of technology to be added as they emerged, for
example local area networks (LANs). We see this tension between generality
and optimization repeating today: a network of limited scope, for example
a network internal to a car, may be based on a known network technology,
which will allow more sorts of cross-layer optimization.

2.3 Longevity

One measure of the Internet’s success is how long its design has remained
viable. Presumably, any proposal for a system architecture has the aspira-
tion of proving durable over time. One view is that a long-lived network
must be evolvable; it must have the adaptability and flexibility to deal with
changing requirements, while remaining architecturally coherent. The goal
of evolution over time is closely linked to the goal of operating in different
ways in different regions, in response to regional requirements such as se-
curity. On the other hand, a factor that can contribute to longevity is the
stability of the system: the ability of the system to provide a platform that
does not change in disruptive ways. I explore different theories of how to
design a long-lived system in Chapter 6.

For an architecture like the Internet to survive over time, there are several
subsidiary requirements:
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Support for tomorrow’s computing: The Internet arose as a technol-
ogy to hook computers together, so as the shape of computing evolves, so
should the Internet. In 10 years, the dominant form of computing will not be
the PC, nor even the smart phone or tablet, but most probably the small,
embedded processor acting as a sensor or actuator.4 At the same time,
high-end processing will continue to grow, with huge server farms, cloud
computing and the like. Any future Internet must somehow take this wide
spectrum of computation into account. One point of view is that this wide
range of requirements for performance and for low-cost ubiquitous connec-
tivity cannot be met by one approach to transport and interconnection, in
which case we will see the emergence of more than one network architecture.
We will see the single Internet architecture of today replaced by a range of
alternatives at this level of the design, each targeted toward each of these
domains and only interconnected at higher levels. On the contrary, it is
possible that one set of standards will span this range of requirements just
fine.

Utilize tomorrow’s networking: At least two communication technolo-
gies will be basic to tomorrow’s networks, wireless and optical. Wireless (and
mobility) implies new sorts of routing (e.g., broadcast), the tolerance of in-
termittent connectivity, and dealing with losses. Advanced optical networks
not only bring huge transmission capacity, they can offer rapid reconfigura-
tion of the network connectivity graph, which again has large implications
for routing and traffic engineering. One point of view about the Internet
is that the emergence of wireless networks requires more cross-layer opti-
mization to make effective use of wireless technology, and the architecture
of a future Internet should not imply a single way of doing things. The
challenge this raises is how these different ways should hook together, but
the requirement for interoperation does not mean that an Internet has to
be based on the same design everywhere. Interoperation can be achieved at
different layers. Part of what an architecture must do is frame the proposed
solution to this problem.

There is an interesting interplay between architecture and technology. In
the early days of the Internet, the networks were assembled using commu-
nications technology that had been designed for different purposes (e.g.,
telephone circuits). One of the early goals of the Internet was to work on

4As I write this book in 2016, the current buzzword for this future is the Internet of
Things, or IoT. We will see if this term sticks.
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top of “anything”, because that was seen as the only path to rapid, wide
deployment. But as the Internet has matured and proven its success, net-
work technology has evolved to provide efficient support for the Internet
as defined. Over the long run, technology can be expected to follow the
architecture, rather than the architecture having to bend itself to accept
technology designed for other purposes. The tension between short-term
deployment and long-term effectiveness is a design challenge for any archi-
tecture. As well, careful design of the architecture can either facilitate or
hinder the emergence of useful sorts of technological heterogeneity.

Support tomorrow’s applications: Today’s Internet has proved versa-
tile and flexible in supporting a range of applications. There is not some
important application that is blocked from emerging because of the current
Internet. None the less, applications of today and tomorrow present require-
ments that a future Internet should take into account. These include a range
of security requirements, support for highly available applications, real-time
services, new sorts of naming, and the like.

2.4 Security

The Internet of today is marked by a number of serious security issues,
including weak defenses against attacks on hosts, attacks that attempt to
disrupt communications, attacks on availability (Denial of Service or DoS
attacks), and attacks on the proper operation of applications. Ideally, an In-
ternet architecture would have a coherent security framework, which makes
clear what role the network, the application, the end node, etc. each has in
improving security. I explore the issue of Internet security, and the relation-
ship between architecture and the resulting security properties, in Chapter 7.

2.5 Availability and resilience

These two goals are sometimes lumped into security, but I have listed them
separately because of their importance, and because availability issues arise
in the Internet of today independent of security attacks. Improving avail-
ability requires attention to security, to good network management and pre-
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venting errors by operators, and to good fault detection and recovery. Again,
what is needed is a theory for availability. While the Internet of today deals
with specific sorts of faults and component failures (lost packets, links and
routers that fail), it does not have an architectural view of availability. I
return to this topic in Chapter 8.

2.6 Management

Management has been a weak aspect of the current Internet from the begin-
ning, to a considerable extent because the shape and nature of the manage-
ment problem was not clear in the early days of the design. Among other
things, it was not clear what aspects of network operation would (or should)
involve human operators, and which would preferably be automated if pos-
sible. As I will argue in chapter 10, there may not be a single coherent issue
that is ”management”, just as there is no single issue that defines “security”.
The key, both to security and management, is to break the problem into its
more fundamental parts, and address them without necessary reference to
”basket words” like security and management.

2.7 Economic viability

A fundamental fact of the current Internet is that the physical assets out
of which it built, the links, routers, wireless towers, etc., are expensive.
These assets, often collectively called facilities, come into existence only if
some actor chooses to invest in them. Chapter 9 explores the relationship
between system design (and core design methods such as system modularity)
and industry structure. To argue that a system is viable as a real-world
offering, a designer must describe the set of entities (e.g., commercial firms)
that are implied by the architecture, and make an argument that each will
have the incentives to play the role defined for them by the architecture.
Using the current Internet as an example, there is a tension between a
core value of the current Internet–its open platform quality, and the desire
of investors to capture the benefits of their investment. In Section 4.3 I
introduce the term tussle to describe the situation where the different actors
in an Internet ecosystem do not have aligned incentives or motivations, and
I call the working out of this tension between an open architecture and
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the desire to monetize infrastructure the fundamental tussle. Any proposal
for a network design must of necessity take a stance in this space. For
example, one tilts the fundamental tussle toward vertical integration and a
more closed architecture if additional functions are bundled with (or to any
extent replace) the basic forwarding function.

2.8 Meeting needs of society

A network design will not succeed in the real world unless there is a purpose
for which users find it useful. The Internet is not just a technical artifact
connecting computers, but a social artifact connecting people, deeply em-
bedded in society. To a large extent, users do not directly observe the core
architecture of the system–they partake of the system using the applications
that are designed on top of it. So as I noted above, one measure of a suc-
cessful network is that is it suited to support a wide range of applications,
both today’s and tomorrow’s. On the other hand, the core design may im-
pose conventions and provide features that cut across applications, and as
the system in question supports more functions, the core design will become
more visible to the users–consider the difference between using an Android
or IOS smart phone. The Internet of today provides a very simple service,
and one could argue that many variants of an Internet would be equally
successful. But the core design will influence the outcome of some very im-
portant social considerations, such as the balance between surveillance and
accountability on one hand and anonymous action and privacy on the other.
Users want a network where they can do what they please–they have choice
in their applications and activities–but criminals have no ability to under-
take their activities effectively. They want a network that is reliable and
trustworthy, but they do not want either the private sector or governments
watching what they (and thus the criminals as well) are doing. Chapter ??
explores some of these socially important tradeoffs, and considers whether,
and to what extent, the core architecture defines the balance, or whether
the balance is determined by the applications built on top of the network
itself.
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2.9 Moving beyond requirements

The topics listed in the previous sections are posed at a very high level.
They are not actionable as posed; they are desiderata, an aide-memoire, as
we contemplate design. It is a big jump from any of these to the design
of specific mechanism, and that is a big issue. We would like the design
process to be based on principles and theory, but there are no well-honed
design methods to aid in the process of moving from these requirements to
mechanism and architecture.

Several things can happen as we move from high-level requirements to spe-
cific architecture and mechanism. One is that in the attempt to reduce an
idea such as “security” to practice we discover that lurking inside that re-
quirement are sub-goals that are actually in tension with each other, or with
other requirements. Design is not optimization along a single dimension, but
a balancing of different priorities. Some of these may be quantifiable (e.g.,
a performance requirement), but most will end up as qualitative objectives,
which makes the balancing harder. There is a tendency in the Computer
Science community to prefer to optimize factors that can be quantified, such
as performance, but if an Internet is going to be relevant in the real world,
we must face the messy challenge of evaluating alternative approaches to
security or economic viability.

A further problem is that as we move beyond requirements for a system
like the Internet, the resulting design problem may grow too large for one
team to contemplate holistically, so the design process may itself need to be
modularized. The choice of that design modularity may end up be reflected
in the modularity of the system itself. Another way of understanding this
reality is that the fundamental modularity of the system had better be
specified before the design process is modularized, so that the modularity
dictates the design process, and not the other way around.

2.9.1 Requirements and architecture

Several of the subsequent chapters are dedicated to exploring in more depth
the requirements I have discussed here and refining them so that they become
actionable. But there is a high-level question which cuts across all of these
requirements, which is how they relate to architecture. Should we look to the
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architecture of a network to see how these requirements are fulfilled? The
definition that I offered of architecture in chapter 1 defined architecture in
a minimal way: it was those things on which we have to agree, things on
which it is highly convenient to agree, the basic modularity of the system,
or aspects of the system that are expected to be long-lasting. Given this
preference for architectural minimality, it will turn out that the architecture
itself, as I have defined it, does not directly specify a system that meets these
requirements. Rather, what it does is provide a framework within which it is
possible to design a system that meets these requirements. In order to make
this way of thinking more concrete, in Chapter 3 I use the existing Internet
as an example, and go back to an earlier attempt to list the requirements
that the Internet was intended to meet, and how its architecture addressed
these requirements.



Chapter 3

The architecture of the
Internet–A historical
perspective

The introduction to architecture in Chapter 1 was a bit abstract. I am
going to look at what I consider the architecture of the current Internet
as a more concrete example. In 1988 I wrote a paper titled “The Design
Philosophy of the DARPA Internet Protocols”, which tried to capture the
requirements the Internet was being designed to meet, and the basic design
decisions that had been taken in meeting these requirements–what I might
now call architecture, but then called “design philosophy”. It is now over
25 years since that paper was published, and looking back at that paper is a
way to get started with a less abstract, more concrete example of “network
architecture”.

What follows is that original paper, as first published in 1988, with extensive
commentary from the perspective of 2015.

21
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Abstract

The Internet protocol suite, TCP/IP, was first proposed fifteen years ago. It
was developed by the Defense Advanced Research Projects Agency (DARPA),
and has been used widely in military and commercial systems. While there
have been papers and specifications that describe how the protocols work,
it is sometimes difficult to deduce from these why the protocol is as it is.
For example, the Internet protocol is based on a connectionless or datagram
mode of service. The motivation for this has been greatly misunderstood.
This paper attempts to capture some of the early reasoning which shaped
the Internet protocols.

Introduction

For the last 15 years [1], the Advanced Research Projects Agency of the U.S.
Department of Defense has been developing a suite of protocols for packet
switched networking. These protocols, which include the Internet Protocol
(IP), and the Transmission Control Protocol (TCP), are now U.S. Depart-
ment of Defense standards for internetworking, and are in wide use in the
commercial networking environment. The ideas developed in this effort have
also influenced other protocol suites, most importantly the connectionless
configuration of the IS0 protocols [2,3,4].
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While specific information on the DOD protocols is fairly generally available
[5,6,7], it is sometimes difficult to determine the motivation and reasoning
which led to the design.

In fact, the design philosophy has evolved considerably from the first pro-
posal to the current standards. For example, the idea of the datagram, or
connectionless service, does not receive particular emphasis in the first pa-
per, but has come to be the defining characteristic of the protocol. Another
example is the layering of the architecture into the IP and TCP layers. This
seems basic to the design, but was also not a part of the original proposal.
These changes in the Internet design arose through the repeated pattern of
implementation and testing that occurred before the standards were set.

The Internet architecture is still evolving. Sometimes a new extension chal-
lenges one of the design principles, but in any case an understanding of the
history of the design provides a necessary context for current design ex-
tensions. The connectionless configuration of ISO protocols has also been
colored by the history of the Internet suite, so an understanding of the
Internet design philosophy may be helpful to those working with ISO.

This paper catalogs one view of the original objectives of the Internet archi-
tecture, and discusses the relation between these goals and the important
features of the protocols.

This paper makes a distinction between the architecture of the Internet
and a specific realization of a running network. Today, as discussed
below, I would distinguish three ideas: 1

1. The core principles and basic design decisions of the architecture.

2. The second level of mechanism design that fleshes out the archi-
tecture and makes it into a complete implementation.

3. The set of decisions related to deployment (e.g. the degree of di-
versity in paths) that lead to an operational network.

Fundamental Goal
1I am indebted to John Wroclawski, both for the suggestion that led to this revision,

and for the insight that there are three concepts to be distinguished, not two.
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The top level goal for the DARPA Internet Architecture was to develop
an effective technique for multiplexed utilization of existing interconnected
networks. Some elaboration is appropriate to make clear the meaning of
that goal. The components of the Internet were networks, which were to
be interconnected to provide some larger service. The original goal was to
connect together the original ARPANET[8] with the ARPA packet radio
network[9,10], in order to give users on the packet radio network access to
the large service machines on the ARPANET. At the time it was assumed
that there would be other sorts of networks to interconnect, although the
local area network had not yet emerged.

This paragraph hints at but does not state clearly that the Internet builds
on and extends the fundamental goal of the ARPANET, which was to
provide useful interconnection among heterogeneous machines. Perhaps
even by 1988 this point was so well-understood that it did not seem to
require stating.

There is also an implicit assumption that the end-points of network con-
nections were machines. This assumption seemed obvious at the time,
but is now being questioned, with architectural proposals that “addresses”
refer to services or information objects.

An alternative to interconnecting existing networks would have been to de-
sign a unified system which incorporated a variety of different transmission
media, a multi-media network.

Perhaps the term “multi-media” was not well-defined in 1988. It now
has a different meaning, of course.

While this might have permitted a higher degree of integration, and thus
better performance, it was felt that it was necessary to incorporate the then
existing network architectures if Internet was to be useful in a practical
sense. Further, networks represent administrative boundaries of control,
and it was an ambition of this project to come to grips with the problem
of integrating a number of separately administrated entities into a common
utility.
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This last is actually a goal, and probably should have been listed as such,
although it could be seen as an aspect of goal 4, below.

The technique selected for multiplexing was packet switching.

Effective multiplexing of expensive resources (e.g. links) is another high-
level goal that is not in the explicit list but very important and well-
understood at the time.

An alternative such as circuit switching could have been considered, but the
applications being supported, such as remote login, were naturally served by
the packet switching paradigm, and the networks which were to be integrated
together in this project were packet switching networks. So packet switching
was accepted as a fundamental component of the Internet architecture. The
final aspect of this fundamental goal was the assumption of the particular
technique for interconnecting these networks. Since the technique of store
and forward packet switching, as demonstrated in the previous DARPA
project, the ARPANET, was well understood, the top level assumption was
that networks would be interconnected by a layer of Internet packet switches,
which were called gateways.

From these assumptions comes the fundamental structure of the Internet: a
packet switched communications facility in which a number of distinguish-
able networks are connected together using packet communications proces-
sors called gateways which implement a store and forward packet forwarding
algorithm.

In retrospect, this previous section could have been clearer. It discussed
both goals and basic architectural responses to these goals without teasing
these ideas apart. Gateways are not a goal, but a design response to a
goal.

We could have taken a different approach to internetworking, for exam-
ple providing interoperation at a higher level–perhaps at the transport
protocol layer, or a higher service/naming layer. It would be an inter-
esting exercise to look at such a proposal and evaluate it relative to these
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criteria.

Second Level Goals

The top level goal stated in the previous section contains the word ”effec-
tive,” without offering any definition of what an effective interconnection
must achieve. The following list summarizes a more detailed set of goals
which were established for the Internet architecture.

1. Internet communication must continue despite loss of networks or gate-
ways.

2. The Internet must support multiple types of communications service.

3. The Internet architecture must accommodate a variety of networks.

4. The Internet architecture must permit distributed management of its
resources.

5. The Internet architecture must be cost effective.

6. The Internet architecture must permit host attachment with a low
level of effort.

7. The resources used in the Internet architecture must be accountable.

This set of goals might seem to be nothing more than a checklist of all the
desirable network features. It is important to understand that these goals
are in order of importance, and an entirely different network architecture
would result if the order were changed. For example, since this network was
designed to operate in a military context, which implied the possibility of a
hostile environment, survivability was put as a first goal, and accountability
as a last goal. During wartime, one is less concerned with detailed accounting
of resources used than with mustering whatever resources are available and
rapidly deploying them in an operational manner. While the architects
of the Internet were mindful of accountability, the problem received very
little attention during the early stages of the design, and is only now being
considered. An architecture primarily for commercial deployment would
clearly place these goals at the opposite end of the list.
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Similarly, the goal that the architecture be cost effective is clearly on the list,
but below certain other goals, such as distributed management, or support
of a wide variety of networks. Other protocol suites, including some of the
more popular commercial architectures, have been optimized to a particular
kind of network, for example a long haul store and forward network built of
medium speed telephone lines, and deliver a very cost effective solution in
this context, in exchange for dealing somewhat poorly with other kinds of
nets, such as local area nets.

The reader should consider carefully the above list of goals, and recognize
that this is not a ”motherhood” list, but a set of priorities which strongly
colored the design decisions within the Internet architecture. The following
sections discuss the relationship between this list and the features of the
Internet.

At the beginning of the NSF Future Internet Design (FIND) project,
around 2008, I proposed a list of requirements that a new architecture
might take into account. Here, for comparison with the early list from
the 1988 paper, is the one I posed in 2008:

2008

1. Security
2. Availability and resilience
3. Economic viability
4. Better management
5. Meet society’s needs
6. Longevity
7. Support for tomorrow’s computing
8. Exploit tomorrow’s networking
9. Support tomorrow’s applications
10. Fit for purpose (it works?)

The list from 1988 does not mention the word “security”. The first 1988
requirement, that the network continue operation despite loss of networks
or gateways, could be seen as a specific sub-case of security, but the text
in the next section of the original paper (see below) does not even hint
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that the failures might be due to malicious actions. In retrospect, it is dif-
ficult to reconstruct what our mind-set was when this paper was written
(which is in the years immediately prior to 1988). By the early 1990s,
security was an important if unresolved objective. It seems somewhat
odd that the word did not even come up in this paper. The modern list
calls out availability and resilience as distinct from the general category
of security, a distinction that was motivated by my sense that this set of
goals in particular were important enough that they should not be buried
inside the broader category. So there is some correspondence between
goal 1 in the 1988 list and 2 in the 2008 list.

The 2008 list has economic viability as its third objective. As I noted
above, the 1988 paper discussed “the problem of integrating a number
of separately administrated entities into a common utility”, which seems
like a specific manifestation of the recognition that the net is built out
of parts. But the focus on economic viability seems to have been poorly
understood, if at all.

Survivability in the Face of Failure

The most important goal on the list is that the Internet should continue
to supply communications service, even though networks and gateways are
failing. In particular, this goal was interpreted to mean that if two entities
are communicating over the Internet and some failure causes the Internet
to be temporarily disrupted and reconfigured to reconstitute the service,
then the entities communicating should be able to continue without hav-
ing to reestablish or reset the high level state of their conversation. More
concretely, at the service interface of the transport layer, this architecture
provides no facility to communicate to the client of the transport service that
the synchronization between the sender and the receiver may have been lost.
It was an assumption in this architecture that synchronization would never
be lost unless there was no physical path over which any sort of commu-
nication could be achieved. In other words, at the top of transport, there
is only one failure, and it is total partition. The architecture was to mask
completely any transient failure.

This last sentence seems, in retrospect, a bit unrealistic, or perhaps
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poorly put. The architecture does not mask transient failures at all.
That is not the goal, and it seems like an unrealizable one. The rest of
the paragraph makes the actual point–if transient failures do occur, the
application may be disrupted for the duration of the failure, but once the
network has been reconstituted, the application (or, specifically, TCP)
can take up where it left off. The rest of the section discusses the archi-
tectural approach to make this possible.

Again in retrospect, it would seem that an important sub-goal would be
that transients are healed as quickly as possible, but I don’t think there
was any understanding then, and perhaps not now, of an architectural
element that could facilitate that sub-goal. So it is just left to the second-
level mechanisms.

To achieve this goal, the state information which describes the on-going con-
versation must be protected. Specific examples of state information would
be the number of packets transmitted, the number of packets acknowledged,
or the number of outstanding flow control permissions. If the lower layers
of the architecture lose this information, they will not be able to tell if data
has been lost, and the application layer will have to cope with the loss of
synchrony. This architecture insisted that this disruption not occur, which
meant that the state information must be protected from loss.

In some network architectures, this state is stored in the intermediate packet
switching nodes of the network. In this case, to protect the information from
loss, it must replicated. Because of the distributed nature of the replication,
algorithms to ensure robust replication are themselves difficult to build, and
few networks with distributed state information provide any sort of protec-
tion against failure. The alternative, which this architecture chose, is to
take this information and gather it at the endpoint of the net, at the entity
which is utilizing the service of the network. I call this approach to relia-
bility ”fate-sharing.” The fate-sharing model suggests that it is acceptable
to lose the state information associated with an entity if, at the same time,
the entity itself is lost. Specifically, information about transport level syn-
chronization is stored in the host which is attached to the net and using its
communication service.

There are two important advantages to fate-sharing over replication. First,
fate-sharing protects against any number of intermediate failures, whereas
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replication can only protect against a certain number (less than the number
of replicated copies). Second, fate-sharing is much easier to engineer than
replication.

There are two consequences to the fate-sharing approach to survivability.
First, the intermediate packet switching nodes, or gateways, must not have
any essential state information about on-going connections. Instead, they
are stateless packet switches, a class of network design sometimes called a
”datagram” network. Secondly, rather more trust is placed in the host ma-
chine than in an architecture where the network ensures the reliable delivery
of data. If the host resident algorithms that ensure the sequencing and ac-
knowledgment of data fail, applications on that machine are prevented from
operation.

See the later discussion about where failures should be detected, and the
role of trust.

Despite the fact that survivability is the first goal in the list, it is still
second to the top level goal of interconnection of existing networks. A more
survivable technology might have resulted from a single multimedia network
design. For example, the Internet makes very weak assumptions about the
ability of a network to report that it has failed. Internet is thus forced to
detect network failures using Internet level mechanisms, with the potential
for a slower and less specific error detection.

Types of Service

The second goal of the Internet architecture is that it should support, at
the transport service level, a variety of types of service. Different types of
service are distinguished by differing requirements for such things as speed,
latency and reliability. The traditional type of service is the bidirectional
reliable delivery of data. This service, which is sometimes called a ”virtual
circuit” service, is appropriate for such applications as remote login or file
transfer. It was the first service provided in the Internet architecture, using
the Transmission Control Protocol (TCP)[11]. It was early recognized that
even this service had multiple variants, because remote login required a
service with low delay in delivery, but low requirements for bandwidth, while
file transfer was less concerned with delay, but very concerned with high
throughput. TCP attempted to provide both these types of service.
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The initial concept of TCP was that it could be general enough to support
any needed type of service. However, as the full range of needed services
became clear, it seemed too difficult to build support for all of them into
one protocol.

The first example of a service outside the range of TCP was support for
XNET[12], the cross-Internet debugger. TCP did not seem a suitable trans-
port for XNET for several reasons. First, a debugger protocol should not be
reliable. This conclusion may seem odd, but under conditions of stress or
failure (which may be exactly when a debugger is needed) asking for reliable
communications may prevent any communications at all. It is much better
to build a service which can deal with whatever gets through, rather than
insisting that every byte sent be delivered in order. Second, if TCP is gen-
eral enough to deal with a broad range of clients, it is presumably somewhat
complex. Again, it seemed wrong to expect support for this complexity in a
debugging environment, which may lack even basic services expected in an
operating system (e.g. support for timers.) So XNET was designed to run
directly on top of the datagram service provided by Internet.

Another service which did not fit TCP was real time delivery of digitized
speech, which was needed to support the teleconferencing aspect of com-
mand and control applications. In real time digital speech, the primary
requirement is not a reliable service, but a service which minimizes and
smooths the delay in the delivery of packets. The application layer is dig-
itizing the analog speech, packetizing the resulting bits, and sending them
out across the network on a regular basis. They must arrive at the receiver
at a regular basis in order to be converted back to the analog signal. If pack-
ets do not arrive when expected, it is impossible to reassemble the signal in
real time. A surprising observation about the control of variation in delay
is that the most serious source of delay in networks is the mechanism to
provide reliable delivery. A typical reliable transport protocol responds to a
missing packet by requesting a retransmission and delaying the delivery of
any subsequent packets until the lost packet has been retransmitted. It then
delivers that packet and all remaining ones in sequence. The delay while
this occurs can be many times the round trip delivery time of the net, and
may completely disrupt the speech reassembly algorithm. In contrast, it is
very easy to cope with an occasional missing packet. The missing speech
can simply be replaced by a short period of silence, which in most cases does
not impair the intelligibility of the speech to the listening human. If it does,
high level error correction can occur, and the listener can ask the speaker
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to repeat the damaged phrase.

It was thus decided, fairly early in the development of the Internet archi-
tecture, that more than one transport service would be required, and the
architecture must be prepared to tolerate simultaneously transports which
wish to constrain reliability, delay, or bandwidth, at a minimum.

This goal caused TCP and IP, which originally had been a single proto-
col in the architecture, to be separated into two layers. TCP provided one
particular type of service, the reliable sequenced data stream, while IP at-
tempted to provide a basic building block out of which a variety of types
of service could be built. This building block was the datagram, which had
also been adopted to support survivability. Since the reliability associated
with the delivery of a datagram was not guaranteed, but ”best effort,” it
was possible to build out of the datagram a service that was reliable (by ac-
knowledging and retransmitting at a higher level), or a service which traded
reliability for the primitive delay characteristics of the underlying network
substrate. The User Datagram Protocol (UDP)[13] was created to provide
a application-level interface to the basic datagram service of Internet.

The architecture did not wish to assume that the underlying networks them-
selves support multiple types of services, because this would violate the goal
of using existing networks. Instead, the hope was that multiple types of
service could be constructed out of the basic datagram building block using
algorithms within the host and the gateway.

I am quite surprised that I wrote those last two sentences. They are
seriously and embarrassingly incorrect. RFC 791 [Postel, 1981] states:

The Type of Service provides an indication of the abstract
parameters of the quality of service desired. These parame-
ters are to be used to guide the selection of the actual service
parameters when transmitting a datagram through a par-
ticular network. Several networks offer service precedence,
which somehow treats high precedence traffic as more im-
portant than other traffic (generally by accepting only traffic
above a certain precedence at time of high load).

...

Example mappings of the internet type of service to the ac-
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tual service provided on networks such as AUTODIN II,
ARPANET, SATNET, and PRNET is given in ”Service
Mappings” [Jon Postel, 1981].

At the time this RFC was specified (around 1981) the group clearly had
in mind that different sorts of network might have different tools for
managing different service qualities, and the abstract ToS field was to be
mapped to the network-specific service indicators by the gateway (what
we now call the router).

For example, (although this is not done in most current implementations)
it is possible to take datagrams which are associated with a controlled delay
but unreliable service and place them at the head of the transmission queues
unless their lifetime has expired, in which case they would be discarded;
while packets associated with reliable streams would be placed at the back
of the queues, but never discarded, no matter how long they had been in
the net.

This section of the paper may reflect my own, long-standing preference
for QoS in the network. However, the discussion is about a much more
basic set of service types, and an architectural decision (splitting IP and
TCP), which gives the end-node and application some control over the
type of service. There is no mention in this paper of the ToS bits in
the IP header, which were the first attempt to add a core feature that
would facilitate any sort of QoS in the network. Discussions about QoS
at the IETF did not start for another several years. But this section
does suggest that the idea of queue management as a means to improve
application behavior was understood even in the 1980s, and the ToS bits
(or something like them) would be needed to drive that sort of scheduling.
I think, looking back, that we really did not understand this set of issues,
even in 1988.

It proved more difficult than first hoped to provide multiple types of service
without explicit support from the underlying networks. The most serious
problem was that networks designed with one particular type of service in
mind were not flexible enough to support other services. Most commonly, a
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network will have been designed under the assumption that it should deliver
reliable service, and will inject delays as a part of producing reliable service,
whether or not this reliability is desired. The interface behavior defined by
X.25, for example, implies reliable delivery, and there is no way to turn this
feature off. Therefore, although Internet operates successfully over X.25
networks it cannot deliver the desired variability of type service in that
context. Other networks which have an intrinsic datagram service are much
more flexible in the type of service they will permit. but these networks are
much less common, especially in the long-haul context.

Even though this paper comes about five years after the articulation of the
end-to-end arguments, there is no mention of that paper or its concepts
here. Perhaps this was due to the fact that this paper was a retrospective
of the early thinking, which predated the emergence of end-to-end as a
named concept. The concept is lurking in much of what I wrote in this
section, but perhaps in 1988 it was not yet clear that the end-to-end
description as presented in the 1984 paper would survive as the accepted
framing.

Varieties of Networks

It was very important for the success of the Internet architecture that it
be able to incorporate and utilize a wide variety of network technologies,
including military and commercial facilities. The Internet architecture has
been very successful in meeting this goal: it is operated over a wide variety
of networks, including long haul nets (the ARPANET itself and various X.25
networks), local area nets (Ethernet, ringnet, etc.), broadcast satellite nets
(the DARPA Atlantic Satellite Network[14,15] operating at 64 kilobits per
second and the DARPA Experimental Wideband Satellite Net[16] operating
within the United States at 3 megabits per second), packet radio networks
(the DARPA packet radio network, as well as an experimental British packet
radio net and a network developed by amateur radio operators), a variety of
serial links, ranging from 1200 bit per second asynchronous connections to TI
links, and a variety of other ad hoc facilities, including intercomputer busses
and the transport service provided by the higher layers of other network
suites, such as IBM’s HASP.

The Internet architecture achieves this flexibility by making a minimum
set of assumptions about the function which the net will provide. The
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basic assumption is that network can transport a packet or datagram. The
packet must be of reasonable size, perhaps 100 bytes minimum, and should
be delivered with reasonable but not perfect reliability. The network must
have some suitable form of addressing if it is more than a point to point
link.

There are a number of services which are explicitly not assumed from the
network. These include reliable or sequenced delivery, network level broad-
cast or multicast, priority ranking of transmitted packet, multiple types of
service, and internal knowledge of failures, speeds, or delays. If these ser-
vices had been required, then in order to accommodate a network within
the Internet, it would be necessary either that the network support these
services directly, or that the network interface software provide enhance-
ments to simulate these services at the endpoint of the network. It was felt
that this was an undesirable approach, because these services would have
to be re-engineered and reimplemented for every single network and every
single host interface to every network. By engineering these services at the
transport, for example reliable delivery via TCP, the engineering must be
done only once, and the implementation must be done only once for each
host. After that, the implementation of interface software for a new network
is usually very simple.

Other Goals

The three goals discussed so far were those which had the most profound
impact on the design on the architecture. The remaining goals, because
they were lower in importance, were perhaps less effectively met, or not so
completely engineered. The goal of permitting distributed management of
the Internet has certainly been met in certain respects. For example, not
all of the gateways in the Internet are implemented and managed by the
same agency. There are several different management centers within the
deployed Internet, each operating a subset of the gateways, and there is a
two-tiered routing algorithm which permits gateways from different admin-
istrations to exchange routing tables, even though they do not completely
trust each other, and a variety of private routing algorithms used among
the gateways in a single administration. Similarly, the various organizations
which manage the gateways are not necessarily the same organizations that
manage the networks to which the gateways are attached.
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Even in 1988 we understood that the issue of trust (e.g. trust among
gateways) as an important consideration.

On the other hand, some of the most significant problems with the Internet
today relate to lack of sufficient tools for distributed management, especially
in the area of routing. In the large Internet being currently operated, routing
decisions need to be constrained by policies for resource usage. Today this
can be done only in a very limited way, which requires manual setting of
tables. This is error-prone and at the same time not sufficiently powerful.
The most important change in the Internet architecture over the next few
years will probably be the development of a new generation of tools for
management of resources in the context of multiple administrations.

It is interesting that the limitations of manual route configuration were
understood in 1988, and we are not yet really beyond that stage. It is
not clear even now whether our persistent lack of progress in this area
is due to poor architectural choices, or just the intrinsic difficulty of the
tasks. Certainly, in the 1970s and 1980s we did not know how to think
about network management. We understood how to “manage a box”, but
we had no accepted view on systems-level management.

It is clear that in certain circumstances, the Internet architecture does not
produce as cost effective a utilization of expensive communication resources
as a more tailored architecture would. The headers of Internet packets are
fairly long (a typical header is 40 bytes), and if short packets are sent, this
overhead is apparent. The worse case, of course, is the single character
remote login packets, which carry 40 bytes of header and one byte of data.
Actually, it is very difficult for any protocol suite to claim that these sorts
of interchanges are carried out with reasonable efficiency. At the other
extreme, large packets for file transfer, with perhaps 1,000 bytes of data,
have an overhead for the header of only four percent.

Another possible source of inefficiency is retransmission of lost packets. Since
Internet does not insist that lost packets be recovered at the network level,
it may be necessary to retransmit a lost packet from one end of the In-
ternet to the other. This means that the retransmitted packet may cross
several intervening nets a second time, whereas recovery at the network level
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would not generate this repeat traffic. This is an example of the tradeoff
resulting from the decision, discussed above, of providing services from the
end-points. The network interface code is much simpler, but the overall effi-
ciency is potentially less. However, if the retransmission rate is low enough
(for example, 1%) then the incremental cost is tolerable. As a rough rule of
thumb for networks incorporated into the architecture, a loss of one packet
in a hundred is quite reasonable, but a loss of one packet in ten suggests
that reliability enhancements be added to the network if that type of service
is required.

Again, this 1988 paper provides a nice “time capsule” as to what we
were worrying about 25 years ago. Now we seem to have accepted the
cost of packet headers, and we seem to have accepted the cost of end-to-
end retransmission. The paper does not mention efficient link loading as
an issue, nor the question of achieving good end-to-end performance.

The cost of attaching a host to the Internet is perhaps somewhat higher than
in other architectures, because all of the mechanisms to provide the desired
types of service, such as acknowledgments and retransmission strategies,
must be implemented in the host rather than in the network. Initially, to
programmers who were not familiar with protocol implementation, the effort
of doing this seemed somewhat daunting. Implementers tried such things
as moving the transport protocols to a front end processor, with the idea
that the protocols would be implemented only once, rather than again for
every type of host. However, this required the invention of a host to front
end protocol which some thought almost as complicated to implement as
the original transport protocol. As experience with protocols increases, the
anxieties associated with implementing a protocol suite within the host seem
to be decreasing, and implementations are now available for a wide variety
of machines, including personal computers and other machines with very
limited computing resources.

A related problem arising from the use of host-resident mechanisms is that
poor implementation of the mechanism may hurt the network as well as the
host. This problem was tolerated, because the initial experiments involved a
limited number of host implementations which could be controlled. However,
as the use of Internet has grown, this problem has occasionally surfaced in a
serious way. In this respect, the goal of robustness, which led to the method
of fate-sharing, which led to host-resident algorithms, contributes to a loss
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of robustness if the host misbehaves.

This paragraph brings out a contradiction in the architectural principles
that might have been made more clearly. The principle of minimal state
in routers and movement of function to the end-points implies a need to
trust those nodes to operate correctly, but the architecture does not have
any approach to dealing with hosts that mis-behave. Without state in the
network to validate what the hosts are doing, it seems that there are few
ways to discipline a host. In 1988, the problem was anticipated but we
clearly had no view as to how to think about it.

The last goal was accountability. In fact, accounting was discussed in the
first paper by Cerf and Kahn as an important function of the protocols and
gateways. However, at the present time, the Internet architecture contains
few tools for accounting for packet flows. This problem is only now being
studied, as the scope of the architecture is being expanded to include non-
military consumers who are seriously concerned with understanding and
monitoring the usage of the resources within the Internet.

Again, a deeper discussion here might have brought out some contradic-
tions among goals: without any flow state in the network (or knowledge
of what constitutes an “accountable entity”) it seems hard to do account-
ing. The architecture does not preclude what we now call “middle-boxes”,
but the architecture also does not discuss the idea that there might be in-
formation in the packets to aid in accounting. I think in 1988 we just
did not know how to think about this.

Architecture and Implementation

The previous discussion clearly suggests that one of the goals of the Internet
architecture was to provide wide flexibility in the service offered. Different
transport protocols could be used to provide different types of service, and
different networks could be incorporated. Put another way, the architec-
ture tried very hard not to constrain the range of service which the Internet
could be engineered to provide. This, in turn, means that to understand the
service which can be offered by a particular implementation of an Internet,
one must look not to the architecture, but to the actual engineering of the
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software within the particular hosts and gateways, and to the particular
networks which have been incorporated. I will use the term “realization” to
describe a particular set of networks, gateways and hosts which have been
connected together in the context of the Internet architecture. Realizations
can differ by orders of magnitude in the service which they offer. Realiza-
tions have been built out of 1200 bit per second phone lines, and out of
networks only with speeds greater than 1 megabit per second. Clearly, the
throughput expectations which one can have of these realizations differ by
orders of magnitude. Similarly, some Internet realizations have delays mea-
sured in tens of milliseconds, where others have delays measured in seconds.
Certain applications such as real time speech work fundamentally differently
across these two realizations. Some Internets have been engineered so that
there is great redundancy in the gateways and paths. These Internets are
survivable, because resources exist which can be reconfigured after failure.
Other Internet realizations, to reduce cost, have single points of connectivity
through the realization, so that a failure may partition the Internet into two
halves.

As I said earlier, today I believe that there should be three distinctions:

1. The core principles and basic design decisions of the architecture.

2. The second level of mechanism design that flesh out the architec-
ture and make it into a complete implementation.

3. The set of decisions related to deployment (e.g. degree of redun-
dancy in paths) that lead to an operational network.

The word “realization” seems to map to the third set of decisions, and
the second set is somewhat missing from this paper. One could argue that
that omission was intentional: the paper was about the architecture, and
what this text is saying is that one of the goals of the architecture was to
permit many realizations, a point that might have been listed as another
goal. But it is equally important to say that a goal of the architecture
was to allow for many different alternatives for mechanism design as
well–the design decisions of the architecture should permit a range of
mechanism choices, not embed those decisions into the architecture itself.
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I believe that in 1988 the Internet designers saw, but perhaps did not
articulate clearly, that there is a benefit to architectural minimality–that
is, to specify as little as possible consistent with making it possible for
subsequent mechanisms to meet the goals. Were I writing the paper now,
I would add a new section, which draws from the previous sections the
set of core principles of the architecture, linking them back to the goals
they enable.

Core architectural principles:

Packet switching.
Gateways (what we call routers today)
- Minimal assumptions about what the networks would do.
- No flow state in routers, which implies no flow setup, and thus the
“pure” datagram model.
- Implies strict separation of IP from TCP, with no knowledge of TCP
in routers.
Co-location of flow state with end-points of flows (fate-sharing).
No mechanisms to report network failures to end-points.
Trust in the end-node.
Minimal assumptions about service functions and performance.

Totally missing from this paper is any discussion of packet headers, ad-
dressing, and so on. In fact, much earlier than 1988 we understood
that we had to agree on some format for addresses, but that the spe-
cific decision did not influence our ability to address the goals in the
list. Early on in the design process (in the mid-1970s), variable-length
addresses were proposed, which would have served us much better with
respect to the goal of longevity. It was rejected because at the time, the
difficulty of building routers that could operate at line speeds (e.g. 1.5
mb/s) made parsing of variable-length fields in the header a challenge.
In my 1988 list “longevity” is missing–probably a significant oversight.
But in the 1970s we made a design choice that favored the pragmatics
of implementation over flexibility.

The packet header also embodied other design choices, which we thought
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we had to make in order to facilitate or enable the design of the second-
level mechanisms that flesh out the architecture into a complete imple-
mentation.

• The idea of packet fragmentation supported the goal that we be able
to exploit pre-existing networks. Today, Internet is the dominant
architecture, and we can assume that issues like network technology
with small packet sizes will not arise.

• The use of a TTL or hop count was an architectural decision that
tried to allow more generality in how routing was done–we wanted
to tolerate transient routing inconsistency. The architecture did
not specify how routing was to be done (the paper notes the emer-
gence of the two-level routing hierarchy), and indeed it was a goal
that different routing schemes could be deployed in different parts
of the network.

The Internet architecture tolerates this variety of realization by design. How-
ever, it leaves the designer of a particular realization with a great deal of
engineering to do. One of the major struggles of this architectural develop-
ment was to understand how to give guidance to the designer of a realization,
guidance which would relate the engineering of the realization to the types
of service which would result. For example, the designer must answer the
following sort of question. What sort of bandwidths must he in the under-
lying networks, if the overall service is to deliver a throughput of a certain
rate? Given a certain model of possible failures within this realization, what
sorts of redundancy ought to be engineered into the realization?

Most of the known network design aids did not seem helpful in answering
these sorts of questions. Protocol verifiers, for example, assist in confirm-
ing that protocols meet specifications. However, these tools almost never
deal with performance issues, which are essential to the idea of the type of
service. Instead, they deal with the much more restricted idea of logical cor-
rectness of the protocol with respect to specification. While tools to verify
logical correctness are useful, both at the specification and implementation
stage, they do not help with the severe problems that often arise related to
performance. A typical implementation experience is that even after logical
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correctness has been demonstrated, design faults are discovered that may
cause a performance degradation of an order of magnitude. Exploration of
this problem has led to the conclusion that the difficulty usually arises, not
in the protocol itself, but in the operating system on which the protocol
runs. This being the case, it is difficult to address the problem within the
context of the architectural specification. However, we still strongly feel the
need to give the implementer guidance. We continue to struggle with this
problem today.

This paragraph reflects an issue that could have been explored more
clearly. The goal of continued operation in the face of failures (resilience)
motivated us to design very good mechanisms to recover from problems.
These mechanisms were in fact good enough that they would also “re-
cover” from implementation errors. They papered over the errors, and
the only signal of the problem was poor performance. What is missing
from the Internet, whether in the architecture or as an expectation of the
second-level mechanisms, is some requirement to report when the error
detection and recovery mechanisms are being triggered. But without a
good architecture for network management, it is not surprising that these
reporting mechanisms are missing, because it is not clear to what entity
the report would go. Telling the user at the end-node is not useful, and
there is no other management entity defined as part of the architecture.

The other class of design aid is the simulator, which takes a particular re-
alization and explores the service which it can deliver under a variety of
loadings. No one has yet attempted to construct a simulator which take
into account the wide variability of the gateway implementation, the host
implementation, and the network performance which one sees within pos-
sible Internet realizations. It is thus the case that the analysis of most
Internet realizations is done on the back of an envelope. It is a comment on
the goal structure of the Internet architecture that a back of the envelope
analysis, if done by a sufficiently knowledgeable person, is usually sufficient.
The designer of a particular Internet realization is usually less concerned
with obtaining the last five percent possible in line utilization than knowing
whether the desired type of service can be achieved at all given the resources
at hand at the moment.

The relationship between architecture and performance is an extremely chal-
lenging one. The designers of the Internet architecture felt very strongly that
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it was a serious mistake to attend only to logical correctness and ignore the
issue of performance. However, they experienced great difficulty in formal-
izing any aspect of performance constraint within the architecture. These
difficulties arose both because the goal of the architecture was not to con-
strain performance, but to permit variability, and secondly (and perhaps
more fundamentally), because there seemed to be no useful formal tools for
describing performance.

From the perspective of 2015, this paragraph is very telling. For some
goals such as routing, we had mechanisms (e.g. the TTL field) that
we could incorporate in the architecture to support the objective. For
performance, we simply did not know. (We proposed an ICMP message
called Source Quench, which never proved useful and may have just been
a bad idea. It is totally deprecated.) At the time this paper was written,
our problems with congestion were so bad that we were at peril of failing
2015 goal 10: “It works”. Yet there is no mention of congestion and its
control in this paper. Arguably, we still do not know what the architecture
should specify about congestion and other aspects of performance. We
seem to have some agreement on the ECN bit, but not enough enthusiasm
to get the mechanism actually deployed. And there are many alternative
proposals: re-ecn [?], XCP [?], RCP [?], etc. that would imply a different
packet header. The debate seems to continue as to what to put in the
packet (e.g. specify as part of the architectural interfaces) in order to
allow a useful range of mechanisms to be designed to deal with congestion
and other aspects of performance.

This problem was particularly aggravating because the goal of the Internet
project was to produce specification documents which were to become mili-
tary standards. It is a well known problem with government contracting that
one cannot expect a contractor to meet any criteria which is not a part of
the procurement standard. If the Internet is concerned about performance,
therefore, it was mandatory that performance requirements be put into the
procurement specification. It was trivial to invent specifications which con-
strained the performance, for example to specify that the implementation
must be capable of passing 1,000 packets a second. However, this sort of
constraint could not be part of the architecture, and it was therefore up to
the individual performing the procurement to recognize that these perfor-
mance constraints must be added to the specification, and to specify them
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properly to achieve a realization which provides the required types of ser-
vice. We do not have a good idea how to offer guidance in the architecture
for the person performing this task.

Datagrams

The fundamental architectural feature of the Internet is the use of datagrams
as the entity which is transported across the underlying networks. As this
paper has suggested, there are several reasons why datagrams are important
within the architecture. First, they eliminate the need for connection state
within the intermediate switching nodes, which means that the Internet can
be reconstituted after a failure without concern about state. Secondly, the
datagram provides a basic building block out of which a variety of types
of service can be implemented. In contrast to the virtual circuit, which
usually implies a fixed type of service, the datagram provides a more el-
emental service which the endpoints can combine as appropriate to build
the type of service needed. Third, the datagram represents the minimum
network service assumption, which has permitted a wide variety of networks
to be incorporated into various Internet realizations. The decision to use
the datagram was an extremely successful one, which allowed the Internet
to meet its most important goals very successfully. There is a mistaken as-
sumption often associated with datagrams, which is that the motivation for
datagrams is the support of a higher level service which is essentially equiva-
lent to the datagram. In other words, it has sometimes been suggested that
the datagram is provided because the transport service which the applica-
tion requires is a datagram service. In fact, this is seldom the case. While
some applications in the Internet, such as simple queries of date servers or
name servers, use an access method based on an unreliable datagram, most
services within the Internet would like a more sophisticated transport model
than simple datagram. Some services would like the reliability enhanced,
some would like the delay smoothed and buffered, but almost all have some
expectation more complex than a datagram. It is important to understand
that the role of the datagram in this respect is as a building block, and not
as a service in itself.

This discussion of the datagram seems reasonable from the perspective
of 2015, but as I said above, were I to write the paper now I would give
similar treatment to some of the other design decisions we made.
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TCP

There were several interesting and controversial design decisions in the devel-
opment of TCP, and TCP itself went through several major versions before
it became a reasonably stable standard. Some of these design decisions,
such as window management and the nature of the port address structure,
are discussed in a series of implementation notes published as part of the
TCP protocol handbook [17,18]. But again the motivation for the decision
is sometimes lacking. ln this section, I attempt to capture some of the early
reasoning that went into parts of TCP. This section is of necessity incom-
plete; a complete review of the history of TCP itself would require another
paper of this length.

The original ARPANET host-to host protocol provided flow control based
on both bytes and packets. This seemed overly complex, and the designers
of TCP felt that only one form of regulation would he sufficient. The choice
was to regulate the delivery of bytes, rather than packets. Flow control and
acknowledgment in TCP is thus based on byte number rather than packet
number. Indeed, in TCP there is no significance to the packetization of the
data.

This decision was motivated by several considerations, some of which be-
came irrelevant and others of which were more important than anticipated.
One reason to acknowledge bytes was to permit the insertion of control in-
formation into the sequence space of the bytes, so that control as well as
data could be acknowledged. That use of the sequence space was dropped,
in favor of ad hoc techniques for dealing with each control message. While
the original idea has appealing generality, it caused complexity in practice.

A second reason for the byte stream was to permit the TCP packet to be
broken up into smaller packets if necessary in order to fit through a net
with a small packet size. But this function was moved to the IP layer when
IP was split from TCP, and IP was forced to invent a different method of
fragmentation.

A third reason for acknowledging bytes rather than packets was to permit
a number of small packets to be gathered together into one larger packet in
the sending host if retransmission of the data was necessary. It was not clear
if this advantage would be important; it turned out to be critical. Systems
such as UNIX which have a internal communication model based on single
character interactions often send many packets with one byte of data in
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them. (One might argue from a network perspective that this behavior is
silly, but it was a reality, and a necessity for interactive remote login.) It
was often observed that such a host could produce a flood of packets with
one byte of data, which would arrive much faster than a slow host could
process them. The result is lost packets and retransmission.

If the retransmission was of the original packets, the same problem would
repeat on every retransmission, with a performance impact so intolerable as
to prevent operation. But since the bytes were gathered into one packet for
retransmission, the retransmission occurred in a much more effective way
which permitted practical operation.

On the other hand, the acknowledgment of bytes could be seen as creating
this problem in the first place. If the basis of flow control had been packets
rather than bytes, then this flood might never have occurred. Control at
the packet level has the effect, however, of providing a severe limit on the
throughput if small packets are sent. If the receiving host specifies a number
of packets to receive, without any knowledge of the number of bytes in each,
the actual amount of data received could vary by a factor of 1000, depending
on whether the sending host puts one or one thousand bytes in each packet.

In retrospect, the correct design decision may have been that if TCP is to
provide effective support of a variety of services, both packets and bytes
must be regulated, as was done in the original ARPANET protocols.

Another design decision related to the byte stream was the End-Of-Letter
flag, or EOL. This has now vanished from the protocol, replaced by the
push flag, or PSH. The original idea of EOL was to break the byte stream
into records. It was implemented by putting data from separate records
into separate packets, which was not compatible with the idea of combin-
ing packets on retransmission. So the semantics of EOL was changed to
a weaker form, meaning only that the data up to this point in the stream
was one or more complete application-level elements, which should occasion
a flush of any internal buffering in TCP or the network. By saying ”one
or more” rather than ”exactly one”, it became possible to combine several
together and preserve the goal of compacting data in reassembly. But the
weaker semantics meant that various applications had to invent an ad hoc
mechanism for delimiting records on top of the data stream.
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Several features of TCP, including EOL and the reliable close, have
turned out to be of almost no use to applications today. While TCP
is not properly part of the architecture of the Internet, the story of its
design and evolution provides another view into the process of trying to
figure out in advance what should be in, and what should be out, of a
general mechanism that is intended to last for a long time. (The goal of
longevity).

In this evolution of EOL semantics, there was a little known intermediate
form, which generated great debate. Depending on the buffering strategy
of the host, the byte stream model of TCP can cause great problems in one
improbable case. Consider a host in which the incoming data is put in a
sequence of fixed size buffers. A buffer is returned to the user either when
it is full, or an EOL is received. Now consider the case of the arrival of an
out-of- order packet which is so far out of order to be beyond the current
buffer. Now further consider that after receiving this out-of-order packet, a
packet with an EOL causes the current buffer to be returned to the user only
partially full. This particular sequence of actions has the effect of causing
the out of order data in the next buffer to be in the wrong place, because
of the empty bytes in the buffer returned to the user. Coping with this
generated book-keeping problems in the host which seemed unnecessary.

To cope with this it was proposed that the EOL should ”use up” all the
sequence space up to the next value which was zero mod the buffer size.
In other words, it was proposed that EOL should be a tool for mapping
the byte stream to the buffer management of the host. This idea was not
well received at the time, as it seemed much too ad hoc, and only one host
seemed to have this problem.2 In retrospect, it may have been the correct
idea to incorporate into TCP some means of relating the sequence space and
the buffer management algorithm of the host. At the time, the designers
simply lacked the insight to see how that might be done in a sufficiently
general manner.

Conclusion

2This use of EOL was properly called ”Rubber EOL” but its detractors quickly called
it ”rubber baby buffer bumpers” in an attempt to ridicule the idea. Credit must go to the
creator of the idea, Bill Plummer, for sticking to his guns in the face of detractors saying
the above to him ten times fast.
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In the context of its priorities, the Internet architecture has been very suc-
cessful. The protocols are widely used in the commercial and military envi-
ronment, and have spawned a number of similar architectures. At the same
time, its success has made clear that in certain situations, the priorities of
the designers do not match the needs of the actual users. More attention to
such things as accounting, resource management and operation of regions
with separate administrations are needed.

While the datagram has served very well in solving the most important
goals of the Internet, it has not served so well when we attempt to address
some of the goals which were further down the priority list. For example,
the goals of resource management and accountability have proved difficult to
achieve in the context of datagrams. As the previous section discussed, most
datagrams are a part of some sequence of packets from source to destination,
rather than isolated units at the application level. However, the gateway
cannot directly see the existence of this sequence, because it is forced to deal
with each packet in isolation. Therefore, resource management decisions or
accounting must be done on each packet separately. Imposing the datagram
model on the Internet layer has deprived that layer of an important source
of information which it could use in achieving these goals.

This suggests that there may be a better building block than the datagram
for the next generation of architecture. The general characteristic of this
building block is that it would identify a sequence of packets traveling from
the source to the destination, without assuming any particular type of service
with that service. I have used the word ”flow” to characterize this building
block. It would be necessary for the gateways to have flow state in order
to remember the nature of the flows which are passing through them, but
the state information would not be critical in maintaining the desired type
of service associated with the flow. Instead, that type of service would
be enforced by the end points, which would periodically send messages to
ensure that the proper type of service was being associated with the flow.
In this way, the state information associated with the flow could be lost in
a crash without permanent disruption of the service features being used.
I call this concept ”soft state,” and it may very well permit us to achieve
our primary goals of survivability and flexibility, while at the same time
doing a better job of dealing with the issue of resource management and
accountability. Exploration of alternative building blocks constitute one of
the current directions for research within the DARPA Internet program.
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3.1 The relation of architecture to function

The architecture of the Internet as I have defined it here (and as I did in
1988) clearly illustrates the point that architecture does not directly specify
how the network will meet its functional requirements.

It is worth looking at the various requirements I laid out in Chapter 2 and
considering how the architecture of the Internet relates to meeting those
requirements.

Fit for purpose (it works?) Arguably, the Internet is a success. Its
design led to a network that has passed the tests of utility and longevity.
The basic ideas of packet switching, datagrams (no per-flow state in the
routers) and the like were well-crafted. Those of us who designed the original
Internet are so pleased (and perhaps surprised) that it works as well as it
does that we feel justified in turning a blind eye to the aspects that don’t
work so well. If the Internet of today is not quite as reliable as the phone
system, and routing takes rather long to converge after a transient, we say
that after all routing is just one of those “second-level” mechanisms, and
not a part of the architecture, and who said that “5 nines” is the right idea
for the Internet? But overall, I think it is fair to argue that the architecture
of the Internet produced a system that is fit for purpose.

Security In Chapter 7 I will argue that the Internet itself (the packet car-
riage layer as opposed to the larger definition that includes the applications
and technology) can only solve a part of the security problem. Securing the
network itself, which seems to call for secure versions of routing protocols,
etc., was relegated to that second stage of mechanism design that turns the
architecture into a complete implementation. This approach was probably
valid, since different circumstances call for different degrees of security. But
there is an open question as to whether there are architectural decisions
that could make this task easier. Protecting the packet transport layer from
abuse by the applications (most obviously in the context of Denial of Service
attacks) is an area that the architecture probably needs to address, but the
early design did not consider this issue. Overall, the linkage between the
key architectural features of the Internet and the requirements for security
seem a bit fragmentary and weak.
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Availability and resilience In the 1980’s we did not understand how to
think about availability in general. We understood that packets might get
lost, so we designed TCP to recover. But there is nothing in the architecture
itself to help with this problem (unless you consider that at this point, the
functions of TCP are essentially a part of the architecture). We understood
that links and routers might fail, so we needed dynamic routing. The Inter-
net packet header provides a TTL field to allow for dynamic inconsistency in
routing. This is an illustration of the point that architecture does not always
define how a requirement is met, but tries to make it possible (or easier) for
a system designed based on that architecture to meet that requirement. Our
intuition was that no other architectural support was needed for routing, or
for availability more generally. As I will argue in Chapter 8, an architecture
of a future Internet needs to take a more coherent view of availability.

Economic viability There are essentially no features of the Internet’s
architecture that relate to economic viability, other than the consequences
of the core modularity. One way to think about economic viability is that
all the actors in the ecosystem created by the architecture must have the in-
centive to play the role assigned to them by that architecture. In particular,
if there is a class of actor that does not find an economic incentive to enter
the ecosystem and invest, the design will not thrive. This way of looking at
things was roughly understood early on, but we had no tools to reason about
it. In fact, the issues have really only become clear in the last decade, with
ISPs (which make large capital investments) trying to find ways to increase
revenues by “violating” the architecture: peeking into packets, exercising
discrimination of various sorts, and so on. As well, the current debates
about when interconnection (e.g. peering) should be revenue neutral and
whether paid peering should be acceptable illustrate the complexity of the
economic landscape. There is nothing in the architecture about accounting,
billing, money flows or other issues that relate to economics.

Management As I describe it, the original Internet architecture did not
contain any design elements intended to address the issues of network man-
agement. We received some criticism from our friends in the telephone in-
dustry about this; they said that a major part of the design of the telephone
system was to address issues of management: fault detection and isolation,
performance issues and the like. Many of the basic data formats used to
transport voice across the digital version of the telephone system contain
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fields related to management, and we were asked why we had not under-
stood that. Our basic headers (e.g. the IP packet header) did not contain
any data fields that defined building blocks for network management.

Meet society’s needs This very general heading captures a range of
issues such as privacy (on the one hand), lawful intercept (on the other
hand), resilience of critical services, control of disruptive or illegal behavior
by users, and so on. There is very little in my 1988 paper that speaks
to these issues. It may not have been clear in 1988 that the way Internet
addresses are specified and used (for example) has a material influence on
the balance between privacy, traffic analysis, lawful intercept and the like.
These issues have now emerged as important, but I do not think we have
clear ideas even now about how to deal with them, and in particular how to
deal with them in a way that leaves a degree of subsequent flexibility to the
implementation and the realization.

One could ask if the principle of architectural minimality is the correct ap-
proach. Perhaps the architecture left too many problems for the designers
that then had to define the second-level mechanisms such as routing. Per-
haps a more expansive definition of what we classify as “architecture” would
lead to better outcomes when we deploy the resulting system. Alternatively,
perhaps a different approach, with a different conception of what is mini-
mally necessary, might lead to better outcomes. These mechanisms were
designed based on our best intuition at the time, but it is reasonable today
to rethink these decisions from scratch–what might the architecture do to
better support goals such as security and management, which we dealt with
poorly if at all in the 1970’s. In the next chapter, I develop a framework
(one of several in the book) that can be used to compare architectures, and
then in Chapter 5 I look at some different conceptions of what an Internet
architecture might be, again mostly with a preference for minimality but a
very different view of what it is “on which we must all agree”.
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Chapter 4

Architecture and function

4.1 Introduction

Chapter 2, with its long list of requirements, may in fact distract the dis-
cussion from what is perhaps most central: the network has to be fit for
purpose–it has to perform a useful set of functions in support of the appli-
cations that run over it and the users that employ those applications. So
before turning to the question of how the Internet (or a different possible
Internet with a different design) might address those various requirements,
I want to start with the question of how we describe, in architectural terms,
what it is that a network “does”.

We usually describe systems in terms of their semantics, but that is not the
way we tend to think about a network like the Internet, at least at the packet
level. The loose packet carriage model of “what comes out is what went in”
is intentionally almost semantics-free. The packets just carry bytes. Packet
boundaries can have some limited semantics, but not much. The original
design presumed some constraints that we might view as “semantics”, such
as global addresses, but the progress of time has violated these and the In-
ternet keeps working. TCP does impose some modest semantic constraints,
but of course TCP is optional, and not a mandatory part of the architecture.

What defines the Internet, and the range of behavior that is available in the
Internet, is the expressive power of the packet header, which has more to
do with its format than any semantics. Most fields (e.g. packet length) are
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unremarkable, some (like the TOS bits) have been redefined several times in
the history of the Internet, some (like the options) have atrophied, and some
(most obviously the IP addresses) have had a most interesting history in
which the only constants are that they are 32 bit fields, that whatever value
they have at each end must remain constant for the life of a TCP connection
(because of the pseudo-header) and that at any locale in the network, they
must provide the basis for some router action (e.g., forwarding). They can
be rewritten (as in NAT), turned into logical addresses (as in multicast
or anycast), and they can be microcoded in a number of ways to capture
address hierarchy (net/rest, A/B/C, CIDR). All that really seems to matter
is that they are 32 bits long, and that at any point, they must have at least
local meaning to a forwarding process.

The evolution in thinking with respect to IP addresses sheds some light
on architectural thinking. The initial idea that addresses were drawn from
a single global address space and mapped uniquely to physical ports on
physical machines turned out not to be a necessary constraint, but just a
simple model to get started. We were initially fearful that if we deviated
from this definition, the coherence of the network would fall apart, and we
would not be able to ensure that the Internet was correctly connected, or
debug it when it was not. Indeed, these fears are somewhat real, and it
is possible today to “mess with” addresses in such a way that things stop
working. But mostly, the Internet continues to work, even with NAT boxes,
VPNs and private address spaces, because the consequences of messing with
addresses are restricted to regions within which there is agreement to assign
a common meaning to those addresses. Those self-consistent regions need
not be global; it is the scope of the self-consistent binding from addresses to
forwarding tables that defines them.

In the limit, each “region” could just be two routers, the sender and the
receiver for each hop along the path of the packet. (This would somewhat
resemble a scheme based on label rewriting.) Regions this small would
be hard to manage without some sort of overarching framework for state
management (and would have other drawbacks as I discuss later), but a
single global region–the starting point for the Internet design–has also proven
to have complexities. In practice, the operational Internet has gravitated
to regions that represent some sort of rough balance among the issues that
arise from big and small regions.

My point is that the format of the packet header is a defining feature of the
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Internet, in contrast to assertions about the semantics of addresses. It is for
this reason that I focus on the expressive power of the packet header as a
key factor in the specification of a network architecture.

4.2 Per-hop behaviors

We can generalize from this discussion of addressing and ask more abstractly
about the local behavior of routers (and other network elements) and the
resulting overall function. In fact, the network is built up of somewhat inde-
pendent routers. What applications care about is that the local behavior at
a sequence of routers (the “per-hop behavior”, or PHB) can be composed to
achieve some desired results end-to-end.1 If the packets get delivered (which
is really the only thing that defines today’s properly operating Internet, ex-
cept in the context of defense against attack), then the details of how PHBs
are configured (e.g., the routing protocols or the like) are a matter left to
the regions to work out. The expectation about forwarding is a core part
of the architecture, how routing is done is not. (If the packets do not get
delivered, then debugging may be more or less a nightmare, depending on
the tools for coordination and analysis, but this is a separate issue, which I
address in Chapter 10).

Today, a router has a rather simple set of behaviors. Ignoring QOS and
source-routes for the moment, a router either picks (one or more) outgoing
paths on which to forward a packet, or drops it. The router can have as
much state as inventive people define for it–static and dynamic forwarding
tables, complex routing protocols, and static tables that define unacceptable
addresses (e.g., so-called Martian and “bogon” packets). The router can also
rewrite the packet at will, subject to the pseudo-header constraint. But even
today, and certainly looking to the future, not all elements in the network
will be “routers”. Elements, once they receive a packet, can perform any
PHB that does not cause the end-to-end behavior to fail. So when we
consider PHBs as the building block of network function, we should be
careful not to limit ourselves to a model where the only PHB is “forwarding”.

1The term “per hop behavior” was coined as part of the effort in the
IETF to standardize the mechanisms that underpin the diffserv QoS mechanisms
[Nichols and Carpenter, 1998, Section 4].
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4.3 Tussle

One of the distinctive features of networks and distributed systems is that
they are composed of actors whose interests are not aligned. These actors
may contend with each other to shape the system behavior to their advan-
tage. My co-authors and I picked the word “tussle” to describe this process
[Clark et al., 2005a]. Sometimes one of the actors is a clear “bad guy”: e.g.
someone wants to infiltrate a computer against the wishes of the owner. This
tension leads to devices such as firewalls, which are an example of a PHB
that is not simple forwarding, but rather forwarding or dropping based on
the content of the packet. Firewalls are an attempt by the receiver to over-
rule the intentions of the sender: a PHB that the receiver wants executed
on the packet, but the sender does not.

Sometimes the issues are not black and white, but more nuanced: I want
a private conversation, law enforcement wants to be able to intercept any
conversation with proper authorization. I want to send a file privately,
copyrights holders want to detect if I am serving up infringing material.
To the extent these tussles are played out “in the net” (as opposed to in
the end-nodes or the courts), they will be balanced through the relative
abilities of the different actors to exploit the expressive power of the network.
So our discussion of expressive power, and the tools that implement it,
will be strongly shaped by the reality of tussle. Looking at the balance of
power created by a specific feature in the architecture is a way to integrate
considerations of security into the design process of an architecture.

4.4 Reasoning about expressive power

Computer scientists are accustomed to thinking about the implications of
semantics: what are the limitations of some semantic construct. We are less
accustomed (and less equipped with tools) to think about the expressive
power of a packet header–what functions are consistent with some format
and syntax. It is sort of like asking what ideas can be expressed in sentences
of the form “subject, verb, object”. The question seems ill-defined and
unbounded. Even harder is to catalog what cannot be expressed. But this
question is the one that actually captures the limits of what the Internet
can and cannot do. So we should try to think about how to think about it.
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If (in general) a network element can be programmed to do “anything” as
its PHB, then the resulting overall function is the result of the execution
of these PHBs in some order, where the order is defined by the routing of
the packet among these devices. Of course, since the devices themselves can
define the routing, the resulting expressive power (the computational power,
if you will) is presumably rather complex.

This view of packet processing has not been seriously explored (with the
exception of some of the Active Network research), because in the Internet of
today, the overall function we want to achieve is very simple–the delivery of
the packet. If that is the desired overall function, there is not much demand
for the complex concatenation of arbitrary PHBs within the network. But
as we think about wanting to do more complex things as a packet moves
from source to destination (many having to do with security), the range
of interesting PHBs will grow. So it is worth some consideration of what
factors define or limit the expressive power of a network.

In this section, I pose a three-dimensional framework to describe PHB exe-
cution: alignment of interests, delivery and parameterization.

4.4.1 Alignment of interests

The first dimension of the model is to capture the relationship between the
sender of the packet and the owner of the element that implements the
PHB. This dimension directly captures the nature of tussle. I will propose
two cases: aligned and adverse.

Aligned: In this case, the interests of the sender and the element match.
Simple routing, multicast, QoS, etc., usually falls in this obvious class. The
sender sent the packet, the router forwards it, and this is what both parties
expected.

Adverse: In this case, the PHB performs a function that the sender does
not want. A firewall is a good example here, as would be other sorts of
content filtering, deep packet inspection, logging and so on.
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4.4.2 Delivery

The second dimension of the model is to ask why or how the packet ar-
rives at the element that implements the PHB. There is a simple four-case
model that covers most of the circumstances: delivery is either intentional,
contingent, topological or coerced .

Intentional: In this case, the packet arrives at the element because it was
specifically sent there. For example, with source routes, the route is a series
of addresses, each of which directs the packet to the next such router. As
another example, a packet arrives at a NAT box because it was intentionally
sent there.

Contingent: In this case, the packet may or may not arrive at a given
element, but if it happens to arrive, then the PHB will be executed. This is
the basic mode of datagram operation–if a router gets a packet it forwards
it. There are no pre-established paths from source to destination (which
would be examples of intentional delivery). Each router computes routes
to all known destinations, so it is prepared to deal if a packet happens to
arrive.

Topological: In this case, there is nothing in the packet that causes
it to arrive at a particular device, but instead the topology of the network
(physical or logical) is constrained to insure that the packet does arrive there.
Firewalls are a good example of topological delivery. The sender (assuming
he is malicious) has no interest in intentionally sending his attack packet
to a firewall. He would prefer to route around it if he could. The receiver
wants some assurance that the firewall will be in the path. The receiver will
normally not be satisfied with contingent protection. So the remaining tool
available is to constrain the connectivity or routing graph so that the only
path (or paths) to the receiver pass through the firewall.

Coerced: This can be seen as a special case of intentional or topological
delivery in which the sender is compelled to subject itself to a PHB, even
though the interests of the sender and the owner of the PHB are adverse. An
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attacker attempting to reach a machine behind a Network Address Trans-
lation box has no choice but to send the packet to that element–there is no
other means of reaching beyond it. In this case, we can expect the sender
to cheat or lie (in terms of what values are in the packet) if it is possible.

4.4.3 Parameterization

The third dimension of the model is that the packet triggers the execution
of a PHB, and thus the data in the packet is in some sense the input to that
PHB, like arguments to a subroutine. The values in the packet are the input
parameters to the PHB, and if the packet is modified, this is similar to the
rewriting of variables in the invocation of a subroutine. (In other words, to
use the vocabulary of programming language, the parameters in the packet
are passed to the PHB by reference rather than by value.) The element that
executes the PHB can have lots of persistent state (which can be modified
as a result of the PHB), and can have distributed or “more global” state if
suitable signaling and control protocols are devised.

In this context, I will again offer two cases, although these more define ends
of a spectrum than distinct modes: explicit and implicit.

Explicit: While the PHB can in principle look at any data fields in the
packet, in common cases there will be specific fields set aside in the header
as input to specific PHBs. This is the common case for packet forwarding:
since packet forwarding is the basic operation of networking, there is an
explicit address field used as input to the forwarding lookup. The Internet
(sometimes) supports QoS, so there is an explicit field in the packet that is
the input parameter to the QoS algorithm.

Implicit: In other cases, there is no specific field used as input to the PHB:
the PHB looks at fields intended for other purposes. Firewalls block packets
based on port numbers, some ISPs assign QoS based on port numbers, pack-
ets are sometimes routed based on port numbers (e.g., when Web queries
are deflected to a cache or an outgoing SMTP connection is deflected to a
local mail server.) If the PHBs have state, they can also base their actions
on implicit information such as the arrival rate of packets.
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Implicit parameters can be expensive. In the worst case (deep packet in-
spection), the PHB may process the entire contents of the packet as input to
its operation. Clearly, this is not as efficient as a pre-designed action where
the PHB picks a preset field (e.g. an address field) and uses this for a table
lookup. So implicit arguments must be used sparingly, but in the case of
adverse interests, implicit parameters may be the only option.

This model suggests that there is some rough analogy between the expres-
sive power of a network and a programming language of some sort, where
the “computation” is a series of subroutine executions, driven by the input
parameters carried by the packet, and where the order of execution is defined
by the routing protocols, together with the expressive power of the packet
to carry the addresses that drive the forwarding. Of course, the addition of
tussle and nodes that are hostile in intent with respect to the sender adds
a twist that one does not find in programming languages, and in fact this
“twist” may be one of the most important aspects of what the network ac-
tually “computes”. So the power of an analogy to a programming language
remains to be explored.2

This taxonomy classifies activity based on the alignment of interest among
the senders and the PHBs in the network. Another way to classify activities
is to look at the alignment of interests between sender and receiver. In the
case that the interests of the sender and receiver are aligned, then the PHBs
are presumably being used to enhance the service being provided. They
are functional, in that the application being used by the communicants are
invoking them as part of the service. (While only the sender can directly
control the sending of the packet and its contents, there are certain architec-
tures, which I discuss in Chapter 5, where the receiver as well as the sender
can directly exercise control over what PHBs are applied to the packet.)
The resulting questions are first, whether the architecture is providing sup-
port to these PHBs through some aspect of its expressive power (delivery,

2This idea is by no means original to me. In an early paper with the delightful title
of Programming Satan’s Computer [Anderson and Needham, 2004], the authors observe:
“a network under the control of an adversary is possibly the most obstructive computer
which one could build. It may give answers which are subtly and maliciously wrong at
the most inconvenient possible moment.” Their focus is on the design of cryptographic
systems, but their point is more general: “In most system engineering work, we assume
that we have a computer which is more or less good and a program which is probably
fairly bad. However, it may also be helpful to consider the case where the computer is
thoroughly wicked, particularly when developing fault tolerant systems and when trying
to find robust ways to structure program and encapsulate code.”
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parameters, etc.) and (the negative aspect of the analysis) whether the ar-
chitecture needs to provide support to protect the communicants from the
misuse of this expressive power, and whether the architecture needs to pro-
vide support for the task of detecting and isolating a faulty or malicious
element. (See Section 4.10 and Chapter 8 for a discussion of fault diagnosis.
[[[Confirm later.]]] If the interests of the sender and receiver are aligned,
then if there is an adverse PHB in the path, it must be there because of
some third party (e.g an ISP or a government authority) has interposed it,
or because the network itself has previously suffered an attack such that
some of its elements have been taken over by an attacker. If the interests
of the sender and receiver are not aligned (in which case the receiver either
wants protection during communication or does not want to receive traffic
at all), then the PHBs are serving a different purpose: they are deployed to
protect the receiver from the sender, a role which creates different potential
roles for the architecture. I will return to security analysis in Chapter 7.

4.5 Pruning the space of options

What I just described is a 2x4x2 design space. But in fact it is less complex
than that. The method that helps to sort out this space is “tussle analysis”,
which starts with understanding the alignment of interests.

Aligned: If the sender wants the PHB to be executed, then intentional
delivery and explicit arguments make sense. Contingent delivery may be
suitable in some cases (e.g. the basic forwarding function), but explicit
arguments (e.g. the address field) still make sense.

Adverse: If the sender does not want the PHB to be executed, then it
cannot be expected to provide any explicit arguments to the PHB, so the
design must be based on implicit approaches. Nor can the PHB count on
intentional delivery, so coerced delivery is the best option, with contingent
or topological delivery as a fallback.

NAT boxes NAT boxes implement a PHB that is not simple forwarding,
but include rewriting of the destination address field. They are as well a
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wonderful example of how one can disrupt two of the most fundamental
assumptions of the original Internet and still have enough functions mostly
work that we accept the compromise. The assumptions of the original In-
ternet were that there was a single, global address space, and there was no
per-flow state in forwarding elements. NAT boxes, of course, have per-flow
state, and early NAT devices, lacking a protocol to set up and maintain soft
state, depended on a “trick”: they use the first outgoing packet to set up the
state, which then persisted to allow incoming packets to be forwarded. This
trick does not allow state to be set up for services waiting for an incoming
packet that are “behind” the NAT box. (Protocols have subsequently been
developed to allow an end-node to “open a port” to a service behind the
NAT device. 3 )

NAT boxes are an example of intentional delivery with explicit parameters
(the addresses and port numbers). If the interests of the end-points are
aligned, NATs are mostly a small nuisance; if the interests are not aligned,
they provide a measure of protection, and in that respect fall into the coerced
category.

Firewalls Firewalls, as I described above, are an example of a PHB that is
adverse to the interests of the hostile sender (the potential attacker) and thus
must depend on implicit information. The firewall has the poorly-defined
task of trying to distinguish “good” from “bad” behavior, based on whatever
hints can be gleaned from the packets. Normally, all a firewall can do today
is a very crude set of discriminations, blocking traffic on certain well-known
ports and perhaps certain addresses. The roughness of the discrimination
is not necessarily a consequence of the details of the current Internet, but
perhaps the intrinsic limits of making subtle discriminations based only on
implicit fields in the packets.

This outcome is not necessarily a bad thing. Sometimes users want the
blocking to succeed (when they are being attacked) and sometimes they
want it to fail (when some third party such as a conservative government is
trying to block their access to other sites on the Internet). If we decide to
make the job of the firewall easier, we should consider whose interests we
have served.

3The Port Control Protocol [Wing et al., 2013] and the Internet Gateway Device Pro-
tocol, part of the UPnP protocols [Open Interconnect Consortium, 2010] allow an end
node to set up a new port mapping for a service on the end node.
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Tunnels Tunnels, or packet encapsulation, is often thought of as a way
to control the routing of a packet, but more generally it is a way to inter-
pose an explicit element in the path toward a destination. The encapsulated
packet is the explicit information used as input to the end-point of the tun-
nel. Sometimes the starting point of the tunnel is contingent or topological;
some times it is coincident with the sender; sometimes it is intentional.
For example, TOR can be seen as an example of nested tunnels, each with
explicit information as input to the PHB at each TOR forwarder.

4.6 Tussle and regions

Consider the example discussed above of a firewall, put in place by the
receiver to block attacks by the sender. In this adverse circumstance, the
receiver must depend on implicit arguments and topological delivery (or
coerced, if the architecture permits). For this to work, the region of the
network within which the receiver is located must provide enough control
over topology (connectivity and routing) to ensure that the firewall is in
the path of the packets. The receiver must have sufficient control over this
region of the network to make sure that the topology is as desired, and
enough trust in the region to be confident that the forwarding will be done
as requested.

To generalize, what this illustrates is that different actors within the network
(the sender, the receiver, the ISPs, other third party participants) will have
the right to control certain parts of the network (or the expectation that
certain parts will be operated consistent with their requirements), and within
each such region of the network, the expressive power of the parts found there
(the PHBs and the routing) will be used to further the intentions of that
actor.

The factor that will determine the outcome of the tussle (e.g. the balance
of power) is not the PHBs (which, as I noted, can be more or less anything),
but the information in the packet that can serve as the input to the PHB,
and the order of processing of the packet.

The order of processing arises from the natural nature of packet forwarding:
the packet originates in the region of the sender (who thus gets first crack at
any desired PHBs), then enters into the global network, and finally enters
into the region of the receiver and the PHBs found there. The information
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that is in the packet at each stage is a consequence of this ordering. For
example, the sender can include data in a packet that is used by the PHBs
in the region of the sender and then stripped out so that the other regions
cannot see it. While the packet is in the global “middle” region, some or
most of the packet can be encrypted to prevent it being examined, and so
on.

But as I have noted, PHBs can do more or less “anything” that can be
derived from the information in the packet, and the routing is under the
control of each of these regions. The fixed point in this design is the packet
header itself. So when we think about putting more or less expressive power
into the header (e.g. a more or less expressive format), we should consider
whether the different options shift the balance of power in ways that match
our preferences.

4.7 Generality

I have been talking about PHBs in a rather abstract and general way. As
I have used the term, it could equally apply to a low-level function like
forwarding or an application-specific service like content reformatting or de-
tection of malware. The taxonomy of delivery modes, alignment of interests
and parameter modes applies equally to both general, packet level PHBs
and higher level services. One could use the term PHB generally to mean
any service element that is inserted into a data flow, or restrict the term
to lower level functions like firewalls or routers. Since my goal is to discuss
the role of architecture, I will prefer to restrict my use of the term PHB to
cases where there might be a benefit to adding to the expressive power of
the architecture as part of invoking the PHB. In general, application-level
services would would not fit into this category, but this is a presumption, not
a given, as some architectures directly support the insertion of application-
level services into the flow of packets.

Structurally, it would make sense to assume that higher-level services are
intentionally inserted into the pattern of communication by the design of
the app. The design of the email system specifies that mail is sent to
a mail forwarding agent, and the packets are addresses to that element–
intentional delivery. In this case, especially where the packets of the data
flow are reassembled into a larger unit for processing (an application data
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unit or ADU), the explicit parameters used by the service are in the body
of the packets, not the packet header. That sort of data is not part of the
architecture–it is not something on which there has to be agreement; quite
the opposite. However, it would be an error to assume that all application-
specific services are invoked by intentional delivery of the packets. Especially
where the interests of the communicants and the network are not aligned,
the network may try to intercept the communication using topological de-
livery in order to inspect (e.g., DPI) or modify the contents; an intervention
that is thwarted if the data is encrypted, which in turn leads to complaints
by network operators that encryption prevents them from managing their
network properly. I consider this sort of tussle in Chapter 7, but from the
point of view of balance of control, it would seem that a network operator
should have to make a very strong argument that it is appropriate for them
to be inserting a ‘service” into a communication where at least one end-point
did not request or expect that service to be there.

However, it is conceivable that there might be some understanding that
PHBs provided by the network should have some visibility into what is being
sent. As part of the overall architectural design of the system, and balancing
the interests of the different parties, it is a valid question as to whether
there should be any parameters that allow the sender to reveal what sort
of treatment the packets should receive, to allow for accounting and traffic
planning and the like. My preference for architectural minimality (and as
well, concerns over security I discuss later), would lead to a conclusion that
while adding expressive power to the header may be very beneficial, the
option should be used sparingly.

4.8 Expressive power and evolvability

In this context, the term evolvability refers to the ability of the network
architecture to survive over time and evolve to meet changing needs while
still maintaining its core coherence. Chapter 6 explores this issue in depth.
But here I consider the relationship between the expressive power of an
architecture and how that architecture may evolve over time. The history
of the Internet provides some informative case studies.

In the early days, the designers of the Internet thought that the concept
of a single global address space was part of the Internet architecture, and
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we bemoan the emergence of NAT devices, VPNs etc, as an erosion of the
architectural coherence of the Internet. To some extent this is true; NAT
makes the deployment of passive services behind the NAT barrier more
complex, and leads to such inelegancies as STUN. On the other hand, it is
also clear that in the large, the Internet has survived the emergence of NAT,
and perhaps global addresses did not need to be such a central assumption
of the presumed architecture.

Perhaps less mourned but more relevant is the atrophy of IP options. IP
options were developed to allow for future evolution of the architecture, and
they could have provided a substantial degree of expressive power. How-
ever, IP options were hard to process in the fast path of routers, and were
deprecated in practice to the point where they are essentially gone. They
vanished. One could speculate about the implications of this fact:

• Perhaps this degree of expressive power was not in fact necessary, and
made the network over-general.

• Perhaps IP options were not well designed, and required much more
processing than a better-designed option.

• Perhaps the loss of IP options represents an un-orchestrated decision
to favor short-term cost reduction over future evolvability.

However, at the same time that we have seen IP options atrophy, there have
been any number of papers that try to add some new functionality to the
Internet by repurposing under-used fields in the IP header, in particular the
fields related to fragmentation. This behavior suggests that some additional
expressive power in the header would have been of great benefit.

Whatever the mix of actual reasons is, one can learn two lessons from the
above.

First, avoid mechanisms that are costly to maintain when they are not
needed. For example, if there are fields in packets that are used to carry
?extra? input values to PHBs, design them so that only the device that
actually implements the PHB has to parse those fields or otherwise pay any
attention to them. If the packet is intentionally addressed to the device,
then the processing rule is clear: if the packet is not for you, don?t look at
the extra fields.
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Second, any mechanism added to a packet header should have at least one
important use from the beginning, to make sure that the implementation
of the mechanism remains current. If designers propose something intended
to facilitate evolution, but cannot think of a single use for it when it is
proposed, perhaps it is overkill and will atrophy over time.

Finally, the addition of tools to promote evolvability may shift the tussle
balance, so enthusiasm for rich expressive power may need to be tempered
by a realistic assessment of which actors can exploit that power. Indeed it
would seem that the goal of evolution over time is inseparable from the goal
of operating in different ways in different regions of the network at the same
time, in response to different perceived requirements within those regions.

Making design choices about the potential expressive power of a future In-
ternet seems to call for a tradeoff between evolvability and flexibility on the
one hand, simplicity and understandablity on the second hand, and tussle
balance on the third hand. However, there is no reason to think that this
tradeoff is fundamental. Creative thinking might lead to alternative ways of
defining packets and routing such that we gain in all three dimensions. To
explore this space, it may be helpful to ask ourselves challenge questions of
the sort that a clean slate thought process invites, such as why do packets
have to have addresses in them, or why do we need routing protocols?

4.9 Alternatives for the future

Using the lens of expressive power, here are few concepts that might enhance
a future Internet. In the next chapter, I will describe specific proposals that
illustrate various of these ideas, and I mention some of those proposals briefly
here.

4.9.1 Addressing

It is generally recognized that the current approach of using the IP address
both as a locator and as an identifier was a poor design choice. Mobility
is the obvious justification for this conclusion. In today’s Internet, dealing
with mobility is complicated by the fact the IP address is used both for
forwarding and for end-node identity. Separating these two concepts into
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two different data fields in the packet would allow the location field (e.g.
that data that is input to the forwarding PHB) to be changed as the mobile
host moves. This division does not solve two resulting problems: how to
keep the location information up to date, and how to make sure the identity
information is not forged. Linking identity to location provided a weak
form of security: if two machines have successfully exchanged packets, the
location is sufficiently unforgable that it can stand as a weak identifier. But
by separating the two problems, they can each be resolved separately, and
managed differently in different situations as circumstances require.

An alternative design approach might result in two fields, or perhaps three,
each serving a distinct purpose.

• Locator: This field is used as input to the forwarding PHB of a router.
It may be rewritten (as in a NAT device), highly dynamic (in the case
of a mobile device) and so on.

• End point Identifier (EID): This field is used by each end of the con-
nection to identify itself to the other end(s). There are in general three
issues with such a field: how to make sure a malicious sender cannot
forge a false identifier, how each end associates meaning with this field
(is there some sort of initial exchange of credentials associates with the
EID, or do high-level protocols associate some meaning with it once
the connection is in place), and third, should elements other than the
end-nodes (e.g. PHBs in the network) be allowed to see and exploit
this value?

• In-network identifier (INID): if the decision is taken that the EID is
private to the end-nodes of a connection, then there may be need for
some other identifier that can be seen and used by PHBs in the path
from the sender to the receivers. This possibility raises many sub-
questions in turn, such as how the INID is obtained, whether there
are security issues associated with its use, for what duration is it valid,
and so on.

So while the general idea of the locator-identity split is well understood,
there is no clear agreement on how to design the system that would result.
Most of the architectures that I will discuss in Chapter 5 implement some
sort of location-identity split, and illustrate the range of approaches that
have been taken to address this issue.
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4.9.2 Increasing the expressive power of a design

If there seems to be some value (some increase in function or generality)
from the ability to provide richer input data to a PHB, it is worth at least
briefly speculating on how this might be done. I have argued that since
a PHB can in principle compute “anything”, the expressive power of an
architecture will depend on what arguments can be presented to the PHB–
in other words what data is captured in the packet header. Here a a few
options, quickly sketched.

Blank “scratch-pad” in the packet A simple idea is to leave a fixed,
blank area in the packet header, to be used creatively from time to time.
One need only look at all the creative ideas for reuse of the fragment offset
field to appreciate just how powerful a little extra space can be. To avoid
the issues that arose with the IP option field, the expectation for this field
should be that a contingent element would not normally look at it. Only
elements that have the specific requirement for an input value would parse
the field. This might most easily be implemented as a rule that says only
the intentional recipient of a packet will examine the scratch-pad area.

The drawback of this scheme is that there might be more than one PHB
along the path from the sender to the receiver, so there might be a conflict
as to how the scratch-pad should be used. So we might consider a more
complex scheme.

Push-down stack model A more complex model for explicit data in
packets is a pushdown stack of records of explicit data, carried as part of
the packet header. In this model, the packet is explicitly directed by the
sender to the first element that should perform a PHB using data from the
stack. That element (conceptually) pops the first record off of the stack of
explicit information and uses it as input to the PHB. Then, using either
stored PHB state or information in the record that was just popped off the
stack, it identifies the next element to which the packet should go. This
PHB can push a new record onto the stack, or leave the one provided by
the original sender, based on the definition of the intended function.

Issues of performance would suggest that the design would not literally pop
a record off a stack (thus shortening the packet and requiring that all the
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bytes be copied.) A scheme involving offset pointers could be devised that
would achieve the desired function.

The push-down stack model can be seen as a more nuanced alternative to
the IP option field. One way to describe the problem with the IP option
was that it was conceived more in the spirit of contingent execution rather
then intentional execution. The sender sends the packet addressed to the
destination, and routers along the path can look at the options to see what
they are supposed to do with it. In the context of aligned interests and per-
flow state, we can see a movement toward intentional delivery of packets to
nodes with specific PHBs. The push-down stack model (and the more simple
scratch-pad model) are more attuned to the intentional delivery model.

This sort of mechanism seems to build on the rough analogy between PHB
sequencing and some sort of programming language. And packet encapsu-
lation is a rough version of a push-down mechanism, in which the whole
header is “pushed” onto the stack by the encapsulating header. A related
use of a push-down stack in the header can be found in two of the architec-
tures I will describe in Chapter 5, i3 and DOA, which use a push-down stack
to carry the sequence of IDs that order the sequence of PHB executions.

A heap The proposal for a Role-based Architecture (RBA) [Braden et al., 2003]
(part of the NewArch project) is perhaps the closest example of an archi-
tecture that captures the idea of general PHBs and the expressive power
of a packet header. In this proposal, PHBs are called roles, and the data
that is input to each node is called the Role-specific Header, or RSH. The
packet header is described as a heap of RSH’s. The implication of the heap
is that the roles are not always executed in a pre-determined order, so the
idea of push and pop is too constraining. RSH’s are an example of explicit
arguments. The proposal discusses both intentional and contingent delivery,
where the intentional addressing would be based either on the ID of a role,
or the ID of a role at a specific node. The paper does not delve into tussle
to any degree, or work through the case of roles that are adverse to the
interest of the sender, so there is not much attention to implicit arguments
or to topological delivery. However, the idea of a network as a sequence of
computations performed on a packet based on explicit input arguments is
the core concept of role-based architecture.
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4.9.3 Per-flow state

The previous examples are more or less based on a pure datagram scheme,
in which each packet is treated in isolation, there is no per-flow state, so all
the parameters to the PHB must come from the packet header. Per-flow
state in the router can enrich the range of PHBs that can be invented, by
linking the treatment of different packets in a sequence.

Signaling and state setup In the original Internet, the designers avoided
any hint of a signaling protocol or setting up per-flow state in the routers.
There were several reasons for this preference. One was simplicity–if we
could do without we would avoid yet another thing that could go wrong.
In particular, once per-flow state is instantiated in a router, then it has
to be managed. When should it be deleted? What happens if the router
crashes? The simplicity of the stateless model makes it easier to reason
about resilience and robust operation.

Another reason is overhead. It seems a waste to go to the overhead of setting
up state for an exchange that may involve only one packet. Much better to
have a system in which the sender can “just send it”. But if this works for
one packet, why not for all the packets?

However, control messages can be an important aspect of the expressive
power of an architecture. Control messages may play a selective role in the
design. Per-flow state might only be needed in specific elements to deal with
special cases. Second, we are now dealing with per-flow state (e.g. in NAT
boxes) whether we design for it or not. And some emerging ideas such as
indirection schemes depend on per-flow state. So it seems worth revisiting
this design decision.

State initiation bit If we are prepared to consider per-flow state as part
of the design, we need to consider whether the protocols should include
a standard way to establish and maintain this state. The original prefer-
ence in the Internet design was to avoid an independent control plane as
a mandatory component of the network. (Of course, there is no way to
prevent parties from attaching controllers to the network if they choose to,
but these would not be a part of the architecture.) The original design
preference was to carry control information (to the extent that it existed at
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all) using fields in the data packets, which flowed along the data forwarding
path. It is possible to imagine a similar scheme as a standard means for an
end-node to establish and maintain per-flow state in intermediate elements.

Such an idea would enrich the expressive power of the packet header by
building the idea of state establishment into the design, which would link
the treatment of a succession of packets.4

Without claiming that all the details are worked out, one can imagine that
just as TCP has a state-establishment phase and a connected phase, pro-
tocols that establish state in intermediate elements could follow the same
pattern. A bit in the header (similar to SYN) could signal that the packet
contains state-establishment information. This packet might require more
processing overhead (and thus represents a vector for DDoS attacks), but in
normal circumstances would only be sent at the initiation of a connection.
Once the state is established, some much more efficient explicit indication
in the packet could link subsequent packets to that stored state. The two
sorts of packets could have different formats.

Maintaining state in intermediate elements Assuming that the state
is soft-state (a choice that could be debated), the protocol should include a
means to reinstate the soft state if it is lost. One could imagine a new sort
of ICMP message signaling that some expected state is missing. To recover
from this, the sender would have to transition back from a fully “connected”
mode into a state-setup mode. One could imagine that the sender could re-
establish the state in two ways. First, it could do so “from scratch” by
sending whatever initial information was used. Second, the intermediate
node that holds the state could send back to the source a bundle (perhaps
encrypted) of state information that could be used to re-establish the state
efficiently, re-sent from the source on demand.

Such a scheme might make sense in the special case of intentionally sending
a packet to an anycast address. In this case, the sender is sending to a
logical service, but the actual physical machine implementing the service
might change. In this case, it might be necessary to reestablish some state

4A related activity in the IETF is SPUD, an acronym variously expanded as Ses-
sion Protocol Underneath Datagrams, Substrate Protocol for User Datagrams, or Session
Protocol for User Datagrams. Like any protocol that creates a control/communication
path between end nodes and the network, SPUD raises security questions which received
attention due to the Snowden leak [Chirgwin, 2015].



4.10. DEBUGGING AND NETWORK MANAGEMENT 75

in that box.

In-network state associated with receivers The discussion above cov-
ered the case of a sender establishing state along a path as part of session
initiation. But an equally common case is state set up along a path that
arises from the receiver rather than the sender. Setting up and maintaining
this state is actually the trickier part of the scheme.

As an illustration of the problems, consider the case where, as a part of pro-
tecting the receiver from attack, connection validation is outsourced to a set
of indirection elements. Since a sender (either legitimate or malicious) may
connect to any one of these (perhaps using an anycast address), every one
of these elements must have available the information necessary to validate
all acceptable senders, or else there must be an authentication protocol for
those devices to send off credentials to a back-end service. At a minimum,
the protection devices need to be able to find this service.

In practice, this pattern sounds more like hard state, somewhat manually
set up and torn down, rather than dynamic soft state.

In other cases, soft state may make more sense. A transient service behind
a “firewall of the future” may want to open an incoming port (assuming
that a future network has ports, of course), and this may best be done as
a dynamic setup of soft state. In this case, mechanisms will need to be
provided to make sure the state is still in place, even though the receiver is
not necessarily sending any data packets.

4.10 Debugging and network management

All mechanisms fail. Complex mechanisms fail complexly. If we design a
network that permits all sorts of complex routing options and invocation
options for PHBs, the potential for failure will certainly go up. Tools to
debug and recover from such failures will be critical if we are to meet goals
of availability and usability.

PHBs that are contingent are the hardest to debug, since the sender did
not invoke them intentionally. The idea of trying to diagnose a failure in
a box the sender did not even know about is troubling. This fact suggests
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that when effective diagnosis is desired, the design should prefer intentional
invocation of PHBs.

If the interests of all parties are aligned, it would make sense that the tools
for debugging would be effective and useful. However, if the interests of
the parties are adverse, the situation becomes more complex. If, for exam-
ple, an attacker is being thwarted by a firewall, it may be in the interest
of the firewall to prevent any sort of debugging or diagnosis of the failure.
The goal (from the point of view of the defender) is to keep the attacker
as much as possible in the dark as to what is happening, so as to prevent
the attacker from sharpening his tools of attack. So while tools and ap-
proaches for debugging and diagnosis must be a part of any mechanisms to
provide expressive power for a future Internet, tussle issues must be taken
into account in their design.

(Certain classes of failure are easy to debug, even for contingent PHBs. Fail-
stop events that cause the element not to function at all can be isolated and
routed around just like any other router failure. “Fail-go” events do not
require diagnosis. It is the partial or Byzantine failures of a contingent PHB
that may cause diagnosis problems for the sender. It is for this sort of reason
that intentional invocation of PHBs is to be preferred unless the goal of the
PHB is to confound the sender.)

4.11 What is new

It could be argued that in introducing the term expressive power, I have
actually not said anything new. What is the difference between discussing
the expressive power of an architecture and just discussing the architecture?
I use the term expressive power to draw attention to and gather together
the aspects of architecture that relate to its network function, as opposed to
other aspects that might relate to issues of economic viability or longevity.
Equally important is to conceptualize expressive power in the context of
PHBs and how they are invoked. Some PHBs can be designed and deployed
without any support from the architecture: we have added firewalls and
NAT boxes to the current Internet more or less as extra-architectural after-
thoughts. But thinking about expressive power in the context of invoking
PHBs is a structured way to reason both about function and about security–
indeed I will argue that the taxonomy I offered for how PHBs can be invoked
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and alignment of interest will provide a structured way to reason about the
security implications of an architecture.

4.11.1 PHBs and layering

There is a convenient fiction that some Internet architects, including me,
like to propagate, which is that there are a limited set of functions that are
“in” the network, but that most of the elements that we find intermediating
communication today (e.g., “middleboxes”) are somehow “on” the network
but not ”in it”. This fiction lets us continue to argue that what the Internet
itself does (and what as architects we might be responsible for) continues to
be very simple, and the “middlebox mess” is someone else’s problem. It is
not hard to argue that complex services such as content caches are not “in”
the network, but things like firewalls and NAT boxes are harder to ignore.

One basis to define a service as “on” or ”in” is which actor operates it. ISPs
operate the Internet, so if the element is not under the control of an ISP,
how can it be “in” the network? In this respect, an ISP might correctly say
that since it is not responsible for an element that it does not operate, and
since the ISP has the responsibility to make sure the packet carriage function
continues to work even if such services fail, these other services must be at a
higher layer. Indeed, sorting different PHBs along an axis of which depend
on which is a good design principle. Very few network operators would
allow an element (with its PHB) that they do not control to participate
in the routing protocol of the region, for the same reason that the early
design of the Internet did not anticipate that hosts would participate in the
routing protocols. However, the taxonomy of how PHBs are invoked (modes
of delivery, parameters, etc.) is a cleaner way to classify different PHBs than
“in” or ”on”. As I look at the relation between architecture and economic
viability in Chapter 9 I will argue that design of expressive power will in fact
shape which actor is empowered to play one or another role in making up an
Internet out of its parts, which is a critical factor in the economic viability
of an architecture. These design alternatives, which derive from such things
as intentional vs. contingent delivery, are the important issues, not a vague
concept of “in” or “on”.
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Chapter 5

Alternative network
architectures

5.1 Introduction

[[[Note to readers of this draft. The discussion of the FIA projects in this
chapter is based on earlier material I have written in the course of the
program. The project descriptions are perhaps out of date in parts, and are
no doubt a bit brief. I intend to engage each of the projects to produce a
more substantial version that they each consider current. ]]]

Talking about network architecture in the abstract can seem, in a word,
abstract. Chapter 3 used the Internet as one case study, but it is useful to
have more than one example to draw on. Having several examples helps the
analysis to tease apart what is just a consequence of some particular prior
design decision, and what is perhaps more fundaments. The motivation for
this book arose in the context of the U.S. National Science Foundation’s
Future Internet Architecture project (FIA) and its predecessors. As well,
there have been projects in other parts of the world that have developed
distinctive visions for a future Internet. However, the NSF Future Inter-
net program was not the first moment when the research community has
considered an alternative network architecture. There have been a number
of proposals, going back at least 25 years, that have looked at different re-
quirements and proposed different architectural approaches. In this chapter
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I review a selection of the earlier proposals for a new network architecture,
and then briefly describe the FIA projects, so that I can draw on their
similarities and differences in the subsequent chapters.

As examples of proposals for an alternative network architecture I look at
the following:

• Two requirements documents from the time of the proposal for the
National Information Infrastructure (the NII)
[National Telecommunications and Information Administration, 1993]:
the Cross Industry Working Team Report [Cross-Industry Working Team, 1994]
and the Computer Systems Policy Project [Computer Systems Policy Project, 1994],

• Application Level Framing (ALF) [Clark and Tennenhouse, 1990],

• the Metanet [Wroclawski, 1997],

• Plutarch [Crowcroft et al., 2003],

• Triad [Cheriton, 2000],

• the DARPA New-arch project [Clark et al., 2004],

• Data-Oriented Network Architecture [Koponen et al., 2007],

• the Framework for Internet Innovation or FII [Koponen et al., 2011],

• Publish/Subscribe Internet Routing Paradigm (PSIRP and PURSUIT)
[?],

• Network of Information (Netinf) [Dannewitz et al., 2013],

• Internet Indirection Infrastructure (i3) [Stoica et al., 2004],

• Delegation Oriented Architecture (DOA) [Walfish et al., 2004],

• Delay/Disruption Tolerant Network Architecture (DTN) [Fall, 2003],

• What else?

A review chapter such as this faces an inherent dilemma. it can either
describe the projects in turn, which provides the reader with a perhaps co-
herent view of each proposal but a weak basis for comparison, or it can
look at different requirements and how different architectures address these
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requirements, which gives a better framework for comparison but may not
paint a complete picture of each architecture. My approach is to do some
of both–first look at architectures through the lens of their driving require-
ments, and then summarize the FiA architectures themselves.

5.2 Different requirements–different approaches

In some respects, architectural proposals are creatures of their time. Since
the Internet has proved quite resilient over time (an issue I consider in Chap-
ter 6), it is interesting that many of the proposals are driven by a concern
that the Internet cannot survive one or another change in the requirements
it faces.

As I have noted before, both I and many of the architectural designers dis-
cussed here have a preference for architectural minimality, but that minimal-
ity is shaped extensively by the set of requirements they choose to address.

NewArch The NewArch project spent a great deal of its effort trying
to understand the set of requirements that a successful future architecture
would have to address. The list of requirements discussed in the final re-
port include economic viability and industry structure, security, dealing with
tussle, supporting non-technical users (balanced with a desire for user em-
powerment), the requirements of new applications and new technology, and
generality. This list has a lot in common with the set of requirements I
have discussed in Chapter 2, which is not an accident. The NewArch work
laid the foundation for much of my subsequent thinking. While NewArch
did propose some distinctive mechanisms, which I will discuss in their place,
the discussion of requirements is perhaps as important a contribution as the
exploration of new mechanism.

5.2.1 Requirement: regional diversity in architecture

Today, the Internet, with its particular format for packets, seems to have
dominated the world. In earlier times, there was much less confidence in the
research community that this outcome would prevail. There were competing
architectural proposals, in particular Asynchronous Transfer Mode, that
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were competing to provide an alternative architecture with an alternative
protocol stack. This potential outcome drove the development of a number
of higher-level architectural frameworks that were intended to allow different
architectures, each running in a region of the Internet, to be hooked together
so as to provide end-to-end delivery semantics supporting a general range
of applications.

One very early proposal that addressed this idea was ALF, but since this
was not its major goal, I postpone its discussion.

Metanet The Metanet, described in a white paper by Wroclawski in 1997,
laid out the requirements for such a regional network very clearly. Here are
some quotes from the Metanet white paper:

We argue that a new architectural component, the region, should
form a central building block of the next generation network.

...

The region captures the concept of an area of consistent control,
state, or knowledge. There can be many sorts of regions at the
same time - regions of shared trust, regions of physical proximity
(the floor of a building or a community), regions of payment for
service (payment zones for stratified cost structures), and admin-
istrative regions are examples. Within a region, some particular
invariant is assumed to hold, and algorithms and protocols may
make use of that assumption. The region structure captures re-
quirements and limitations placed on the network by the real
world.

...

[D]ata need not be carried in the same way in different parts of
the network - any infrastructure which meets the user’s require-
ments with high confidence can be used to construct a coherent
application. Packets, virtual circuits, analog signals, or other
modes, provided they fit into a basic service model, are equally
suitable. The overall network may contain several regions, each
defined by the use of a specific transmission format.

...
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Paths of communications must thus be established in a mesh
of regions, which implies passing through points of connection
between the regions. We call these points waypoints.

...

Three essential aspects of the Metanet are a routing and ad-
dressing system designed for region-based networks, end-to-end
communication semantics based on logical, rather than physical,
common data formats, and abstract models for QoS and conges-
tion management; mapped to specific technologies as required.

While the Metanet white paper lays out these requirements, it does not
propose a specific architectural response–this is posed as a research agenda.

Plutarch In developing an architecture to meet these requirements, a key
question is what, if anything, the regions share in common. Are there com-
mon addresses or names, for example, and at what level in the architec-
ture? A specific proposal for a multi-region architecture is Plutarch, by Jon
Crowcroft and his co-authors. Plutarch is an experiment in minimality–an
attempt to put together a cross-region “glue” architecture that makes as
few assumptions about common function, common naming, and so on. In
Plutarch, regions (the Plutarch term is contexts) have names, but they are
not globally unique. Within a region, addressable entities have names, but
they are also not unique beyond the scope of a region. Regions are hooked
together by interconnection entities (the Plutarch term is interstitial func-
tions or IFs) that have names within the regions. To deliver data, Plutarch
uses a form of source address, which is of the form (entity, region, entity,
region,...entity). The sequence of entity values name the interconnection
entities that connect to the next region, where the next entity name has
meaning, until the final entity name describes the actual destination point.
Source strings of this form are only meaningful in the context of a particular
source region, where the initial entity name is well-defined and unique.

Plutarch includes a mechanism for state establishment at the region bound-
aries, to deal with the conversions that are required. In the view of the
authors, there might be many regions, but perhaps only a few types of
regions (ten or less) so the number of conversions that would have to be
programmed was practical.
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FII A key assumption of Plutarch was that the various architectures were
pre-existing, and had to be taken as given. This assumption drove many of
the basic design decisions, since Plutarch could make only the most mini-
mal set of assumptions about the feature of each regional architecture. In
contrast, the Framework for Internet Innovation (FII) made the assump-
tion that the various architectures would be specified in the context of the
overarching FII design, so FII could make much stronger assumptions about
what the regional architectures would support. At the same time, the au-
thors of FII again strove for minimality–they wished to constrain the differ-
ent architectures as little as possible while meeting the basic requirements
they identify. FII identifies three critical interfaces. The first, similar to
Plutarch, is the region interface. The second is the API at the application
layer. Plutarch does not emphasize this interface, but it is implicit in the
design of Plutarch that the end-points share a common view of the seman-
tics of the interchange. The third critical component of FII is a common
scheme to mitigate DDoS attacks. Their view is that DDoS attacks must
be mitigated at the network level, and require a common agreement on an
approach. Their approach, the shut up message or SUM, requires that all
regions implement a rather complex trusted server mechanism, and requires
an agreement to carry certain values intact across the region boundary.

The central mechanism they describe at the region interface is an agreed
means to implement routing. Their approach is pathlets [Godfrey et al., 2009],
but they stress that an alternative mechanism might be picked. However,
since there must be global agreement on the scheme, it has to be specified as
part of the architecture. In fact, there are a number of values that have to
be passed across the region boundaries, which implies that there must be an
agreed high-level representation for the values: the destination address, the
information necessary to mitigate DDoS attacks, and so on. Any regional
architecture that is to be a part of the FII system must comply with the
requirement to support these values and the associated mechanisms. In this
respect, as noted above, FII imposed a much larger set of constraints on the
regional architectures than does Plutarch. In part, this reflects the different
design goal. Plutarch is intended to hook together preexisting architectures.
FII is intended to allow new regional architectures to emerge over time,
within the pre-existing constraints imposed by FII. It is the view of the FII
that the constraints are minimal.

In fact, there might well be some argument as to whether FII is under-
specified. For example, the authors take the view that there is no need for
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any abstract model to deal with congestion or quality of service, in contrast
to Metanet, which considered congestion to be one of the key problems that
must be dealt with globally.

Discussion One of the key challenges with both Plutarch and FII is the
balance between how much per-flow state is created and retained at the
regional boundaries, and the range of data conversions that can be done
there. FII assumes that the devices at the regional boundaries have no
knowledge of the semantics of the transport protocol, so all parameters
related to the payload itself must be embedded in the payload transported
within the various regional architectures. The FII paper hints that across all
regional architectures there must be a common concept of a “packet”, which
can be converted into a specific representation in each regional architecture.

It is perhaps informative to compare the goal of Plutarch or FII with the goal
of the original Internet. The original goal was hooking together disparate
networks: the ARPAnet, a satellite network and a packet radio network.
How does the solution the Internet took to this challenge differ from the
approach of Plutarch or FII? When dealing with the interconnection of dis-
parate technologies, there are two general approaches: overlay or conversion.
In a network architecture based on conversion, such as Plutarch or FII, the
assumption is that the interconnected networks provide, as a native modal-
ity, a service that is similar enough that the service of one can be converted
to the service of the other. Given this approach, what a conversion archi-
tecture such as Plutarch or FII must do is to define an abstract expression
of that service in such a general way that the conversion is likely, while still
making it possible to build useful applications on top of the service. In con-
trast, an overlay network defines an end-to-end service, perhaps expressed
as a common packet format and the like, and the underlying service of each
type of network is used to carry that service over its base service. So, in the
case of the Internet, the basic transport service of the ARPAnet was used
to carry Internet packet, rather than trying to somehow convert an abstract
Internet packet into an ARPAnet packet.

When the Internet was being designed, the designers did not think of it as an
overlay network. The term did not exist back then, but more to the point
the term has come to have a slightly different meaning. As the Internet
architecture has gained dominance, the need to deal with different regional
architectures has faded. Today, the term overlay network is used to describe
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a service that runs on top of the Internet to provide some specialized service,
such as content delivery. The possibility that such a specialized service might
want to run over heterogeneous lower layer network architectures, such as
the Internet and “something else,” is not particularly relevant. But in the
beginning, it was the presence of those disparate networks that made it
possible for the Internet to exist.

In this context, FII is conceived as solving a very particular problem–by ab-
stracting the service model away from the details of how it is implemented
(e.g., the packet formats, and the like) it should be possible to move from
one conception of the embodiment to another over time, as new insights are
learned about good network architecture design. It is the specification of
that abstract service model, and the demonstration that it is really inde-
pendent of the current embodiment, that is the key architectural challenge
for an architecture based on conversion.

As I write this book in 2016, the latest technology that might call for a
heterogeneous regional architecture is what is currently called Internet of
Things (IoT). This technology space, previously called sensor and actuator
networks, involves devices that may be very low power, fixed function, and
perhaps wireless. There is a hypothesis that the current Internet protocols
will not serve these sorts of devices well. The challenges go beyond simple
performance–the IoT environment raises issues related to management and
configuration, issues that the current Internet architecture does not address
at all. However, my suspicion (again, as I write this in 2016) is that since
many IoT devices are fixed function, the interconnection between an IoT
network (if it has a distinct architecture) and the current Internet will hap-
pen at the application layer, not at a lower transport layer. In other words,
there will not be a strong motivation to treat an IoT network as a region
across which we establish end-to-end connections at the data transfer layer
to devices on the current Internet.

Another set of requirements that trigger regional diversity arise in De-
lay/Disruption Tolerant Networks (DTNs), where regions with different
sorts of latency and intermittency are connected together. i discuss DTNs
below.
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5.2.2 Requirement: performance

ALF Given that the field of network research is often focused on issues
of performance, it is interesting that very few of these architectural propos-
als had improved performance as it primary objective. One proposal that
focused on performance was Application Layer Framing, or ALF. However,
the aspect of performance addressed in ALF was not network performance,
but end-node protocol processing performance. In particular, the functional
modularity of ALF was motivated in large part by a desire to reduce the
number of memory copies that a processor must make when sending and
receiving packets. In principle, ALF allowed the protocol stack to be im-
plemented with as little as two copies of the data (including the application
layer processing), which was seen at the time as a key factor in improving
end-to-end throughput. This issue seems to have faded as a primary concern
in protocol processing, but in fact it may be the case that the overhead of
copying data by the various layers of the protocol stack is still a limiting
factor in performance.

ALF also allowed for regional variation in architecture; in particular, the
authors were considering the Internet protocols and ATM as candidate re-
gional architectures. This degree of variation implied that packets would
have to be broken into cells or incoming cells combined into packets at a
regional boundary, which in turn implied a lot of per-flow state at a regional
boundary. The common element of payload across all the regional architec-
tures was a larger data unit called an Application Data Unit, or ADU. ADUs
were to be transmitted as sequences of bytes, which could be fragmented or
reassembled as desired. The loss of part of an ADU due to a lower layer
failure caused the whole ADU to be discarded, which presumably implied a
potentially large performance hit for a lost packet or cell.

5.2.3 Requirement: Information Centric Networking

The idea behind Information Centric Networking, or ICN, is that users do
not normally want to connect across the network to a specific host, but
rather to a higher-level element such as a service or a piece of content. The
content or service might be replicated at many locations across the net,
and the choice of which location to use is a lower level decision that is not
fundamental to the user’s goal. (Of course, the lower level considerations,
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which might include performance, availability and security, do matter to the
user, and should not be ignored all together.)

TRIAD TRIAD is an example of an ICN that is largely inspired by the
design of the Web. The names used for content in TRIAD are URLs, and
the user requests content by sending a lookup request containing a URL.
To over-simplify, TRIAD, routers contain routing tables based on URLs (or
suffixes of URLs), so lookup requests can be forwarded toward a location
where the content is stored. The lookup request is actually a modified TCP
SYN packet, so once the lookup request reaches the location of the content,
a somewhat normal TCP connection (using lower level IP-style addresses)
is then established to transfer the data.

TRIAD does not actually require that all routers support a URL-based
forwarding table. TRIAD assumes a regional structure (a connected set of
Autonomous Systems or ASes, similar to today’s Internet) and requires that
each AS will maintain a set of routers with a URL forwarding table, and can
forward a setup request to one of those routers when it is received by the AS.
So most routers could function as today, with only an IP-based forwarding
table. Another feature of TRIAD is a loose source-routing function, so that
different addressing regions can be tied together. This scheme would allow
a TRIAD Internet to reuse IP addresses within different regions, so as to
avoid running out of addresses.

The key challenge with TRIAD is to design a URL-based routing system
that scales to the size of the Internet and the anticipated number of content
names in the future. The concept is a BGP-like route announcement scheme,
where what is forwarded would normally only be the first and second levels
of a DNS name. So the forwarding table would have to be of a size to hold
all the second level DNS names, which is many millions but not billions.
For a URL where the third or subsequent name components describe a
piece of content not stored at the location of the second level name, that
location would store an indirection binding to allow the lookup request to
be redirected to the proper location.

Multiple content sources can announce the same DNS suffix, and the rout-
ing protocol would then compute paths to whichever source is closest, so
the TRIAD scheme provides a form of DNS-based anycast. Further, el-
ements that announce a DNS name can perform functions other than the
simple delivery of the content. For example, an element might transform the
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content into a format appropriate for the requester, as it retrieves it from
the original source. In this way, certain sorts of middlebox function can
be supported by the TRIAD architecture. The TCP-like connection from
the requesting client would be intentionally forwarded to the transform ele-
ment, in contrast to a “transparent” element that imposes itself (contingent
or topological receipt) into the path without the knowledge of the end point.

DONA The Data-Oriented Network Architecture (DONA) system is in
many respects similar to TRIAD. A lookup message (called a “FIND” re-
quest in DONA) is sent from the requesting client, which (when it reaches
a location with the content) triggers the establishment of a TCP-like con-
nection back to the client to transfer the content. A key difference is that in
DONA the DNS names are replaced by flat, self-certifying names. Content
is created by a principal, an entity defined by a distinct public-private key
pair. A name for a piece of mutable content is of the form P:L, where P
is the hash of the principal’s public key and L is a label unique within the
namespace of P. For immutable objects, L can just be a hash of the content.
Similar to TRIAD, names are propagated in a BGP-like routing system to
special routers in each AS that support name-based forwarding. A principal
can announce names of the form P:L (which give the location of a specific
content object), or P:*, which provides the location of the principal. Again,
the principal can announce these names from multiple locations, providing
an anycast-like character to the lookup process.

When content is retrieved, what is actually returned is a triple of the form
<data, public-key, signature>. The recipient can first verify that P is the
hash of the public key, and then verify the signature (which would have been
computing using the private key matching that public key). In this way, a
recipient can verify the authenticity of content without needing a verified
connection to the original source. Content can be cached (ignoring issues of
stale or malicious cache entries with old version of the mutable data).

Because names are flat in DONA, the number of distinct routing entries will
be much higher than with TRIAD. DONA proposes an important scalability
assumption. The DONA Internet, similar to today’s Internet, is assumed to
have a somewhat hierarchical structure, with Tier-1 providers at the core,
as well as the option of peering at any lower level. In today’s Internet, a
peripheral AS need not keep a complete forwarding table but can have a
default route “toward” the core. Similarly DONA routers outside the core
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need not store a complete name-based forwarding table. Only in the DONA
equivalent of the “default-free” region of today’s Internet must a complete
name-based forwarding table be stored.

The authors of the DONA scheme provide an analysis of the rate at which
routers must process FIND messages and routing update messages (which
they call REGISTER messages), and make a claim in their paper that the
performance demands are feasible.

DONA, like TRIAD, can use the basic lookup semantics to implement
a number of advanced features. These include caching, a substitute for
the session setup semantics of a protocol like SIP, middlebox functionality,
a publish-subscribe semantics, and client-controlled avoidance of an over-
loaded or mis-functioning content server. This latter scheme is important to
avoid a class of malicious behavior that leads to a loss of availability, where
a malicious server purports to deliver content matching the name P:L. The
receiver can detect that the content is invalid, but without some way to
“route around” that malicious source, there is no way to ask for a different
copy. To address this problem, an extension to DONA allows the requester
to ask for the “second-closest” copy, or “k-th closest”, rather than the de-
fault closest copy. How the routing protocols can support this semantics is
an interesting challenge.

Named Data Networking Named Data Networking, or NDN, described
in more detail below, takes some of the ideas from TRIAD and DONA and
pushes them into the data plane. In particular, instead of using a name-
based lookup packet to trigger a TCP-like content transfer phase, NDN uses
content names rather than addresses in every packet, and removes from
the scheme any concept of routable lower-level addresses. The names, like
TRIAD, are URL-like in format, but now every router must have a name
based forwarding table. Names for content in NDN describe packets, not
larger data units, and include both a URL-like element for forwarding as
well as a self-certifying name for security. Interestingly, the DONA proposal
also notes that names could describe chunks of data, not the complete data
unit, but this is a secondary consideration for DONA.

PSIRP/PURSUIT The Publish/Subscribe Internet Routing Paradigm
(PSIRP) and its successor, PURSUIT, is a different example of ICN archi-
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tecture. Objects in PURSUIT are higher level, more closely related to what
applications, services or users might require, rather than packets. In this
respect, PURSUIT objects are similar to DONA or TRIAD objects. Each
object is identified by a rendezvous ID (RID), and published to make it
available in one or more scopes. Abstractly, a scope is a region within which
an RID is unique. Scopes themselves are named using a form of RID (in
other words scopes do not necessarily have globally unique IDs) so the name
of an object is a DAG of RIDs. Objects are published by their creator by
contacting a scope to assign an RID to the object. Subscriptions express
interest in receiving the object. The architecture is explicit about both pub-
lish and subscribe in order to create a balance of control between source
and destination. Scopes also contain a topology manager (TM), which is re-
sponsible for keeping track of where copies of the content are stored, either
in a cache or at the location of the publisher. When a subscribe request is
received by the scope, the RNs contact the TM, which determines how to
deliver the content to the requesting subscriber.

Network of Information (Netinf) Netinf, like DONA used flat, glob-
ally unique names to identify data objects (in contrast to NDN that names
packets). The security architecture of Netinf, like some other schemes, de-
fines the name of an object to the hash of its contents. Netinf, like NDN,
defines a standard format for the data object (in this case a MIME represen-
tation) so that any element in the system, not just the end node, can verify
that an object corresponds to the name associated with it. The authors
stress the importance of being able to validate a data object independent of
where it comes from, since (like many ICN proposals) Netinf includes the
management of content caching as part of the architecture.

The Netinf retrieval model is similar to DONA: a get message is routed us-
ing the ID of the object to a site where the object is found, at which point a
transport connection is opened to deliver the object. The Netinf designers
contemplate a system with regional diversity, as discussed above, and dis-
cuss two approaches to realizing this: either state is established at region
boundaries as the get is forwarded so that subsequent transport connections
can be linked together through that boundary point to deliver the object,
or some sort of return source route is assembled in the get message to allow
a response to be returned.

Netinf discusses two modes of ID-based routing. One is a system of Name
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Resolution Servers (NRS), in their proposal organized as a hierarchy rather
than a DHT, which can forward the request toward a location where the
object is stored. Their scheme seems similar in general terms to the scheme
described in DONA. As well, they discuss direct routing on IDs in the routers
in the system, perhaps in a local region of the network. In this respect, the
scheme is similar to that of MobilityFirst, where the GNRS does not return
the exact location of an object, but just the region (an AS, or network, or
whatever) where the routers maintain a per-object forwarding tabel. Netinf
refers to this sort of information as a routing hint, and point out that the hint
need not get the request all the way to the region of the destination, but only
toward it, were another NRS may have more specific information. They note
that these schemes can support peer caching–an end-node could inform an
NRS that it holds a copy of some content, or respond directly to a GET that
is broadcast in some region. With respect to routing, Netinf and NDN have
some similarities: both architectures allow for a range of routing/forwarding
options that may get a request to a location of the content. However, Netinf
allows for a query to a NRS as well as a local per-object forwarding table.
The cited Nefinf paper included an analysis arguing that a global NRS of
object IDs is practical.

Netinf contemplates several sorts of caches. One is an on-path cache. This
sort of cache works by what I called contingent delivery: if the request packet
happens to encounter a node with the content, the content will be returned.
Netinf also allows for off-path caching, where an NRS node maintains explicit
knowledge of where a copy is stored, and explicitly provides the address
of that node to the router forwarding the request, so that the request is
explicitly delivered to the cache. In Netinf, NRS sites may perform rather
complex operations to generate a response to the request for a routing hint,
including

Discussion Unlike NDN, PURSUIT subscriptions and publications are
persistent, with the state for that managed at the network edges. In con-
trast, NDN interests are reflected as state ”inside” the network at each node.
PURSUIT, like DONA or TRIAD, has a lookup phase to find the best loca-
tion of the content, followed by a transfer phase that actually retrieves the
content. One could imagine using TCP for this phase, although PURSUIT
is defined as a free-standing architecture that need not use the Internet
as a supporting architecture. The large, two-level address space of DONA
is replaced in PURSUIT by the nested sequence of RIDs that define the
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nested set of scopes within which the rendezvous information about the ob-
ject is contained. In this respect, the names are hierarchical, somewhat like
TRIAD, but are in no way modeled on URLs. There is no implication that
the nested names in PURSUIT have “meaning” in the same way that DNS
names have meaning. The scope names and object names in PURSUIT are
just IDs, and do nothing but identify which scope is being used to provide
the rendezvous service. If there are “meaningful” names in PURSUIT, they
will exist at a higher level.

DONA (as well as Netinf) can be seen as pushing the idea of flat identifiers
to the limit (the DONA names P:L have global scope), which is a good
strategy for a research project. In this respect, there is a similarity with a key
component of the MobilityFirst architecture, discussed below. The problem
addressed in DONA and MobilityFirst architectures are slightly different: in
DONA the challenge is to give information objects stable names, and to find
find them as they move. In MobilityFirst, the challenge is to track mobile
devices (which could include objects on those devices) as they change their
point of network attachment. These slightly different use cases will imply
differences in the rates of registrations and lookups, but both schemes call
for a global system that can resolve flat names with low latency. The nested
scope structure of PURSUIT implies more steps to a lookup, but avoids the
need for a single global registry of object names.

I noted in Chapter 3 that the Internet required but did not specify a routing
protocol that could deal with Internet-scale end-node addressing. The In-
ternet of today depends on a degree of topological aggregation of addresses
(the Internet routes to prefixes, not individual addresses) but the degree of
prefix aggregation is not specified in the architecture, but is a pragmatic
response to the capabilities of current routers. Similarly, the challenge for
schemes such as Dona, Netinf, NDN and MoblilityFirst is whether a routing
scheme can be devised that can meet the requirements of the architecture–a
scheme which in each case they require but do not specify. (In each case,
the proposals include a sketch of a possible solution to give credence to the
scheme, but like the Internet, the routing scheme used in practice would be
expected to evolve over time.)
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5.2.4 Requirement: architecting for change

As I will discuss in Chapter 6, there are several views as to how to design
an architecture so that it survives over time. Different schemes here take
different views of this objective. FII assumes that over time new architec-
tures will be designed, and thus the goal of the higher-level FII design is to
define a minimal set of constraints on these different architectures so they
can interwork, thus providing a path for migration. The XIA system, dis-
cussed below, assumed that there would not be a need for that radical a
replacement of the overall architecture, and assumes a common packet for-
mat, which FII explicitly rejected. XIA allows for incremental evolution of
the addressing format, which has proved the most challenging aspect of the
current Internet to change.

5.2.5 Requirement: intermittent and high-latency connec-
tivity

The Internet and its kin were conceived in the context of immediate delivery
of packets: immediate in the sense that they were suitable for interactive
applications. A well-engineered region of the Internet today will often deliver
packets within a factor of 2 or 3 of the latency of light. However, not all
operating contexts have characteristics that can even attempt to support this
class of interactive applications. The Interplanetary Internet initiative laid
out the extreme form of the challenge–intermittent connectivity (perhaps as
satellites come in and out of range) and latencies of seconds if not minutes.1

In response to these challenging requirements, a class of network called De-
lay/Disruption Tolerant Networks (DTNs) has been proposed. The discus-
sion here is based on a seminal framing paper [Fall, 2003]. As described
there, the core idea is that the basic forwarding model must be store-and-
forward (rather than direct end-to-end forwarding) and that the unit of
storage is not the packet (which might not be a uniform standard across the
system, but a higher-level entity (similar to an Application Data Unit) which
they call a bundle. The DTN architecture is based on regional variation in
underlying architecture (for example classic Internet on any given planet),
and is thus similar in some respects to proposals such as Metanet, Plutarch
or FII. (The DTN proposal makes specific reference to Metanet.) However,

1The interested reader may refer to http://ipnsig.org/ for background on this initiative.
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DTN does not attempt to stitch together regional architectures to achieve
something end-to-end that resembles the behavior of the individual regions.
DTN assumes devices at region boundaries that terminate transport connec-
tions, receive and reassemble bundles, and potentially store those bundles
for long periods of time until onward transfer is possible. Different trans-
port protocols might be used in different regions, depending on whether the
latencies are on-planet (where TCP would be suitable) or multi-minute.

The names for DTN bundles are of the form <region-name, entity-name>.
This structure is similar to what is seen in MobilityFirst, where the region
names are globally meaningful and the entity names are only routable within
the region. In the DTN paper, each of the names is a variable-length text
string, rather than any sort of flat self-certifying ID. However, those names
could be introduced into DTN without disrupting the scheme. Like many of
the other schemes I have discussed here, what DTN depends on is a routing
scheme that is not specified as part of the architecture, but must be realized.
In this case, the routing scheme is not dealing with routing to objects–it is
routing to a potentially small number of regions. The challenge for DTN
routing is to deal with the complex and multi-dimensional parameters of the
overall network, which may include satellite links that provide intermittent
connectivity on a known schedule, or (as a terrestrial example) so-called data
mules such as a rural bus or delivery vehicle with a wireless base station
that can pick up or drop off bundles whenever it drives by. They propose a
framework in which routes are composed of a set of time-dependent contacts,
which are composed by a routing algorithm, perhaps somewhat the way
pathlets are composed.

Due to the long delays in the system, the classic end-to-end reliability model
of the Internet with acknowledgements flowing back to the source will often
not be practical. Instead, DTN requires that the inter-region store-and-
forward elements be reliable enough to assume responsibility for the assured
forwarding of bundles. In this respect, the basic communication paradigm
of the DTN architecture resembles Internet email, with (presumed reliable)
Mail Transfer Agents and no architected end-to-end confirmation of delivery.
As well, since store-and-forward nodes will have finite storage, DTNs raise
complex flow control issues.

What distinguishes DTNs from (for example) FII is not the structure of the
names, but the requirements that the designs put onto the key elements–
requirements that the architecture specifies but leaves to the implementer
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to realize, such as inter-region routing and flow control.

MobilityFirst, with its emphasis on mobile devices, also discusses the need
to store objects at key points in the network if intermittent connectivity
prevents them from being delivered. [[[Not sure if they store packets or
ADUs. I don’t know of any ADU naming in MF. Ask about this aspect of
the design.]]]

5.2.6 Requirement:mobility

The previous discussion has hinted at most of the key requirements for
an architecture that supports mobility: separation of location from iden-
tity, intermittent connectivity, variable performance characteristics, and the
ability to track the location of moving devices, networks and content. Archi-
tectures differ in how they deal with theses issues. MobilityFirst assumes a
low-latency Global Name Resolution Service that can look up the current lo-
cation of a mobile entity while a packet is in transit. Other schemes assume
a less aggressive approach to mobility, in which the sender must determine
the new location of the entity and retransmit the packet. MobilityFirst al-
lows for short-term storage of packets if onward transit is not possible. NDN
assumes that routing protocols suited for different sorts of regions (such as
broadcast for wireless regions) can be used as a part of dealing with mobil-
ity of content. If devices move in NDN, they will have to re-transmit any
pending interests, but since the mobile device initiates this action, there is
no need for any sort of name resolution service to track mobile devices.

5.2.7 Requirement: services in the net

This class of architecture has the goal of invoking service “in” the network
as packets flow from sender to receiver. The proposals in this class directly
address the question of the expressive power of an architecture, the balance
of control held by the sender and the receiver, and the different sorts of
delivery modes and PHB arguments, as summarized in Table ??. I look at
four examples of this class of architecture: TRIAD, i3, DOA and Nebula.

TRIAD The first of the architectures I discussed that support this func-
tion is TRIAD. TRIAD establishes a connection to a abstract entity (typ-
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ically a item of information) using a setup packet with a URL in the ini-
tial packet. As I described in Section 5.2.3, the provider of content adver-
tises that content by inserting the top-level components of its URL into the
TRIAD name-based routing function. Once this mechanism is in place, it
can be used to route any sort of session initiation request to a location ad-
vertised by the provider, so the scheme is a somewhat general form of inten-
tional delivery to a service point. The URL provides an explicit parameter
to whatever PHB that service node implements. However, the granularity
of the TRIAD routing is only the second (or perhaps third) level of DNS
name in the URL, so whatever service node is referenced by that URL will
end up being invoked by a large number of URLs.

Internet Indirection Infrastructure (i3) In i3, receivers express an
interest in receiving a packet by creating a ID, and announcing to the i3
system the pair (ID, addr), where addr is (for example) an IP address.
(See below for what “announcing” actually means.) The term used in i3
to describe what the receiver is creating by this announcement is a trigger.
After this, the receiver might then create an entry in a DNS-like system that
mapped some user-friendly name to that ID. The sender would look up that
name in this i3 DNS system, which would return the ID to the sender. The
sender would then initiate communication by sending a packet addressed to
the ID. i3 associates the ID with a node in the i3 system where the trigger
is stored. In the simple case, once the packet has been delivered to this
node, the trigger provides the actual address of the receiver, and the packet
is forwarded onward to the receiver using that address.

i3 actually supports a more complex use of IDs, to allow both the sender
and the receiver to forward the packet through a sequence of servers (PHBs)
on the way from the sender to the receiver. A receiver (or a third party)
can include in a trigger a sequence of items, not just a single address. This
trigger sequence can include both IDs and addresses. As well, the sender
can include in the packet a sequence of IDs, rather than a single ID (that
might have been retrieved from the i3 DNS). These IDs represent the services
(PHBs) that the sender wishes to have performed on the packet. The sender
puts this sequence of IDs in the packet and sends it to the node associated
with the first ID (the location where the trigger is stored). At that point,
the service looks up the trigger, retrieves the trigger sequence, prepends it
to the sequence in the packet, and then forwards it to the first item on the
modified list, which could be another ID or an address.
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If that first item is an address, the packet is sent directly to that node using
the lower level mechanism. That site might be a location where a PHB is
implemented. After the PHB is executed, that node will remove its address
from the front of the sequence and once again forward the packet to the
item now at the head of the sequence. The execution order of the different
services identified by the various triggers is potentially complex, although
if the sender prepends its IDs in front of the ID from the receiver, the
execution should proceed in a sensible order. (If the sender does something
more complex to the sequence, such as putting some of its IDs after the ID
of the receiver, this might be a signal that the interests of the sender and
receiver are not aligned, and something like an attack is contemplated.)

In i3, the nodes where triggers are stored are organized as a DHT. The first
packet of a sequence is sent by the originator to a nearby node in the DHT,
which forwards it according to the distributed algorithm of the DHT (the
prototype used CHORD) until the packet reaches the node responsible for
that ID, which is where the triggers are stored. After the first packet is
processed, the mechanisms of i3 provide to the sender the IP address of the
node in the DHT where the trigger is stored, so after the first packet of
the sequence, the sender can forward the subsequent packets directly to the
correct DHT node. However, every packet follows the triangle path from
sender to DHT node to receiver. If there is a sequence of IDs in the path,
the packet will flow through a number of DHT nodes. This process could
be highly inefficient, depending on which DHT node the ID maps to, so the
authors suggest an optimization where the receiver create a session ID (they
call this a private ID), which has been carefully selected to hash to a DHT
node near the receiver.

There are a number of enhancements in i3, including the idea of longest
prefix match on IDs, to allow selective delivery based on the location of the
sender. But the performance of i3 will be fundamentally determined by the
routing required to send the packets to the nodes in the DHT where the
triggers are located.

Delegation Oriented Architecture (DOA) DOA has much in common
with i3 (including a joint author) but simplifies and makes more efficient
the forwarding mechanism. Like i3, forwarding in DOA is specified by flat,
unique IDs, in this case associated with a network entity (as opposed to
a service in i3). As with i3, the conversion from an ID to a network-level
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address (e.g., an IP address) is done using a DHT. Similar to i3, what is
associated in the DHT with an ID can be either an IP address or one or more
IDs. However, in contrast to i3, where the packets are forwarded through
the node in the DHT hosting the ID, in DOA the DHT is used to retrieve the
matching data. If the returned data is an IP address, the packet can then
be sent directly to that location. If what is returned is a further sequence
of IDs, the lookup process is repeated by the sender until it yields an IP
address. The sequence of IDs is included in the header of the packet, so as
the packet proceeds through the network from service point to service point,
further lookups of the IDs will occur.

What the DHT actually returns is called an e-record. The security archi-
tecture of DOA requires that the ID is the hash of a public key belonging
to the entity creating the e-record. The e-record includes the ID, the target
(the IP address or sequence of IDs) an IP hint that provides improved effi-
ciency (see the paper), a TTL after which the e-record must be discarded,
the public key of the creator, and a signature of the e-record made using the
private key associated with that public key. So a recipient holding an ID
can confirm that the e-record was made by the party that holds the public
key from which the ID is derived. DOA assumes but does not specify some
higher level naming mechanisms that would map a user-friendly name (e.g.,
a URL) to an ID.

Since e-records can be verified independently of where they are obtained,
there are useful optimizations that can improve the performance of DOA. For
example, when a client (which would be identified by its own ID) contacts a
server, it can include the e-record for its ID in the data, thus side-stepping
the necessity for the server to query the DHT to return a packet to the
client.

Both the sender and the receiver have some control over how a packet is
forwarded in DOA. The sender can prepend to the data returned from the
DHT a sequence of IDs representing the needs of the sender. So the packet
will first flow to services specified by the sender, then to services specified
by the receiver. I believe that the expressive power of i3 and DOA to define
an execution order for PHBs is equivalent, but there may be creative ways
of using the two architectures, perhaps ways not contemplated by their
creators, that could create very complex execution orders. Because in DOA
the DHT is used as a query mechanism rather than a forwarding mechanism,
it is probably simpler for a sender to determine what the execution order of
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the PHBs will be. A sender could look up the first ID, look at the returned
data, recursively look up the sequence of IDs in that data, and eventually
construct the final sequence of service points through which the packet will
flow. Of course, an intermediate node could rewrite the header or otherwise
misdirect the packet, but since all the services in the path are specified by
either the sender or the receiver , if a service mis-directs traffic it is a signal
that the service is not trustworthy. Normal execution would not involve the
invocation of a service unless either the sender or the receiver requested it.
(In DOA all delivery is intentional–there is no contingent delivery in DOA
at the level of services specified by IDs.)

DOA must deal with the situation where the interests of the sender and
receiver are not aligned. If the sender is an attacker, he can be expected
to manipulate the data that comes back from the DHT before sending the
packet. He might omit some of the IDs and attempt to send a packet directly
to the final ID in the sequence, thus bypassing some services specified by
the receiver (presumably these might be protection services rather than
functional services). DOA does not provide a clean way to map adverse
interests into a coerced delivery mode, where the sender must send the data
to the IDs in turn. There are two options in DOA that can deal with this
situation. If the later IDs map to a different address space from the sender,
then the sender cannot address the final receiver directly. (The coercion in
this case would be a form of topological delivery, using a DOA node that is
an address translator to coerce the sender to traverse it.) DOA also specifies
a way for an intermediate node to sign a packet using a key shared between
the intermediate node and the receiver, so that the receiver can check that
the packet actually passed through that node. This scheme gets complex if
multiple intermediate nodes need to sign the packet, but can insure that the
packet has been properly processed. However, it cannot prevent a malicious
sender from sending packets directly to the address associated with the final
ID, so DOA cannot prevent DDoS attacks based on simple flooding. The
paper notes that some other mechanism is required for this purpose.

Nebula Nebula, discussed in more detail below, defined a much more
robust mechanism to control routing of packets through services, in order to
prevent (among other things) the problem in DOA of an untrustworthy node
that might mis-direct a packet, skip a processing step, and so on. In Nebula,
the sender and receiver can each specify the set of services they would like
to see in the path between them, but the query to the DHT to retrieve a set



5.2. DIFFERENT REQUIREMENTS–DIFFERENT APPROACHES 101

of IDs is replaced by a query to the NVENT control plane, where there is
an agent representing the interest of every such server, and all such servers
must consent to serve the packet before it can be sent. NVENT computes,
with some clever cryptography, a Proof of Consent (POC) that is returned to
the sender. The POC serves as a form of source route, and only by putting
this POC into the packet can the packet be successfully forwarded; Nebula is
“deny by default”. As the packet traverses the sequence of services, the POC
is transformed into a Proof of Path (POP), which provides cryptographic
evidence that all the service nodes have been traversed in the correct order.
These mechanisms address the issue briefly mentioned in the DOA paper
where it is suggested that a cryptographic signing be used to confirm that
the packet has been processed by an intermediate node.

5.2.8 Industry structure

One of the requirements I listed for an architecture was its economic vi-
ability and the industry structure that its structure induced. Few of the
academic proposal for architecture directly address this goal, but architects
from industry have been quick to understand and respond to this require-
ment. In 1992, when the government, under the urging of then Senator
Gore, announced the vision of the National Information Infrastructure, in-
dustry was quick to respond with what it considered its critical concerns,
which was the modularity of the design and the resulting implications for
industry structure. They understood that since the private sector was to
deploy the NII, the structure of the industry was key to its success. Two
different groups developed a response to the call for an NII.

CSPP The CSPP, now called the Technology CEO Council, responded to
the concept of the NII with a high-level vision document, perhaps consis-
tent with drafting by a group of CEOs. It does not talk about architecture,
but contains a requirements list that is in some respects similar to what
I have discussed here (access, first amendment, privacy, security, confiden-
tiality, affordability, intellectual property (protection of), new technologies,
interoperability, competition and carrier liability (freedom from)).

XIWT The Cross-Industry Working Team, convened by Robert Kahn at
the Corporation for National Research Initiatives, dug deeper into the po-
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tential architecture of an NII. They described a functional services frame-
work and a reference architecture model. After their own list of requirements
(sharability, ubiquity, integrity, ease of use, cost effectiveness, standards and
openness), this group focused on the critical interfaces that would define the
modularity of the NII. They emphasized two interfaces that were not well-
defined in the Internet: the Network-Network interface (the data and control
interface that defines how ISPs interconnect) and the Network Service Con-
trol Point to Network interface, which would allow for intelligent control of
the network, perhaps supporting the ability of third parties to control the
behavior of the network. This latter interface is somewhat reminiscent of the
intelligent network interface being contemplated by the telephone system to
allow the control of advanced services, and is a hint that the members of the
XIWT were not totally committed to the idea of the “dumb, transparent”
network. Perhaps in the proposal for a Network Service Control Point we
see an early glimmer of Software Defined Networking.

5.3 The Future Internet Architecture project

There were several different architectural proposals that were developed as
a part of the NSF Future Internet Architecture program, some of which I
mentioned earlier. I describe them below.

5.3.1 Expressive Internet Architecture (XIA)

The emphasis of the XIA scheme is on expressive addressing in packets, to
allow the network to use a variety of means to deliver the packet to the
intended destination, and to provide a range of services in the network.
The rich addressing/forwarding mechanisms in XIA allow a packet to carry
several forms of addresses at once. For example, they can carry the content
id (a CID) of a desired piece of content, but as well the ID of a server hosting
that content (a SID), or the host where the service is located (a HID) or an
administrative domain in which the CID is known (an AD). This richness is
described as expressing iintent, and the other addresses allow various forms
of fallback forwarding. This flexibility allows the end-host to select from a
richer set of network services. It also should contribute to the longevity of
the design, as it would permit a more incremental migration to a new sort
of XID than the current migration from IPv4 to IPv6.
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Some specific features of the XIA scheme are:

• The various IDs, collectively called XIDs, are specified to be self-
certifying. For example, they may be the hash of a public key, or
the hash of the content to which they refer. This design allows the
end-points (e.g. the applications or perhaps the actual human users)
to confirm that the action they attempted has completed correctly:
that they connected to the host they intended, got the content they
intended, and so on. Put otherwise, these mechanisms transform a
wide range of attacks into detected failures.

• XIA gives the end-point options for control to bypass or route around
points of failure in the network.

• The SCION mechanisms (part of XIA) provide a structure to break
up the overall network into what are called trust domains, which allow
a variety of end-point controls over routing.

XIDs provide a means to confirm that the correct action occurred once the
end points have the correct XIDs. However, most network operations start
with “higher level” names that describe what is desired, such as URLs,
email addresses, and the like. Since different applications may involve dif-
ferent sorts of high-level names, the XIA architecture does not define how
these names should be converted to XIDs in a trustworthy way. The XIA ar-
chitecture gives requirements as to what the application and its supporting
services must do, but does not dictate a mandatory way of doing it.

5.3.2 MobilityFirst (MF)

The MobilityFirst architecture is motivated by the desire to deal with issues
raised by mobile end-nodes–in particular movement of devices from one net-
work access point to another, and transient outages when devices become
unreachable. In this architecture, naming/addressing is done at two levels.
At a higher level, a number of name services similar to the DNS, which they
call Naming Services (NSs), map from a host, service, sensor, content or
context (a context is a set of things that match some criteria) to a flat ID,
a GUID. At a lower level, there is a service, the Global Name Resolution
Service or GNRS, that maps from a GUID to its current location, which is a
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Network Address, or NA. A network address has a network part NA:N and
a port part NA:P.

The essential idea behind the MobilityFirst design is that both the destina-
tion GUID and the destination NA are included in the header of a packet.
This allows rapid forwarding based on the NA:N, but also allows elements
in the network to deal with mobility and redirection by making dynamic
queries of the GNRS as the data is moving through the network. If the
NA included in the packet by the source is not the current location of the
destination (e.g. the network N cannot resolve the GUID), routers in the
network can attempt to look up a new NA. The design also has the ability to
store data in transit at intermediate points if the destination is temporarily
unavailable due to wireless connectivity issues. When data is stored, it is
identified by its GUID, until a new NA can be determined for the destina-
tion.

To enhance security, both the GUID and the NA are public keys, so anyone
having a GUID or a NA can confirm that the binding is valid. The names-
pace of NAs is thus flat. Their design assumption is that there might be as
many NA:N values as there are routing table entries today.

The piece of mechanism that must be designed to make MobilityFirst real-
istic is the GNRS, which must be able to map a large set of GUIDs (perhaps
100B) to the corresponding NA in “real time”, as the packet is in transit.

5.3.3 Named Data Networking (NDN)

The NDN architecture is distinctly different from the current approaches
to addressing and forwarding. Instead of sending a packet to a host, in
NDN one sends a packet addressed to a piece of information, and gets the
information in a return packet. In NDN, there are two sorts of packets,
interest and data. An interest packet is sent to request some named content,
and the data packet returns that named content. In neither case is there a
“host” address in the packet, only the name of the desired information.

An interest packet contains the name of the content being requested. A data
packet contains the name of the content, the data itself, and a signature,
which confirms the contents, as described below.

Names of content are hierarchical, and begin with the authoritative owner of



5.3. THE FUTURE INTERNET ARCHITECTURE PROJECT 105

the content, followed by the name of the specific content. Any owner/creator
of content has a public/private key pair, and uses the private key to produce
the signature. Thus, anyone with the public key of the owner can verify the
data packet: in particular the integrity of the content and the binding to
the name.

A distributed mechanism will allow nodes to build up a catalog of public
keys for different owners, a key certification graph. In this way, routers can
learn public keys, which will allow them to validate packets (as appropriate)
as they forward them. (In particular, forged data packets that claim to
match an interest can be detected in the net, not just at the final end-point.

The name of data also describes its location. When information moves
to a new location, there is a variation of a data packet called a link that
encapsulates a content packet and is signed by the operator of the current
location. This signature allows anyone with the public key of the current
location to verify that the location named in the packet is the actual sender
of this packet.

It is assumed that on top of this mechanism there will be a variety of search
tools, content providers and the like that, among other things, provide for
translation between other sorts of names and queries and the specific names
used by NDN.

A key technical aspect of NDN is that when an interest packet is routed
toward the location of the content, a copy of the interest is kept at each
router. In NDN, there is thus per-packet state in each router along the path
followed by the interest. The copy of the interest records the router port from
which the interest came, as well as the name of the content being requested.
The interest packet itself does not carry any “source address” from where
the interest originated: this information is recorded in the per-packet state
in all the routers along the path back to the original requestor.

When a router forwards a data packet, it has the option of keeping a cached
copy for some period of time. This cached copy can be used to satisfy a
request, rather than having to fetch the content from the original location.
This mechanism allows for the efficient delivery of popular content.
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5.3.4 Nebula

Nebula is concerned with the implications of cloud computing on a future
Internet architecture. The Nebula architecture offers the application access
to and control over a much richer set of services than are available in the
Internet. The responsibilities of the network are highly reliable availability,
predictable service quality, and assuring that the requirements (policies)
of all the relevant actors are taken into account as traffic is routed across
the network. The relevant actors include networks themselves, and as well
higher-level service elements.

An example will help to illustrate what is meant by that last responsibil-
ity. Nebula, like essentially all architecture proposals, assumes that the
network is made up of regions that are separately built and operated, often
by private-sector providers (like today’s ISPs). These providers will have
policies governing which sorts of traffic (e.g. for which classes of senders
and receivers) they will carry, and so on. Today, the only tools that can
be used to express these policies are the various options within BGP, which
may be very limiting. In addition, the application may want to control the
routing of traffic by directing it to higher-level service elements. A simple
example might be a “packet scrubber” that tries to detect and remove ma-
licious traffic, or a higher-level processing element such as a virus detector
in email. A service might wish to assert that it will only receive packets
that have first gone through the scrubber, even though the scrubber is not
directly adjacent to the service. In Nebula, the network itself can enforce
this sort of routing policy.

To do this, the Nebula architecture has two relevant parts: a data plane
(NDP) that can enforce arbitrary forwarding policies, and a distributed
control plane (NVENT) that can compute these policies. Every actor in
the network will have an agent in the NVENT layer, and these layers run
a distributed algorithm to construct a set of forwarding rules (a policy) for
any requested transfer. While the control plane is still under development,
there is a specific proposal for the data plane, and a claim that it can enforce
arbitrary policies with respect to valid routes through sequences of actors.

Nebula is not a pure datagram network–to send a packet the NVENT policy
mechanisms must first compute and return to the sender a string of informa-
tion that will authorize the data plane to forward the packet. However, these
routes can be computed in advance and cached. NDP is “deny by default”;
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without this NVENT information to put in the packet, it will not be for-
warded. What is returned by NVENT is a “proof of consent” (POC), which
is a cryptographically signed sequence of values that (for each step in the pro-
cessing/forwarding) encode all the previous steps that must have processed
the packet before this actor receives it. Agents in NVENT representing all
the regions must cooperate to construct this POC. Clever use of crypto and
XOR allow this to be coded in a way that is linear in the number of actors.
As the packet is forwarded, each actor that processes the packet computes,
using a similar set of methods, a “proof of path” (POP), which allows each
subsequent actor to confirm that the previous step actually did process the
packet. Thus, by comparing at each stage the POP at that point with the
POC that was computed by NVENT for that stage, the NDP can confirm,
for each actor in the path, that the packet has already passed through all the
required previous actors. For a detailed explanation of how this mechanism
works, see the paper that describes ICING [Naous et al., 2011].

5.3.5 ChoiceNet (CN)

In contrast to the other FIA projects, which describe a specific forwarding
mechanism (e.g. the data plane), ChoiceNet is focused at a higher level:
the control plane and what they call the economy plane. The assumption
is that the data plane (which might be implemented using one of the other
FIA proposals such as Nebula) will provide alternatives or choices among
services: such as IPv4, IPv6, different paths with different qualities, or other
services in the network. For example, a user might choose to pay more to
get a higher quality movie. The goal is to make these options explicit and
allow the user to pick among them.

The assumption is that the network will have a connection setup phase, and
the user will express his choices at that time. The setup phase is imple-
mented in the control plane, where component services can be selected, or
composed to make new services. The result will be implemented in the data
plane.

A way to conceive of the economy plane is to think of an app store for
services. Different service offerings would be advertised, there would be
rating systems, and so on. The user would make simple choices, which
would translate into actual services by the composition of elements in the
control plane.
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Introspection or verification is an important part of a control plane. Did the
user get what he paid for? ChoiceNet includes components that measure
what is going on to verify what has been provided. More specifically, an over-
all service may be composed of many parts. They all get a share of money,
but should also get the correct share of blame for failure. So ChoiceNet will
provide some external verification as part of any service. Service proofs and
payment verification are exchanged between data and control plane.

The term “user” in this discussion might be an actual person, or a software
agent, or expert (human agency) like a sysadmin setting up service for user.

One challenge for ChoiceNet has to do with whether the users can realis-
tically make these choices, whether the offered services (in the service app
store) will be well-enough specified that the user will not be misled, and so
on.

5.3.6 Some preliminary comparisons of the FIA projects

In general, all the schemes that specify a data plane share a feature that
distinguishes them from the current Internet: a two-step rather than one-
step name-to-address resolution scheme. In the Internet, a high level name
(e.g. a URL) is mapped to an IP address by the DNS. This happens in one
step. The IP address is being used as both an identifier for the end-point
and its location. All of these schemes have a separate identity and loca-
tion schemes, and separate mechanisms for mapping from name to identity
and from identity to location, except for NDN, which has effectively elimi-
nated any concept of a location. Most of the schemes have a way to assign
an identity to things other than physical end-nodes, including services and
content.

In contrast to the current Internet, which uses IP addresses as a weak form
of identity for end-nodes, all of these schemes implement the idea that the
identifier of an end-point entity, whether a host, a service, a piece of content
or the like should be “self-authenticating”. Mechanically, this is done by
making the identifier a hash of a public key or the content. Assuming that
the entity holds the private key, a challenge-response exchange can confirm
to each end that the other end is as expected. This check prevents many sorts
of attacks in the network, including DNS poisoning, packet mis-direction,
and so on, from being successful.
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However, detecting a failure or an attack is not enough to assure successful
operation–all it can do is give a clean signal of failure. To provide success-
ful operation in the face of these sorts of attacks, two more functions are
required: first a means to detect where in the network the failure or attack
is happening, and a means to avoid or “route around” this region. I discuss
this framing in more detail in Chapter 8 Many of these schemes contain
mechanisms to try to isolate the region of a failure, and many of them give
the end-point control over the route selection to some degree. This choice
reflects a preference for a basic design principle of the current Internet: since
the network is not aware of what applications are trying to do, the network
cannot detect when a failure has occurred. Only the end-points of the com-
munication, which are aware of the desired application semantics, can detect
problems and attempt to restore service.

The projects are rather different with respect to the range of services that
they provide to the higher layers.

• Nebula and ChoiceNet: these designs assume that service building
blocks in the network can be composed to present a rich selection of
end-to-end services to the applications.

• XIA and MF: these designs provide a small number of service classes,
corresponding to different classes of IDs–for example content, services
and hosts. Each of these classes would correspond to a forwarding
behavior in each router. MobilityFirst also allows for additional func-
tions to be installed on routers in the path. MF does not support per
flow QoS.

• NDN: this design implements a single, general service that returns a
set of bits associated with a name. It allows for variation in service
quality (e.g. QoS) using a field in the packet similar to the IP header
of today.

One way to understand these distinctions is that if the set of anticipated
service classes is limited and specified (as with XIA) the relationship between
the provider behavior (or a router PHB) and the resulting end-to-end service
can be defined as part of the specification of the service class. On the other
hand, if the set of anticipated services is open-ended (as the example of the
HIPAA-compliant path used by Nebula, or a path that avoids a particular
region of the world), the composition of the service from component parts
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must include end-point control over the path, and a more complex and
sophisticated composition algorithm, which implies a separate control plane.
All these schemes presume that there will be private sector actors, similar to
the ISPs of today, that provision, control and operate regions of the network.

In general, these architectures give these ISPs a larger role in the operation
of the network.

• NDN: they are responsible for the dynamic caching of packets of data,
validating the legitimacy of the data, and so on.

• XIA: they provide a range of services (tied to types of XIDs) that can
include content caching, multicast, anycast to replicas of service or
content, and so on.

• Nebula: they provide a validation that packets have followed the path
that was generated by the data plane.

• MobilityFirst: like XIA, ISPs provide a range of services; they also
host third party computing services on their infrastructure and provide
mobility-specific services such as short-term caching, redirection and
the like. Collectively, they implement the core function of binding
name to location, the GNRS.

• ChoiceNet: the data plane is not specified in ChoiceNet, but it must
provide a set of interfaces to the control plane, through which the data
plane can be configured to deliver services. Enhanced services, and the
ability for the user to select them, is the central point of ChoiceNet

With respect to routing, all these schemes take the view that the network
is build of regions (like the autonomous systems or ASes of today) that
are separately managed and deployed. Nebula and ChoiceNet give the end-
points control over routing at the level of picking the series of ASs to be used,
but give each AS control over its internal routing. XIA and MobilityFirst
assume a rather traditional two-level routing scheme, as does NDN, but
routing in NDN has a very different flavor, since it is identifiers and not
locations that drive the forwarding decisions.

Essentially all these schemes try to avoid the problems that have arisen from
the hierarchical nature of DNS, and its dominant role as a naming service,
by allowing multiple naming services to co-exist. The goal is to avoid a
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single “root of trust”. However, this approach raises its own set of issues,
which in general have not yet been resolved.

5.4 Different requirements–similar mechanisms

I discussed above a set of architectural proposals that had the goal of allow-
ing the insertion of service elements (what I call PHBs in Chapter 4) into
the path of a flow of packets. In general, they use some mechanism that lets
the provider of the overall service make an assertion that binds the name of
that service to one (or a sequence of) PHBs as the packets flow from client
to service. A quick comparison will suggest that the mechanisms used to
implement this goal have much in common with the mechanisms used by
architectures focused on content retrieval. In both cases, the provider of
the content or service makes some binding from the name of that content
or service to some location in the network to which the client should send
packets. Some of the other architectural proposals make this point explic-
itly. For example, the designers of DONA stress that it can be used for a
variety of purposes, not just for retrieval of content. Similarly, the designers
of NDN stress that while content retrieval is the starting goal used to explain
the NDN architecture, the mechanism is much more general.

Here is a summary of some of the naming/addressing/forwarding mecha-
nisms I have discussed:
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Proposal Name Mechanism Resolution Mechanism

NewArch Forwarding Directive Relies on underlying rout-
ing protocols

TRIAD URL style Forwarding through AS-
level routers with name-
based forwarding.

DONA P:L, where P is hash of
public key of creator and L
is label unique to P

First packet:Forwarding
through AS-level set of
routers with name-based
forwarding table. Subse-
quent packets: network-
level source address

i3 Sequence of global, flat IDs Forward packet through
DHT to location where ID
is hosted.

DOA Sequence of global, flat
EIDs

DHT system to convert
EID to IP or further EIDs

FII Region:ID, where ID is
unique in region.

Forwarding driven by
Pathlet source route.

MobilityFirst Region:ID, where the ID is
a global, flat identifier, and
Region is a hint

Route packet to Region. If
ID is not known, consult
GNRS for valid NET

XIA Content, Host, Net IDs in
DAG

Route to first entry in
DAG, fall back to next en-
try if first routing does not
succeed.

NDN URL style Longest prefix match for-
warding on URL for every
packet.

PURSUIT Nested scope/entity IDs Recursive query of Ren-
dezvous Servers in the
nested scopes.

Netinf Global flat ID Name Resolution Service
or Name-based routing.

DTN Region:Entity, where Re-
gion is global and Entity is
known within region.

Inter-region routing
scheme.

In general, there are two sorts of high-level names that are used–those that
are flat (and often self-certifying–the hash of a public key or content) and



5.4. DIFFERENT REQUIREMENTS–SIMILAR MECHANISMS 113

those that have a hierarchical structure typified by a URL. A further dis-
tinction is whether the names have global uniqueness and routeability, or
are only meaningful within some scope.

TRIAD and NDN use URL-style names, and both depend on a name-level
routing protocol that distributes knowledge of (at the least the high-level
component of) the name across the global network. However, TRIAD only
propagates the top two or three levels of the DNS name, and only to select
“name-based routers” in each Autonomous System. NDN propagates some
part of the name (perhaps to a finer degree than TRIAD) to every router in
the system.

DONA, i3, DOA, MobilityFirst and XIA all use flat identifiers with global
meaning, but with different tricks to deal with the complexity of routing to
a large number of flat identifiers.

• DONA uses a name of the form P:L (where P is the hash of a public
key) to allow the option of propagating routes of the form P:*, thus
allowing a route to a principal rather than an individual piece of con-
tent. The forwarding table may still be very large (on the order of the
number of content objects in the system, rather than servers or phys-
ical end-points.) This scheme is perhaps the most aggressive in terms
of pushing the limits of a routing protocol. The routing challenge in
DONA may be of the same scale as with NDN, even though they use
different style names.

• i3 and DOA associate identifiers with services or entities, not content,
so the number of IDs is probably smaller than with DONA. Both use
DHTs as their preferred mechanism to resolve these IDs.

• MobilityFirst has flat, global self-certifying identifiers for hosts, ser-
vices and content. Normally, when a sender looks up a user-friendly
name and gets back the global identifier, it also gets back a “hint”:
the id of a region (similar to an Autonomous System) within which
the ID is likely to be known. It is assumed that within the scope
of an Autonomous System it is reasonable to have a flat forwarding
table at the level of content objects. Only if the ID is not known to
the region is it necessary to deliver the packet based on the ID. For
this purpose MobilityFirst includes a Global Name Resolution Service,
which is similar in function to the mapping service in i3 or DOA, ex-
cept that there may be many more names, if the IDs in MobilityFirst
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include names of content objects. There are two approaches being ex-
plored in MobilityFirst to build a demonstration GNRS: one based on
a DHT and [[[Ask Arun for the latest description of where the research
is going.]]]

• XIA similarly has flat, global self-certifying identifiers for hosts, ser-
vices and content. To avoid having to depend on a global service to
map IDs to locations, XIA takes advantage of the rich address struc-
ture in XIA, which is a DAG of IDs. The first ID expresses the intent
of the sender (i.e., the desired item), and subsequent IDs in the DAG
provide a fall-back forwarding option if the first ID is not known at a
forwarding point. For example, the ID of a network (an Autonomous
System, similar to MobilityFirst) can be included in the DAG, so that
the packet can be forwarded toward the right AS where (again, as in
MobilityFirst) it is presumed the forwarding tables will know about
the ID that expressed the actual intent of the sender. The architecture
of XIA does not include the requirement for any service that can take
in an arbitrary ID and resolve it to a routable lower-level address.

With respect to global uniqueness and routeability, most of the schemes
above assume names (whether of entities, services or content) have global
meaning, TRIAD, FII, PURSUIT and DTN assume that entity names have
meaning only within some region. Some schemes, such as MobilityFirst
and Newinf, assume that names are globally unique but not always globally
routeable. Both FII and DTN do not require that entities have IDs that
are globally unique. There is no mechanism in either of them to look up
an entity name and find out the region within which it is located. The user
must find the location of the entity by query of a higher-level service. The
NewArch proposal is similar in that it tried to avoid the creation of any
names with global meaning.

NewArch NewArch is somewhat distinctive in this taxonomy, in that its
abstract forwarding architecture (Forwarding, Association and Rendezvous
Architecture, or FARA), did not include any sort of global ID of end points.
The assumption in FARA was that some sort of ID would be needed so
that sender and receiver could verify themselves to each other, but that
these IDs should be a private matter between the end-points. FARA tried
to avoid putting into the architecture (or more specifically, into the packet
header) any ID that would act as a global identifier of the recipient. FARA



5.4. DIFFERENT REQUIREMENTS–SIMILAR MECHANISMS 115

assumed that communication occurred between entities, a term that could
be applied to an application on a machine, a machine, a cluster, and so on.
It was an abstraction that could be manifested in a number of ways. What
the architecture required is that it be possible to construct a forwarding
directive or FD that would allow the network (and perhaps the operating
system of the receiving host) to forward the packet to that entity. In most
reductions of FARA to practice, it was assumed that the FD would be some
sort of source route. Once the packet had been delivered to the entity, there
was a further element in the packet, which identified the association of which
this packet was a part. A common form of association would be a TCP-like
connection, and the association value in the packet would identify the right
state variables in the entity for that association.

It was assumed that the association ID had no meaning outside the set of
associated entities. It was assumed that the FD might contain some name
for the destination entity as one of its elements, but that this would have
meaning (like many source route elements) only in the context of that step in
the forwarding process. For example, it might be a process ID inside a host.
One of the goals of FARA was to hide, to the extent possible, exactly what
parties were communicating across the network by avoiding IDs with global,
long-lasting meaning. Of course, the FD may well contain a machine-level
address, which provides considerable information about the communicating
parties. But FARA did not preclude having stateful forwarding elements
(such as a NAT device) and an element in the FD that was some sort of
dynamic selector for the forwarding state stored in that device.

FARA presumed, but did not specify, some mechanism by which an entity
that wished to receive communication would be able to construct a FD that
would cause traffic to reach it. In a network like the Internet, this might
just be an IP address followed by a process ID. Different instantiations of
FARA might have FDs of a different form. FARA presumed but did not
specify that there would be some sort of rendezvous system or RS to allow
senders to find receivers. The receiver would initiate an entry in the RS with
some higher-level name by which it could be looked up, and its FD (or the
instructions as to how to construct it). The discovery operation would take
the high-level name as an input and return the FD. The RS also allowed the
receiver to pass to the sender a rendezvous string (or the instructions as to
how to construct it) which tells the sender how to format the information in
the first packet of the communication to the receiver. Again, the meaning
of this string was seen as a private matter between the sender and receiver–
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the mandatory function of the RS was just that a opaque string could be
passed through it from receiver to sender. (This mechanism could be seen as
a limited form of adding expressive power (a “scratchpad” in the packet)–
weak since it is only intended for use by the end-points and is only used in
the rendezvous mechanism.

If the FD turned out to be invalid (the desired entity was not at the location
indicated by the FD), FARA deliberately did not provide any sort of global
ID that could be used to find out the current location of the entity. The logic
was thus: all the global name resolution schemes require that the receiver,
if it moves in the system and changes the path to reach it, must update
the information stored about it in the DHT, or routing table, or whatever.
Given that the receiver has to take some action to update its FD if the old
one no longer works, it makes just as much sense to use the RS for this
purpose. So if a sender cannot reach a receiver, its recovery action should
be to make a fresh query of the RS and see if the FD has changed.

5.4.1 Dealing with adverse interests

Most architectures are described through the lens of aligned interests be-
tween sender and receiver. But most also contemplate to some extent the
problem of adverse interests–when the sender is not trustworthy or perhaps
simply an attacker. One can look at the different schemes in terms of how
they deal with adverse interests. One must look at both directions of the
communication. Most of the architectures are described in terms of sender
and receiver (where the sender is the initiator of the connection–both ends
will end up sending) or in terms of client and server, or in terms of content
requestor and content provider. Whatever the framework, either end can
show malicious intent with respect to the other.

The architectures introduced in this chapter–architectures that serve to con-
figure services in the path from sender to receiver–make explicit their role
when interests are not aligned. All of the architectures use some sort of
“firewall” device as an example of their utility. They deal to a varying de-
gree with the problem of making sure that the attacker cannot bypass the
protection device, but at least they acknowledge the issue. In contrast, the
architectures that are focused on the delivery of content pay less attention
to this problem–in particular to the problem that the receiver of the con-
tent may need protection in case the content contains malware. The DONA
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proposal is an exception; it explicitly discusses inserting a middlebox into
the path of the returning content, although the described mechanism seems
clumsy, as the task of inserting the protection service is delegated to one of
the nodes that does name-based routing. TRIAD and NDN do not dwell
on the issue of protecting the requestor from the content it requests; they
describe a scheme in which the requestor simply gets the content as sent.
They focus on the (admittedly hard) problem of routing the content request
to the closest copy of the content, and do not discuss the problem of deploy-
ing services in the path from the content to the requestor, either protection
services or functional services such as format conversion, which is an exam-
ple used in the DOA paper of a useful service that might be delegated to an
element in the net.

Of course, the Internet provides no support for the configuration of services,
and still works. The placement of services into a flow of content is either
done at the application layer (as with Mail Transfer Agents in email) or is
done using devices such as “transparent caches”, which depend on contin-
gent (or topological) delivery of the content to perform their function. The
goal of architectures such as DOA is to replace this sort of implicit place-
ment of the service into the flow with explicit delivery of the content to the
service element. But for proposals such as NDN, which do not contain tools
for configuration of services, how could the challenge of in-net service con-
figuration be addressed? One could use contingent or topological delivery,
but this seems inconsistent with the goal of NDN to use a range of routing
and forwarding methods to explore all possible paths toward the content.
Alternatively, one could use a “trick”, and create a URL in a request packet
(what NDN calls an interest) that names a conversion service as its target
and then embeds the name of the desired content into the body of the URL.
What gives service configuration architectures such as DOA the ability to
set up a sequence of services is exactly that their request packets can con-
tain sequences of IDs. In a URL-based scheme, one could try to emulate
this by putting one URL inside another. (One sometimes sees this in the
Internet today, often as an attack strategy, where the actual content being
fetched is disguised by the syntax of the URL.) However, one would have to
consider if this “trick” of putting one URL inside another would confound
the security architecture of NDN, where the names are used as a basis to
relate certificates to content.

A possible criticism of architectures that focus on content delivery is that
they have pulled down into the network architecture part of what used to be
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an application-layer function, without pulling all of the service requirements
into that layer. The design of email, with its application-specific forwarding
architecture, allows for certain sorts of protection services to be put in place
in an application-specific way. The initial design of the Web did not address
the issue of adding service elements to Web content delivery, which has
led to various sorts of ad hoc implementation strategies. Pulling a content
retrieval model that is Web-like into the network layer may actually make
development of sophisticated application-specific forwarding architectures
harder, not easier.

5.4.2 Expressive power

It is interesting that most of the architectures I describe here do not in-
clude in their design any explicit arguments to service points (PHBs). The
schemes with URLs as content identifiers can encode any sort of information
in the variable length ID, of course. Nebula has a very rich set of explicit
arguments–the Proof of Consent and the Proof of Path. In general , most
of the architectures seem to assume that the service elements will operate
on the data payload (doing format conversion, inspection for malicious con-
tent and the like). Many of the architectures to distinguish the first packet
in a connection, because that packet requires extra work to resolve IDs to
more efficient network addresses. A careful review of all these architectures
would include a catalog of any state in any service elements, how that state
is maintained, and to on.

Almost all of the architectures try to avoid contingent delivery except for
the basic packet forwarding mechanisms. They use intentional delivery, with
the sender and/or the receiver specifying the path of the packet across the
service points. The use of intentional delivery is probably an aid to better
debugging when things go wrong.



Chapter 6

Longevity

6.1 Introduction–the goal of longevity

In comparison to many artifacts of computing, the Internet has lived to an
old age–it is over 35 years old. Opinions differ as to the extent that it is
showing its age, and among some researchers, there is a hypothesis that the
Internet of 15 years from now might be built on different principles. Whether
the network of 15 years from now is a minor evolution from today’s network,
or a more radical alternative, it should be a first-order requirement that this
future Internet be designed so that it also can survive the test of time.

I have used the terms “longevity”, or “long-lived”, to describe this objective.
The objective is easy to understand, but the principles that one would use to
achieve it are less well understood. In fact, there are a number of different
theories about how to design a network (or other system) that survives
for a long time. In this chapter I argue the point of view that many of
these theories are relevant, and that one can achieve a long-lived network
in different ways, by exploiting various combinations of these theories in
different degree. While some theories are incompatible, many are consistent
with one another.

The approach I take here is inspired by the book Theories of Communica-
tion Networks [Monge and Contractor, 2003]. The topic of that book is not
networks made of routers, but social networks made out of people and their
relationships. They identify many theories that have been put forward to
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explain the formation and durability of social networks, and their thesis is
that many of these theories are valid, to different degrees, in different such
networks. So it is necessary to have a multi-theory, multilevel framework in
order to explain the character of any given social networks. Since there are
many examples of social networks in the real world, one can do empirical
research to try to determine how (for example), theories of self-interest, col-
lective action, knowledge exchange, homophily and proximity shape a given
network. While we have fewer networks as examples than these authors do,
we can still attempt to catalog the theories that have been put forward to
explain why a network might or might not be long-lived.

6.2 Classes of theories

With some degree of over-simplification, many of the theories of longevity
can be classified into three subclasses, as follows:

Theories of change: These theories presume that over time, requirements
will change, so a long-lived network must of necessity change. Theories
of this sort sometimes use the word “evolvability” rather than “longevity”
to describe the desired objective, since they assume that a network that
cannot change to meet changing requirements will soon cease to be useful.
The word “change” as used here, usually has the implication of uncertain
change; if the future trajectory of the requirements on a system could be
completely characterized, one could presumably fold these into the initial
design process, if the cost were not prohibitive. The XIA and FIA proposals
would fit in this category.1

Theories of stability: in contrast to theories of change, theories of sta-
bility presume that a system remains useful over time by providing a stable
platform on which other services can depend. The NDN proposal might fit
into the category.

Theories of innovation: These theories assume that change is beneficial,
not just (or rather than) inevitable. These theories stress the importance of
change and innovation as economic drivers. The FII proposal is specifically
an example of this category.

1The various architectural proposals I use as examples here are introduced and dis-
cussed in Chapter 5.
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These classes of theories are not incompatible. Theories of innovation are
often theories of stability, in that the stability of the network as a platform
allows innovation on top of that platform by what innovation theory would
call complementors. Taking an example from operating systems, it is the
stability of the interfaces to the operating system that invites application
designers to take the risk of developing and marketing new applications for
that system.

6.3 Architecture and longevity

I have defined the term “architecture” to describe the basic design concepts
that underlie a system like a network: the top-level modularity, interfaces
and dependencies, the assumptions that all parties must take as globally
consistent, and so on. Within a theory of stability, architecture plays a
natural role: it is part of what defines the stability. With respect to the-
ories of change, however, the relationship is more complex. If architecture
defines those things that we want to have longevity, how does architecture
encompass change

Stable architecture that supports change: in this view, the architec-
ture embodies those aspects of the system that do not change. It is the
stability of the architecture that permits the overall evolution of the system.
The XIA proposal, with its flexible address header, is an example of this
category.

Evolving architecture: in this view, the architecture itself can (and does)
evolve to address changing needs. If the architecture cannot adequately
evolve, this leads to violations of the architecture, which (according to these
theories) leads to a gradual loss of function, and an increasing difficulty
of further change, an ossification of the system that gradually erodes its
utility. The FII proposal is an example of this category, where the higher-
level architectural framework allows the introduction of new embodiments
over time.
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6.3.1 The theory of ossification

The theory of ossification was perhaps first put forward with respect to
operating systems by [Belady and Lehman, 1976]. They pose their First
Law of Program Evolution Dynamics, the Law of Continuing Change, which
states that a system that is used undergoes continuing change until it is
judged more cost effective to freeze and recreate it. According to this point
of view, systems lose the ability to evolve over time, and eventually have to
be redone from scratch in order to allow continued change. So this theory is
a theory of change, but an episodic theory, which predicts that systems (or
architectures) have a natural lifetime, and need to be renewed from time to
time by a more revolutionary phase.

New theories of design suggest that it may be possible to derive an archi-
tecture from a set of requirements by a rigorous and formal process. It is an
open question how such an architecture will deal with change. If one changes
the requirements and then derives a new architecture, the differences may
be pervasive: essentially a new design rather than a modification of the old
one. But if one takes an architecture derived in this way and modifies it
after the fact, all of the theory that applied to the original design process no
longer applies. This sort of action is like taking the output of a compiler and
patching the machine code. It is thus possible that architectures that have
been algorithmically derived from requirements will be brittle with respect
to change, or (in term of these theories) easily ossified.

6.4 The theory of utility

All discussion of longevity must occur in the context of a network that is
used. A network that is long-lived is a network that continues to be used
over time. So it is a precondition of a long-lived network that it be useful
in the first place. (Chapter 2 lays out my framework for considering the
extent to which an architectural proposal is fit for purpose.) So any theory
of longevity must have inside it some theory of utility, which explains why
the network is useful. The first theory of longevity I identify is based on a
specific theory of utility.
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6.4.1 The theory of the general network

According to this theory, a fully general system, which could meet all needs,
would not need to evolve, and would thus be long-lived. The theory of the
general network is thus a theory of stability.

The challenge, of course, is to define exactly what a general network might
be.

The theory of the ideal network and impairments: according to this
theory, networks provide a very simple service that can be described in its
ideal (if unrealizable) form. One statement is as follows:

An ideal data network will reliably deliver any amount of data to
(and only to) any set of intended and willing recipients in zero
time for zero cost and zero consumption of energy.

Of course, such a network cannot be realized. Some limits, such as the speed
of light, are physical limits that cannot be violated. Others, such as cost,
seem to improve over time as a consequence of innovation. Taken together,
these limits, sometimes called impairments, define how far any practical net-
work diverges from the ideal. In this theory, a maximally general network
minimizes the various impairments, and to the extent possible, allows each
set of users to trade off among the impairments to the maximum extent pos-
sible. Thus, queuing theory seems to capture a fundamental set of tradeoffs
among speed, cost (utilization) and delay. A network that (for a given class
of traffic) does as well as queuing theory would predict, and allows the users
to move along the performance frontier defined by queuing theory, would be
seen as a maximally general network.

According to this theory, if a network is maximally general with respect to
the fundamental impairments (a theory of stability) and is open to change
with respects to impairments that change over time (a theory of innovation),
then such a network will be long-lived.

Many have seen the Internet as a good, if pragmatic example of a general
network, and see its longevity as a consequence of that fact. The use of
packets as a multiplexing mechanism has proved to be a very general and
flexible mechanism. Packets support a wide range of applications, and allow
for the introduction of new technology as it evolves. Tools for Quality of
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Service allow the application to control the tradeoff among such parameters
as cost, speed, and delay.

6.4.2 The theory of real options

Real option theory captures the idea (in common with options as a financial
instrument) that one can attempt to quantify the cost-benefit of investing
now to keep options open, or in other words to deal with uncertainty. It is
thus a theory of change, to the extent that change equates to uncertainty.
It is also a theory of the general network, but in economic terms, in that
it suggests that one can spend money now to purchase flexibility later to
respond to uncertain change. It does not describe what the resulting general
network is (in contrast to the offered definition above), but just postulates
that generally is often to be had, but at a price.

Real option theory is perhaps more often applied to the construction of
a network (e.g. how much spare capacity to purchase now) than to the
architecting of a network. But the theory none the less reminds us that
generality may come at a price, and that price is one of the impairments to
the definition of the ideal network postulated above.

6.5 The theory of tussle and points of control

The discussion of the ideal network does not fully capture what happens
inside networks, because the ideal is stated from the perspective of only one
class of actors–the parties desiring to communicate. The statement of the
ideal does not afford any attention to other actors, such as governments that
want to carry out lawful intercept on traffic, to employers and others who
want to limit what can be carried over their networks, and so on. The list
of stake-holders that can be identified in the current Internet is substantial,
and each of these stake-holders tries to put forward their interests, perhaps
at the expense of other stake-holders.

This ongoing process has been called tussle [Clark et al., 2005b], and seems
to be a fundamental aspect of any system (like the Internet) that is deeply
embedded in the larger social, economic and regulatory context. According
to the theory of tussle, systems will prove to be long-lived if they are designed
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to minimize the disruptive consequence of tussles, and in particular so that
tussle does not lead to violations of the architecture of the network. Various
aphorisms have been used to describe how a system should be designed to
tolerate tussle.

The tree that bends in the wind does not break.

You are not designing the outcome of the game, but the playing
field.

The idea behind these aphorisms is to design your systems so that they do
not attempt to resist tussle and impose a fixed outcome, but to be flexible
in the face of the inevitable. However, they give little practical guidance as
to how one might do it, other to hint that one can tilt the playing field to
bias the resulting tussle consistent with the values of the designer.

Tussle isolation: One design principle that emerges from the considera-
tion of tussle is a new modularity principle called tussle isolation. Computer
science has a number of theories of modularity, such as layering (e.g. the
avoidance of mutual dependency). The idea behind tussle isolation is that if
the designer can identify in advance an area where there is likely to be per-
sistent tussle, then the design should isolate that area so that the resulting
tussle does not spill over into other aspects of the network.

• DNS: if the early designers had understood that the DNS would in-
clude names over which there would be trademark disputes, that use
of names could have been made a separate service, so that the scope
of the trademark disputes could be minimized.

• Secure BGP: if the designers of tools to secure BGP had understood
that the real tussle would be over which actors would be trusted to
vouch for different regions of the Internet, they might have designed
a different trust framework that allowed these tussles to be better
contained.

Placement of interfaces: In addition to isolating tussle, one can “move
it around” by the placement of critical interfaces within a system–another
example of a non-technical principle for modularizing a system. @@say
more
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Removal of interfaces: a sub-class of the above theory is the idea that
by intentionally removing interfaces and making the system less modular
and more integrated, one can increase the power of the firm that owns the
system, and limit competitive entry as well as other forms of tussle. This
theory is an example of a theory of stability (as well as a theory of market
power and hegemony–see below.)

Asymmetric struggle: Many tussles are defined by the fact that different
stake-holders have access to different sorts of tools and methods. Network
architects define module interfaces and shift function around, governments
pass laws and regulations, network operators make investments and config-
ure the physical network. Each of these actions can advantage the particular
stake-holder and disadvantage the adverse interests. Given this fact, it is
worth some study (a full exploration is beyond the scope of this chapter)
as to how these various methods interact with each other. Like a game of
“rock, paper, scissors”, they sometimes seem to circle around each other in
endless cycles. One sub-theory that characterizes some of the interactions
is the theory of the blunt instrument, the idea that while each stake-holder
has distinct powers, the design of one part of the system can blunt the tools
of control that the others have, and thus render them less effective. Thus,
for example, the use of encryption as part of the network design greatly
limits the ability of other actors to observe (and thus to impose limits on)
what the users are doing. In the extreme, the network operator is reduced to
carrying all traffic, blocking all encrypted traffic, or refusing to serve the rel-
evant customer–an example of blunting the network operator’s instrument
of control.

6.5.1 Tussle and longevity

The theory of tussle might be seen as the theory of change, but in fact it
may be closer to a theory of dynamic stability. Stability need not imply
a fixed system, but can also imply a system that has checks and balances,
or feedback, to home it to a stable point. Tussle can be viewed as such
a mechanisms–a set of forces that tend to bring a system back to a stable
compromise point if some new input (e.g. a technical innovation) shifts it
away from that point. Over time, the compromise point may shift (as social
norms shift over time) and the stable point may be different in different
cultures. So tussle can be seen as a dynamic and ongoing mechanism that
contributes to system longevity, and further as a mechanism that allows the



6.6. THE THEORYOF BUILDING BLOCKS AND COMPOSABLE ELEMENTS.127

outcome to be different in different cultures, as opposed to a rigid system
that attempts to impose global agreement in contexts where global agree-
ment is not feasible. This variation in outcome, as well, is a contributor to
longevity.

6.6 The theory of building blocks and composable
elements.

The theory of the general network assumed that one could describe what
an ideal, or fully general network would do. It was based on the concept
of a network as a system with a very simple core function. Another point
of view is that a network should be capable of offering a much richer set
of services (perhaps not all at the same layer). The measure of a network
would not be how well it does at limiting the impact of impairments, but how
easy it is to incorporate new sorts of services between the communicating
parties. In this point of view, if the network is built only of fixed-function
routers, that is a limiting rather than a stabilizing outcome. My discussion
about expressive power in Chapter 4 gets at this tension: should a network
strive for minimal expressive power or a rich set of tools to add new PHBs
as needed. The proposals i3, DOA, and Nebula attempt to capture the
generality of arbitrary service composition.

This point of view becomes more prevalent if one looks not just at the simple,
packet-forwarding layer, but at services “above” that layer, which might
do things such as convert information formats, validate identity, provide
various sorts of security services and the like. In this layered view, one would
then ask of the packet layer whether it was optimally suited to support the
deployment and configuration of these higher-level services. For example,
to insure the proper operation of security services, it might be important
to make sure that the packets cannot bypass the services as they are being
forwarded. So the desire to deploy these higher layer services may change
and expand the requirements at the packet level, even if these services are
seen as “higher layer” services.

There seem to be two, perhaps contradictory, theories of building blocks and
composable elements–the maximal and the minimal theory.

In the maximal theory, a network will be long-lived if it has rich expres-
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sive power, so that new service elements can be introduced and invoked.
At the packet level, expressive power would be increased by adding more
powerful addressing modes (such as source addressing, which could route
a packet through a series of service elements) and additional fields in the
packet header that could be used to convey additional information to the
service elements. If the service elements act on larger data units that are
assembled out of packets at the point where the element is located, this sort
of expressive power can be captured in data at the application layer. (Mail
Transfer Agents are an example of higher-level, or application-level service
elements. They act on and modify the header of the mail message, and
schemes for mail encryption are defined to encrypt the body but leave the
header visible so the mail system can function properly.)

The opposite, or minimal, theory about service elements and expressive
power arises within the theory of tussle. In this point of view, any service
element will be a point of contention and tussle, as different stake-holders
try to control the service being provided. Thus, ISPs sometimes block access
to third-party mail transfer agents in an attempt to force a customer to use
their mail service; by doing so the ISP may be able to impose limitations on
what the customer can do (for example what are acceptable email names).
This theory would suggest that a network design might deliberately limit
the expressive power of the design (perhaps at certain of the layers in the
design), to limit the points of tussle in the network, and thus bring about
longevity through stability.

6.6.1 The theory of programmable elements (active networks)

The theory that building blocks bring beneficial flexibility has an aggressive
version in which elements within the network can be programmed dynam-
ically, perhaps even by means of programs carried within the data packets
themselves. This point of view, sometimes called Active Networks, can be
argued as reducing tussle rather than facilitating it, since it tilts the playing
field toward the end-user, and blunts the instruments of control that belong
to the stake-holders “in” the network. The programs come from the edge,
selected and installed by the end-user or his agents; the stakeholders who are
in the network only provide the platform for these programs. They cannot
easily regulate what those programs do, except by attempts to impose limits
on how they are composed. With no ability to see what the programs do,
and only a “blunt instrument” capability to limit how they are composed,
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the result (according to this point of view) is a stable platform (see below)
on which innovation can be driven from the edge.

6.7 The theory of the stable platform

The theory of the stable platform is a theory understood by those who study
innovation. According to this theory, innovation (which represents a valu-
able form of change) is facilitated by a stable platform with an unchanging
interface and service definition. In the language of this theory, those who
innovate “on top of” the platform are called complementors. If the platform
itself is unstable and subject to change and innovation, this increases the
cost of building complementary systems (e.g. applications) that exploit the
platform (as the application must be upgraded to keep pace with the plat-
form changes) and increases the risk (due to uncertainty about changes in
the platform that might reduce the functionality of the application). This
theory is an example of a theory of innovation that is a theory of stability.
For an extended discussion of platform theory as it relates to the Internet,
see [Claffy and Clark, 2014].

The theory of the stable platform can be stated in dynamic form: to the
extent that there are a number of complementors, they will use their power to
argue for the stability of the platform, which will induce more complementors
to join, and so on, in a positive feedback situation. The reverse of this
dynamic is also a part of the theory; if a platform is not useful, it makes
no difference if it is stable. Again, the packet forwarding service of the
Internet has been seen as a good illustration of a stable platform that permits
innovation on top of that platform. The theory of the stable platform has
been used to explain the longevity of the current Internet.

6.8 The theory of semantics-free service

The theory of the stable platform does not say anything about what function
the platform should implement in order to be useful and general. The theory
of the general network provides one answer to that question: the platform
should provide a general service that is as close to the ideal (the minimum
set of impairments) as can be fashioned.
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The version of the theory of the general network offered above was that the
network should just deliver bytes. In contrast to the theory of composable
building blocks, the network should not have any model of what those bytes
represent, or what the high-level objective of the application is. This version
of the theory has sometimes been called the semantics-free network, or the
transparent network, or (in more colloquial terms), “what comes out is what
goes in”. The assumption is that if the network begins to incorporate a
model of what one or another application is trying to do, it will end up
being specialized to those applications, at the cost of generality.

It has been argued that the longevity of the Internet is due to its semantic-
free design, and the refusal of its designers to allow the protocols to be
optimized to the popular application of the day. It could be argued that
semantics-free service is an example of the theory of utility, but it is not clear
what line of reasoning would be used to make this point in advance. How-
ever, the theory of the general network may imply the theory of semantics-
free service, since (as it was stated earlier) the general network was defined
as delivering data, which seems to imply a semantics-free service.

This theory is a close relative to the end-to-end argument, but in the be-
ginning that argument was about correct operation, not about generality.
The interpretation of the end-to-end argument as an argument for general-
ity can be found implicitly in the original paper [Saltzer et al., 1984], but
has become more elaborated and explicit in some of the subsequent writings
about the argument.

6.9 The theories of global agreement

One conception of network architecture, as I proposed in Chapter 1, is that
it defines those aspects of the system about which there must be global
agreement: architecture defines those parts of the system that “work the
same way everywhere”. In this context, there are actually two theories
about global agreement and longevity: the minimal theory and the maximal
theory.

The theory of maximal global agreement: This theory postulates that
the more aspects of the system are well-defined, the more stable the platform.
By providing a well-specified functional specification for the platform, the
difficulty and risk to the complementor is minimized. The word “maximal” is
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probably an overstatement of this theory–the more careful statement would
be that “up to a point”, increased specification and careful definition is a
good thing.

The theory of minimal global agreement: This theory is a theory of
change. It states that the fewer things we all have to agree to in common,
the more we will be able to accommodate a range of uses with different
needs. As long as the platform remains useful, having fewer points of global
agreement is beneficial, and will allow the network to evolve over time with-
out disrupting the utility of the platform. So in contrast to the maximal or
“up to a point” theory, this is a “down to a point” theory, or perhaps (to
paraphrase the quote of Einstein): Architecture should be made as minimal
as possible, but no less. The FII proposal is an explicit example of this
theory.

False agreement: Whichever version of the theory is put forward, there
remains the question of when a global agreement is really an agreement,
and when it is the illusion of agreement. An example from the Internet
might be the initial assumption that the Internet was based on the global
agreement that there was a single global address space. It was thought that
this agreement was important, and one of the basic tenets of the stable IP
platform, but then Network Address Translation devices were introduced,
and the Internet survived. Some would say that because NAT devices impair
certain classes of applications (in particular, passive servers located behind
NAT devices), we should view NATs (and the loss of global addresses) as
a significant violation of the stable architecture. Development of protocols,
discussed in Chapter 4 that allow state to be installed dynamically in NAT
devices (perhaps an example of the theory of the building block), have the
potential to support essentially all the applications it did in the era of global
addresses.

However the reader might choose to analyze this example, the more general
question is how one would test a proposed point of global agreement to see
whether agreement is actually required about the point in order to have a
stable platform. Clever reconceptualization may allow what was seen as a
global agreement to be set aside with no loss of power.

One might pose an informal “test of time” approach that a presumed point
of global agreement should only be judged in hindsight based on whether
people actually depend on it. But this seems like a poor candidate for a
design principle. On the other hand, it seems difficult to take the position
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that we can force dependency to force stability. The theory of utility suggests
that if a feature is not useful, it does not matter if it is stable, or if it is a
point of nominal global agreement.

6.10 The theory of technology independence

The theory of technology independence is another theory of stability in the
face of change. This theory states that a system will be long-lived if it allows
new generations of technology to be incorporated into the system without
disrupting the stable platform that the system provides to the complemen-
tors. Since technology evolved rapidly in the CS world, it would seem that
any long-lived system must be designed so that it is not rendered obsolete
by new technology.

Again, this theory can be used to explain the longevity of the Internet. The
simple, packet-based platform of the Internet can be implemented on top
of all sorts of communication technology. The Internet has accommodated
circuits that have increased in speed by at least six orders of magnitude
during its lifetime. It has accommodated multi-access local area networks,
wireless networks, and the like. The applications running on top of the IP
interface are largely unaffected by these innovations.

6.11 The theory of the hourglass

The combination of the theory of the stable platform and the theory of
technology independence lead to a theory (or a picture) that is a hourglass:
a picture of a narrow waist representing the common point of agreement (a
global agreement?) on the IP layer, with great diversity in technology below
and great diversity in application above.

Once the image of the hourglass was identified and associated with a theory
of longevity, further study revealed that the Internet had many hourglasses
in it: the reliable byte-stream on which email sits (the Internet standards
for email work quite well on transport protocols other than TCP), HTTP,
and so on. [other useful examples?]
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6.12 The theory of cross-layer optimization

The theory of cross-layer optimization is a contrarian theory, contrary to the
theory of the hourglass. The theory of cross-layer optimization states that
over the long run, the evolution of technology will be so substantial that
a stable, technology-independent platform will become limiting, and even-
tually, uncompetitive compared to an approach that allows the application
and the technology to adapt to each other. The application designer will
have a harder task than with a stable platform, but in exchange for doing
the additional design work so that the application can adapt to different
technologies, the designer will achieve greatly improved performance and
function.

The theory of cross-layer optimization has been put forward in the past in
the context of various emerging technologies, perhaps starting with multi-
access local area networks. In the past, the theory of the stable platform
has dominated. Today, cross-layer optimization is being put forward in the
context of some wireless networks, especially wireless designed for very chal-
lenging circumstances, such as battlefield networks. It is not clear whether
longevity is the primary requirement for such networks.

6.13 The theory of downloadable code

The theory of downloadable code is a theory of change, or perhaps of innova-
tion. This theory states that the need for global agreement can be minimized
by the approach of downloading code into the communicating elements, so
that the agreement is achieved not by the mandate of standards but by an
agreement to run compatible software.

If the code were downloaded into the network elements that forward pack-
ets, this would be the same as the theory of active networks. This theory
has not achieved much traction in the real world. However, code that is
downloaded into the end-node (most commonly at the application layer,
or as a supporting service to applications) has been a very powerful tool
to support innovation. New formats for audio and images (still, animated
and video) are introduced by allowing end-nodes to download new rendering
code. Standards such as PDF, Flash, various representations of audio and
video and the like enter the market by means of free viewer software provided
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by the creator of the standard. Pragmatically, once a format can be imple-
mented in downloadable software (as opposed to hardware, for example),
proliferation of competing standards does not seem to be an impediment to
progress and longevity.

The theory of downloadable code is an example of a theory of the stable
platform: in this case the platform is a software platform, not a network
service platform (such as the IP layer). The browser of today, with its
“plug-in” architecture, becomes a stable platform on which innovation (e.g.
new downloadable modules) can be built.

This observation begs the question of what parts of the network could be
based on downloadable code, rather than on global agreement. Today, for ex-
ample, transport protocols such as TCP are more or less a global agreement.
Alternatives cannot be downloaded, because the code that implements TCP
is embedded in the kernel of most operating systems for a number of reasons:
performance, dealing with interrupts and timers, multi-threading, efficient
demultiplexing and buffer management, security and the like. However, is
this a fundamental consequence of some aspect of transport protocols, or
just a historical accident? It might be possible to design a framework (or
platform, to use the earlier word) into which different protocols at this level
could be downloaded, just as the web browser provides a framework for
downloadable code at a higher level. Were this framework demonstrated,
one could argue that the theory of downloadable code would be a better
path to longevity that the theory of global agreement, even at the transport
layer of the protocol stack.

6.14 Change: hard or easy?

More abstractly, the theory of downloadable code challenges us to take a
rigorous look at what makes change hard or easy. The need for global
agreement seems to make change hard (if everyone had to change at once).

Version numbers are sometimes put forward as a technique to manage change.
Version numbers in protocols can allow two incompatible designs to co-exist,
either transiently during a time of change, or (more realistically) forever.
Version numbers work so long as it is possible to verify that all the compo-
nents that will be involved in some operation support at least one version in
common. Proposals such as XIA and FII try to facilitate change (in different
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ways) by making it easier to make changes gradually, across different parts
of the network at different times.

Changes to production code are often viewed as very hard to make, or
at least not quick to make. Vendors need to be convinced of the need
for change, and then the change must be scheduled into the development
cycle. Especially if the change is based on a standard that requires broad
agreement, such changes can take years. However, one should not mistake
the time it takes to make a change with fundamental difficulty. What makes
a change easy or hard to implement is more its interaction with other parts
of the system (which, according to the theory of ossification, will increase
over time).

On the other hand, when the change is more a bug-fix and the need is urgent
(as with the discovery of a security vulnerability) changes can be made in a
matter of days or weeks, and the current trend to automate the downloading
of new versions (e.g. of operating system and major software packages such
as Office) can allow substantial deployment of updates in days.

Overall, there is a trend in the current Internet (and the systems attached
to it, such as operating systems) to make change (updates, patches, releases
of new versions) easier to accomplish. This trend begs the question of which
changes are actually hard to make, and why. The theory of minimal global
agreement would suggest that if the right tools are put in place to allow
software to be upgraded, there is little that cannot be changed in principle,
and more and more that can be changed in practice. With the trend of
moving function from hardware to software (e.g. software-defined radios)
functions that had traditionally been viewed as fixed and static have turned
out to be very amenable to change, and not fundamental at all.

The FII proposal, as well as the DTN work, bring our attention to an aspect
of the current Internet that, while not a formal part of the architecture,
seems to have frozen in a way that resists change. Today, most applications
get access to the Internet via a “socket” interface that presumes a two-way
interactive reliable flow among the end-points, which in practice means TCP.
In contrast, in a DTN many nodes may only be connected intermittently,
and many applications may be able to tolerate a more “store-and-forward”
mode of transport between the end-points. So a more general network API
may be an important part of building a more general version of the stable
platform. FII includes in its required points of agreement a set of tools to
allow the network API to evolve.
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6.15 The theory of hegemony

The theory of hegemony is a theory of stability. It postulates that a system
will be long-lived if a single actor is in charge of the system, an actor that can
balance change against stability, and balance the needs of the various stake-
holders in an orderly way. By taking tussle out of the technical domain and
into the planning or administrative (regulatory) context of the controlling
actor, the platform becomes more predictable and thus more appealing as
a platform. So the theory of hegemony is a theory of innovation based on
stability.

The telephone system, for most of its life, was an example of a system
managed according to the theory of hegemony, with single providers (often
parts of the government) in most regimes, and standards set through a very
deliberative body: the ITU (or earlier the CCITT). One interpretation of
history is that this approach led to a very stable system that was easy to
use, but to a system that inhibited innovation. However, the low rate of
innovation can be explained by the theory of utility: the platform provided
by the telephone system, the 3kHz channel, was not very general (in other
words, not useful except for the carriage of phone calls), so the failure of
innovation is due to the limited utility of the platform, not the presence of
the controlling interest. However, following the reasoning one step deeper,
one could argue that this outcome is due to the lack of interest in innovation
by the controlling interests.

6.16 The present Internet

A number of theories have been identified as contributors to the observed
longevity of the Internet: the theory of the general network, the theory
of the stable platform, the theory of semantics-free service, the theory of
technology independence, the resulting theory of the hourglass, perhaps the
theory of minimal global agreement, and (to some extent increasing over
time) the theory of downloadable code (in the end-nodes). The Internet
seems to reject the theory of hegemony, and the theories of composable
elements and downloadable code in the network.
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6.16.1 Global agreement:

The early designers of the Internet assumed that substantial global agree-
ment would be a necessary step toward an interoperable network. (In those
days, downloadable code was not a practical concept.) Over time (in an
application of what was called above the “test-of-time” approach), the real
degree of global agreement has emerged.

Addressing: The original design assumed a single, global address space in
which all end-points (or interfaces, to be precise) were found. This idea has
been replaced by a more complex concept, in which there are lots of private
address spaces, with translation among some of them using NAT devices,
but there is still a single common addressing region–a region in the “center”
of the network where a pool of addresses are given a consistent common
meaning. Services that want to make themselves widely available obtain an
address (or an address and a port) in the common addressing region, so that
other end-points can find them.

TCP: The original design was careful not to make TCP mandatory–the
designers were careful to say that alternatives to TCP should be anticipated.
The socket interface to TCP is not a part of the Internet standards, Over
time, however, in an example of the dynamic form of the theory of the
stable platform, enough applications have used TCP that it is mandatory in
practice, which means that other applications take on little risk in depending
on it, and TCP has emerged as a required point of global agreement.

TCP-friendly congestion control: This idea was not part of the original
design–in the beginning the designers did not have a clear idea about dealing
with congestion. However, in the 1990s (more or less), as congestion control
based on the slow-start algorithms and its enhancements matured, there
was a sense that every application, and every transport protocol, needed to
behave in the same general way. So there was a call for a global agreement
on the congestion behavior called “TCP-friendly”. To a considerable extent,
this norm was imposed, but it seems today as if there is a drift away from
this approach (based on economic issues and the theory of tussle) to a model
where the network takes on a more active role in enforcement.

DNS: The architects of the Internet have always been ambivalent about
whether the DNS is a core part of the architecture. It is not strictly nec-
essary: one can use other tools to translate names into addresses (as some
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applications do), or just type IP addresses where one would normally type
a DNS name (e.g. in a URL). However, as a practical matter, the DNS
is a necessary component of the Internet for any real use, and the amount
of tussle surrounding the DNS (trademark, diverse alphabets, governance,
TLDs, etc.) both suggest that it is a point where global agreement is re-
quired, and also that it is a prime illustration of tussle. One can look at the
simple interface (send a name, get a number) as a stable platform interface
under which all sort of change has happened.

The Web: The web standards have emerged as a critical platform for
the growth of the Internet. While the web is “just one application among
many” it is clearly (as of now) the dominant application, and as such, em-
bodies many attributes that can be explored using these various theories–
tussle, platform, downloadable code and so on. But without global (if rough)
agreement on many aspects of the web, the Internet experience would not
be what it is today. The specification and deployment of SSL and TLS a
good example of the injection into the Internet of a new set of points about
which there needs to be widespread (if not quite global) agreement.

The packet header: Participation in the Internet does require agreement
on how a packet is formatted, and what (at least some of) the fields mean.
The address field may be rewritten as the packet traverses NAT boxes,
but there are still some constraints imposed by Internet addressing (e.g.
the length, the TCP pseudo-header and the like) to which all players must
conform. Despite the push to deploy IPv6, the IP header seems to be a
manifestation of the stable platform, rather than something that is shaped
by a theory of change.

6.17 The future

As I have indicated through this chapter, there are a number of considera-
tions and theories about how to design a future network such that (among
other things) it is long-lived. Several of the architectural proposals I have
discussed take a very different approach in striving for longevity: stability
vs. change, minimality vs. evolving services and so on. But the relevance of
these choices only applies if the architecture passes the basic test: the theory
of utility. If the network is not useful–if it cannot fulfill basic requirements–it
will not be given a chance to demonstrate its ability to be long-lived.
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In the next chapters of the book, I turn to a detailed look at some of the
critical requirements I identified in Chapter 2, starting with security. But
here I note some specific considerations that link these various requirements
to different theories of longevity.

Security A first order objective for a future Internet is that it be more
secure. Security (attack and defense) is perhaps the extreme example of
tussle; it implies ongoing (and unpredictable) change, even if attack and
defense stays in some tolerable balance. So the presence of attackers in the
system would seem to imply that at least some part of a future Internet
must seek longevity using a theory of change, not a theory of stability.

Any component in the network will be a target for attack. So the theories
of building blocks and composable elements might seem to lead to a future
network with more options for security vulnerabilities. This concern must
be addressed by advocates for those theories.

Management The discussion of the Internet of today focused on the data
plane, and considered issues of addressing and naming from the point of
view of global agreement and stability. That discussion paid little attention
to issues of management, in part because that area is so poorly developed
from an architectural perspective. In a future Internet, management must
receive more attention, for a number of reasons. This objective will lead
to the creation of a new set of interfaces, and will raise a new domain to
which these various theories must be applied. Many of the Interfaces will be
between peer components (between ASes or ISPs) so they are not platform
or layering interfaces. It is not clear what theory of longevity should apply
to such interfaces.
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Chapter 7

Security

7.1 Introduction

The Internet of today is generally considered to provide a poor level of
security. In this chapter I attempt to discuss why this is so: the mix of
historical, architectural and pragmatic reasons why Internet security is found
lacking.

This chapter will perhaps not resemble a normal paper on security, which
might identify a vulnerability and pose a solution. This chapter is concerned
with a more general challenge, which is how to identify and classify the range
of security problems that will arise in the context of a global Internet, how
to allocate the responsibility for dealing with these problems to different
parts of the network ecosystem, and how to decide which issues rise to the
level that implies an architectural response. This chapter is concerned with
what might be called security architecture, and a more traditional security
paper might take up where this chapter leaves off.

7.2 Defining security

The first issue is to consider what is actually meant by the word “security”.
Without a clear definition of what is meant by the word, it is not very
meaningful to discuss whether we have enough of it. The concept of security
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captures a range of issues, which may not actually have that much to do
with each other–“security” is a “basket word”, like “management”, which I
will deal with in a later chapter.

Computer science tends to define security in terms of the correct operation
of a system: a secure system is one that does what it is supposed to do, and
does not do unacceptable or unsafe things, even when it is under attack.
This approach, of course, requires the functions of a system to be well-
specified. There is an old saying among security experts: “A system without
a specification cannot fail; it can only present surprises.”1

A user might not think about security in the same way. What a user cares
about is whether adequate steps have been taken to reduce the probability
of bad events to a tolerable level. Users care about outcomes; technologists
tend to address inputs. An analogy from the physical world may help. A
home security expert might say that a home has a “secure door” if it has
a good lock and is strong enough to resist being kicked in. But what the
home-owner cares about is whether, all things considered, the probability of
being burgled is low enough to accept.

As another perspective, a political scientist of the realist school might de-
fine security by saying that a nation is secure if it can sustain peace at an
acceptable cost, or alternatively if can prevail in war. Security is not au-
tomatically equated to peace; unconditional surrender will create a state of
peace, but not one of security, since the price of unconditional surrender is
presumably very high. In this framing of security there is no attempt to
define what “correct operation of the system” would mean; that would be
nonsense with respect to a nation taken as a whole. It is a pragmatic deci-
sion of the leadership whether the costs of peace are lower than the costs of
war. The military exists both to deter war and prevail at war.

While users may care about outcomes–keeping the risk of harms to a real-
istic level–network designers are forced to work in the space of inputs. We
are forced to address security by making the components strong (correct),
exactly because the Internet is a general system. Just as we designed the
Internet without knowing what it is for, we have to design its security com-
ponents without knowing what security problem we are solving. Most folks
would understand that it would be nonsense to ask for a door to be designed

1I cannot determine who first said this. I have questioned a number of elders in the
field, all of whom agree that they said it, but believe they got it from someone else.
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without knowing whether it was for a house or a prison cell. But dealing with
that sort of uncertainty is the price of building a general-purpose network.
Perhaps it will turn out to be fundamentally easier to deal with functional
generality than security generality; perhaps we have just not yet figured out
how to think about security in this general, abstract way. But that is the
challenge I must address in this chapter.

The rest of the chapter proceeds as follows. First, I offer a way of sorting
out the landscape of network security, to provide some structure to the
discussion that follows. Building on that, I focus on the issues of trust, and
trust management, as a key to better overall security. I then proceed to a
narrower topic that brings me back to the theme of the book, the relation of
architecture to these various aspects of security; I consider how architecture,
within the minimalist framing, can contribute to better security.

7.2.1 Defining network security

Setting aside for the moment the range of possible definitions of security, we
should look more specifically at the range of issues that make up network
security. There is no one single issue that defines network security; in fact
it might be more useful to abandon the term and just talk about the range
of security issues that come up in the context of the Internet.

Security is sometimes defined by breaking the problem into three sub-goals,
confidentiality, integrity and availability (the CIA triad), and I will refer to
that structure when it is relevant, but in fact, for many of the issues that I
list, this structure is not very helpful. To begin, I structure my discussion of
network security by looking at the structure of the system, a taxonomy that
derives loosely from the layered structure of cyber-space (asking where a
malicious action manifests). Later in the chapter I will return to an output
or “harms-based” taxonomy of security, and ask what this might teach us
about how to think about the inputs–the correct operation of the system
elements under attack.

Here is my taxonomy based on where the attack manifests:

• Attacks on communication: This is the problem, sometimes clas-
sified as information security, where parties attempting to accomplish
mutual communication are thwarted by an attack, perhaps launched



144 CHAPTER 7. SECURITY

by the network or by some party that has gained control of some crit-
ical control point.2

This is a space where the traditional triad of confidentiality, integrity
and availability (CIA) has some validity, as I will discuss below. An-
other set of issues in this category falls under the heading of traffic
analysis. That term describes the form of surveillance where the ob-
server is not looking at what is being sent but who the sender and
receiver are. Knowledge about who is talking to whom can be as
revealing as exactly what is being said.

• Attacks on the attached hosts: Attacks on attached hosts can
occur as a result of communication with a malicious party (who uses
the capabilities of one or another layer to deliver an attack) or as a
result of an unsolicited incoming packet that somehow exploits a vul-
nerability to launch a successful attack. In the discussion of expressive
power in Chapter 4, this class of attack maps onto the case where the
interests of the end-points to a communication are not aligned. The
receiver may choose to draw on resources in the network (PHBs) as
a means of protection. The expressive power of the network must be
analyzed to see in what ways it can be exploited by either the attacker
or the defender.

• Attacks on the network itself: These include attacks on network
elements, the routing protocols, attacks on critical supporting services
such as the Domain Name Service (the DNS), and the like. Since the
core function of the Internet is actually rather simple, there are only
a few of these services; the interesting question is why they remain
insecure. I return to this below. To the extent that this layer cannot
detect and remedy the consequences of failures and attacks internally,
the consequences of attacks at this layer will become visible to the
layers above, which will have to take corrective action.

• Denial of Service attacks: Denial of service attacks (usually called

2A few years ago, there was a furor in the U.S. because Comcast blocked a peer-to-peer
music sharing application (BitTorrent) by injecting forged packets into the data stream.
This was not characterized at the time as a “security” event but as a violation of the
norms of service, but in the language of security, this was without a doubt an attack
on a communication by the network. End-to-end encryption would have detected this
particular attack, but since this was intended to be an attack on availability of service
(see below) there could have been many other approaches. In the discussion of expressive
power in Chapter 4, this class of attack maps onto the case where the communicating
actors have aligned interests, but some element in the network is hostile to those interests.



7.3. A HISTORICAL PERSPECTIVE 145

Distributed Denial of Service attacks or DDoS, because many machines
are exploited to launch the attack), do not quite fit into these devisions.
They can be classified as an attack against the network if they exhaust
the capacity of a link or switch, or as an attack against a host if they
exhaust the capacity of that host. So I consider this class of problem
separately.

7.3 A historical perspective

Some of the early Internet architects, including me, have been criticized for
not thinking about security from the start. This criticism is to some extent
valid, but in fact we did consider security; we just did not know at that time
how to think about it. We made some simplifying assumptions that turned
out to be false. Interestingly, much of our early advice about security came
from the intelligence community (the NSA) and their particular view biased
our thinking.

The NSA had a very simple model of protecting the host from attack: the
host protects the host and the network protects the net. They were not
prepared to delegate the protection of the host to the network because they
did not trust the net. So our job was to deliver everything, including attacks,
and then the host would sort it out. We now see that this view is over-simple
and thus not totally realistic.

Within the CIA framing, the intelligence community gives the highest prior-
ity to confidentiality–the prevention of declassification and theft of secrets.
Their view is that once secrets are stolen, the damage is done. What we
now see is that users care most about availability–their ability to get the job
done.

Because the intelligence community assumes an attacker with a very high
skill level and motivation, they argued only for mechanisms that were “per-
fect”. A mechanism that only provided a degree of protection just defined
how much effort the adversary would have to expend, and they assume the
adversary would be prepared to expend it. Today, we see that in many cases
the attackers are very concerned with the amount of effort required, and it
is probably a foolish idea to pursue perfection.

The CIA framing separates the world into two sets of people–those who
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are authorized and those who are not. If an actor is authorized, then they
can see the information, and if they modify it, this is not corruption, just
modification, since they are authorized. If an actor is not authorized, then
the goal of the system is to deny them access.

This framing is deceptive, but it shaped our early thinking. We knew that
some routers might be suspect, so there was no way we could insure that a
router did not make a copy of a packet–the packet forwarding layer could not
itself provide confidentiality. And a malicious router might modify a packet–
the packet forwarding layer could not itself provide integrity for data in tran-
sit. We took a very simple view, which is associated with the “end-to-end”
mode of thinking: only the end points could undertake to mitigate these vul-
nerabilities and achieve these objectives because only they could know what
the objective was, and only they were (presumably) trusted and authorized
to exchange this data. End-to-end encryption is the obvious approach: if
the data is encrypted making a copy is useless and any modification can be
detected.

When the Internet was initially being developed, encryption algorithms were
too complex to be implemented in software. They had to be off-loaded to
specialized hardware. This reality was a barrier to deployment; not only
did every machine have to be augmented with such hardware, there had
to be broad agreement as to the algorithm to be used, which was hard to
negotiate. But there was an expectation that we could move to the use of
end-to-end encryption at some point in the future.

This approach theoretically resolved confidentiality and integrity, and left
only availability for the network to solve. Of course, “all” the network does
is deliver packets, so it would seem that availability is the core requirement.
In this context, it is interesting that we have no “theory of availability”,
which is the subject of a later chapter.

Why was this conception of security deceptive? It implied a simple world
model–mutually trusting parties communicate and parties that do not trust
each other do not. It concerned itself only with information security among
mutually trusting actors. What we missed was that most of the commu-
nication on the Internet would be between parties that were prepared to
communicate but did not know whether to trust each other. We agree to
receive email knowing that it might be spam or have attachments that con-
tain malware. We go to web sites even though we know (or should know)
that web sites can download malware onto our computers. This is the space
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we need to make secure, not just the space of CIA communication among
known, trusting parties.

In this context, the end-to-end principle is not wrong, just incomplete and
in need of re-interpretation (for a reconception of the end-to-end principle
in the context of trust, see [Clark and Blumenthal, 2011]). An analogy may
help. If trusting parties want to send a private letter, they want assurances
that the letter is not opened in transit. But if recipients suddenly realize that
they may get a letter full of anthrax, then their “security objective” reverses–
they want that letter opened and inspected by a trained, trustworthy (and
well-protected) intermediary. End-to-end encryption between an attacker
and his target is the last thing the target wants–it means that the target can
get no help from trusted third parties in protection. An encrypted exchange
with an untrustworthy party is like meeting them in a dark alley–there are
no witnesses and no protections.

The overall security problem is not solved by telling the higher layer to
use end-to-end encryption. Encryption addresses the problem of protecting
communication between trusting users from disclosure or corruption, but
fails to address the mirror problem of adversarial end-points using network
protocols to attack each other. The problem of operation in an untrustwor-
thy world has to be handled by involving the higher layers in the system,
specifically the application layer, and it was this design problem that we
neither clearly articulated nor explored how to accomplish.

In the next sections of this chapter, I look in more detail at the three classes
of security, using the first set of categories above.

7.4 Attack and defense of the network itself

The physical layer of the Internet is made up of links, routers, servers, and
the like. Routers and servers are computers, and thus potentially susceptible
to remote attack using cyber-tools. Links themselves seem more immune to
this sort of attack, and are mostly susceptible to physical attack based on
close access–cutters and explosives. There are physical responses to these
sorts of attacks: links can be hardened against attack (both against destruc-
tion and tapping), and routers can be placed in physically secure facilities.

The functional specification of this layer, as we normally conceive it, is rather
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weak: these components are expected to do what they are designed to do
except when they don’t. We know that links can fail, routers can crash, and
so on, and it would be foolish to pretend that we expect these components
to be completely dependable. But given this weak specification, how would
we think about the security specification? I return to this question below,
since the security analysis of this layer resembles the analysis of the layer
above.

The next layer up, the Internet itself, is a global collection of links and
routers, which serve to forward packets from an entry point to an exit point.
The exit point is defined by an address that is specified in the header of the
packet. While there are many details about what the Internet does, at its
essence this is the functional specification. And the functional specification
is again very weak. The service model has been called “best effort”, by
which is meant that the network is expected to do its best, but failure is
accepted. The network may fail to forward a packet, deliver packets out of
order, deliver them multiple times, deliver them after inexplicable delays,
and so on.

There is a well-understood conception of what “good service” would mean–
acceptable levels of loss, delay and so on, but there is no hard and fast
specification. The reason for that was clear in the minds of the early de-
signers: a poor service is better than none. Designers should be held to a
high standard of doing well at ”best effort”, but there are circumstances
where best is not very good. If that situation were deemed “out of spec”,
then those times would be considered times of failure. However, there may
be applications that can still make use of whatever function there is. So
this weak specification is provided to the application designers, who then
have to decide how much effort to put into adapting and compensating for
circumstances where “best effort” is not very good. Some applications such
as real time speech that depend on good packet forwarding service may
themselves not function, or even attempt to function, when the packet for-
warding is functioning poorly. Others, such as delivery of email, can struggle
forward even if most of the packets are being lost. The higher layers just
keep resending until eventually the data gets through.

In a system like this, each layer has to take into account the failure modes
of the layer below in its own design. The Internet layer is designed to take
account of link and router failures–it includes a dynamic routing scheme
that finds new paths if a path fails. The end to end Transmission Control
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Protocol (TCP) copes with packet loss in the Internet. TCP numbers the
packets, keeps track of which are received and which are lost, resends the
lost ones, gets them in correct order, and then passes the data up to the
next layer. So the overall resilience and function of the system is based not
on precise specification but on a pragmatic balance of effort and investment
at each layer. The better each layer, the less the layer above has to do,
and (probably) the better the resulting behavior is. Different parts of the
Internet can be engineered to different levels of performance and reliability
(driven in many cases by pragmatic considerations of cost), and each layer
above is expected to cope with this variation. Investment at the lower
layers benefits all of the next layer functions, but over-investment at the
lower layer may add unnecessary cost to the service. None of this is part
of the Internet’s “specification”; the interplay between performance and
reliability at the different layers is a point of constant adaptation as the
Internet evolves.

In this context, how would we characterize the “security” of the packet for-
warding service of the Internet? A formally correct but useless response
would be that since the network is “allowed” to fail, it need not concern
itself with security. Pragmatically, of course, this is nonsense. There are
well-understood expectations of the Internet today, and an attack that ma-
terially degrades that service is a successful attack. But it is a matter of
degree. Degraded service may still be useful.3 But with a loose functional
specification like this, the determination of how to make the system resistant
to attack is potentially ad hoc. One must look to the design mechanisms,
not the specification, to see where attacks might come. Thus, one would
look to the routing protocols, and ask if they are robust to attack (they
are not, as I will discuss below). But the core function of the Internet is
actually very simple. If there are links connecting routers, and the routers
are working, and the routing protocols are computing routes, the Internet
is mostly working.

The Internet provides a general service, useful for many applications in
many circumstances. This generality raises a security conundrum: different
contexts will face different security threats. There is no uniform threat model
against which to design the network defenses. None the less, the security

3Security experts understand that the most dangerous attacks are those that might
cause massive, correlated failure of components, for example attacks on routers that exploit
a common failure mode and take out so many routers that the dynamic routing algorithms
of the network are overwhelmed and the network essentially ceases to function.
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challenge must be faced; designers (and architects) must make pragmatic
decisions about how robust the forwarding service must be to different sorts
of attack. But any security analysis must begin with an assessment of the
range of motivations behind such an attack, understanding that with high
probability the motivation will be to carry out a subsequent attack on either
an attached host or (more likely) an attack on communication.

7.4.1 A case study: Why is securing the network hard? Se-
curing interdomain routing in the Internet

The challenge of securing inter domain routing in the Internet is a good case
study of the barriers to better security; it illustrates the challenges caused
by lack of trust and difficulties of coordination. The Internet is made up of
regions called Autonomous Systems, or ASes. Each AS must tell the others
which addressed are located within the AS and how the ASes are connected
in order for the Internet to come into existence. The way this works in the
network today is that each region announces the addresses that are in its
region to its neighbors, who in turn pass this on to their neighbors, and so
on, until this message reaches all of the Internet. Each such message, as it
flows across the global network, accumulates the list of ASes through which
a packet can be sent to reach those addresses. Of course, there may be many
such paths–a particular AS may be reachable via many neighbors, and so
on. So a sender must pick the path it prefers, or more precisely, each AS
computing a route back to a particular set of addresses must pick among
the options offered to it, and then offer that option to its neighbors in turn.

Originally, there were no technical security controls on this mechanism. That
is, any rogue AS can announce that it is a route (indeed, a very good route)
to any other AS in the Internet.4 What may then happen, if other ASes
believe this announcement, is that traffic is deflected into that AS, where
it can be dropped, examined, and so on. This sort of event, in fact, is not
uncommon in the Internet today, resulting in failures along all dimensions
of CIA. How is it fixed today? Network operators monitor the system,

4It was understood as early as 1982 that an AS could disrupt routing by making a false
statement. RFC 827 [Rosen, 1982, Section 9] says: “If any gateway sends an NR message
with false information, claiming to be an appropriate first hop to a network which it in fact
cannot even reach, traffic destined to that network may never be delivered. Implementers
must bear this in mind.” The situation was identified as a vulnerability but not a risk.
The advice to “bear this in mind” could have multiple interpretations.
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problems of reachability are reported from the edge by end-users (who often
have to resort to phone calls, since their systems cannot influence routing)
and over some period, perhaps a few hours, the offending AS is identified
and isolated until some suitable discipline can be devised.

Ignoring details, there might seem to be an obvious technical fix. Why are
these announcements not signed, using some sort of cryptographic scheme,
so that they cannot be forged? Indeed, this was the path down which the
designers started when they set out to secure interdomain routing. But
there are two formidable barriers to this, one having to do with trust and
one have to do with migration to the new scheme.

The migration problem is easy to understand. In the global Internet, there
is no way that everyone is going to switch to the new scheme at once.
Unless some draconian discipline is applied (disconnection from the net),
some actors may just refuse to undertake the effort of upgrading, and they
will continue to originate route assertions that are unsigned. There are two
options to deal with this. One is to reject them (which is the draconian
outcome of disconnecting them) or accept them, in which case a malicious
actor cannot be distinguished from a lazy actor, and we are essentially no
better off. Until the last AS converts, we get little value from the scheme,
unless we wrap it in complex high-level systems, such as globally distributed,
trustworthy lists of ASes that have converted, so that a router knows which
unsigned assertions to accept.

The issue of trust is a little more complex. When an AS signs an assertion
(for example, when MIT signs the assertion that it is AS 3, and that it
has a particular set of addresses that it holds within that domain), it has
to use some encryption key to sign that assertion. The obvious technical
approach is to use a public or asymmetric key system, where MIT has a
private (secret) key it uses to sign the assertion, and a public key it gives to
everyone so they can decrypt the assertion and confirm that MIT signed it.
So far so good, but where does that public-private key pair come from? If
MIT can just issue itself a set of keys and start signing assertions, it might
seem that we are no better off, because a malicious actor could do the same
thing–make up a public-private key pair and start signing assertions that it
owns AS 3, controls those addresses, and so on. To prevent this from being
effective, the technical proposal was to create a trusted third party that
could confirm, based on its own due diligence, which public key is actually
associated with the real MIT. But why in turn would anyone trust that third
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party? A scheme like this ends up in a hierarchy of trust, which seems to
require a root of trust at the beginning, a single node that all parts of the
Internet trust to tell them which second-level parties to trust, and so on
until we get to the party that asserts that it know who the real MIT is.

An engineer might think this was a simple, elegant scheme, but it runs
agound in the larger world. First, what single entity in the world would all
the regions of the world agree to trust? The United Nations? This issue
is serious, not just abstractly but very concretely. When this scheme was
proposed, several countries (including Russia) asserted that they would not
assent to a common root of trust with the U.S. The agent who has the
power to validate these assertions must, almost of necessity, have the power
to revoke these assertions. Can we imagine a world in which the United
Nations, by some sort of vote, revokes its trust assertion about some nation
and essentially ejects that region from the Internet? What about those
second-level entities, that almost certainly are within some legal jurisdiction
and thus presumably subject to the legal regime of that region?

This fear is not hypothetical. The institutions that allocate Internet ad-
dresses are the Regional Internet Registries (RIRs). The RIR for the EU is
RIPE, and is located in Holland. The Dutch police brought a police order
for them to revoke the addresses of an AS. RIPE correctly said that it did
not have the technical means to revoke an allocation. However, if they were
issuing certificates of authenticity for AS allocations, then they would no
longer be able to make that claim.

So does this scheme make the Internet more stable and secure or less? Once
people understood the social consequences of this scheme, there was sub-
stantial resistance to deployment. The problem with adding a “kill switch”
to the Internet is to control who has access to it.

A different design approach might mitigate these concerns, one that allows
actors (e.g., ASes) to make assertions about who they are, but validates
these assertions in a way that makes them very hard to revoke. That would
solve the “jurisdiction” problem. But if a false assertion ever got started,
how could it ever be revoked? Once we grasp the complexity of functioning
in a space where not all the actors share the same incentives, not all are
equally trustworthy by different measures, and that these actors of necessity
are in the system, it becomes a very difficult problem indeed to design a
system that is robust at ejecting actors that are “bad” but also robust at not
ejecting actors that are judged “bad” if we don’t accept that they are bad.
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Management of trust relationship, and the expression and manifestation of
those relationships, becomes the defining feature of a successful scheme, not
exactly how crypto is used.

So in this respect, the landscape of security becomes a landscape of trust–
regions of mutual trust will be more connected, more functional, more effec-
tive, and regions that don’t trust each other will still try to communicate,
but with more constraints, more limitations, and perhaps more failures, es-
pecially with respect to availability. And this pattern will be found within
any application that tries to tailor its behavior to the degree of trust among
the communicating parties, whether the function is exchange of routing in-
formation or email.

What happens today is that “the Internet” does not try to solve these prob-
lems using technology. We fix some of these problems using management–
oversight of the system by trained operators and managers. We just tolerate
some of the residual consequences.

An alternative to the scheme described above to secure the AS routing sys-
tem will illustrate how a different scheme fits into a socio-technical architec-
ture. The scheme described above, with a hierarchy of trusted certifiers and
a single root of trust, is technically robust, in that it will always give the
right answer if the trust relations are valid and accepted by all the parties.
This approach may be technically robust but is not socially robust. Here
is an alternative approach that is less technically robust (one cannot prove
that it will give the correct answer under certain assumptions) but is more
socially robust. Above, I rejected the idea that MIT just make up a public-
private key pair and start signing its assertion. What would happen if that
scheme were adopted? At first, various regions of the Internet might get
conflicting assertions, if it happened that there was a malicious actor in the
system at the time when the assertions started to be signed. That situation,
while not desirable, is exactly what we have today. But over time–days or
weeks–it would become clear what key went with the “real” MIT. Each AS
in the network could learn this for itself, or groups of mutually trusting ASes
could cooperate to learn it. If necessary, the public key could be exchanged
by side-channels. Once the other ASes in the Internet have decided which
key to trust, they have independent possession of that fact, and there is no
authority that can compel a third party to invalidate it. The scheme decen-
tralizes control: any AS can decide on its own to stop forwarding traffic to
MIT, just as they can today.
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What this scheme exploits is not a technical scheme for propagating trust,
but a social scheme called “getting to know you”, which humans have been
running, probably for millions of years. We can be fooled, but in fact we
are pretty good at it. And it is simple. It requires no trusted third parties,
little administration (except that each AS should try very hard not to lose
their own private key) and great adaptability to changes in the landscape of
trust.

7.5 Attacks on network communication

This category of attack relates to parties that are attempting to commu-
nicate across the Internet, and are being thwarted by some malicious ac-
tion. This category can be decomposed using the traditional three CIA sub-
objectives: confidentiality, integrity and availability: information should not
be disclosed except to parties authorized to see it, information should not
be corrupted, and it should be available. With respect to network com-
munication, these goals take a rather simple form–particularly with respect
to integrity. Since the current Internet does not perform computation on
content, the simple form of integrity is that data is transmitted without
modification. 5

As I discussed above, cryptographic algorithms fit into the CIA triad by
giving strong assurance that data is not disclosed, and strong indications if
data is modified. There are several well-understood contexts in the Internet
today in which encryption is deployed, such as IPsec and TLS. Cryptography
is a powerful tool to improve security. However, it is important to see
how cryptographic methods tend to function in the larger context. These
protect the user from failures of integrity by halting the communication.
They map a wide range of attacks into a common outcome–cessation of
communication. But this outcome, while potentially better than a failure of
confidentiality or integrity, is just a failure along the third CIA dimension–
availability. Essentially what these schemes do is turn a wide range of attacks
into attacks on availability. And that is not the desired outcome–we want
to offer assurances about all dimensions of CIA.6

5If PHBs are added to the network that transform the data in transit, a more complex
theory of integrity will be needed, such as [Clark and Wilson, 1987].

6This observation provides one explanation as to why so many users deal with dialog
boxes warning about potential hazards by clicking the “proceed anyway” option–what
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If the best we can do using cryptography is to turn a range of attacks by
untrustworthy actors into attacks on availability, what can we do to improve
the situation? There are two ways to try to deal with untrustworthy actors:
constrain or discipline them, or reduce our dependency on them–in the limit
avoid them. Imposing constraints on untrustworthy or malicious actors that
both compel them not to misbehave and as well compel them to perform at
all are hard to devise; the fail-stop semantics of attack detection is the com-
mon outcome. The only way to compel correct operation is to so design the
larger ecosystem so that the cost to the actor from expulsion from the system
outweighs the cost from foregoing malicious behavior. This might work for
an ISP who is hosting both legitimate customers and spammers (and ISPs
have been expelled from the Internet for hosting spammers, essentially driv-
ing them out of business), but malicious individuals show great resilience to
constraint and discipline, especially across region boundaries. This leaves
the other option as a path to availability: accept that untrustworthy actors
are in the system but avoid them.

7.5.1 Traffic analysis

The term traffic analysis describes a form of surveillance in which the ob-
server does not look at what is being sent, but the source and destination
of the communication. Most obviously, in the Internet context, the observer
capture the IP addresses in the packets. This sort of logging, sometimes
(for historical reasons) called pen/trap logging, has its roots in the logging
of telephone numbers on phone calls. From a legal perspective in the U.S.
(and many countries) it is easier to get a court order allowing pen/trap log-
ging than data logging, which has led to a set of legal debates about what
sorts of data can be gathered using pen/trap logging. Such data is often
called meta-data because it is data about other data. The complexity of
the Internet makes the distinction between data and meta-data contentious:
since a packet is a sequence of headers, each with information about the
next header, one layer’s meta-data is another layer’s data.

From a technical perspective, encryption can limit what can be seen in the
network, but the headers that are processed by the routers (and other PHBs)
must be visible (barring very complex uses of encryption, such as TOR), so

they want is to make progress. Another reason, of course, is the often inexplicable content
of those warnings.
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there seem to be limits to the extent that a network design can substantially
shift the balance of power with respect to traffic analysis. One exception
to this presumption is the NDN proposal, which (though the use of per-
packet state in each router) removes from the packet any source address.
This means that an observer can tell that a piece of information has been
requested, but cannot easily tell which source requested it.

It turns out that a great deal of information can be deduced by observ-
ing an encrypted stream of packets [Chen et al., 2010, Wright et al., 2008]
[[[@@What to cite? there is so much]]]. It is possible to deduce a great deal
about what is being communicated, a great deal about the communicants
and so on. This so-called side channel leakage is a serious problem in high-
security contexts, and may be a serious problem for typical users as tools for
analysis improve. So while encryption may protect the data in transit, the
idea that encryption protects the communicating users from harm related
to confidentiality should be viewed with some skepticism.

One way to limit the harms from traffic analysis is to avoid routing packets
through regions of the network that are more likely to practice this form of
surveillance. There is no obvious way to detect in real time that packets
are being subjected to traffic analysis, but if a group of users can make
a judgment about which regions of the network are less trustworthy, and
have some control over routing (similar to the control discussed above in the
context of availability), they may be able to somewhat mitigate the peril.

7.6 Attacks on the attached hosts

Today, we see a wide range of attacks in this category, ranging from attacks
that involve a malicious sequence of packets sent to a machine that was
not a willing participant in the communication (an attack that exploits an
unintentional open port, or a flaw in the network software and the like) to
attacks that use an intentional act of communication (receiving email or
going to a web site) to download malicious code.

Again, it may be helpful to return to a historical perspective to understand
the current situation with respect to these classes of attacks. As I said above,
there was a presumed division of responsibility: the network protected the
network and the host protected the host. Security thinkers of the time
did not believe it was responsible to delegate protection of the host to the
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network, because they had no reason to trust the network. The assumption
was that the designers of operating systems could and would develop systems
that were resistant to attack. Given this presumption, the job of the network
was simplified: it delivered whatever the sender sent, including possible
attacks, as efficiently as possible. The host sorted out what it did and did
not want to receive.

In fact, this description of the network and the host is actually an over-
simplification of how early security experts thought about secure networking.
The security experts that consulted in the early days of the Internet were
primarily from the military/intelligence community, and had as a primary
concern confidentiality–preventing disclosure of classified information. This
mind-set shaped some of the early deliberations about Internet security. As
I noted above, this framing of security tends to ignore the issue of communi-
cation among parties that do not necessarily trust each other. As well, this
framing tends to divide the world cleanly into trusted and untrusted regions
of the net. In the context of classified work, it made sense to accept that
there were trusted regions of the network, typically inside facilities where
users had clearances and computers could be trusted. These regions might
be connected together over a public, untrusted Internet, but in this case
the packets across the public internet would be encrypted and wrapped in
outer IP headers that only delivered the packet to the distant trusted re-
gion. This concept, called encrypted tunnels, made sense from a technical
perspective, since only one encryption device would be needed at the inter-
connection point between the trusted region and the public Internet. At
the time, encryption boxes were expensive, and even a point-to-multipoint
device was pushing the state of the art. Having such a device per host was
not practical. The concept also made sense in the security calculus of the
day. There was no way an untrusted computer on the public Internet could
make a connection to a trusted computer in a trusted region, because the
encryption device would not allow in a packet that was not encrypted at
another region. End nodes did not need to worry about being attacked, be-
cause within the trusted region the prospect of attack was discounted, and
from outside the region packets were totally blocked.

The security analysis of this sort of architecture became quite sophisticated.
There were concerns about the possibility that corrupt insiders could leak
information by hiding it in “covert channels”, low bandwidth communication
channels exploiting such features as the timing of packets in the channel.
The confinement problem was understood in 1973 [Lampson, 1973]. These
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concerns did not end up being the real threats, and a focus on this framing
may have distracted the early thinkers from a broader consideration of the
security landscape, such as the need for users with clearances to talk to
people without such clearances.

This simple division of responsibility has proved flawed, for several reasons.
First, of course, the operating systems of today are flawed. Second, ap-
plication designers have favored functionality over security, and designed
applications with rich features (e.g., the ability to download and execute
programs of various sorts), so the applications become the vector of attack.
Very early on in the design of the Internet, security experts (some from
the NSA) identified the problem of a “trojan horse” program, and made
clear that in their opinion, if executable code was transferred across the net-
work, the only practical protection would be to transfer it from trustworthy
sources–trying to vet code for malicious content was a losing game.

So here we are today, with a need to reconsider more or less from scratch all
of these assumptions. First, we have started to depend on (in other words,
to trust) at least some elements in the network, as I discussed in Section 4.6.
Firewalls provide a crude protection from the attacks that involve packets
sent to a machine that did not want to participate in the communication.
Firewalls block unwanted ports, and (if combined with Network Address
Translation) hide the IP addresses of machine. For this protection to work,
we must depend on the reliable operation of the firewall, and rely on the
topology or routing of the network not to bypass the firewall. This sort of
trust is both simple and local, but it reflects a recognition that the hosts
being protected and at least the local region of the network to which they
are attached should share responsibility for protection. The next question
is what services might the packet forwarding layer provides to make the
“security job” of the host and the higher layers easier. This question is the
one I asked in Chapter 4–how can the expressive power of the network be
designed to help the defender in the case that the interests of the end-points
are not aligned. The network cannot make the end-points “secure”, but
perhaps it can be a part of the solution, rather than delivering the attacks
with best effort.

A more general question that one might ask, in this light, is if the host
must depend on other elements as part of its protection, which elements are
better suited for this task? Perhaps depending on the network (or even more
specifically the region of the network that provides service to the host), is not
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the only or the best idea. Perhaps there are new sorts of elements, or new
actors that could provide protection services. In the language of Chapter 4,
what PHBs can we devise to protect an end-point, what actor would be best
trusted to deploy and operate them, and finally what architectural support,
if any, is needed to utilize them. If we allow ourselves to rethink from scratch
this framework for security, new design approaches might emerge that have
additional actors and services beyond the host and the network.

As well, there has been considerable progress in devising ways that the
operating system of the end-node, in addition to being more robust itself
to attack, can help protect the application running on the end-node from
attack. The concept of sandboxing describes an approach where the code of
the application is placed in a confining environment before it interacts with
the network, and this environment is conceptually discarded at the end of the
interaction, thus discarding in passing any malware or other modifications
that may have resulted from the interaction.

7.6.1 The role of applications

A network such as the Internet, as I have repeatedly stressed, is a general
network that moves packets. But packets only flow because some higher
layer software chooses to send and receive them. It is applications that
define what actually happens on the network. It would be nice if the packet
carriage layer of the Internet, perhaps properly augmented by innovative
PHBs, could protect one host from attack by another independent of the
application being used, but this is not a realistic hope. The simple semantics
of the Internet–best-effort delivery of packets–is (for the moment) about all
the network can do. It is the higher-layer software–the application–that
translates between information sent over the Internet and actions on the end-
nodes. Many of the security problems we deal with today arise because of
design decisions at the application layer, and it is to that layer that we must
turn for an overall improvement in the landscape of security. Applications
can, by their design, either create security vulnerabilities or limit them.

The lesson we learn by looking at the design of applications is in some re-
spects a bleak one. Applications today, in the pursuit of more powerful
functionality and appealing features, have incorporated functions that are
known to be risky, and were known to be risky at the time they were de-
signed. The ability to download active code (e.g., Javascript) from a web



160 CHAPTER 7. SECURITY

site and execute it on a client machine was understood as risky from the
beginning, and was decried by the security community at the time. It was
implemented anyway. We must accept that applications today are insecure
by design, and we must figure out how to deal with this, since this preference
is not going to be reversed.

One answer lies in the operating system, where features such as sandboxing
can potentially prevent malicious code from having any persistent conse-
quences. Another answer may lie in designing applications so that they
only enable risky modes of operation when there is good reason to trust the
communicating parties. Since applications define and control the patterns
of communication among the entities, it is applications that can, by their
design, invoke PHBs as part of their security architecture. And it is ap-
plications that can tailor their behavior based on the extent to which the
participating actors trust each other. Actors that choose to trust each other
may want to exploit applications in a mode that imposes fewer constraints
and allows more flexible communication, while actors with less mutual trust
may want a mode that provides more protection.

Applications can play another key role in an overall framework for security.
My analysis to this point has swept a serious problem under the rug. What
if our attempts to protect the host from attack fail, and the host falls under
the control of a malicious actor. At this point, that malicious actor may
undertake activities (e.g., data transfers) that seem entirely legitimate with
respect to the network (they seem like transfers between mutually trusting
parties), but the security goal is to block them. In other words, in the case
where a machine has been compromised, the security goal reverses. The goal
is to “attack” (block) what otherwise would be legitimate communication.

Perhaps some cases of this sort can be classified as malicious by behavioral
monitoring–a user who suddenly transfers gigabytes of data out of a secure
area might attract attention in any case. But in general the way to think
about this situation is to distinguish, as I did earlier, between penetration
of a host and a harm. The harm arises from the use of applications, which
define the legitimate data flows. Applications can be designed so that they
reduce the risk of harms, using designs that require (for example) multi-
ple machines to concur before potentially dangerous actions are permitted.
Consider, for example, that a firewall might block all outgoing data flows
above a certain size unless a second machine has first authorized the transfer.
Applications could be designed such that this second machine is notified of
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the need to issue this authorization, which could then carry out some inde-
pendent check of identity, authorization and the like. The design goal would
be to minimize disruption of normal work flow, but that second machine
should be implemented in such a way that the penetration of the first ma-
chine by a malicious actor does not provide a means to penetrate or subvert
the function of the second machine.

What I have described here is a sophisticated design challenge for the ap-
plication designer. But suggesting that potentially dangerous tasks should
require dual authentication is not a novel idea. My point is that this sort
of constraint is going to be built into, or at least controlled by, the appli-
cation, not the network. I discussed earlier the basic design approach of
the Internet, which is that layers must be designed to deal with failures in
the layers below. TCP deals with lost packets, and so on. What I propose
here is just the application of this approach at a higher layer–the design of
the overall system must take into account the possibility of failure in the
layers below, in this case corruption of machines on which (part of) the ap-
plication is running. The network does have a role, which is to insure that
only authorized flows take place. One could imagine using software defined
network (SDN) technology to allow only flows that are consistent with the
application-defined security policies.

7.6.2 The role of identity

My repeated reference to trust seems to beg a more basic concern–it is
nonsense to talk about whether actors trust each other unless they have
sufficient information about each other’s identity. So identity management
must be part of any framework that depends on trust management. This
fact, in turn, raises the question of which entities or layers within the system
should implement the mechanisms of identity management.

One view is that the architecture itself should specify how identity is man-
aged. There have been calls for an “accountable Internet”, which seems to
imply that the architecture assures the identity of the participants to all
interactions. I think this is a very bad design approach, as I have argued,
along with my co-author [Clark and Landau, 2011]. Identity is used in a
very nuanced way in society–sometimes we need strong, mutual confirma-
tion of identity, sometimes we function well with total strangers. It is the
mode of interaction that determines the need for identity, and on the net,
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it is the applications that define the modes of interaction. So we must turn
to and rely on the applications to establish the correct level of mutual iden-
tification, and use this information to deploy the correct level of protection.

Application designers should not have to solve these problems from scratch
each time a new application is designed; what is needed is advice and guid-
ance, perhaps applicable to a class of applications, that suggests how these
problems might be approached. What is needed is a collection of applica-
tion design patterns that can be offered to designers. Trying to think about
design patterns in an organized way should yield another benefit; by looking
across applications to see common needs, new ideas may emerge for com-
mon services that the lower layers can offer to help improve the security
of applications. It is highly unlikely that there will be some new service
at the packet forwarding layer that can suddenly make applications secure,
but is is possible that there are supporting services that can make the task
easier. The way to find these services is to look at application requirements,
generalize from them, and see what concepts emerge.

7.7 Denial of Service attacks

Abstractly, the fact of DDoS attacks can be taken as a fundamental indict-
ment of the architecture–the essence of a layered design is that the lower
layer should not be affected by the behavior of the layer above it. Since
DDoS attacks can disrupt the lower layer just by sending packets, the de-
sign of the lower layer is definitionally flawed. However, one should not be
too harsh in judging the design. Simple approaches to protecting the trans-
port layer, such as fair queuing and rate limiting, can only do so much if the
attacker can assemble a large fraction of a million attack machines. [[[Cite
Perman thesis to put “simple” into context???]]]

Another point of view is that the architectural flaw is that a sender can
send at will, without the permission of the receiver. If the Internet required
the permission of the receiver before delivering a packet, perhaps certain
sorts of DDoS attacks could be thwarted. However, many of the machines
that are attacked are intended to provide services to any comer–services like
providing Web content. These machines need to accept traffic from anyone
if they are to fulfill their intended purpose.

Another perspective on DDoS attacks is that they persist only because of
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an “economic flaw” in the ecosystem–the state of affairs that in many cases,
users pay a flat rate for access rather than a usage-based charge. This
pricing model reduces the incentive of the user to remove malware–if the
user suddenly got a large and unexpected monthly bill, there would be a
much larger incentive to remedy the situation.

In my view, once we take into account the need of services (server machines)
to be open to connections from anywhere, and the potential scale of DDoS
attacks, the only realistic approach is to identify the attack traffic as such
so it can be stopped or at least throttled to an extent that renders the
attack ineffective. (The idea of diffusing the attack against a sufficiently
large attack surface also seems to have merit.)

However, once we contemplate the idea that certain traffic will be classified
as malicious, we must then think through the potential of this mechanism as
itself a vector of attack. We must ask which entity would have the authority
(or be trusted) to declare traffic as malicious, and which actors would be
expected to honor this declaration. Again, this is an exercise in crafting the
expressive power of the architecture so that the “right” actors can preferen-
tially exploit that power. I return to this topic when I discuss architecture
and security in section 7.9.

7.8 Balancing the aspects of security

The preceding discussions suggest that there are four general problems to
address: protect regions of the network from being attacked, protect commu-
nication among aligned parties, protect parties with adverse interests from
harming each other, and mitigate DDoS attacks. It would be very nice if
these could be addressed independently, and to some extent they can, but I
will argue that there are tensions between protecting the host and protecting
the communication, and part of the overall security design of an architec-
ture will be to balance to requirement to protect communication and the
requirement to protect end-nodes from each other.

One could imagine the design as proceeding as follows:

• First, make sure that critical algorithms that support key PHBs are
secure. Interdomain routing is the obvious example–since routing, as



164 CHAPTER 7. SECURITY

currently conceived, is a distributed algorithm in which all regions
of the network participate, it creates opportunities for one region to
attack another. There are other PHBs, such as anycast, that may need
to be better secured.

• Second, put in place schemes to protect communication. Assume that
applications (which define the patterns of communication), will deal
with issues of confidentiality and integrity by using encryption, and
assume that the application will intentionally route communication to
any service elements that are needed. To deal with the goal of avail-
ability, the application must design its communications, and take ad-
vantage of any expressive power provided by the system, to detect and
localize if and where a PHB or service component is mis-functioning,
and reconfigure itself to avoid it.

• Third, put in place PHBs that can prevent or constrain communication
among untrusting or hostile end-points. Assume that the application
can modulate its behavior based on sufficient identity information, and
add or remove protective PHBs as necessary.

• Fourth, put in place suitable mechanisms to diffuse or disable DDoS
attacks.

This assessment is both glib and incomplete. It is glib overall in that is seems
to trivialize very hard tasks, even if they are well-defined. In more detail,
it is glib, firstly, with respect to the issue of localization of malfunction and
availability. However, since the current Internet does nothing in this respect,
any new capability would be better than what we have today. Second, it is
glib with respect to the degree it depends on the designer of the application
to get all this right. For this approach to work, the application designer has
to be given a lot of help and design guidance, even if this is not embedded
in the architecture.

However, if this analysis is well-structured, it can suggest a research ap-
proach, even it it seems to trivialize the challenges. However, I also de-
scribed it as incomplete. The lists begs the question of whether these tasks
are independent–whether we can proceed with each separately, doing the
best we can at any time. In fact, I believe that they are not independent; it
is possible that the design space of secure operation implies a tradeoff be-
tween two perils–attacks on the communication and attacks on each other.
The more protections that are put in place to protect one end-point from
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the other (in the language of Chapter 4 the more PHBs), the more points
of attack are created that might be used to disrupt the communication. A
clean, encrypted channel between two end-points is a very simple concept,
with few modes of failure and few points where an adversary can exploit a
PHB to disrupt the communication.

If untrustworthy PHBs can indeed be ejected from the path of communi-
cation (task two above) then perhaps this risk is hypothetical. But we see
today in parts of the Internet a situation that brings this issue into sharp
focus–the situation within countries with more repressive or restrictive gov-
ernments who require that their ISPs act as agents of the state to regulate
communication. In this case there are PHBs in the network that are, from
the perspective of the users if not the state, untrustworthy, and the users
have no ability to avoid using them.

For the users in that country, there is no way to avoid using that network (it
may be the only network available) so communication becomes a “cat and
mouse” game in which the expressive power of the network is used by both
sides to achieve their goals. A sender can encrypt as much as possible, so that
the only PHB it attempts to exploit is the most basic forwarding. The PHB
of the state may try to force more revelation by blocking encrypted packets.
The sender may tunnel to a exit node; the PHB may respond by blocking
those destination addresses. By revealing less, the sender tries to prevent the
PHB from doing fine-grained discrimination–it forces on the PHB a “blunt
instrument” response, such as blocking all encrypted flows, which may have
such collateral damage that the censor is forced to forego that behavior. So
part of what an architecture (through the lens of expressive power) can do
is provide tools to shape this game, and perhaps bias the outcome. This is
a classic example of tussle, carried out using the tools of the architecture.

In this context, rich expressive power may be intrinsically dangerous. If a
network provides rich expressive power, and applications are designed to take
advantage of these powers, even as an “optional” mode, a PHB with adverse
interests may take the approach of blocking modes of communication that
do not exploit these options, on the grounds that the collateral damage is
reduced: the user still has a mode that will achieve communication, but one
that forces maximal revelation. User choice is also dangerous. One can see a
simple example of this with respect to encrypted connection to Web pages.
Today a Web server makes the decision as to whether to use TLS. The client
has no control. If a censorship PHB blocks encryption, it blocks access to



166 CHAPTER 7. SECURITY

all TLS web sites. But if the use of TLS were a choice under the control
of the client, blocking all encryption would “only” have the consequence of
forcing the user to communicate in the clear. Choice can be a bad option
if the end-node can be coerced into making bad choices. Better a simple
architecture with no choice.

Expressive power is dangerous in another related way. As we add capabilities
for the sender to add more expressive explicit data to the packet header, the
possibility arises that third parties “in the network” (exploiting topological
delivery), with interests adverse to both the sender and receiver, and with
topological control, will be able to use the available mechanisms to coerce
explicit information from senders as a condition of usage. Section 7.9.4 gives
an example of this tension related to identity management. So when the goal
is protecting communication from attack by the network, the best design
point may be minimal expressive power with no choice given to the end-
nodes over how that expressive power is exploited. This approach, almost
of necessity, will make the target of availability much harder to achieve.

I have used the terms control point and control point analysis to describe
a way of looking at the design of a system–an approach that involves cata-
loging all the actions that must be completed in order for some undertaking
to succeed, and methodically cataloging all the points in the flow of ac-
tions where the design creates an opportunity for some actor to control that
action. A focus on control points guides the analysis away from the data
plane and toward the control plane. Control points are points of tussle, and
what we have called tussle is the aspect of security that emerges when an
undertaking must tolerate the presence in the system of actors with adverse
interests. In this context, eliminating control points, or diffusing the archi-
tecture of control so that it cannot be co-opted by an actor with adverse
interests, may be as important to the overall usability of the architecture
as adding more complex network functions that are intended to improve
the functional performance of the network. [[[Perhaps add a box on control
point analysis...?]]]

7.9 The role of architecture

The preceding sections propose a way to view the landscape of network secu-
rity.The focus of this book is architecture; the final question for this chapter
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is what does architecture have to do with security. According to my min-
imality argument, architecture should say as little as possible, but no less.
And architecture does not, in and of itself, determine how a system meets
its requirements (such as a requirement for secure operation), but rather
provides the framework and necessary starting points for the subsequent
design to meet its requirements. The previous discussion about expressive
power and its potential dangers suggests a starting point of view, but here
are some more specific concepts.

7.9.1 Attacks on the network

I discussed in Section 7.4.1 why securing the routing protocols of the current
Internet is not a simple technical problem solved by the use of encryption,
but a complex problem embedded in a space of trust management and tussle.
To the extent that designers add complexity to the network (for example
additional PHBs with distributed control algorithms), I would assume that
the failure modes and attack modes will become more complex–an argument
for simplicity. But at the architectural level, the question is what sort of
expressive power might be added to make such protocols more robust, or
aid in localizing faults in the protocols. Perhaps the methods used to detect
malicious PHBs in the context of end-point communication can be used to
detect malicious PHBs in the context of the network’s control algorithms.
Again, the role of architecture is not to make the system secure, but to
provide critical building blocks so that subsequent mechanisms can be built
to achieve these goals.

One key design choice with important security implications is the expressive
power in the packet header to represent interdomain routes. Schemes like
those in Nebula and SCION in XIA allow the sender to put a cryptograph-
ically signed interdomain source route in the packet. The pathlet proposal
in [Godfrey et al., 2009] similarly requires the packet header have sufficient
expressive power to describe a sequence of pathlets. In schemes like these,
the sender or its agent composes the path from routing assertions made by
the different regions of the network. The resulting delivery sequence can
still be confounded if these basic routing assertions are not trustworthy, but
the sender need not worry about whether the computation that composes
the resulting source route is corrupted, since that computation is done by
the source or an agent the source has reason to trust. In BGP, where the
interdomain paths (the path vectors) are computed by each AS along the
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path in turn, any corrupt AS can disrupt the proper delivery of packets to
the destination, leaving no option to the source to route around that AS.

Protecting PHBs and their invocation Apart from the tension I de-
scribe above, if the network is to contain a richer selection of PHBs, perhaps
invoked using explicit parameters in the packet, the design must take into
account protecting both the PHBs and the parameters of the packet header.

Once we recognize the existence of intermediate elements (and their PHB)
as a part of the system, we have to take methodical steps to deal with
attacks on these devices themselves. These devices are perhaps (often?)
simpler than general purpose operating systems, and it may be possible to
engineer them to a higher standard of resistance to penetration attacks.
To the extent that these are protective PHBs–“first line” elements exposed
to the full open Internet, while shielding resources behind them, it will be
necessary to engineer them to a high standard of penetration resistance.
More generally, we have to ask about DDoS attacks against these devices.
Intermediate elements with their PHB will be attacked if this provides a way
to disrupt access to the overall service. So the ability to protect first-line
elements from DDoS attacks is a general problem the architecture should
solve. Mechanisms such as anycast may be useful as a tool in this pursuit,
so long as the issues of shared state across the replicated PHBs can be
managed.

Once we introduce the concept of explicit data carried in the packet and used
as input to various PHBs in the communication path, we have to ask about
the security implications of this data. The classic triple of “confidentiality,
integrity, availability” is a useful place to start, but we must not forget the
concerns around traffic analysis. Another summary is “that which is not
encrypted can be seen, that which is not signed can be changed”.

For example, the proposal for a push-down stack of records of explicit data
for different PHBs, as I sketched in Chapter 4, reveals a number of issues.
The problem of gross corruption of the header by some hostile PHB is per-
haps not worth considering–if an element is that malicious, the outcome is
the same as a failure to forward, which is a more general problem that can
only be dealt with by avoiding that element. The more interesting question
is spying on the information, or more purposeful modification of information
on the stack, to somehow break a PHB further along the path. To prevent
this, in the extreme, each record on the pushdown stack could be encrypted
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using a public key of the element in question. This implies considerable
processing overhead, and some way to get the right public key reliably. The
Nebula proposal realizes a scheme of this sort. The overall complexity is
somewhat similar to a client using the TOR system, so we do have evidence
that users are willing to tolerate this overhead. However, in some cases, it
may be desirable for one PHB to modify the input data for a subsequent
PHB, so the approach taken to secure the data should not be inflexible.

Concerns about corruption of a packet header are in fact only an example
of the more general problem I discussed above–if an intermediate element
is untrustworthy, in the general case the only option is to reduce ones de-
pendency on it to a sufficient degree, perhaps avoiding it all together. This
approach depends as much on the ability to detect and localize a problem
as to prevent it. So the design approach that the architecture takes around
explicit parameters in the packet header should focus on fault localization
as well as continuing to employ elements with adverse interests. Again, the
context of the repressive government must be a cautionary thought at this
point.

In the discussion on applications above, I proposed that applications might
want to adapt their modes of operation based on the degree to which the
end-points were prepared to trust each other. The reality of operating in a
network where there are untrustworthy intermediate elements suggests that
there is a second dimension along which the end-nodes will need to adapt
their behavior, which is the extent to which they choose to try to exploit
intermediate elements and their PHBs. The less explicit information that
is in the packet (the less the end-points try to exploit the expressive power
of the architecture), the less opportunity is available to adverse elements to
disrupt communication.

Protecting addressing modes Addresses in packets seem like the most
basic form of explicit parameter, so they make a good case study of the
tradeoffs as we add expressive power. Addresses in the current Internet are
very simple: just one field of 32 bits (until we get IPv6). This simplicity
and lack of structure imposes some operational requirements: we organize
addresses into blocks for routing purposes, rather than computing routes for
individual end-points. These address blocks are usually subsets of addresses
that belong to an Autonomous System, so a possible form of address with
more expressive power is that the address contain the destination AS explic-
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itly, as well as an end point address. If the AS is not too big, routing on flat
addresses within it would be feasible, so addresses would not have to reflect
location. This proposal is a nice example of a different sort of expressive
power in the header; the challenge with this idea, as with all proposals for
expressive power, is to ask how it can be exploited by malicious actors.

Attacks on the routing system would seem to have about the same potential
in this scheme as in the current scheme, in that whether the AS number is
explicitly in the packet or derived from a mask on the IP address, a bogus
routing assertion could equally send the packet off in the wrong direction.
If an attacker could somehow modify the AS number in a packet, it could
be sent off in the wrong direction without any attack on the routing system,
but it is not obvious how an attacker would undertake that attack unless
the network of the sender is untrustworthy (as in the censorship example).

Perhaps more interesting is the question of how a malicious sender could
manipulate this scheme as part of an attack. The opportunities for attack
begin to emerge when we look at the options that the receiver might exercise
to deploy PHBs to protect itself. For example, a machine that is protecting
itself from a DDoS attack might purchase a service that provides many
machines scattered around the network to diffuse the DDoS attack, and
let only legitimate traffic through. To direct DDoS traffic to these widely
distributed machines, they might be given addresses that are in an AS which
itself is multi-homed onto the network at many places, a form of AS-level
anycast. The receiver might give out its address as being inside that DDoS
protection AS, but if an attacker can guess the final AS within which the
target is ultimately located, it can compose this address and send directly
to it, thus using the increased expressive power of the header to bypass the
DDoS protection. The DOA proposal explicitly noted that some additional
mechanism such as having the protection node sign the packet would be
required to protect against attackers that attempt to bypass the node.

One could try to mitigate this attack by structuring the DDoS system as an
address indirection scheme, in which the DDoS protection devices rewrite
the destination address or add some sort of capability to the packet, to signal
that the packet has been validated. In addition to the i3 and DOA proposals
mentioned above, there have been other schemes proposed: [Andersen, 2003,
Yang et al., 2005] to improve the security of services on the network by
interposing some sort of checkpoint or intermediate relay in the path from
the client to the server. This relay can permit or deny access based on the
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rights of the client, or perhaps rate-limit or otherwise constrain clients as
appropriate. These devices depend, in general, both on state stored in the
relay and additional information in the packets. Since today there are no
fields to carry additional information, such schemes are required to build
on such fields that already exist (implicit parameters, to use my term).
Perhaps an important form of expressive power to add to a future network
is some sort of credential to control forwarding of packets among PHBs,
or some other mechanism to compensate for more expressive addresses by
limiting the uses of these addresses as attack vectors. But more generally,
the consequence of defining an address format with more expressive power
is the need to add yet more expressive power that can be used to control
the abuse of the address, which might in turn trigger the need for expressive
power to limit that mechanism from being abused, and so on.

A simpler example of tension over expressive power is anycast. With any-
cast addressing, a number of endpoints can have the same address, and the
network rather than the sender picks the one that receives what is sent, per-
haps the “closest” receiver by some metric. What if the particular receiver
selected by the network is not functioning correctly? Perhaps a malicious
actor joints the anycast address group and tries to attract traffic in some re-
gion. If the sender has no way to exercise choice and select another receiver,
this is a classic example of an availability failure due to lack of control by
the sender. All the sender can do is wait for the failing receiver to be fixed
or removed. The DONA proposal allows the requester to ask for “the k-th
closest” copy. But if the architecture gave any form of control to the sender,
would this expressive power become an attack vector for a malicious sender
to pick a particular receiver out of the anycast set and launch a DDoS at-
tack? Part of the power of an anycast address is to diffuse a DDoS attack,
which implies that the sender must not be given any power to tailor the
address. Is this tradeoff intrinsic?

7.9.2 Attacks on communication

Assuming that confidentiality and integrity are managed using encryption,
the remaining problem, availability, I defer to Chapter 8. The potential con-
sequences of traffic analysis can be greatly influenced by architecture design.
The expressive power (or lack thereof) of the header can greatly influence
what is exposed in the packet, and thus the perils of adverse observation, as
for example the lack of a source address in NDN.
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7.9.3 Attacks on hosts

I argued that to a large degree, the opportunities for attack are created at
the application layer, and the application (supported by mechanisms in the
end-nodes like sandboxing) will have to mitigate these risks. What can the
network, and in particular the network architecture, do to help mitigate
these problems? One answer is that the network can provide means to pre-
vent data flows that are not authorized by trusted elements in the network.
If applications are designed so that authorization from trusted elements is
obtained before dangerous data flows are permitted (e.g., exfiltration of data
from a trusted region), then the network should prevent rogue applications
(perhaps based on malware) from initiating these flows. Mechanisms such as
Software Defined Networking (SDN), which allow forwarding policies to be
downloaded into routers, could be used in a way that trusted elements con-
trol the SDN policy, and applications are designed to negotiate permission
from these trusted elements before taking action such as sending data.

Another potential role for architecture is to add to the expressive power of
the packet header some way to convey identity information, so that hosts and
applications can discriminate between trusted and untrusted actors earlier
in the initiation of communication. I discuss below both benefits and risks
of this idea, and a designer should think carefully whether there is benefit
in having any greater indication of identity visible in the packet, or whether
this information should be conveyed at a higher level (end-to-end, perhaps
encrypted) so that issues of identity become private matters between the
communicating end-points.

7.9.4 Architecture and identity

I argued above that it would be a very bad idea for a future Internet ar-
chitecture to include as part of its specification a fixed method to manage
identity. This approach would (in abstract terms) be embedding too much
semantics into the network. But perhaps as part of the expressive power of
the header there should be a field into which any sort of identity information
could be put by the sender as specified by the receiver. Different applica-
tions, in different contexts, could demand one or another sort of information
be put into this field, so that the credential could be checked on receipt of
the first packet, perhaps by a element in the network that had credential-
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checking as it PHB. The NewArch proposal included a rendezvous field in a
session initiation packet, whose meaning was private to the communicating
nodes.

As with any proposal to add some form of expressive power to the archi-
tecture, this must be examined from all perspectives–protecting a receiver
from a sender and protecting communication from attack by the network.
For example, a conservative government might demand that some explicit
identifying information be added to the packet as a condition of making a
connection out of the country. Today, there is no practical way to demand
that, exactly because the packet header is not expressive enough. As we
make the header more expressive, we have to consider how we have shifted
the balance of power among the various actors.

7.9.5 DDoS attacks

DDoS attacks are a problem that has to be solved (at least to some degree)
at the network layer. A network must have a way to manage and protect its
resources–this is not an problem that can be “kicked up the layers” to the
application. But again, the question is what sort of architectural support
would be useful in mitigating these attacks.

There are several ways to think about dealing with DDoS attacks. One is to
increase the barriers to the construction of botnets to the point where they
become impractical. Perhaps, with careful attention to all the issues dis-
cussed so far in this chapter, that might be possible, but I set that approach
aside for the moment. A second approach is to make it easier to disrupt the
control of a botnet once it has been created. Again, a different architecture
might make that goal easier, but since there are many conceptional ways
to communicate with an infiltrated machine, this approach would require a
rethinking of the basic communication paradigms of the architecture. Pro-
posals such as NDN do not allow the sending of unsolicited data packets, so
all they can send is interest packets. This limitation certainly changes the
landscape of attack.

Assuming that in a new architecture it is still possible for an attacker to
assemble and control a substantial set of infiltrated machines, which can then
send traffic with the goal of overloading a target resource, the mitigation of
this attack seems to have two components: first to determine which machines
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are sending the traffic and second to block the malicious flows. In the context
of the current Internet, much of the work on DDoS has focused on the first
problem: determining which machines are originating the attack. This is an
issue in the current Internet because it is possible for a sender to put a source
address in a packet other than the one associated with that sender. This
might seem to be a malicious action, but in fact there are often legitimate
reasons to do this: mobile IP (RFC 5944) requires that the source address in
a packet be that of the ”home agent” (a persistent address) rather then the
current address assigned to the mobile device. The IETF tried to address
this issue by proposing a “Best Current Practice” (BCP 38, RFC 2827)
that recommends that source ISP check and validate the source address of
packets they originate. However, there is no requirement that ISP conform
to BCP 38 (other than some mild and probably ineffective peer pressure
and shaming) and complying with BCP 38 imposes additional costs and
complexity on ISPs. BCP 38 was promulgated in 2000, and has achieved
some but by no means complete compliance.7

The situation with the current IP architecture raises the question of whether,
in some alternative design, it could be made impossible for an attacker to
forge a source address. A designer could take the naive approach of making
a test similar to the one proposed in BCP 38 “mandatory”, but how would
such a mandate be enforced? As I noted in section ??, features described
as part of an architecture that are not actually necessary for the operation
of the network have a tendency to atrophy over time. To assure that source
addresses are validated in packets, an architecture would ideally make that
validation an integral part of forwarding the packet, so that the step could
not be skipped in pursuit of performance.

Some architectural proposals explicitly allow the source address (the address
to which a return packet should go) to be different from the address (loca-
tion) of the sender. DOA, which concerns itself with delegation of services
to other points in the network, makes clear that the sender of a packet can
indicate in the source information the sequence of services to which a re-
turning packet should transit, which is different from the processing of the
initial packet. This design would seem to open up many opportunities for
DDoS attacks. The DOA paper (see Chapter ??) discusses the use of an
intermediary to protect a server from a DoS attack, but does not seem to

7See https://spoofer.caida.org/, which reports on their attempts to measure compli-
ance. Their report as of April 2016 is that about 57% of ASes, covering about 80% of
routed IP addresses, detect false source addresses.
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address much attention to the use of malicious source (return) addresses.
At the other extreme, schemes like Nebula, which require a sender to obtain
a Proof of Consent from the control plane before sending a packet, would
seem to preclude the forgery of source addresses.

Traceback A number of papers have proposed to augment the current
Internet architecture with a traceback scheme, to allow a victim to identify
the sender of a malicious traffic (to within some range of accuracy) even if
the source address has been forged. These schemes, in general, exploit some
mix of two mechanisms–packet logging, where the routers are augmented
to keep track of packets passing through them, and packet marking where
routers add to packets they forward some indication of that router’s identity.
It would seem that, almost independent of architecture, the first sorts of
schemes will impose significant processing costs on every router, and the
second must deal with how this information is written into the packet in
a practical way. An example of packet market, the Source Path Isolation
Engine (SPIE) is described in [Snoeren et al., 2002], where routers compute
and record a digest of every packet they forward, and record this digest in
a Bloom filter. In principle, a victim, by computing the digest of a single
attack packet, and sending a query into the net that follows paths where the
digest has been recorded in successive routers, can determine the source of
that packet. While the exact details of how the digest is computed clearly
depend on the specifics of the IP header, this scheme would seem to be
generalizable to different architectures.

Most proposals for packet marking make the assumption that it is impracti-
cal to record the complete sequence of routers forwarding a packet into that
packet. The IP Record Route option did provide this capability, up to a fixed
maximum number of hops.8 A simple packet marking scheme requires each
forwarding router to record its identity into a single field in the packet with
some probability. A victim, receiving enough packets, will get the identity
of each packet along the path, and (armed with some topology information)
can reconstruct the path back to the sender. Perhaps a better scheme is for
the packet to provide enough space to record the address of two packets: if
the field has not been filled in, a router records its address in the first field,

8This option itself is not useful to tracking attack packets. The function is not widely
implemented today, and further depends on the sender inserting the option into the packet,
which an attacker is not likely to do. A scheme that can be used to track attackers must
be mandatory, and not subject to defeat by the sender.
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which then triggers the next router to put its address into the second field.
The marked packet thus records a link or segment of the path, between two
routers. Again, with enough packets, a victim can reconstruct a path to the
attacker by concatenating these records. See [Savage et al., 2000] for a de-
scription of this edge marking scheme. A scheme by [Song and Perrig, 2001]
describe different encoding schemes for the link, including more security for
the marking. A hybrid scheme is described in [j. Wang and l. Xiao, 2009],
in which the packet records the exit router from the source AS and the entry
router into the AS of the victim, and those routers log information about
the packet.

A key feature of many of these packet marking schemes is that they are
designed to work in the current Internet, and thus spend much of their
effort in designing a way to fit the marking into the existing IP header. The
only real option available is to repurpose the usually unused fragment offset
fields. In fact, the papers are so focused on the the necessity of confirming
to the extreme constrains of the IP header that the papers do not give much
insight how one might best do packet marking in a different architecture
where the header could be designed for this purpose. Looking at the various
alternative architectures described in Chapter ??, very few of them include a
serious and complete analysis of dealing with DDoS attacks. DOA discusses
the use of a service to block a DoS attack, but does not discuss in any detail
how this service might work.

The most complete discussion of limiting DoS attacks is in the Framework for
Internet Innovation (FII). The FII proposal is overall an exercise in just how
minimal an architecture can be, and in fact devotes most of its complexity to
blocking DoS attacks, which the authors argue is the only aspect of security
which must be dealt with at the level of network architecture. Their scheme
requires that each host be associated with a trustworthy component that
can verify the source address and block traffic from that source to a given
destination on request from that destination (using what they call a Shut
Up Message or SUM). They define two fields in their header that must have
global meaning: a valid address of this trusted agent and an identifier that
this agent can map to the actual sender. (Note that with this design the
actual location or identity of the sender need not be revealed to observers
in the network. Only this trusted agent has to be able to map this identifier
to the actual source.)
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Blocking the attack The previous discussion of traceback (or ensuring
that the source address in the packet cannot be forged) begs a perhaps more
significant question: if the victim knows the actual address of the sender,
how can the victim exploit this information. The key to DDoS mitigation
is blocking the traffic, not just figuring out which machines are sending it.
Presumably, various sorts of packet filtering mechanisms could be deployed
in routers along the path from the source, if such a router could be identified
and it was willing to provide this service. But this general concept raises
in turn many questions. One has to do with incentive–why should a router
perhaps distant from the victim agree to provide this service? Another
critical aspect of blocking is to ensure that any mechanism put in place
cannot itself be used as an attack vector. If a malicious machine can forge
a request to block content from a source to a destination, it can shut down
valid communication–yet another form of an availability attack. The FII
paper discusses in considerable detail the design of the SUM mechanism,
with the goal of making sure that this mechanism itself cannot be abused.
The resulting scheme is very complex and appears to require substantial
cryptographic processing at the trusted agent.

The various traceback papers I cite above do not address the question of
how blocking can be done in a secure fashion; they leave this aspect of the
problem as future work. This fact may be one of the reasons why none of
these schemes has caught on in practice.

One aspect of blocking an attack has to do with the design of the source
addresses. Setting aside for a moment the issue of forged source addresses
and forged blocking requests, what information in a source address would be
useful (or in fact necessary) to implement a blocking scheme? Most of the
schemes I have described use some form of separation between identity and
location. The identity is considered to be robust (perhaps a public key hash
that can be validated with some sort of challenge-response protocol, the
execution of which on each packet may prove a resource-intensive step that
can be exploited for DoS), but the location information may be transient
and with no global meaning. It may just be an identifier for the source AS,
under the assumption that within the AS flat routing based on the identifier
is practical. This scheme might allow for effective blocking, assuming the
sender is not forging this information. On the other hand, a scheme like
NewArch, in which the only meaningful information in the packet is the
locator, may not provide a useful framework for blocking unwelcome traffic.
A number of proposals (including the design of IPv6) have noted that for
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privacy reasons, a sender should be able to use a variety of locators, which
partially mask the ability of an observer to map from locator to actual
machine. Obviously, that AS within which the locator is meaningful must
be able to resolve the binding from locator to specific machine, but the
privacy goal is to prevent this from being done in general. In such a scheme,
the only region of the network in which effective blocking can be done is
in that AS actually hosting the source. Closer to the victim, there is, by
intention, no robust mapping from source address to specific machine.

Assumptions of trust Any scheme to mitigate a DDoS attack will end
up depending on the trustworthy operation of some set of components in
the network, whether a trustworthy Network Interface Card on a corrupted
sender, a trustworthy router along the path, and so on. Mitigating DDoS is
another example of a situation where the design of a scheme does not just
depend on a good technical design but as well the design of a system that is
“socially correct”–a system that makes the correct assumptions about trust
and incentive. In general, most of the architectures I have discussed here do
not devote full attention to the issue of DDoS, which is perhaps a missed
opportunity, since the range of options for DDoS attacks may depend very
much on the specifics of the architecture, and a full analysis might have
revealed what architectural options would be best suited to mitigate DDoS
attacks.

7.10 Conclusions

7.10.1 Barriers to better security

Security problems in the current Internet are in part a result of technical
design decisions. But the flawed technology is not the result of error or lack
of attention. Applications that are insecure by design are perhaps the most
difficult problem to address, and the decisions to design applications in this
way are deliberate, driven by larger economic considerations of appeal and
usability. Barriers to the security of distributed systems such as the inter-
domain routing system, email or the web are problems of coordinating and
incentivizing collective action, dealing with negative externalities and costs
imposed on first-movers, understanding how to cope with a lack of uniform
trust across the system, and the like. To overcome these barriers will require
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good system design, but that design is not exclusively technical. There must
be complementary aspects of technology, operational requirements, gover-
nance, and the like.

Comparing the “computer science” and “user” or “political science” defi-
nitions of security sheds some light on these issues. The computer science
definition of security–that a system will only do what it is specified to do,
even under attack–defends against unexpected outcomes or behavior but is
not framed in terms of preventing specific harms. It is an appealing defini-
tion to a system engineer, because it seems to frame security in a way that
bounds the problem to the system in question. Framing security in terms
of preventing harms (e.g., preventing credit card fraud) brings many more
elements into scope. For example, preventing or mitigating some forms of
credit card fraud may best done by modification of the credit card clearing
system. This definition of security frustrates the designer of a component,
because the scope of the solution is no longer within the scope of the designer
to fix. Of course, if the system in question is a multi-component system with
multiple actors responsible for parts, even the “computer science” definition
of security may be hard to contemplate. But only by contemplating the
potential harm can one begin to determine the level of effort to put into
defending the system elements. As I noted above, the design of the Inter-
net presumes that the lower layers are not perfect, so the degree of effort
put into hardening them must be a matter of judgment, not the pursuit of
perfection.

7.10.2 The centrality of trust

What has repeatedly emerged in this analysis is that whatever technical
mechanisms are used to improve security are embedded in a larger context
of trust management. Trust management is the ugly duckling of security,
compared to cryptography. Cryptography is lovely and complex mathemat-
ics, it has provable bounds and work factors, it is an amazing tool. Tools
to manage trust are messy, socially embedded, not amenable to proofs, and
the like. Sadly, crypto is almost always wrapped inside one of the larger,
messy contexts. At a minimum the problem of “key management” is always
present, and the problem of securing the routing protocols of the Internet
(or the DNS, for another example), or improving availability, or allowing ap-
plications to adapt their behavior based on the apparent threat, all depend
on trust as a central issue.
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The actor that gets to pick which element to trust has the power to shape the
security landscape. Mechanisms that create points of control may initially
easier to reason about, but given the potential tussle that arises around any
centralized point of control (e.g., certificates), a better real solution may be
to prefer “socially stable” solutions such as highly decentralized control and
decision-making.
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Chapter 8

Availability

Since “all” most networks do today is deliver data, it would seen that their
ability to carry out this function, even under adverse conditions, would be
a primary consideration. The term used to describe this general character
is availability. The term resiliance is sometimes used in this context, and
captures the idea that the challenge of availability is to function when things
are going wrong, not when everything is working as it should. An available
network is a network that is resilient in the face of failures. The opposite of
availability is outage, a term used to describe a failure of availability.

8.1 Characterizing availability

A definition of availability only makes sense within the scope of the par-
ticular functional specification of a network. A delay tolerant network that
promises to deliver email within a day under normal operation (the utility
of such a network is a separate question) would presumably define a fail-
ure of availability differently than a real-time delivery service that promised
delivery within a factor of 2 of the latency of light.

There seem to be at least two dimensions of availability (or its lack): time
and scope. For how long was the service not available, and over what portion
of the network did the failure apply? The dimension of time is essential here.
In the current Internet, we do not consider the loss of a packet as a failure
of availability. TCP retransmits the packet, and application designers are
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expected to anticipate and deal with this sort of fluctuation of delivery time
as “normal”, not exceptional. When links or routers fail, this can cause
a loss of connectivity that lasts long enough to disrupt some applications
(e.g., a voice call [?]), so it might be reasonable to describe these events as
a transient lost of availability. However, these would not rise to the level
where a regulator tracking outages would expect the event to be reported.
An outage that lasts for hours or days is of a different character.

The dimension of scope is similarly essential. For a user of the Internet in
the U.S., the loss of connectivity to a small country in Africa might not
even be noticed. For the citizens of that country, the disruption would be
severe. The measure of availability (or the assessment of the importance of
a failure) is a matter of the observer’s point of view.

These example also suggest that availability must be seen as a concept that
requires a layered analysis, just as with security. Higher layers can (in many
cases) compensate for failures at a lower layer. For example, data can be
cached in many locations to improve the availability of the data even in the
presence of failures of the communications infrastructure.

8.2 A theory of availability

I start with the assumption that a system in which its components are
working according to specification is available. While networks may have
very different service commitments, it makes little sense to talk about a
network that fails its definition of availability under normal operation. This
framing ties a potential loss of availability to a failure of part of the system.
When something fails, two sorts of correction can occur. First, the layer in
which the failure occurred can undertake to correct the failure. Second, a
higher layer can undertake corrective or compensatory action. Ideally, these
two actions will not be in conflict. This implies that one valuable component
of a layer is some way to signal to the layer above the nature and duration
of a failure, or perhaps a specification of the normal duration of a failure.1

1For example, the ring topology of the SONET technology had a design target of 30
ms to recover from a single fiber cut. The specification to the higher layer was to wait for
30 ms. before undertaking any adaptive steps to deal with a perceived failure, to see if
the SONET recovery was successful. If connectivity did not return in 30 ms., the problem
was more severe and higher-layer action was justified.[[[Fact check]]]
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In order for a layer to recover from a failure, either the failed component itself
must recover, or there must be redundant elements that can be exploited to
restore service. There is thus a division of responsibility in achieving high
availability–the design of the system must allow for the full exploitation of
redundancy, and the system as deployed must include enough redundancy
to cope with anticipated failures. Redundancy must both be present and
exploitable for a system to recover from failures and restore availability.

There is thus, at an abstract level, a series of steps that must be part of a
scheme to cope with failures.

• It must be possible to detect the failure.

• it must be possible to localize the failed parts of the system.

• It must be possible to reconfigure the system to avoid depending on
these parts.

• It must be possible to signal to some responsible party that a failure
has occurred.

Each of these may seem obvious, but all can be tricky. The list above is in
the passive voice, which is deceptive. It begs the question of what actor has
the responsibility for each of those steps.

Detecting failures: With respect to detecting a failure, simple “fail-stop”
failures are the easiest to detect. The hardest are failures where the element
is partially operational so that it responds (for example, to management
probes) but does not fully perform. A mail forwarding agent that has failed
is easy for a sender to detect (and using the DNS, there is a scheme to avoid
the failed component by moving to a backup server.) A mail forwarding
agent that accepts the mail and then does not forward it is harder to detect.
It is possible that some future design for an Internet might argue that its
architecture allows the network layer to detect all the failures that arise at
this level, but I would find this assertion to be very bold. It is probably pos-
sible to enumerate all the elements in the network (although even this task
gets more difficult as more PHBs creep into the network, perhaps only with
contingent invocation.) However, as network functions get more complex,
to enumerate all the failure modes (or to create a robust taxonomy that
covers all classes of errors) seems a rather daunting challenge, especially
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in the context of security-related failures. I argue that in general, only an
“end-to-end” check can confirm if something is failing (e.g., the mail is not
getting through), but the end-to-end check does not help with the second
step–localizing the problem. So the resolution of the “passive voice” with
respect to this step is that while a layer should do all it can to detect failures,
the end-nodes must play an essential role of last resort.

This line of reasoning about detection of errors applies specifically to avail-
ability issues that arise in the context of attacks on communication (see
Section 7.5). Given that faults that arise from malice may be crafty and
Byzantine, both detection of faults and their localization may be difficult.

Consider a very simple example–a router that drops or adds packets to a
packet flow. This sort of action does not break the forwarding layer, just the
end-to-end communication. Should the packet forwarding layer keep count
of packets, and exchange these counts to see what is being lost or gained?
Or consider the more subtle attack of changing a bit in an encrypted packet.
This attack disrupts the higher-level flow. Should the network re-compute
the encryption function at each node to detect that (and where) the packet is
corrupted? This may turn out to be a useful mechanism, but the complexity
and performance cost seems daunting.

Localizing the fault: For simple faults, where the layer itself can detect
the failure, localization is often a direct consequence of discovery. Routers
send recurring messages to each other, which serve to construct routes and
also to confirm that the remote router is still functioning. Dynamic routing
protocols are designed to recover ... [[[discuss distributed recovery vs. cen-
tralized, such as 4D or SDN]]] The more complicated situation arises when
the end-nodes have detected the problem. In this case, there does not seem
to be a single, general approach to localizing the fault. One approach is some
sort of monitors or “validation” units at interconnection points within the
network that could make records of what passes–by comparing the records
the end-nodes could somewhat localize where there had been manipulation
of the packets. Schemes like ChoiceNet (Section 5.3.5) have proposed such
an idea. But the question remains as to what sort of architectural support
would facilitate this sort of scheme–perhaps some sort of control flags in the
packet that would trigger various sorts of logging and debugging. Another
approach is route diversity, trying selective reconfiguration of the system,
avoiding different parts of the system in turn, to see whether the problem
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persists.

As I discussed in Section ??, it is not always desirable to assure availability.
When an end-node is being attacked, and prevents the attack from reaching
it (perhaps using some PHB in the network) what it has implemented is a
deliberate loss of availability (as seen by the attacker). In this case, where
the interests of the sender and receiver are not aligned, not only should the
sender be deprived of tools to ‘remedy” this impairment, the sender should
not be facilitated in localizing the source of the impairment. In the current
Internet, there seems no obvious way to resolve this dilemma if the resolution
depends on the network knowing whether the sender and receiver are aligned
in their intention to communicate, and further given that it might be the
network that is attacking the communication. Perhaps, as I speculate below,
there is an architecture feature that might help resolve this situation.

Reconfiguring to avoid failed elements: With respect to reconfigura-
tion, the idea is fully understood in specific contexts. The example of email
above uses the DNS to allow a sender to try a backup forwarding agent.
Dynamic routing uses probing to try to detect failed elements and route
around them. And so on.

With respect to enhancing the availability of packet forwarding (the essen-
tial element of network layer availability) the current Internet faces a serious
conundrum. The design of today’s Internet is based on the defensible as-
sumption that while some failures (“simple” failures) can be detected by
the network, in general failures, especially those due to malicious attack,
can only be detected at the end points, so the task of detecting them is del-
egated to the end. But assuming that the end-point detects a failure, what
can it do? In today’s Internet, the end-points have very little or no control
over network functions like routing. If communication between end-nodes is
being attacked, the end-nodes have no general way to localize the problem,
and no way to “route around” it.

There are (or were) some means in the Internet to give the user control over
which entities to trust. The mechanism of source routing, which would have
supported this sort of control, has vanished from the Internet. There are
several reasons why source routing has been deprecated. One is economics:
if the user has choice over routes, should not that capability be links to a
way of charging the user for the resources he chooses to use? Another reason
is security. If the network design gave that sort of control to the end-nodes,
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those mechanisms themselves might become attack vectors, so they would
have to be designed with great care.2

Today, what happens is that we accept that a range of attacks are going
to result in loss of availability. If a network must function at high levels of
availability, we use non-technical means to make sure that only trustworthy
components and actors are in the system. So to achieve the full complement
of CIA, both technical means and operational and management means must
be combined as part of the approach.

At the higher layers of the system, the current Internet indeed gives the end-
node a degree of choice over which versions of a network service are used. A
sophisticated user may know to manually select a different DNS server if the
default server is not acceptable. As I mentioned, the email system uses the
DNS to provide the sender with alternative forwarding agents if one is not
responding. A very sophisticated user may know that it is possible to edit
the list of Certificate Authorities that he chooses to trust. I would claim
that while these features do exist, they are not designed as a part of an
overall conception of how to improve availability.

Reporting the error: With respect to reporting the error, I defer that
problem to Chapter 10 on management.

8.3 Availability and security

The discussion to this point suggests that the objective of availability is en-
hanced by allowing both the system and the end-users to have enough control
to select elements for use that are functioning correctly. In the context of
an attack on communications, this objective needs to be refined. What the
end-user should be doing is selecting elements that do not attack him or
otherwise disrupt him. A crude approach might be to select alternatives at
random until one is found that serves. A more constructive approach is to
allow the end-nodes to structure their interactions so that they only depend
on elements they consider trustworthy. If there is a malicious ISP, don’t

2For one discussion of potential security risks associated with source routing,
see https://www.juniper.net/documentation/en_US/junos12.1/topics/concept/

reconnaissance-deterrence-attack-evasion-ip-source-route-understanding.

html.

https://www.juniper.net/documentation/en_US/junos12.1/topics/concept/reconnaissance-deterrence-attack-evasion-ip-source-route-understanding.html
https://www.juniper.net/documentation/en_US/junos12.1/topics/concept/reconnaissance-deterrence-attack-evasion-ip-source-route-understanding.html
https://www.juniper.net/documentation/en_US/junos12.1/topics/concept/reconnaissance-deterrence-attack-evasion-ip-source-route-understanding.html
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route through it. If there is a email sender that seems to send only spam,
block receipt from it (this sort of treatment is what anti-abuse organizations
such as Spamhous try to coordinate). Essentially, if we want all of the CIA
triad for communication security, we must organize the system so that even
if untrustworthy actors are in the system, we do not depend on them. We
tolerate them if we must, but we do not make any interactions among mu-
tually trusting actors depend on untrustworthy elements unless they are so
constrained that we can rely on them.

This point of view has been slow to come into focus for some designers of
security mechanisms, because it is a shift in mind-set. This logic is com-
pletely obvious to designers when it comes to failures: if a router has failed,
the protocols must be able to detect the failure, and there must be suffi-
cient redundant routes that a dynamic routing protocol can “route around”
the failure. But for some in the security community, with its history of
a focus on confidentiality and integrity, the idea that availability must de-
pend on assessment of trust rather than a technical mechanism is perhaps
disconcerting, and perhaps disappointing.

8.3.1 Routing and availability

The previous discussion dealt with one aspect of security (as I classified se-
curity problems in Chapter 7): attacks on communication by a hostile third
party. A more basic aspect of security from the perspective of availability is
an attack on the network itself that disrupts availability, most obviously by
disrupting the routing protocols. Clearly, the stability and proper operation
of routing is essential for network availability.

In addition to making the routing mechanisms more resistant to attack, hav-
ing multiple routing schemes running in parallel might be a way to improve
the resilience of the network when it is under attack. XIA implements this
idea, with their different sorts of end-point identifiers (content, service, net-
work, host, etc.), and different routing schemes for these different classes of
entity, and the ability to fall back to a different scheme if the preferred one
is not available.

As I discuss in Chapter 10, the Internet is moving to more centralized route
computation schemes such as Software Defined Networking, or SDN. Per-
haps a centralized scheme like SDN could be complemented with a simpler
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and perhaps less efficient backup scheme that can be used if the central-
ized scheme seems to be impaired. The network could fall back to this
simpler scheme as a resilience mode. However, this idea, while it might im-
prove availability when the network is under attack, could at the same time
worsen another aspect of security, which is protecting a node from being at-
tacked by other nodes. Part of the power of SDN is supporting finer-grained
routing decisions based on policy in each router. Having another scheme
that bypasses these controls could thwart those policy goals. This tension
illustrates that different security sub-goals may end up in conflict, and in
particular that it takes crafty design to balance the dual goals of high avail-
ability even when parts of the system are failing and selective availability
to block hostile traffic, especially in a “dumb network” that does not know
what the users are sending.

Assuming that these tensions can be resolved, the emergence of new rout-
ing schemes, perhaps operating at the same time, raises the question as to
whether a new field should be considered in the packet header, (somewhat
as XIA has done) to indicate which of several routing schemes should be
used for this packet. Alternatively, a future architecture could use different
address ranges to trigger different routing (as the current Internet does for
multicast), thus giving the receiver control over which schemes can be used
to reach it (by controlling which sorts of addresses it gives out for itself)
and allowing the sender to pick among them (by picking which destination
address to use). By tying the choice of the routing protocol to the address
range, third parties in the network cannot override the end-node choices by
rewriting a field in the router. The NIRA scheme [Yang, 2003] uses addresses
to control routing in this way. This might allow senders and receivers to se-
lect between more availability and more protection based on their specific
needs.

8.4 Architecture

A key challenge for a future architecture is to resolve the basic conundrum I
identified above: if only the end-nodes can detect failures of availability due
to attacks, and the end-node cannot be trusted to reconfigure the network
lest this be another attack vector, there would seem to be no way to resolve
such problems. Working around this conundrum is a challenging design
problem that involves creation of control structures that build on trustwor-
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thy components (which would have to be specified and implemented) to
provide a foundation for these sorts of functions. A component trusted by
both the user and the network might be able to intermediate between the
two in order to provide a measure of choice and control to the end-node that
has detected a failure or attack.

Another potential role of architecture is to facilitate fault localization. As
I noted above, this capability is not always in the interest of the receiver,
if the receiver is being attacked. Perhaps it is worth exploring a shift in
the basic architecture of the Internet. The Internet of today is “deliver by
default”: a sender can send to any receiver at will. Perhaps there is merit in
an approach that is to some extent “deny by default”, so that the receiver
has to take some action to indicate its willingness to receive traffic, or to
receive traffic from which set of senders. Several of the architectures I discuss
in this book are to some extent “deny by default”.

The discussion of invoking PHBs in Section 4.4.1 provides one possible
way to improve this situation. In that section, I proposed a rule that (with
the exception of routing itself) any invocation of a PHB that facilitates
communication between willing parties should be intentional–the packets
should be delivered to the location of the PHB by being sent there. A more
abstract way of saying this is that between senders and receivers that have
aligned interests, the end-points should be explicit about what PHBs are
being invoked. (This action may be done by an application on behalf of the
end-node, in which case it will be the application that has to attempt to
localize the point of failure when something goes wrong.)

What this rule would imply is that third parties should not claim to be
“helping out” an application by inserting PHBs into the path that neither
the sender nor the receiver know about [?]. Once this rule is in place, en-
cryption can be used to limit the failure modes that manifest from unknown
PHBs that show up in the path. It may be cleaner (and more secure in
practice) to put in place an encryption scheme that lets selected PHBs de-
crypt a transfer (or parts of it) rather than have an ambiguous relationship
between sender, receiver and arbitrary PHBs in the path. [[[Is this clear?
Probably not.]]]

The different proposals in Chapter 5 provide a range of mechanisms to deal
with these various aspects of availability. To some degree, all those schemes
depend on the end-node as the ultimate detector of failures and loss of avail-
ability. With respect to localization, Nebula and XIA (both with its basic
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addressing scheme and in particular the forwarding scheme called SCION)
provide a way for the user to pick different routes through the network,
potentially making choices to avoid regions that are proving untrustworthy.
ChoiceNet provides monitoring elements at region boundaries that are in-
tended to check if the user is getting the promised service. It is unclear what
range of problems they will be able to detect. ICNs raise a slightly different
version of the availability challenge. ICNs attempt to exploit all the redun-
dancy in the network, often through some sort of anycast search for a nearby
copy of the content, so that a failure may be side-stepped as part of the basic
content request function. The malicious attack that can disrupt availability
in ICNs is a malicious provider that offers up a malformed version of the
content, which can be detected as such but prevents the anycast mechanism
from finding another copy that is valid. DONA provides an enhancement
to the FIND operation that allows the user to ask for the n-th closest copy
rather than the closest copy. NDN allows the receiver to include the public
key of the sender in the content request packet, so that nodes along the path
can check for themselves the validity of the content and reject malformed
copies.

[[[elaborate]]]



Chapter 9

Economics

[Note to readers of this version of the book. I view this chapter as prelim-
inary. I think there is more to be said, but I have to figure out what it is.
Comments and thoughts welcome.]

9.1 Introduction

The viability and success of a network architecture cannot be divorced from
the economics of its deployment and operation. At the same time, there has
been very little attention in the literature to understanding the relationship
between architectural alternatives and economic viability.

In order to understand the issues, it may be helpful to look at the current
Internet as a case study, and then explore the issues that emerge in a more
abstract and perhaps fundamental way.

The current Internet is composed of regions (we typically call the larger
regions Autonomous Systems), which are deployed and operated by different
actors. There are about 45,000 ASes active in the Internet today. Of these,
about 5,000 can be classified as service providers; they offer packet carriage
service to other parties. The rest are customers of these providers. Most
of these service providers (ISPs) are private-sector, profit-seeking actors.
The interconnected mesh of these ASes, taken collectively, is what we call
the Internet. It is the platform on which higher level services (applications)
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run, and has become the platform on which society is increasingly dependent.
This Internet platform has taken on the status of societal infrastructure, and
probably the status of essential or critical infrastructure. The Internet may
not be as important as water, sewers or roads, but it is now infrastructure
on which society clearly depends.

In comparison to these other infrastructures (roads or water systems), what
is distinctive about the Internet is that it has been largely built by these
unregulated, profit-seeking actors. Roads and water systems are normally
built by governments, and while the telephone system (our previous com-
munications infrastructure) was built by a private sector actor (Bell Tele-
phone/AT&T) it was a highly regulated, government sanctioned monopoly,
not at all like the ISPs of today.

Today, we take this situation for granted. We assume we can count on the
Internet to be there, and we assume these private-sector actors will continue
to provide it. But this assumption should be carefully inspected for flaws.
The Internet exists because ISPs chose to enter the market with this product.
Nobody forced them to do so. We could ask, looking backwards, why they
did so. We should ask, looking forward, whether this situation will continue
to be stable. If the Internet is societal infrastructure, can we assume that
the private sector will continue to invest in it at a suitable level to meet the
needs of society, and can we assume that the private sector will continue to
build and operate the Internet that society wants? Perhaps investment will
stagnate. Perhaps the ISPs will be motivated to mutate the Internet they
offer into a different sort of platform, perhaps more closed or dedicated to
specific purposes such as delivery of commercial video.

In chapter ?? I explore in some detail what it means for an Internet to
meet the needs of society, but it is necessary to begin that discussion here
to identify those issues that strongly relate to economics. Should the future
of the Internet be whatever the private sector chooses to deliver, or does
society want to have a say in the future? If so, by what means can society
have a say in shaping what the private sector does? How can “society”,
whatever that term means, even discuss and decide what its Internet should
be? Is this a call for the government to step in and define the future of the
Internet?

In fact, governments are starting to do so, for better or worse. The most
obvious evidence in the U.S. is the sequence of efforts by the FCC to impose
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network neutrality rules on the Internet.1 One response (or threat?) by
the ISPs covered by these regulations is that the rule will stifle investment.
The question of whether ISPs will continue to invest, and whether they
will build the Internet society wants, is not abstract. it is being acted
out today as we watch. In fact, there are observers who assert that we
cannot continue to count on the private sector to be the driver of the future
Internet, and that the public sector will have to invest as they do in roads or
water systems. [[[find a few cites–perhaps Australia?]]] We see governments
today using public sector funds to build Internet access in rural and other
low-profit areas the private sector has ignored. But this approach has its
own perils–why should we expect governments to have the skills and will
to build something as dynamic and evolving as the Internet? So looking
to the future, an optimist may see the Internet as so compelling that it
will obviously continue to be there, and a pessimist may see several paths
to the future, all fraught with perils. Society must pass between Cylla
and Charybdis, those eponymous perils between which society always sails,
avoiding on the one hand stifling investment and on the other hand getting
investment in an Internet that is not suited for its needs. It is in this space
that we must consider the economics of the Internet.

9.1.1 A look back

How is it that the Internet (and the investment that brought it to market)
actually happened? In the early days, the Internet was built on top of cir-
cuits constructed by the telephone company. The option of constructing new
capacity dedicated to the Internet was not practical, so the early Internet
worked with what could be purchased at the time–the first long distance
circuits that made up the ARPAnet were 50 kb/s telephone circuits. ARPA
did invest in experiments in alternative technologies such as packet radio,
but one of the reasons the Internet protocols were designed to “work over
anything” is that using what was to hand was the only way to move forward.

In the mid-1980s’, NSF took over the operation of the national backbone,
and built (using public sector funds) the NSFnet, upgrading the capacity as
it was practical. This public-sector investment demonstrated the viability
of the Internet as a information technology, and justified the entry into
the ecosystem of profit-seeking, private sector actors. It is not clear if the

1Discuss the three open orders, citations? etc. How much is needed?
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private sector would have chosen to enter the market if the NSF had not
taken this high-risk (from a private-sector perspective) step of “building
it to see if they came”. But even in the mid-1990s’, when NSFnet was
being decommissioned in favor of a private-sector offering, the appeal of
the Internet as a product was not clear to many of the existing private
sector actors. In a conversation about broadband to the home, a telephone
company executive said the following to me:

If we don’t come to your party, you don’t have a party. And
we don’t like your party very much. The only way you will get
broadband to the home is if the FCC forces us to provide it.

Of course, he thought the copper pairs into the house were the only option
for broadband access. One could argue that this executive could have been
more forward-looking, but given this attitude, why did the telephone com-
panies start to invest in residential broadband? To a considerable extent, it
was the emergence of the cable industry as a competitor in the residential
market, using a separate physical infrastructure to deliver broadband access.
Competition can be a powerful driver.

In the U.S., the government seems to vacillate between regulatory interven-
tion and faith in competition as a tool to shape the future. In the FCC’s
National Broadand Plan, the FCC, after describing a number of aspirations
for the future of the Internet, wrote:

Instead of choosing a specific path for broadband in America, this
plan describes actions government should take to encourage more
private innovation and investment. The policies and actions rec-
ommended in this plan fall into three categories: fostering inno-
vation and competition in networks, devices and applications;
redirecting assets that government controls or influences in or-
der to spur investment and inclusion; and optimizing the use of
broadband to help achieve national priorities. [Federal Communications Commission, 2010a,
pg. 5]

One can realistically ask if this approach is an act of massive wishful think-
ing. Competition may be a powerful driver, but in what direction? What
evidence is there that competition will drive the private investors in Internet
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infrastructure to build the Internet that the FCC (or society more broadly)
desires? And as well, one can realistically ask if competition based on sep-
arate physical facilities (as between the coaxial cable infrastructure of the
cable industry and the twisted pair infrastructure of the telephone industry–
now both mutating into fiber) can be sustained. Dividing up the market
between two or more more providers means (among other things) that the
potential market for each provider (the “take-rate”) is divided up among the
competitors. But each competitor must still build an access network that
passes every house. If a market has the character that the more customers a
given firm has, the lower its costs (positive economies of scale at all scales),
economists describe this situation as a natural monopoly. The phone system
of the Bell era was taken to be a natural monopoly, and was accepted and
regulated for the public good. Perhaps the Internet of the future will turn
out to be a natural monopoly, especially the access architecture.

So the particular set of issues that we must consider as we contemplate the
economic viability of an Internet architecture are as follows:

• What are the incentives of the private sector to invest in infrastruc-
ture? Can it be sustained?

• To the extent that society wants to have a say in the future of the
Internet, what are the means to shape the behavior of the private
sector to get the outcomes that society desires?

• Can we assume that competition in the access market will continue,
or will the future be one more defined by regulation rather than com-
petition?

And, for each of these issues, there is the related question about architecture:

• Can architectural decisions shape (or reshape) the Internet ecosystem
so as to better provide incentives for investment? Should we make
decisions about architecture based on the assumption that the private
sector will continue to build an Internet? Would different decisions be
preferable if a future Internet were a public-sector infrastructure?

• Can architectural decisions serve to nudge the outcome of private sec-
tor investment in directions that meet the needs of society?
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• To the extent that one accepts competition as a desirable discipline in
shaping the Internet of the future, can architectural decisions improve
the potential of competition (including and specifically competition
in providing infrastructure based on different physical facilities) as a
long-term option?

Earlier, I used the term tussle to describe the contention among actors with
different and perhaps mis-aligned interests who seek to shape the Internet. I
have named as the fundamental tussle the tension between ISPs who assert
that they should be able to use the infrastructure they paid for in any way
they see fit, and regulators who wish to constrain how that infrastructure is
used so as to pursue an Internet suited to the needs of society.

9.1.2 Scarcity

Economics is a discipline that studies the allocation of scarce resources. If
there is no scarcity, there is no need to allocate (we can all have as much
as we want) and issues of economics fade into the background. So is the
Internet a scarce resource? One way to look at the Internet is that once
the facilities to carry traffic are in place, the incremental cost of sending
additional traffic is essentially zero, so we should think about usage as free.
This statement may be true in the short run, but the Internet requires
physical facilities in order to exist. These include long distance and metro
fibers, residential access networks, wireless base-stations, and so on. These
cost money. So to encourage investment in additional capacity, usage has to
be seen as generating cost. Providers must recover enough costs that there
is a positive return on investment. It is not clear how this fact relates to
architecture, but it brings into focus the critical question of who pays for
the Internet, and how the money flows among the actors in the ecosystem.

I will return to money flows in a later section. But there is a more funda-
mental question. Before we can ask which actors are paying for the Internet
and how the money flows among them, we must ask why the industry struc-
ture of the Internet looks as it does. Why do we have the actors that we do
in the Internet? Why do ISPs exist in the form that they do?
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9.2 What shapes industry structure?

A useful place to start is fundamentals: can economic theory tell us anything
about the relationship of system design, the resulting industry structure and
the incentives of the the various actors that make up the system to invest
and play their part in making a healthy economic ecosystem. In fact, there
is a wonderful framework that helps to explain this space, based on the work
of Ronald Coase.

The economist Ronald Coase received a Nobel Prize for his theory of the
firm, which builds on the concept of transaction cost. When firms engage
to buy and sell, there are costs aside from the actual cost of the product or
service itself: the costs of searching for the providers, the costs of bargaining,
the costs that arise due to lack of accurate information about the other firms,
and so on. Collectively, these are transaction costs. When transaction costs
are low, efficient inter-firm competition can occur, but if transaction costs
are high, a firm may incur a lower total cost by realizing the service or
function internally. Competition in principle drives down costs, but not in
practice if transaction costs are high. One conception of this situation is that
inter-firm competition and intra-firm planning and coordination themselves
compete to deliver the lowest cost of products and services. Large firms
exist when and if the cost savings from internalizing the function exceed the
cost savings from competition.

The link between Coase’s theory and network architecture is the role of well-
defined interfaces between modules. If an interface between modules is well-
defined and easy to understand, then exploiting this interface as a basis for
competitive interaction among firms may have a sufficiently low transaction
cost to be viable. If, on the other hand, there is no clear interface at a
particular point, it is hard to “open up” that point to inter-firm action, and
that point will normally remain internal to the firm. So the modularity of
a system like the Internet, which a technologist might think of in functional
terms, is also very likely to end up defining the industry structure of the
system.
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9.2.1 Defining the relationship between the parts

If architecture defines the shape of the industry, what defines the relationship
among the different actors? It is the interfaces defined by the architecture.
In the current Internet, we see several key interfaces.

The Internet protocol and the Internet Service Provider The In-
ternet protocol (IP) actually defines a number of interfaces, each of which
has helped to define the market structure of the Internet. Most obviously,
IP defines the packet carriage service of the Internet–the service that “the
network” provides to the higher layers. It is the service defined by the
IP specification that becomes the service provided by an Internet Service
Provider. If IP had been specified differently, the business of an ISP would
be different. For example, if IP had specified reliable delivery, ISPs would
have the responsibility for reliability.

The service specified by the IP spec is minimal. RFC 791 says:

The internet protocol is specifically limited in scope to provide
the functions necessary to deliver a package of bits (an internet
datagram) from a source to a destination over an interconnected
system of networks. There are no mechanisms to augment end-
to-end data reliability, flow control, sequencing, or other services
commonly found in host-to-host protocols.

Perhaps a different specification of the service, with more attention to the
features of the service, would have created different revenue-generating op-
portunities for the ISPs.

The interface to the communications technology A second interface
created by the IP specification is between the service itself and the technol-
ogy used to deliver it. The IP spec says nothing about the technology,
other than it be able to forward sequences of bits. This decoupling, while
perhaps implicit, means that the specification allows (and thus encourages)
innovation in network transmission technology. Over the decades since IP
was specified, there have been any number of network technologies invented,
including Local Area Neworks (LANs), WiFI and cellular networks and so
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on. It is the limited requirement that IP places on these technologies that
facilitates these innovations.

The interface between the ISPs There is a third interfaces that is rel-
evant to the IP layer, but it is poorly developed in the original design of the
Internet–the interface between ISPs. In the original Internet, the designers
downplayed the importance of this interface (sometimes called the network-
network interface, or NNI). That decision was perhaps short-sighted. The
original designers were not thinking about industry structure–they were de-
signing a network built out of routers. The address in the header of the
packet (together with other fields in the header) defines what the router
has to do when it gets a packet. Getting that function right was the initial
focus of the designers. When the architects started to focus on the fact that
different parts of the network were run by different entities, there was some
confusion as to how the interconnection would be implemented. One view
was that there would be two routers, one belonging to each of the providers,
connected to each other at the point of interconnection. Technically, this
seemed inefficient–why have two routers next to each other? The alterna-
tive view was that there might be one router, jointly operated by the two
providers. This idea reduces the number of routers in the system (a serious
consideration at the time) but would have required some sort of division of
responsibility within this one element. Only after it became clear that this
idea was totally unworkable for operational and management reasons did
the question arise as to what information two routers belonging to different
providers would need to exchange with each other. 2

RFC 827, published in 1983, provides some insight into the level of un-
derstanding about the inter-AS interface at the time that IP was being
deployed.

In the future, the internet is expected to evolve into a set of sep-
arate domains or ”autonomous systems”, each of which consists
of a set of one or more relatively homogeneous gateways. The
protocols, and in particular the routing algorithm which these
gateways use among themselves, will be a private matter, and

2Today we do see the other configuration, with a common switch between a number
of ISPs. This configuration is called an Internet Exchange, and a neutral third party is
usually created to operate that shared switch.
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need never be implemented in gateways outside the particular
domain or system.

The Exterior Gateway Protocol enables this information to be
passed between exterior neighbors. ... It also enables each sys-
tem to have an independent routing algorithm whose operation
cannot be disrupted by failures of other systems.

9.2.2 The Expressive Power of the Interface

In Chapter 4 I distinguished different architectures by their expressive power.
Some packet headers have richer expressive power than others, which can
enable a richer set of services in the network (as well as new potential security
issues). There is another dimension to the concept of expressive power,
which relates to the possible set of protocols that are defined for the control
plane. Control plane protocols define the messages that can be exchanged
among network elements, and if these are of global scope (that is, if all
the regions are expected to agree on their meeting) they rise to the level
of architecture. The only relevant control plane protocols in the current
Internet are the routing protocols, and the interdomain routing protocol
(e.g., the one with global scope) is the Border Gateway Protocol (BGP).

BGP is perhaps one of the first examples in the Internet (or at least, a
substantially worked out example) of a protocol that was designed to shape
industry structure. The predecessor of BGP, the original EGP, assumed a
hierarchical pattern of interconnection among the regions (the ASes), with
NSFnet as the root of the hierarchy. If EGP had become the routing pro-
tocol for the commercial Internet, a single commercial provider would have
ended up taking the place of NSFnet, in a position that seems close to an
architecturally-created monopoly. BGP was specifically designed to allow
for multiple, competing wide-area Internet Service Providers.

At the same time, BGP has limited expressive power, and these limitations
have arguably limited the business relationships among the interconnecting
ISPs. [?, ?].

At the time of the transition to the commercial Internet, industry had a
clear understanding of the importance of critical interfaces. As I discussed
in Chapter 5, the Cross-Industry Working Team laid out their vision of an ar-
chitecture for a National Information Infrastructure [Cross-Industry Working Team, 1994],
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and a central component of their conception was a set of critical interfaces,
including the interface between ISPs: the network-network interface, or NII.
They fully understood that getting this interface right was critical to the
health of the emerging private-sector industry. The designers of Internet
protocols may not have fully appreciated the importance of this interface.

9.2.3 Alternative architectures

There are some aspects of industry structure that seem to derive from more
basic considerations than architectural variation. The idea that a global
network is built out of parts (ASes, regions, and so on, by whatever name
they are called), and that these parts have some geographic locality and are
operated by distinct providers, seems common to all the architectures that
I described.

However, to see that architecture defines industry structure, consider the
implications of information-centric networks such as NDN. In NDN, the
provider of the forwarding layer has a much richer set of responsibilities,
and access to a much richer set of explicit information in the packet head-
ers. These providers can see the names of what is being sought, not just a
end-point address, which might open up new opportunities for traffic dis-
crimination. These providers provision caches in their servers, which are
critical to the efficient operation of the protocols. They thus have control
over what is cached, and on what basis. One must look at a scheme such
as NDN not just through the lens of a mesh of interconnected routers, but
rather as a mesh of interconnected ASes with independent profit-seeking
motivations, to try to understand the economic implications of the architec-
ture.

Architectures such as Nebula and Choicenet make the negotiation over how
and whether traffic will be carried an explicit part of the design. They in-
clude a control layer (or in Choicenet an economy layer) in which negotiation
over service and payment can occur. They attempt to bring the economics of
the architecture out and make it an explicit part of the design. They include
new components, such as monitors at AS boundaries to verify what service
is being provided, and stress the power of competition and user choice to
drive the network to a desired future.
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9.2.4 Incentives to invest

What motivates a private-sector actor to invest, specifically in infrastructure
for the Internet? At a high-level, investment is motivated by anticipation
of adequate return on investment (RoI), and the greater the risk (the un-
certainty about the RoI) the higher the anticipated RoI must be to justify
investment.

Looking specifically at the communications sector, there are a number of
factors that can influence investment decisions:

Assured RoI: In the era of the highly-regulated Bell System, investment
in capital assets was incentivized by Rate of Return regulation, which set
a guaranteed return on capital upgrades. This return, which was factored
into the regulated rates paid by users of the telephone system, probably
resulted in over-investment, and brought the U.S. a highly engineered and
reliable phone system which probably cost a bit more than it needed to, and
supported a world-class industrial research lab, Bell Labs. Most economists
with whom I have spoken say that a return to rate-of-return regulation
would be a Bad Idea.

Competition: Competition, in particular when competitors have sepa-
rate physical access technologies (“facilities”) can be a powerful driver of
investment. Today we seen the telephone companies and the cable compa-
nies, occasionally further goaded by new entrants gleefully pulling fiber to
the home, making significant investments in upgrades to their capabilities.

Sometimes fear of competitors will motivate investment even when the RoI is
uncertain. When the telephone companies were first thinking about whether
to move beyond simple deployment of DSL and contemplate advanced tech-
nologies that involve pulling fiber at least part way into their access net-
works, I asked an executive of one such company whether they had a clear
model of the the return would be on this investment. He said:

We actually don’t have a clear business model for doing these
upgrades. But we have a clear model for what happens if we
don’t do these upgrades: in 10 years we are out of the wireline
business. Better to bet on uncertain success than certain failure.
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On the other hand, a different pattern of competition, based on a different
sort of regulation, can damp any incentive to invest. In other parts of the
world, regulation has required that owners of access facilities (in particular
the copper pairs of the telephone companies) must lease these facilities to
other firms so as to create retail competition over these shared facilities.
In general, the regulated rates at which these circuits must be shared has
been set low to stimulate entrance into the market, but the facilities-based
telephone companies have complained, with some justification, that they see
no motivate to invest in upgrades if they carry all the risk, and at the same
time gain no competitive advantage and a low RoI.

Suitable pricing structures: The current pricing structure for retail
(residential) Internet access is probably not the best structure to incentivize
investment in upgrades. Flat-rate pricing (“all you can eat/send”) means
that as usage goes up, the providers get no incremental revenues. Indeed,
with the massive increases in usage we see today associated with streaming
video, we see access ISPs moving to usage caps or tiers, which would either
limit the need to upgrade or reward the ISPs for such upgrades. This transi-
tion, which has mostly happened in the mobile space, is probably inevitable
in the wireline case as well. I once had an operator (from another part of
the world) quite explicitly say that in a flat-rate context, they only invest
in upgrades where there is a facilities competition; in other locations they
see no reason to improve the service.

Architecture? The factors above are understood to influence the incen-
tive to invest. But what about architecture. Again, in general terms, archi-
tecture can increase incentive by reducing risk and creating opportunity. It
can reduce risk if it can make the relationship among the actors clear and
stable. (Of course, the fundamental goal of architecture is to produce an
Internet that is fit for purpose, but that goal is more basic than just improv-
ing RoI.) Architecture can potentially improve opportunities by the creative
but careful design of features that add to the range of service offerings.

What we see in the market today is that ISPs are attempting to increase the
diversity of their product offerings by innovation at a layer that exploits the
IP technology, but not just in support of the global Internet. IP technology
is being used by ISPs to offer a range of services, including VoIP, IPTV,
and so on, as well as Internet access. In the early days of the Internet, the
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designers did not see this distinction as they were designing protocols. The
use of the Internet Protocol (IP) was equated to the public Internet. With
the emergence of IP as a converged platform for a range of service offerings,
a new architectural question emerges–should the distinction between the
packet forwarding mechanisms implied by IP (which can be used in a number
of ways) and the creation of the global Internet (which depends, among other
things, on the specification of the network-network interface, be made more
explicit in the architecture?

To a large extent, this distinction, which is becoming very important in
practice today, is not emphasized in any of the architectural proposals that
I discuss in Chapter 5. At the present time, it would seem that further
exploration of this issue is an open research question.

9.3 Money flows

If architecture defines the industry structure, and at least some of the fea-
tures of the relationship among the actors, the next question is what defines
how money flows among these actors. Here are two stories:

A while back I had a conversation with a well-known economist that studied
the Internet. It went like this:

Economist: “The Internet is about routing money. Routing packets is a
side-effect. You screwed up the money-routing protocols.”
Me: “I did not design any money-routing protocols!”
Economist: “That’s what I said.”

And another story–the creation myth of revenue-neutral peering.

It is said that when the first two commercial ISPs met to negotiate their
interconnection, one of the engineer-businessmen who was at the meeting
was heard to say: “Wait, I thought you were going to pay me money”. They
discovered that they did not even have a common basis to agree on which
direction the money should flow, let along how to set an amount. Then, as
the story goes, these engineers heard the sound of running feet and realized
that the lawyers were coming, to start a three year negotiation over the
interconnection agreement. They looked at each other and said: “Quick,
before the lawyers get her, lets agree that neither of us pays the other; we
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just interconnect; shake hands.” And thus, so the story goes, was revenue
neutral peering born.

So should we, as The Economist said, have designed “money-routing” pro-
tocols? There have actually been attempts to add “money-routing” to the
Internet architecture.

One of the earliest proposal was [MacKie-Mason and Varian, 1996]. This
paper, one of the first to explore the economics of the Internet, proposed
that in addition to a possible fixed cost for sending data, there should be
a congestion price, which reflects the cost one user imposes on another by
sending when the network is fully loaded. Their approach was a smart
market, where users specify their willingness to pay, but the price charged
to the users that send is the price specified by the marginal user–the user
with the lowest willingness to pay that can be accommodated. This idea,
which is a form of a Vickery market, provides an incentive for the user to
disclose their true willingness to pay, since they will not be charged that
price unless that is the minimum price that gains them admission.

They describe this scheme as preliminary, and there are indeed issues–for
example, does the user want to pay for individual packets or for an overall
transfer. The authors were clear that there were many details and modifi-
cations that would arise were this to be implemented. The high-level point
is that they proposed that this price be in the packet header–they were
proposing an architectural component that realized a pricing scheme.

There were a number of other pricing schemes proposed in the1990’s. I
dabbled in this area. In 1989, I wrote RFC 1102, on Policy Routing, which
included a flag in the control-plane routing assertions to control whether the
ISP should be paid by the originating ISP, the terminating ISP, or separately
by the sender (as was then happening with long distance telephone service.)
In 1995 I proposed a more complex scheme, which described a more complex
marking scheme in the packet header to refine the direction of money flow
as packets are forwarded [Clark, 1997].3

Needless to say, none of these proposals went anywhere.

3The various papers in the anthology from which that paper comes give an excellent
snapshot of the state of understanding of Internet economics in 1995.
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9.3.1 Architecture and money flows

With respect to routing money, as with other objectives, if architecture has
any role to play, it is not defining how the system works, but rather making
it possible for a desired range of things to happen. Like the TTL field in
the IP header, which allows the Internet to exploit routing protocols that
induce temporary routing loops, perhaps a “direction of payment” flag in
the header might allow a range of billing models that would otherwise not be
possible. However, the networking community has so little experience with
“money routing” that this area is essentially uncharted territory. In general,
architects learn what should or could be built into the core of a system by
looking at what application designers have tried to do in earlier generations.
So, given perhaps two decades of experience with the commercialization of
the Internet, what lessons can be learned about money flows? I find the
lessons both uninformative and troubling.

We have seen a number of changes in the pattern of money flows among ISPs
since the entrance of commercial ISPs into the ecosystem. The early pattern
of routing among ASes was transit: small ISPs paid large, wide area ISPs
to carry their traffic to its destination. Payment went from the customer
to the provider, independent of direction of the packet flow. Packet counts
were sufficient as input to the billing system. The idea of “sender pays” vs.
“receiver pays” (by analogy to the 800 numbers in the telephone system,
never emerged and did not seem of any interest. One could argue that
it might have emerged if the necessary flags in the traffic had been there
from the start, but conversations with ISPs suggest that the simplicity of
the bulk payment for transit, compared to the complexity of a scheme with
more discrimination, was not seen as worth the trouble. In any rate, there
was never a way for the idea to be tried in the market.

Then the payment system shifted as a result of the increased use of peering
among ISPs. Peering (providing a interconnection between two ISPs so each
can have access to the customers of the other) emerged as a revenue-neutral
scheme, as I noted above. In parallel, the telephone system was moving in
this direction, away from schemes for interconnection “settlement” (where
the telephone companies paid each other for traffic they carried) to what
was called a “bill and keep” pattern, where the customers paid their local
telephone company, and each company retained those payments. Calls were
exchanged on a revenue-neutral basis. Given that the telephone system was
moving toward this revenue-neutral pattern of interconnection, there was
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little motivation to bring a more complex scheme into the Internet, given
that it would require a complex set of inter-provider agreements, which are
hard to negotiate, and can (without care) lead to fears of anti-trust sanctions.

The next shift in Internet payment models has now emerged with the emer-
gence of direct interconnection between content providers and access ISPs
for the delivery of high-volume traffic such as video. From a routing per-
spective, these connections resemble peering connections, but after some
very public disputes, the payment model that emerged was that the con-
tent provided paid the access ISP for the dedicated, high-capacity direct
interconnections. The unstated assumption that was embedded deeply in
these negotiations was the the value flow matched the packet flow–that is,
the sender paid the receiver. One might have argued that when a viewer
watches a video, it is the viewer that is extracting the value, rather than
the sender, but this idea does not never seem to have emerged in any of the
negotiations. There was no question in the minds of any of the negotiating
parties as to which way the money was flowing–only disagreement about the
rate. No packet marking is needed to inform that sort of dispute.

We now see more complex models emerging for payment between content
providers and access ISPs, for example the idea of “zero-rating”, where a
user with a monthly usage quota can receive certain content without it
counting against that quota, because the sender has paid the ISP to deliver
this content. This concept is most common in mobile access networks, and
without pretending that I understand the details of how it is implemented
there, the complexity of the cellular networks (with rich control mechanisms,
often layers of nested headers and the like) provide lots of tools to implement
any required packet marking. The important observation about this context
is that it is a local, bi-lateral context between the two actors, there is no
requirement that the mechanisms for implementing the accounting for traffic
need work across the global Internet.

The next stage in billing may be schemes that attempt to link payment by
content providers to the value of the content being delivered, rather than
some formula that derives from the cost of delivery. Value pricing represents
an attempt by the access providers to extract revenues based on what is de-
livered, and its perceived value to the sender. For example, a recent paper
[Courcoubetis et al., 2016] describes an analysis of the different services pro-
vided by Google, and attempts to model the value per byte of the different
flows (e.g., search vs. Youtube) so as to set a per-service fee for delivery.
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Whether one views this as the next stage in the future of access network
funding or a throwback to telephone era settlement, the traffic classification
is not going to be derived from any simple marking in the header, but by
looking at fields such as port numbers, IP source addresses and the like. (In
the language of Chapter 4, this is implicit parameterization.)

The idea of service-specific billing is not restricted to zero-rating for cellular
access to the global Internet. An interconnection architecture called Internet
Protocol eXchange (IPX, not to be confused with Internet eXchange Point,
or IXP, nor to be confused with Internetwork Packet Exchange) has been
deployed for interconnection of private IP networks (not the global, public
Internet), networks that support services such as carrier grade VoIP. It is
used by the cellular industry to interconnect their VoIP services (which are
over IP but not over the Internet. IPX contains explicit support for per-
service interconnection and cascading payments.4

9.4 Bad outcomes in the future

Per-service settlement for Internet interconnection may be an example of the
pessimistic fears about the future that I articulated earlier in this chapter.
We see a number of forces today that might drive the future of the Internet
into a darker place, including pressures from those who carry out surveillance
and regulation of access to content, but economics is probably the most
potent driver. As long as the Internet is a creature of the private sector,
profit-seeking behavior is a natural behavior and what we must expect.

In this respect, it may be that some architects will prefer to push for designs
with less expressive power, to prevent the implementation of sophisticated
toll-booths in the Internet. Architecture is not value-free, and this is an
excellent example of a place where values will be close to the surface as we
make design decisions.

It may not be possible for the private sector to recover the costs of building
expensive infrastructure, if our goal is an open network. In the long run,
we may need to think about networks the way we think about roads–as a
public sector undertaking. Alternatively, if we do not accept that facilities

4For a good tutorial on IPX, Wikipedia is perhaps good place to start. See
https://en.wikipedia.org/wiki/IP exchange.
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investment can derive from public sector involvement, then designs that
restrict the opportunities to reap returns on facilities investment may limit
revenues to the point that facilities buildout does not occur at a suitable
rate. Some degree of vertical integration or discriminatory treatment of
traffic (including billing) may be the price of a healthy infrastructure. Any
architecture must think carefully about the extent to which it attempts to
take an ex anti position on this point.

9.5 Summary–architecture and economics

Architecture indeed plays a key role in the economics of an Internet ecosys-
tem. Architecture defines the industry structure, and the key interfaces
define the potential relationships between the actors. It is less clear what
role, if any, architecture should play in enabling different money-routing
protocols. It may be necessary to wait another 20 years to see how the
economics plays out before we can see what we should have added to the
architecture now. Perhaps even with the current Internet, in 20 years we
may not have the ISPs that we have today, but a different set of actors
trying to work within the existing architecture. If so, it will be economic
forces that will make that future happen.
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Chapter 10

Network Management and
Control

10.1 Introduction

One of the requirements that I listed for a future Internet in Chapter 2
was that it do a better job of dealing with network management, which has
been a weak aspect of the Internet from the beginning. In this chapter, I
will take what is admittedly a somewhat preliminary try at linking network
management to network architecture.

Using an approach that mirrors what I have done in other chapters, I will
pose two key questions that will help to sort out this space:

• What is implied by the term “management”?

• What does architecture have to do with management?

I start with the first question.

211



212 CHAPTER 10. NETWORK MANAGEMENT AND CONTROL

10.2 What is management?

Management is in one respect similar to security. I began the discussion of
security by asserting that the term “security” was so general that it was as-
pirational, not operational. I argued that only when we find a substructure
for security can we begin to understand the relationships (and potential con-
flicts) among the sub-goals, and thus understand how to improve security
in practice. I believe that this same observation will be true about manage-
ment. While I will identify some common themes that run through different
aspects of management, I will argue that the substructure of management
contains distinct objectives that need to be considered separately.

One definition of network management is that management is those aspect
of network operation that involve a human. We often talk about the “data
plane” of the network, which is that set of mechanisms that actually for-
ward the packets, and the “control plane”, which is that set of automatic
mechanisms (such as routing) that provide the information necessary for
the data plane to function. An important part of that definition is that the
control plane is automatic–there are no people in the loop. In this framing,
management is those set of actions where a person needs to be in the loop.
However, while this definition may unify the concept from one perspective,
there is no reason to think that the totality of issues that require human
intervention are homogeneous with respect to network architecture. I will
argue that the answer is quite the opposite.

From a design perspective, there are two points of view about management:
views that define the ends of a spectrum. At one end are designers who say
that a properly designed network should run itself, so the need for manage-
ment is a signal of failure. At the other end are pragmatists who believe that
what they would call “policy decisions” are not worth trying to codify into
algorithms, and having a human in the loop for many decisions is the better
(and more realistic) way to go. Part of this debate resolves itself when we
look at time-constants of the human intervention. I suspect many designers
(and operators) would be skeptical about a network that so thoroughly ran
itself that it put purchase orders in for new circuits and routers when it saw
itself getting near capacity. Business issues would seem to call for human
judgment. On the other hand, a network that requires teams of humans
to sit in front of monitors 24 hours a day looking for faults would seem to
benefit from some further automation.
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10.2.1 Breaking network management into parts

As a starting point to study the sub-structure of network management, it
is useful to see what others have already done. The ISO has in fact come
up with a standard [CCITT, 1992] that both defines network management
and breaks it into parts. Their definition of network management lists the
following objectives:

• activities which enable managers to plan, organize, supervise, control
and account for the use of interconnection services;

• the ability to respond to changing requirements;

• facilities to ensure predictable communications behaviour; and

• facilities which provide for information protection and for the authen-
tication of sources of, and destinations for, transmitted data.

They then divide the set of management issues into the following categories:

• fault management;

• configuration management;

• accounting management;

• performance management;

• security management.

This set of categories is called the FCAPS framework for management, based
on the first letters of the categories.

What is in common among these five categories, as defined by the ISO, is
that all of them are based on the reporting of data and events from man-
aged devices in the network to a management system. The information so
reported can be fed into a simple display or a complex management sys-
tem that gives the user a higher-level view of the network. A management
system also allows the user to send configuration/control messages to a man-
aged device–again either from a simple interface or a high-level management
application.
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The ITU specification is based on the assumption that while the different
sorts of management categories have different objectives and requirements,
the protocols for reporting and control can be the same. This assumption
superficially seems to match what we see in the Internet, where SNMP
is used with a variety of MIBs for a variety of purposes. (The Internet
defines a Management Information Base or MIB to specify the variables
associated with a managed device.) However, this assumption of a common
protocol should be carefully inspected for flaws. In the early days of work on
Internet management, there was a lot of attention devoted to the problem
of communicating with a managed device when the network was failing and
communication was impaired. There was a concern that using a protocol
like TCP, which insists on reliable, ordered delivery, would not be workable
for communication in a situation of failing communications. This fear led to
the idea that the communication method used for fault management should
be designed for the special case of operation in impaired conditions. This
situation is quite different from (say) the protocol to configure a complex
router, which may involve the installation of thousands of rules, and would
seem to call for a reliable, sequenced update.

However, setting this specific issue aside, the above discussion suggests a
possible modularity to the problem of network management. At the bottom
layer, at the managed device, there are parameters that can be read and
set, and these are specific to the problem at hand. Above this is a (perhaps
common) protocol for communication between the managed device and any
higher-layer management system. The management system in turn provides
an interface to the people responsible for management. The management
system provides the human operator with what the military calls “situational
awareness”: the understanding of what is happening in the network.

10.3 The role of network architecture

If we accept the modularity proposed in the previous section, then we can
start to tease apart the role of network architecture in management. I ar-
gue that the layer of the management system that is most closely linked to
network architecture is the bottom layer, where the variables that can be
read (and written) to monitor and control the network are defined. These
parameters are the foundation for building situational awareness and con-
trol of the network–different management systems can be built on top of
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them, but if the basic data is not available, management will be difficult
and flawed. What we should expect to find in the five different sub-classes
of management listed above are very different management variables related
to the specific tasks. In this respect, the different categories of management
may be differentiated. By looking at the previous chapters, we can try to
extract insights about how the data and control planes should be designed
to provide the most useful information to management. Then we can ask to
what extent these considerations relate to architecture, as we have defined
it.

In chapter 1, I claimed that a key aspect of architecture is the definition
of interfaces. Interfaces modularize the system, and specify what is shared
among the entities on the different sides of the interface. The set of param-
eters exported by a managed device define its management interface, and if
there are classes of devices which benefit from an interface that is globally
agreed and stable over time, that interface takes on the character of archi-
tecture. The exact protocol used to implement the interface may change,
but the expectations that the two entities make of each other, defined by
the parameters that can be read and written, is a more basic and enduring
characteristic.

10.3.1 Management and control

Both in the Internet and in the ISO framework, the concept of exposing
parameters in a device for reading (and perhaps writing) is typically asso-
ciated with management functions, not the control plane. In the Internet,
we have SNMP, the Simple Network Management Protocol. The Internet
design community has not focused on whether the control plane should have
similar interfaces (and perhaps, by analogy to MIBs, should have Control In-
terface Bases, or CIBs). I believe that this way of thinking has been shaped
by the particular approach to the design of the control plane in the early
Internet, which is that control protocols run on the devices being controlled,
and each device reads and sets its own control variables internal to that
protocol. The most obvious example of this is routing protocols, where de-
vices exchange connectivity data, but each device computes and populates
its own forwarding table. There is no control interface on a router where it
can expose the results of its low-level link measurements, nor an interface
to set the forwarding table (except for low-level CLI tools to fill in manual
entries.)
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We now see a trend in the Internet toward a new generation of control
algorithm that moves the control computation out of the distributed devices
into a more centralized controller. The most obvious example of this is
Software Defined Networking (SDN), where network connectivity data is
collected in a central controller that computes and downloads forwarding
data for the different routers in the network. ( I mention another example
below of a move to a more explicit control algorithm in the discussion of
performance management.) As a part of the development of SDN, it was
necessary to define an interface between the router or switch and the route
computation function, which both specified the set of variable that could
be read and manipulated using this interface and the protocols used to
implement this function.

Given this trend, when we consider the relationship between management
and network architecture, I will generalize the consideration to include both
management and control functions. While the distinction between manage-
ment (involving people) and control (automated functions) may be helpful in
some contexts, it is not material in other respects. If a device exports certain
variable for reading and manipulation, it is not material to the role those
variables play whether they are manipulated by a person, by an algorithm,
or by an algorithm that may sometimes have a person in the loop.

The addition of control to this analysis will add new categories to the five I
listed above. Routing is the most obvious.

10.3.2 Management of the management system

Management (and control) systems themselves have to be configured and
monitored for correct operation. This sounds painfully recursive, and in
some cases may be, but the specific cases are usually dealt with in pragmatic
ways.

Specifically, how does a management system discover the set of entities that
are to be managed? If a managed element can generate alerts (active noti-
fication of a change in status of one of its management variables), to which
element should alerts be sent? These questions will come up as I look at the
categories of management and control. Further, there is a significant security
aspect to these questions. What entity should be allowed to manage another
entity? Reading of management variables may seem less harmful than mali-
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cious modification, but could lead to undesirable revelation of system status,
and flooding of a management interface with queries can potentially lead to
overload of a managed system (a form of DoS attack). Obviously, malicious
modification of management/control variables can lead to a wide range of
disruptive outcomes.

The design of any management mechanism must be accompanied by an
analysis of how that system is managed and controlled, and the security
implications of that system.

10.3.3 Active probing

The conception of management (and control) as a process driven by data
gathered from managed entities is a somewhat limited view. Other methods
can be used to assess the state of the network, most obviously active probing
and observation of end-to-end behavior. The most critical control algorithm
in the Internet, congestion control, is not driven by data explicitly gathered
from each of the routers along the path, but from observing end-to-end be-
havior. There have been any number of papers written on how congestion
control might be done better than it is now is, given our improved under-
standing, but while most of these depend on carrying more information in
the packet, none that I can think of exploit localizing where congestion is
happening to a specific element along the path.

The most basic tools of active probing in today’s Internet are ping and
traceroute. They surely qualify as management tools, since they are used
by people, often ordinary users frustrated with the state of the network. As
well, these tools are regularly used by professional network managers. This
sort of probing serves a number of purposes. The two most obvious are
understanding performance (often when performance is poor) and fault lo-
calization. The original purpose of traceroute was configuration–determining
the path a packet was taking on its way to the destination. Ping (or more
precisely the ICMP Echo option) was designed for the purpose for which it
is used, but traceroute is a kludge, a hack that uses a packet crafted with
a TTL that expires at a point along the path to solicit a response from
that element. This tool is indeed used to learn something about the differ-
ent elements along the path, but implicitly. The ICMP response was never
intended for this purpose, and the measurement community has struggled
to make sense of the responses, dealing with issues such as de-aliasing the
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IP address on the return packets, variable processing delay in the control
processor of the probed router, and so on. Had the tool been designed for
purpose, it might provide information that is easier to analyze, for example
a unique ID associated with a router, independent of which port is probed.1

Of course, one problem with tools like ping and traceroute is that the probed
element sometimes does not answer. Routers are sometimes configured not
to answer, for both performance and security reasons. The Internet is com-
posed of regions (ASes) operated by different entities, sometimes not in-
terested in having their insides probed by outsiders. Most operators have
come to understand that having their routers respond to a traceroute is a
useful mutual agreement, but not all operators buy into the agreement at all
times. It is important to remember that measurement, especially measure-
ment that reaches beyond the scope of the region that owns the elements
in question, is sometimes a adversarial activity, and often an action with
political motives.

Very few of the architectures I have discussed in this book give much at-
tention to the question of whether there should be tools in the architecture
(fields in packets or additional probing functions) to facilitate active mea-
surement of the network, whether to deal with issue of configuration, per-
formance or fault localization. But the design of any such mechanism would
bring into focus an important aspect of tussle, which is that many operators
would prefer to keep the details of these issues to themselves. Active probing
can be seen as a case of trying to discover from the outside something that
is probably already known on the inside, but is not being reported.

10.3.4 Abstraction

If operators are (understandably) sometimes reticent about the status of
their region of the network, perhaps a way to balance the interests of all
parties would be to define, as part of a management architecture, an abstract
view of a region of a network, which hides some details (perhaps the exact
topologies of routers, for example) but gives a abstracted view of the current

1The IETF, in an attempt to deal with the issue of variable latency in the reply to a
probe, has developed the Two Way Active Measurement Protocol or TWAMP mechanism
(see RFC 5357). A probing mechanism that combines the features of TWAMP with
traceroute might be of great benefit to the measurement community, so long as it cannot
be abused.
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state of the region.2 If there were a uniform agreement on a set of useful
abstract parameters to report, this outcome might represent a resolution of
the tussle issues around the desire of all parties to probe their neighbors.

10.3.5 Packet sampling

Another important tool for network management is packet sampling. Tools
such as NetFlow and its kin sample the packets passing through a router to
identify the flow, reporting data such as source and destination IP addresses,
number of packets, and so on. The necessity to sample does add uncertainty
to the data being reported, but flow data is a rich source of information that
can inform performance and configuration management, and in some cases
security. It is a good example of an entirely new sort of data reporting in
support of management, going beyond the simple counters normally reported
using SNMP. It is also an example of a tool that was developed without any
support from the architecture. Again, one could ask if some additional
information in the packet header could enrich what can be learned from
sampling the packets going through a router.

10.3.6 Instrumenting the data plane

The previous discussion of packet sampling provides a particular illustration
of a more general issue: should the data plane of an architecture contain
elements that are designed to assist in some aspect of network management?
Are there values that might be put into a packet header (e.g., a flow iden-
tifier) that would help with performance analysis? Could the data plane be
re-engineered to help with fault isolation?

In the early days of the design of the Internet, colleagues from the telephone
company (when they were not telling us that packet switching would not
work) strongly advised us that the data plane had to include tools for fault
diagnosis. The digital version of the telephone system, which had been
engineered only after the telephone system itself was very mature, included

2Some operators do provide this sort of abstract view of their network: for example
AT&T has a web site where they list the current latency between all their city pairs: see
https://ipnetwork.bgtmo.ip.att.net/pws/network delay.html. It is not clear if this exact
abstraction of latency is the most useful, nor is there a uniform agreement among all ISPs
to measure and report this parameter, but it illustrates the point.
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features (such as management fields in the data frames that were forwarded
in their TDM scheme) that were intended for fault diagnosis. They argued
that the ability of a network to diagnose its faults was just as important as
its ability to forward its data, and that our failure to appreciate this was
just another signal of our inexperience.

If the data plane could somehow be enhanced so that it supported manage-
ment issues as a part of its normal function (for example supported fault
localization or detection of performance impairments) this would shift tus-
sle in a fundamental way. Operators can try to distort what is discovered
using active probing (giving ping packets priority or refusing to respond to
them), but it is harder to distort what is observed by the data plane without
distorting how it performs. Of course, if there are fields in the data packet
that the router is expected to fill in that only play a role in management
(such as the traceback schemes for localizing DDoS attacks) the operator of
the distant router can just choose not to implement this function. The ideal
tool for instrumenting the data plane will be a feature designed so that it
is an inherent part of the forwarding process. This goal, in the presence of
tussle, is a significant design challenge that calls for crafty thinking.

10.4 Categories of management and control

In this section, I look at categories of management, starting with the ISO
FCAPS list, and seek to identify architectural issues, in particular what
aspects of the management interface might rise to the level of architecture.

10.4.1 Fault management

The challenge of fault management has come up in various places earlier in
this book, most directly in the discussion of security and availability.

In my discussion of availability, I proposed a high-level framework for un-
derstanding availability:

• It must be possible to detect the failure.

• it must be possible to localize the failed parts of the system.
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• It must be possible to reconfigure the system to avoid depending on
these parts.

• It must be possible to signal to some responsible party that a failure
has occurred.

I noted at the time that putting these steps into the passive voice papered
over huge issues: which entity was to carry out each of these tasks. Resolving
these issues falls within the scope of fault management.

There are a variety of ways that a failure can be detected, involving different
actors. In some cases, an element may be able to tell that it is failing and
raise an alert. In this case, the question is where that alert should be
directed. Some utterly feeble mechanisms have been devised for an element
to indicate that it is failing, such as turning on a small red light in the hope
that a person will notice it (a wonderful example of a horrible management
interface).3

Sometimes machines interacting on the network can detect that one of their
number has failed. Most Internet routing protocols embed some assessment
of correct function into the protocol itself (perhaps a simple “keep-alive”
or “handshake” probe). The failure of this sort of handshake can be taken
as a signal of failure, but then the question is whether one machine can be
trusted to tell another machine that it is failing. In fact, the first machine
may be failing, not the second machine, or the first machine may just be
malicious.4 Any machine that is told by another machine that it is failing
must take that input with considerable caution. This is a case where it may
make sense to have a person in the loop, but if rapid recovery is required,
there is a tension between a quick response and a considered response. One
of the benefit of a system with redundancy is that service can be restored
quickly using redundant elements, while the failed element can be recovered
more slowly.

3In the era of early time-sharing, when I was coding the Multics system, the I/O
controller had a management alerting channel, but if this failed, it reported the failure of
its management interface by ringing a loud alarm bell. One’s programming errors took on
a somewhat public character. The management of the management system implies a sort
of recursion that has to be resolved somehow.

4There is a famous rolling outage of the AT&T phone system which is similar in char-
acter to this pattern. One machine self-detected a fault and reset itself, and in recovering
from this reset sent a sequence to its neighbor machines which (due to a bug) then reset
themselves, and so on. It went on for nine hours [Neumann, 1990].
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The protocol for forwarding Internet email has a built-in redundancy/resilience
mechanism. The DNS can list more than one IP address for a Mail Transfer
Agent, so that if the first one is unresponsive the sender can try another one.
However, there is no means for the sender detecting that the first receiving
agent has failed to report that problem. The underlying problem might be
repaired more quickly if the failure could be reported when it is detected,
but again, there are a number of issues to be resolved for such a scheme
to work. The first is to provide the address of the location where an error
report should be sent. The second issue is to prevent this mechanism from
being abused. The third issue is to deal with a possible flood of legitimate
error reports when lots of senders detect at the same time that a receiver
has failed.

A network could be equipped with several mechanisms to deal with these
issues, which (since they seem to be global in scope) might rise to the level
of architecture. One would be to include in the DNS a new kind of record
that gives the name of the machine to which a failure of the intended service
can be reported. The second would be some sort of “incast” mechanism to
aggregate multiple error reports together as they flow across the network
toward that reporting point. An incast scheme also limits the range of DoS
attacks on the error reporting service.

In the most simple cases (consider a home network), I would propose that a
standard method of logging errors within that context be a part of the basic
configuration process. For example, DHCP could be extended so that when
a machine first connects to the network, it is given the address of a place
to send fault reports. The home router could be the aggregation point for
these messages, and such a framework could be part of a new service that
allows for diagnosis of problems in the home network.

In the case of email, the two-party nature of the forwarding steps makes
localization somewhat straightforward. However, in other cases (most ob-
viously the failure of a packet to reach its destination in a timely manner),
localization is much harder. Without the ability to localize the problem, it
is much harder to resolve the problem by avoiding the failing component
(one is reduced to trying other options more or less at random) and there
is no possibility of reporting the fault. The tools the Internet has today
to localize faults along the forwarding path are minimal: usually the only
option is traceroute, with its many limitations. But as I noted above, it may
not be in the best interest of a particular region of the network to let out-
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siders successfully localize faults within that region, and when the “fault” is
due to the successful blocking of an attack, it is absolutely not in the best
interest of the target of the attack that the attacker be able to diagnose
the reason the attack has failed. I believe that fault localization is a much
understudied and poorly understood but critical aspect of network design,
which may have implications for architecture were it better understood.

10.4.2 Configuration management

Configuration is the process of setting up the elements of a system so that
they can interwork properly. As a simple example, the Dynamic Host Con-
figuration Protocol (DHCP) allows for the automatic configuration of a host
when it is first attached to the Internet. DHCP changed initial host con-
figuration from a manual and somewhat mysterious management task to
an invisible control function hidden from the user. DHCP provides three
critical pieces of information: an IP address for the new machine to use, the
address of a router that can provide a path to the Internet, and the address
of a DNS server that provides access to Domain Name resolution.

More complicated devices, such as production routers, have much more com-
plex configuration requirements. To a variable degree, configuration of com-
plex devices like routers is automated, but in some cases people end up doing
device configuration from a command line.

It is not too hard to conceive a configuration interface that allows a managed
device to be configured over the network. But there is a bootstrapping
problem: how does the new device know what existing device on the network
is allowed to configure it? There may be some necessary first step taken by a
person, such as typing some validation information into the new machine. In
simple cases, the process by which a new machine finds a service to configure
it is itself automated. For example, in DHCP, the new machine broadcasts to
find a DHCP server. But lurking inside these automatic discovery schemes
that are part of many configuration protocols is a potential security problem.
With DHCP, for example, the newly attached host requests configuration
information by broadcasting its request and believing whatever machine
answers. This mechanism is usually not a major vulnerability, but should
serve as a reminder that the initial phase of configuration is a moment of
vulnerability in system setup, whether the mechanism is DHCP, bluetooth
peering or configuring devices in a smart home.
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10.4.3 Accounting management

In Chapter 9 I discussed a range of schemes for “money-routing”, which
depended on new fields in packets, and presumably depended as well on
new sorts of tools in routers to track and report usage of different sorts.

Operators today use fairly simple tools to gather data to inform accounting
functions: packet and byte counts, NetFlow data, and so on. In 1991, as the
first commercial ISPs were happening, the IETF looked at accounting, and
published an RFC [Mills et al., 1991] that frames the problem. It discusses
methods of reporting based on packet capture, and in many respects the
state of the art does not seem to have advanced all that much. The RFC is
cautionary with respect to inventing complex tools for accounting, lest they
be used.

10.4.4 Performance management

Performance, as it relates to architecture, is not a simple matter of through-
put between two end-points. Various of the proposals I have discussed in
this book have implications for performance, but in very different ways that
illustrate that performance is a multi-dimensional issue that will have differ-
ent manifestations in different architectures. ALF was intended to improve
host processing performance. NDN uses caching to improve the delivery
performance of popular content. MobilityFirst improves the performance of
mobile devices as they move from network to network.

For each of these proposals, part of the analysis must be whether the mech-
anisms related to performance need management, need a control protocol,
or function as a natural consequence of the design of the data plane.

NDN In NDN, the performance is a function of how the routing protocol
finds the closest copy and the cache replacement algorithm in the various
routers in the system. It is possible that the cache replacement algorithm
needs to be tuned based on the dominant class of content being retrieved,
and this tuning may be a management function. If so, what parameters
should a router report about its cache to facilitate management? If the
cache uses an LRU scheme, it might make available some measure of the
time that is elapsing between last use and removal.
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MobilityFirst Does the Global Name Resolution Service in MobiliyFirst
require management? Should the latency of the GNRS be tracked and re-
ported?

[[[Add others?]]]

With the advent of massive content delivery over the Internet, and the use
of Content Delivery Networks with complex caching schemes to improve the
delivery of content, new issues related to performance have arisen that seem
to call for new interfaces for the management (or control) of these schemes.
CDN providers may have many copies of the same content cached at different
locations around the Internet, and can select a specific source for any transfer
in order to optimize the delivery. By careful management, CDN providers
can operate their interconnection links essentially fully loaded without trig-
gering actual congestion and its consequences. However, to do this they
have to detect what the actual instantaneous load on the link is. Today,
there is no way to extract that information through a management/control
interface; they must estimate whether the link is fully loaded by looking for
transient evidence of congestion. In this case, there is no business barrier
to revealing the information–with directly interconnected caches the router
and the CDN belong to the same firm. But the desired parameter is not
defined or exported.

Like SDN, where the transition from a decentralized route computation to a
centralized one triggers the need for new interfaces between the router and its
control/management function, the transition from a end-to-end congestion
scheme based on indirect feedback to an explicit scheme running on the
CDN infrastructure will benefit from the development of new performance
parameters on routers.

10.4.5 Security management

In Chapter 7, I broke the problem of security into four sub-objectives. Each
of them will raise its own requirements for management, some of which I
discussed in that chapter.

Attacks on communication With the exception of availability, I argued
that this requirement should be addressed using end-to-end encryption. The
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major issue here is key management, which is not strictly an issue for the
network but for the attached service nodes. However, systems such as the
Certificate Authority system, while not a part of “the network”, have risen to
a level of importance that they are (perhaps like the DNS) trending toward
being architecture. The CA system has massive issues of management, with
organizations such as the CA/Browser Forum5 meeting to discuss which root
authorities are trustworthy, and so on. This situation, on the one hand, may
serve to support the view that a system that requires this much management
is a mis-designed system. On the other hand, key management is a known,
tricky problem. However, while the problems are critical to the overall
security of the Internet, they seem out of scope for network architecture as
I have been defining it.

With respect to availability, the issue here are those I discussed in the context
of fault management.

The process of configuring a web server to support TLS has been a manual
and complex management task, which has prevented many web site oper-
ators from implementing the security protocols. A recent effort, the Let’s
Encrypt initiative,6 has attempted to change to process of configuring TLS
from a manual management process to an essentially automated task, re-
quiring only a minimum of user intervention. While again, this effort seems a
bit removed from network architecture, it illustrates that for many problems
there are a range of solutions, ranging from the more manual (management)
to more automatic (control) solutions.

Attacks on the host When a host is attacked by the network or by
another host, the mitigation of this problem (as I conceive it) requires both
end-node and network action. Proper design of applications is critical.

Some architectures, such as I3 and DOA, allow end-nodes to use the ex-
pressive power of the packet header to invoke in-network services to provide
services such as protection from attack. The management issues in such a
scheme remain to be fleshed out, but the complexity of having services dis-
tributed across several nodes in the network seem to suggest the potential
of complex management requirements.

5See https://cabforum.org/
6See https://letsencrypt.org/.
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Attacks on the network itself The most obvious attacks on the network
today (aside from DDoS, discussed below) are attacks on the interdomain
routing system. Other architectures with different feature sets will, of course,
manifest different opportunities for attack. The security of BGP, as it is
being done today, requires a great deal of manual configuration (installation
of public-private key pairs, registration of address blocks, and so on). As
with the Let’s Encrypt effort, there is a open question as to how automatic
the configuration of secure BGP might be. However, a general point is that
much of security management is theconfiguration of security parameters such
as keys.

Denial of Service attacks As I discussed in Chapter 7, DoS attacks
(and DDoS attacks in particular) are a problem that arises at the network
level and must be managed at least to some extent at the network level. I
described a range of approaches, each of which has its own requirements for
new management and control interfaces. Routers that participate in trace-
back logging must make available that function through some interface, and
the resulting security issues must be analyzed. The approach in FII involving
the Shut Up Message (SUM) requires that every sending host be associated
with a trusted third party that vouches for its identity, which seems to im-
ply a significant management task. Again, different design approaches may
result in schemes with very different degrees of manual intervention.

10.4.6 Routing

The routing protocols in the current Internet are in some respects self-
configuring. When two routers each discover that there is an active node on
the other end of a connected link, they begin to exchange information with
the goal of discovering what is reachable through that other router. The
ports on each router have to be assigned an IP address (manual configura-
tion management), and a name (for reverse lookup) is sometimes assigned
to that address, but little more is needed in general.

The emergence of new, centralized route computation schemes such as SDN
require new management/control interfaces on routers and switches, as I
noted above.
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10.4.7 Quality of Experience

Quality of Experience, or QoE, is the subjective measure of the degree to
which a user is satisfied with the application being used. Many factors can
influence how QoE is perceived by the user: the expectation against which
the experience is being assessed, whether the user paid for the application,
the overall mood of the user, and so on. However, in this context, I want to
focus on those aspects of QoE that are related to the character of the network
being used to implement the application. In this context, QoE might fit
into performance, or perhaps fault isolation. As well, it has aspects of
security, if I include availability in that category. When the user encounters
an impairment to QoE that is due to some phenomenon in the network, the
steps to resolve the problem very much resemble those I identified to deal
with issues of availability:

• It must be possible to determine that the impairment is arising in the
network.

• it must be possible to localize the failed parts of the system.

• It must be possible to reconfigure the system to avoid depending on
these parts.

• It must be possible to signal to some responsible party that a failure
has occurred.

The issue of localization is thus central of allowing impairments to QoE to
be remedied. Lacking localization, the user is reduced to waiting until some
other person (presumably the person who manages the relevant entity) to
notice that something is wrong and fix it. And, as I noted above, localization
of a problem to a distant region of the network may be seen as an adversarial
act.

I believe that in the future, there will be an increasing focus on measurement
of QoE and diagnosis of QoE impairments, which will create a generalized
requirement for localization that is not restricted to “faults”, but as well
to performance issues, flaws in higher-level services in the network, and so
on. As such, if there is a generalized approach to localization of issues in a
“dumb network”, the invention of such a scheme would be a major advance
in network design.
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10.5 Conclusions

This chapter is more speculative than some of the earlier chapters. Research
on network architecture and design has provided many fewer examples of
candidate mechanisms to consider, and our operational experience with the
current Internet is based on a set of ad hoc mechanisms that are often based
on using features in ways for which they were not intended. While I believe
that I have identified a few potential network features that rise to the level
of architecture, and have posed some important research challenges, it is not
clear how the research community should proceed to learn more about this
area. What we need is operational experience with networks at scale, but
we cannot easily use the production Internet for this purpose. I fear that
this area may remain underdeveloped and feeble.
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Chapter 11

Meeting the needs of society

by David Clark and kc claffy

11.1 What do we want our future Internet to be?

The goal of this chapter is to identify some desirable properties of a future
Internet, looking through the lens of societal concerns, and consider what
(if anything) network architecture has to do with these goals.

Several years ago, my co-author kc claffy and I were moved to try to collect
in one paper a list of all the societal aspirations for the future of the Internet
that we could find, and organize them into categories[Clark and claffy, 2015].
For example, we collected statements from governments and public interest
groups. The resulting list of aspirations was not original to us, nor did we
agree with all of them. We cataloged these aspirations in order to subject
them to critical analysis, and motivate a debate over which of them are
desirable, well-specified, realistic and achievable.

This exercise led us to three high-level conclusions, perhaps obvious but often
neglected. First, not only are many of the aspirations hard to achieve, but
some are incompatible with others. Second, many are under-specified and
resist operational definition; it is unclear how to translate the aspiration
to concrete goals against which to measure progress. Third, most of the
current tools society has to shape the future of the Internet seem unequal
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to the task.

These conclusions, while potentially pessimistic, raise the question of whether
a different Internet might be a better vehicle for the pursuit of these goals.
For this reason, we have taken our list from that paper as a starting point
through which to look at this final architectural requirement: a future In-
ternet should be designed to meet the needs of society.

In the pursuit of these goals, we encounter again what I called the funda-
mental tussle. Governments or advocacy groups express many aspirations
on this list as societal goals – desirable outcomes for the citizenry, thus “in
the public interest”. And yet the Internet’s architecture and infrastructure
are now primarily under the stewardship of the private sector, driven by
profitability and commercial viability, constrained by technological and eco-
nomic circumstances, and sustained by interconnecting and interoperating
with competitors in a multistakeholder ecosystem. Navigating the inherent
tension between private sector objectives and societal aspirations is essential
to shaping the future of the Internet.

11.2 Catalog of aspirations

Here is our catalog of aspirations for the future of the Internet:

1. The Internet should reach to every person by some means. (Reach)

2. The Internet should be available to us everywhere. (Ubiquity)

3. The Internet should continue to evolve to match the pace and direction
of the larger IT sector. (Evolution)

4. The Internet should be used by more of the population. (Uptake)

5. Cost should not be a barrier to the use of the Internet. (Affordable)

6. The Internet should provide experiences that are sufficiently free of
frustration, fears and unpleasant experiences that people are not de-
terred from using it. (Trustworthy)

7. The Internet should not be an effective space for law-breakers. (Law-
ful)
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8. The Internet should not raise concerns about national security (Na-
tional security)

9. The Internet should be a platform for vigorous innovation, and thus a
driver of the economy. (Innovation)

10. The Internet should support a wide range of services and applications.
(Generality)

11. Internet content should be accessible to all without blocking or cen-
sorship. (Unblocked)

12. The consumer should have choices in their Internet experience. (Choice)

13. The Internet should serve as a mechanism for the distribution of wealth
among different sectors and countries (Redistribution)

14. The Internet (and Internet technology, whether in the public net or
not) should become a united technology platform for communication.
(Unification)

15. For any region of the globe, the behavior of the Internet should be
consistent with and reflect its core cultural/political values. (Local
values)

16. The Internet should be a tool to promote social, cultural, and political
values, especially universal ones. (Universal values)

17. The Internet should be a means of communication between citizens of
the world. (Global)

As we organized these aspirations, we found that many of them could be
clustered into four more general categories:

• Utility

• Economics

• Security

• Openness
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11.3 The utility cluster

The Internet should support a wide range of services and appli-
cations. (Generality) The original Internet architecture embedded this
aspiration, since it was designed to support a cooperative network of time-
shared general-purpose computers. Benefits that follow from this aspiration
include Innovation and Uptake, since the more value the Internet can deliver,
the more users it will attract.

Although there is no obvious way to quantify progress toward Generality,
the range of Internet applications demonstrates its success at this aspiration.
But not all applications work well on the public Internet today – most
problematic are those that require very high reliability and availability, e.g.,
remote surgery, remote control of autonomous vehicles. Does Generality
imply the need to evolve to support such ambitious services, or should they
be segregated to more controlled private networks?

The Internet should be used by more of the population. (Up-
take) Uptake is about getting more people to use the Internet services
available to them. As more essential social services migrate to the Internet
to increase the efficiency of delivering them, non-users may be increasingly
disadvantaged.

This goal seems generally laudable, but invites the question as to whether
policy intervention is appropriate to convert the non-users. There is less
consensus on Uptake as a societal aspiration, compared to others, e.g.,
Reach. Respondents to Pew’s 2010 survey on U.S. home broadband usage
[Smith, 2010] split on the question of whether non-users were disadvantaged;
the most significant concern for non-users related to finding job opportuni-
ties.

The consumer should have choices in their Internet experience.
(Choice) There are many possible sorts of Choice in the Internet ecosys-
tem, e.g., of broadband access providers, or of software in an app store.

Freedom of choice seems central to U.S. policy thinking, but the word
“choice” is ill-defined; it is often used as a proxy for some other aspiration,
for which choice is either a means or a consequence. Choice is described as a
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positive consequence of a competitive market. The logic is that competition
leads to choice, and consumers will choose wisely, so competition disciplines
providers toward offering products and services that consumers prefer.

But choice presents tension with other aspirations. Given choice, consumers
might pick a network that was more regulated, curated, and/or more stable
than today’s Internet (e.g., Apple’s app ecosystem), an outcome aligned with
the Trustworthy aspiration, but less aligned with Innovation and Generality.
Or a consumer might prefer a network that is totally free of accountability
and thus rampant with piracy, which governments and rights-holders would
find unacceptable and constrain by other means. Or a consumer might
prefer a network that is zero cost but limits the selection of applications,
e.g., Facebook Zero.

Overall, we found that this aspiration was ambiguous and subject to multiple
interpretations as we attempted to reduce it to operational terms.

Architectural relevance It would seem that any architecture that de-
fines a general-purpose platform for the creation of services would support
this basket of aspirations. The more detailed questions have to do with
the degree of generality (e.g., QoS features) and the range of applications.
Choice at the ISP level (as opposed to the higher-level service and applica-
tion layer) seems to relate to the next cluster: economics.

11.4 The economics cluster

The Internet should reach every person by some means. (Reach)
The Reach aspiration is generally uncontentious; almost every country has
some form of it. The differences relate to granularity (household or kiosk?),
bandwidth (how much?), and methods to achieve it. Developed countries
focus on reaching the yet unserved population, usually rural areas. In de-
veloping countries, where most of the population may not have access, the
focus may be on the wireless form of Reach, (next on the list) i.e., Ubiquity.
To achieve Reach in rural areas that lack sufficient revenue to justify pri-
vate investment in infrastructure deployment, some nations have provided
subsidy or tax incentives to build or maintain networks. In some cases the
public sector has directly funded construction. In the United States, direct
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public investment has happened at multiple levels, from federal stimulus
money to municipal construction of residential broadband networks.

The Internet should be available to us everywhere. (Ubiquity)
The Reach aspiration has a corollary in the age of mobile communications –
every person should have access to the Internet approximately everywhere
they go, implying the integration of high-performance wireless technology
into the Internet.

Cost should not be a barrier to the use of the Internet. (Afford-
able) This goal is a component of Uptake, since cost is a major barrier
cited by non-users today. The phrase “cost should not be a barrier...” could
be mapped to the simpler phrase “the Internet should be low-cost”. How-
ever, we don’t expect wine to cost as little as tap water. Low cost might map
to lower value, which might be counter-productive. Perhaps an emphasis on
value would be more productive as a means to uptake.

The Internet should evolve to match the pace and direction of the
larger IT sector. (Evolution) The Internet was designed to connect
computers together, and this aspiration captures the idea that as computing
evolves, so should the Internet. In particular, as computing gets faster and
cheaper (e.g., sensors), the net should get faster, and access to it cheaper.
For decades Moore’s law has characterized how (IT-based) demands on
broadband infrastructure change much more rapidly than other sorts of in-
frastructure, such as the power grid. In 2013, the forecast growth of U.S.
power consumption was .9% per year [U.S. Energy Information Administration, 2013],
while the forecast of Internet traffic growth was 23% per year [Cisco Systems, 2013].

National Policy statements have often had a dual character [Yochai Benkler, et al., 2012]:
getting some level of broadband to everyone (Reach) and pushing for deploy-
ment of a next generation or broadband (Evolution). The U.S. FCC Na-
tional Broadband Plan published in 2010 aspired to a 10-year milestone for
Reach and Evolution: “100 million U.S. homes should have affordable access
to actual download speeds of at least 100 Mbps and actual upload speeds of
at least 50 Mbps by 2020.” [Federal Communications Commission, 2010b,
p. 9] (which admittedly now looks less impressive compared to Google
Fiber’s gigabit-to-the-home deployments around the country since 2011).
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Architectural relevance This set of aspirations relate directly to the
discussion in Chapter 9 on the incentives of the private sector to invest.
Investment can improve Reach and Ubiquity and Evolution, but perhaps
not in the proportion that society might want. All are capital-intensive
activities, and thus would seem to drive up cost, which would put them in
conflict with the aspiration that the Internet be affordable. The possible
influence of architecture over these factors was discussed in Chapter 9.

The Internet should be a platform for innovation, and thus a
driver of the economy. (Innovation) As a key component of the
IT space, the Internet has contributed to economic growth by promoting
innovation and creativity, technology development, revolutionizing logistics
and service industries, among other ecosystem disruptions. One interpre-
tation of the Innovation goal is that the Internet must be “open”, a term
used to capture many other aspirations. We believe this word is a red flag
for muddy (or at least unfinished) thinking. Open is a word with strong
positive connotations, useful as a rallying cry, but dangerously vague. We
prefer to refer to more specific objectives in the ill-defined basket called
“open”: stability, specification (open standards), freedom from discrimina-
tion or from intellectual property restrictions. But even these aspirations
are not absolute. For example, some forms of discrimination among uses
of a platform can promote innovation, assuming clear and consistent rules
[David Clark and kc claffy, 2014]. In fact, many traffic discrimination sce-
narios may benefit users, the most obvious being protecting latency-sensitive
traffic from the consequences of co-mingling with other traffic.

The deeper and more vexing policy question that is poorly informed by the-
ory or fact relates to causality: what underlying properties (e.g., Generality,
Uptake, Ubiquity, Evolution, Unblocked or access to capital) are key drivers
of Innovation?

The Internet should serve as a mechanism for the distribution
of wealth among sectors and countries. (Redistribution) Thou-
sands of independent firms combine to provide the Internet ecosystem, each
typically striving to be profitable and competitive, and the flow of money
is integral to its structure. Contentious arguments about redistribution of
capital, either to cross-subsidize from more profitable to less profitable sec-
tors of the ecosystem (e.g., commercial to residential, urban to rural), or
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from more developed to less developed countries, have long characterized
telecommunication policy debates and legislation.

A recent vivid example is the ongoing tension as to whether high-volume
(video) content providers (and transit providers who serve them) should
contribute to the costs of the infrastructure. This tension has led to debates
on whether access providers should be able to charge content and/or transit
providers for access to their customers, and more generally whether inter-
connection arrangements should be left to industry or regulated to more
fairly allocate money flows according to who induces versus carries load on
the infrastructure [Rob Frieden, 2011].

In addition to cross-subsidizing across industry sectors within one coun-
try, governments also aspire to tap into international revenue flows in the
Internet ecosystem. The developing world used to bring in substantial hard-
currency payments from settlement fees associated with telephone calls into
their countries, a revenue source that is diminishing as communication moves
onto the Internet. The global controversy about the role of the ITU in reg-
ulating international Internet interconnection reflects a motivation by many
parties, including governments, to change the current norms for payment for
the global flow of Internet traffic to be closer to historical telephony-based
norms [Hamadoun I. Toure, 2012, Geoff Huston, 2012].

Architectural relevance: These two aspirations relate directly to the
discussion in Chapter 9 on “money-routing” across the Internet. The Inno-
vation aspiration is almost directly an expression of hope that the infras-
tructure providers will spend money so that the innovators on top of that
platform can make some. Put thusly, it is not obvious why such a hope
would come true. The aspiration of Redistribution is in some direct sense a
response to the pursuit of Innovation; it is a call for the innovators to give
some of their profits to the infrastructure providers. It is interesting that
one can find this aspiration expressed in pretty direct terms by some of the
actors.

Again, to the extent there are architectural implications of this set of aspi-
rations, I have tried to address them in Chapter 9. They seem to relate to
architectural modularity and what interactions among the different actors
are facilitated by the expressive power of the module interfaces.
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The Internet (and Internet technology) should become a unified
technology platform for communication. (Unification) This aspi-
ration is not directly relevant to society; IP network operators tend to share
this aspiration as a source of cost savings, or more generally to maximize
return on capital investment. As such, it may facilitate the pursuit of other
aspirations discussed here. The Unification aspiration differs from General-
ity ; the latter is about supporting a wide range of services, while Unification
reflects the economic efficiency of discontinuing other platforms and associ-
ated investments.

Historically, telephone calls, cable television, and industrial control networks
each used independent specialized legacy communications infrastructure.
Today, Internet technology can provide a unified platform for any impor-
tant communications application. Many ISPs today run a “fully converged”
IP backbone for economic efficiency, and would resist any regulatory inter-
vention that would cause them to separate infrastructures they have unified
or plan to unify.

Note that although Unification reduces overall costs in some areas, it also
may increase costs in others, since the unified platform must support the per-
formance of the most demanding application in each quality of service. For
example, a unified IP-based platform must be reliable enough to support
critical phone service, have the capacity to carry large bundles of televi-
sion channels, etc. Unification may also increase risks to National Security,
since a less diverse infrastructure has higher potential for systemic failure
[Schneier, 2010, Geer, 2007], although this fear is debated [Felton, 2004].

Architectural relevance Today, we see a two-level IP platform emerging
in practice, in which ISPs build an IP platform and then run their part of the
IP-based global Internet on top of this platform. Most of the architectural
proposals I have discussed in this book related to the creation of a new global
Internet, not the creation of a new form of unified platform. Given the
current trends in industry, it would seem beneficial to have an architectural
exploration of this two-level structure.

The argument above about diversity vs. monoculture in the context of
systemic failure (and national security) seems a valid issue to explore from
an architectural perspective.
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11.5 The security cluster

Just as in my chapter on security (Chapter 7), the overarching concept of
security (or an aspiration for “better security”) proved too general as a start-
ing point. The aspirations grouped here all do relate to aspects of security,
but they break the problem up in slightly different ways than Chapter 7
since (in the language of that chapter), they focus on harms and not system
components. This focus on harms seems to make sense in the context of
aspirations.

The Internet should provide experiences that are sufficiently free
of frustration, fears and unpleasant experiences that people are
not deterred from using it. (Trustworthy) Most users hope, expect,
or assume that their use of the Internet does not lead to their behavior and
data being used against them. Users also need to be able to (but often can
not) assess the safety of a given aspect of their Internet. Today, users fear
side effects of Internet use, i.e., their activities being monitored, personal
information used in unwelcome ways, e.g. behavioral profiling. Users fear
identity theft, loss of passwords and credentials, malware corrupting their
computer, losing digital or financial assets through compromised accounts.
The threats are real [Madden et al., 2012, Ehrenstein, 2012, Sullivan, 2013],
and include not just crimes but violations of norms of behavior, e.g., spam
or offensive postings.

The Internet should not be an effective space for law-breakers.
(Lawful) An Internet ecosystem that cannot regulate illegal activities will
make it less Trustworthy and hinder Innovation, impeding the role of the
Internet as a General and Unified platform. Generally, crime is a drag
on the economy, and a symptom of erosion of civic character. But much
of today’s cybercrime is international, and there is significant variation in
what different countries consider illegal, as well as inconsistent and in some
jurisdictions poor tools to pursue lawless behavior internationally.

The Internet should not raise concerns about national security
(National security) While small-scale intrusions, crimes and attacks may
alarm and deter users, a large scale attack might disable large portions of the
Internet, or critical systems that run over it. There are legitimate fears that
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the Internet could be a vector for an attack on other critical infrastructure,
such as our power or water supply.

The Center for Strategic and International Studies maintains a public list
of “cyber” events with national security implications [Lewis, 2014]. A few
attacks have risen to the level of national security concerns, but they are
hard to categorize.

Finally, of course, specific approaches to improving security may be in con-
flict, such as the tension with surveillance and privacy.

Architectural relevance: I refer the reader to Chapter 7 for a discussion
of the issues relating architecture and security.

The user-centered framing of the trustworthy aspiration brings into focus
the issue of privacy, which relates to the confidentiality component of the
CIA triad in communications security, but is not emphasized in Chapter 7.
Privacy can either be consistent with or at odds with security, depending on
the aspect of security under consideration. It is consistent with the preven-
tion of attacks on communication, makes dealing with attacks by one host on
another harder, and may be at odds with some aspects of national security.
Decisions as to whether (and to what extent) an architecture should favor
privacy over accountability are potentially architectural, and certainly not
value free. There are proposals to re-engineer the Internet in a more Trust-
worthy direction, e.g., to ensure that every user’s identity is robustly known
at all times [Landwehr, 2009, Mike McConnell, 2010]; these are highly con-
troversial [Clark and Landau, 2011].

11.6 The openness cluster

Internet content should be accessible to all without blocking or
censorship. (Unblocked) This aspiration implies that ISPs and other
network operators must not block access to content. It also implies that
those with power to compel the blocking or removal of content (e.g. gov-
ernments) should refrain from doing so. Of course, many blocking and cen-
sorship actions taken by governments and private sector actors are legally
justified.



242 CHAPTER 11. MEETING THE NEEDS OF SOCIETY

This aspiration is not equivalent to the ideal that all information be free –
some commercial content may require payment for access, and some content
may be illegal to transmit. Rather than describing the relationship between
content producers and users, this aspiration describes the role of the Internet
in connecting them.

For any region of the globe, the behavior of the Internet should
be consistent with and reflect region’s core cultural/political val-
ues. (Local values) Because values differ so much across the global, this
aspiration arguably implies some partitioning of the global Internet, at least
in terms of user experience. In the U.S., the relevant values would include
First Amendment freedoms (speech, association/ assembly, religion, press,
petition), but with limitations on certain types of speech and expression.
Other regions prefer an Internet that safeguards social structure or regime
stability. Debate about the desirability of this aspiration is a critical aspect
of international policy development.

The Internet should promote universal social and political val-
ues. (Universal values) This aspiration implies the existence of univer-
sal values, such as those articulated in the United Nations’ charter or the
Universal Declaration of Human Rights (UDHR) [United Nations, 1948],
namely peace, freedom, social progress, equal rights and human dignity
[Annan, 2013]. Although such values are by no means universally accepted,
we can imagine translating these values into the Internet (as Barlow pas-
sionately did back in 1996 [John Perry Barlow, 1996]) to yield aspirations
such as:

• Governments should not restrict their citizens’ ability to interact with
people outside their borders, as long as there is no harm to others.
The physical world analogue is universal human right of freedom of
movement, either within the state, or outside the state with right of
return, or to leave permanently [United Nations, 1948].

• People should be allowed to communicate directly with citizens of
other states and they should be able to hear our message without
interference from their government; this is a functional implementation
of the global right to free (virtual) assembly and speech.
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• The Internet should enable and enhance global interactions (as long
as they are not criminal) to foster the exchange of ideas. (But since
“criminal” has nation-specific definitions, this aspiration would require
a liberal interpretation of acceptable interaction across the globe.)

• The Internet should serve as a forum for an international “marketplace
of ideas”.

Perhaps as a cyber-manifestation of American exceptionalism, the U.S. has
expressed the view that the technology of cyberspace can be a means to
export rather U.S.-centric values we hold as universal, i.e., to change other
societies to be more like us. 1 Other nations take a more inward-facing view
of what they want the Internet to do for them.

Architectural relevance: The aspiration that citizens be able to commu-
nicate globally does not imply that all of the Internet experience be globally
available in a consistent form, only that there is an effective basis for global
communication among people, i.e., some tools for discourse and exchange.
This aspiration would seem to benefit from Generality. The alignment of the
Internet with local values has a positive and a negative aspect. The positive
is the development of applications that are localized to the language and ex-
pectations of different parts of the world. Even if the Internet is potentially
a platform for global communication, we should realistically expect that for
most users, most of their experience will be domestic. The negative side of
shaping the Internet to local values is censorship. In technical terms, censor-
ship is an attack on a communication between willing parties, but those who
carry out censorship do not describe what they do as a security violation,
since they claim the right of law. However, the tools we design to protect
communication from attack will blunt the tools of the censor, whether or
not we have sympathy with the motives of a censor.

1 Two billion people are now online, nearly a third of humankind. We hail from ev-
ery corner of the world, live under every form of government, and subscribe to every
system of beliefs. And increasingly, we are turning to the Internet to conduct important
aspects of our lives... the freedoms of expression, assembly, and association online com-
prise what I’ve called the freedom to connect. The United States supports this freedom
for people everywhere, and we have called on other nations to do the same. Because we
want people to have the chance to exercise this freedom.” – Hillary Clinton, February 2011
[Hillary Clinton, 2011]
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In the current Internet, this tussle over censorship has played out in a par-
ticular way. Rather than try to examine packet flows and block content in
flight, countries have been going to the major content providers and pres-
suring them to block delivery at the source based on the jurisdiction of the
recipient. Large providers have in many cases yielded to this pressure and
are providing country-specific filtering of content and search results.

The desire for jurisdiction-specific blocking is not restricted to governments.
Providers of commercial content such as music and video usually license such
content for consumption on a country-specific basis. They are as anxious as
any government to regulate access based on the country of the recipient.

This current state of affairs raises a specific value-laden decision for an
Internet–should the design make it easy or hard to determine the country
(legal jurisdiction) of a particular recipient? The Internet today supports
this capability in an approximate way, since most IP addresses are assigned
in a way that maps to a country. In this context, IP addresses cannot be
forged, since the sender needs to get packets back.2 Most of the actors con-
cerned with access control have accepted this approximation as adequate.
But if a new Internet were proposed, one option would be that addresses
are always assigned on a per-country basis, which would make this approach
more robust.

An alternative would be to require that some sort of “credential of citi-
zenship” be included in requests for content. This approach seems highly
problematic for a number of reasons, including the obvious evasion, which
would be to borrow a credential from a person in a different country. Ad-
ditionally, a country could revoke the right of a citizen to retrieve content
by revoking his credential (sort of like revoking a passport, perhaps). This
seems like a risky allocation of power to the state. However, architectures
such as Nebula, with the requirement for a distributed control plane negoti-
ation before initiating a data transfer, might be able to embed a certificate
of jurisdiction into the Proof of Consent in a non-forgeable way.

Another alternative would be to design an architecture that escalates the
tussle by making it harder to determine the jurisdiction of origin for a query,
and see how the adversaries respond. This is what NDN does, where the
interest packet carries the name of the content being sought, but not the

2Of course, informed clients today are defeating this jurisdictional binding by using
VPNs and other sorts of tunnels, which is causing censors to block those tools.
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address of the requester, thus making it impossible for the content source to
determine the jurisdiction of the sender from the received interest packet.

To this date, countries have been willing to take rather drastic action, includ-
ing the blocking of a whole web site as a consequence of one unacceptable
piece of content hosted there. This is a space where any architectural deci-
sion will be heavily value-driven. I argued above, in the context of individual
accountability, that identity at the individual level should not be a part of
the architecture. I am less clear about an architectural binding of an in-
ternet end-point to a jurisdiction. One consideration is that there will be
other sorts of credential that service providers will want from clients (such
as their age group) and there is no enforceable way this can be embedded
into the architecture.

Political scientists will note that avoidance of escalation is an important
topic of study for those concerned with international relations. The sort of
arms races we see today (with encryption, blocking of VPNs, tunnels and
whole sites) signals that designers today are in an escalatory frame of mind
when they design mechanism. Perhaps, in meeting the needs of society,
we need to think about political compromise and not confrontation and
escalation when we make value-laden architectural decisions.
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