
Dra� Version 3.0 of Jan 1, 2017

Designs for an Internet
David D. Clark

David D. Clark Designs for an Internet

Status �is version of the book is a pre-release intended to get feedback and comments from members of the
network research community and other interested readers. Readers should assume that the book will receive
substantial revision.

�e chapters on economics, management and meeting the needs of society are preliminary, and comments are
particularly solicited on these chapters.

Suggestions as to how to improve the descriptions of the various architectures I have discussed are particularly
solicited, as are suggestions about additional citations to relevant material. For those with a technical background,
note that the appendix contains a further review of relevant architectural work, beyond what is in Chapter 5.

I am particularly interesting in learning which parts of the book non-technical readers �nd hard to follow.
Revision history
Version 1.1 �rst pre-release May 9 2016.

Version 2.0 October 2016. Addition of appendix with further review of related work. Addition of a ”Chapter
zero”, which provides an introduction to the Internet for non-technical readers. Substantial revision to several
chapters.

Version 3.0 Jan 2017 Addition of discussion of Active Nets Still missing–discussion of SDN in management
chapter.

ii 178

David D. Clark Designs for an Internet

A note on the cover
�e picture I used on the cover is not strictly “architecture”. It is a picture of the Memorial to the Mur-

dered Jews of Europe, in Berlin, which I photographed in 2006. When I saw it, I was quite struck by the
apparently endless variation on a common theme represented by the blocks. According to Wikipedia (see
h�ps://en.wikipedia.org/wiki/Memorial to the Murdered Jews of Europe), the artist said that the stelae are de-
signed to produce an uneasy, confusing atmosphere. Perhaps, but I actually found wandering among all the small
variations on an endless theme somewhat tranquil.

As I thought about all the alternative proposals I have seen for an Internet architecture, the picture grew on me.
It is possible that I should not entangle respect for the victims of the Holocaust with my musings on architectural

diversity, but I found this installation wonderful, and all the li�le variations, all requesting our a�ention, seem
quite symbolic of what we in the research community sometimes �nd ourselves doing.

iii 178

Contents

Contents iv

Preface vii

0 A primer on the Internet 1
0.1 Introduction . 1
0.2 �e basic communication model of the Internet . 2
0.3 �e role of the router . 2
0.4 Application support services in the end-node . 3
0.5 Routing and forwarding . 4
0.6 �e Domain Name System . 5
0.7 �e design of applications . 5
0.8 Onward . 6

1 Introduction 7
1.1 What is “architecture” . 7
1.2 �e role of interfaces . 10
1.3 Summary–�inking about architecture . 10

2 Requirements 12
2.1 Fitness for purpose–What is a network for? . 12
2.2 Generality . 14
2.3 Longevity . 15
2.4 Security . 16
2.5 Availability and resilience . 16
2.6 Management . 16
2.7 Economic viability . 16
2.8 Meeting needs of society . 16
2.9 Moving beyond requirements . 17

3 �e architecture of the Internet–A historical perspective 19
3.1 �e relation of architecture to function . 37

4 Architecture and function 39
4.1 Introduction . 39
4.2 Per-hop behaviors . 40
4.3 Tussle . 40
4.4 Reasoning about expressive power . 41

iv 178

David D. Clark Designs for an Internet

4.5 Pruning the space of options . 43
4.6 Tussle and regions . 44
4.7 Generality . 45
4.8 Architectural alternatives for expressive power . 46
4.9 PHBs and control of network resources . 49
4.10 Expressive power and evolvability . 50
4.11 What is new . 51

5 Alternative network architectures 53
5.1 Introduction . 53
5.2 Di�erent requirements–di�erent approaches . 54
5.3 Active Networks and virtualization . 66
5.4 �e Future Internet Architecture project . 69
5.5 Di�erent requirements–similar mechanisms . 74

6 Longevity 80
6.1 Introduction–the goal of longevity . 80
6.2 Classes of theories . 80
6.3 Architecture and longevity . 81
6.4 �e theory of utility . 81
6.5 �e theory of tussle and points of control . 82
6.6 �e theory of building blocks and composable elements. 84
6.7 �e theory of the stable platform . 85
6.8 �e theory of semantics-free service . 85
6.9 �e theories of global agreement . 86
6.10 �e theory of technology independence . 86
6.11 �e theory of the hourglass . 87
6.12 �e theory of cross-layer optimization . 87
6.13 �e theory of downloadable code . 87
6.14 Change: hard or easy? . 88
6.15 �e theory of hegemony . 88
6.16 �e present Internet . 89
6.17 �e future . 90

7 Security 91
7.1 Introduction . 91
7.2 De�ning security . 91
7.3 A historical perspective . 93
7.4 A�ack and defense of the network itself . 94
7.5 A�acks on network communication . 98
7.6 A�acks on the a�ached hosts . 99
7.7 Denial of Service a�acks . 102
7.8 Balancing the aspects of security . 103
7.9 �e role of architecture . 104
7.10 Conclusions . 111
7.11 Acknowledgement . 112

8 Availability 113

v 178

David D. Clark Designs for an Internet

8.1 Characterizing availability . 113
8.2 A theory of availability . 113
8.3 Availability and security . 116
8.4 Architecture . 117
8.5 Conclusion . 118

9 Economics 119
9.1 Introduction . 119
9.2 What shapes industry structure? . 122
9.3 Money �ows . 126
9.4 Bad outcomes in the future . 128
9.5 Summary–architecture and economics . 129

10 Network Management and Control 130
10.1 Introduction . 130
10.2 What is management? . 130
10.3 �e role of network architecture . 134
10.4 Categories of management and control . 139
10.5 Conclusions . 144

11 Meeting the needs of society 145
11.1 What do we want our future Internet to be? . 145
11.2 Catalog of aspirations . 145
11.3 �e utility cluster . 146
11.4 �e economics cluster . 147
11.5 �e security cluster . 150
11.6 �e openness cluster . 151

Bibliography 154

A history of Internet addressing 163
Introduction . 163
De�ning some terms–mechanisms for forwarding . 163
A history of Internet addressing . 164
A parallel universe–virtual circuit networks . 166
Comparing mechanisms . 170
New requirements . 173
Making source routing robust . 177

vi 178

Preface

�is is a book about how to design an Internet. I say an Internet rather than the Internet because the book is not
just about the Internet we have today, but as well about possible alternative conceptions of an Internet–what we
might instead have designed back then, or might contemplate in the future. I take the word “Internet” to describe a
general purpose, global interconnection of networks designed to facilitate communication among computers, and
among people using those computers. �e book concerns itself with the implications of globality, the implications
of generality, and the other requirements that such a network would have to meet. But it does not take the current
Internet as a given–it tries to learn from the Internet of today, and from alternative proposals for what an Internet
might be, to draw some general conclusions and design principles about networks.

�ose design principles I will call architecture. So this book is as well about architecture. �ere are lots of li�le
design decisions that shape today’s internet, but they could have been made di�erently and we would still have
an Internet. It is the basic design decisions that de�ne the skeleton of the design, on which subsequent, more
speci�c decisions are made. I am concerned with the question of what the essence of the design is–what de�nes a
successful skeleton, if you will.

�is is a very personal book. It is opinionated, and I write without hesitation in the �rst person. It is a
book-length position paper–a point of view about design. I have drawn on lots of insights from lots of people,
but those people might well not agree with all of my conclusions. In this respect, the book re�ects a reality of
engineering–while engineers hope that they can base their work on sound, scienti�c principles, engineering is as
well a design discipline, and design is in part a ma�er of taste. So what this book talks about is in part ma�ers of
taste, and if I can convince the reader about ma�ers of taste, so much the be�er.

�e inspiration for this book arose out of the NSF-sponsored Future Internet Architecture program, and its
predecessors, the Future Internet Design program (FIND) and the Network Science and Engineering (NetSE)
program. �ese programs challenged the network research community to envision what an Internet of 15 years
from now might be, without being constrained by the Internet of today. I have been involved in this program
for its duration, and I have had the chance to listen to several excellent groups of investigators discuss di�erent
approaches to designing an Internet. �ese conversations have been very helpful in bringing into focus what
is really fundamental about an Internet. �ere have also been similar projects in other parts of the world, in
particular Europe, which have contributed to my understanding. Just as one may perhaps come to understand
one’s language be�er by the study of a foreign language, one may come to understand the Internet be�er by the
study of alternative approaches. Chapter 5 provides an introduction to these various projects.

An Internet is deeply embedded in the larger social, political and cultural context. Assuming that we aspire to
build a future global internetwork, we must accept that di�erent parts of the world will present very di�erent
contexts into which the technology must �t. So this is not a book just about technology. Indeed, technology is not
center stage at all. Much of the book centers on the larger issues, the economic, social and political considerations
that will determine the success or failure of a system like this that is so woven into the larger world. If this book
provides some insights into how the technical community can reason about this larger set of design constraints, it
will have been a success from my point of view.

Because the Compute Science community has co-opted the word “architecture” I begin the book with a

vii 178

David D. Clark Designs for an Internet

discussion of that concept. �e book then…@@

viii 178

Chapter 0

A primer on the Internet

If you come to this book with a technical background, you can probably skip this chapter. But in order to
understand some of the material in this book, it is important that the reader have a basic understanding of how
the Internet works. Most of the important concepts are introduced and explained when they are �rst introduced
in the text, but this chapter provides a brief overview of the structure and function of the Internet, to provide a
be�er foundation for the less technical reader.

0.1 Introduction
�e Internet is a communications facility designed to connect computers together so that they can exchange
digital information. Data carried across the Internet is organized into packets, which are independent units of
data, complete with delivery instructions a�ached in the �rst part or header of the packet. �e Internet provides
a basic communication service that conveys these packets from a source computer to one or more destination
computers . Additionally, the Internet provides supporting services such as the naming of the a�ached computers
(the Domain Name Service or DNS). A number of high-level services or applications have been designed and
implemented making use of this basic communication service, including the World Wide Web, Internet e-mail,
the Internet ”newsgroups”, distribution of audio and video information, games, �le transfer and ”login” between
distant computers. �e design of the Internet is such that new high-level services can be designed and deployed
in the future.

An application program on a computer that needs to deliver data to another computer invokes so�ware that
breaks that data into some number of packets and transmits these packets one at a time into the Internet. A
number of application support services are de�ned that can assist applications by performing this function, most
commonly the Transmission Control Protocol (TCP).

Internet users tend to use the term Internet to describe the totality of the experience, including the applications.
But to a network engineer, the Internet is a packet transport service provided by one set of entities (Internet
Service Providers or ISPs), and the applications run on top of that service, and are in general provided by a
di�erent set of entities (Application Providers). It is important to distinguish the Internet as a packet forwarding
mechanism from the applications that run on top of that mechanism. It is also important to distinguish the
Internet from the technology that supports it. �e Internet is not a speci�c communication “technology”, such
as �ber optics or radio. It makes use of these and other technologies in order to get packets from place to place.
�e Internet was intentionally designed to allow as many technologies as possible to be exploited as part of the
Internet, and to incorporate new technologies as they are invented.

�e heart of the Internet itself is a very simple service model that allows a wide range of applications to exploit
the basic packet carriage service of the Internet over a wide range of communication technologies. �e designer
of each application does not need to know the details of each technology, but only the speci�cation of this basic
communication service. �e designer of each technology must support this service, but need not know about
the individual applications. In this way, the details of the applications and the details of the technologies are

1 178

David D. Clark Designs for an Internet

separated, so that each can evolve independently.

0.2 The basic communication model of the Internet
�e basic service model for packet delivery is very simple. It contains two parts: the addresses that identify the
computers a�ached to the the Internet and the delivery contract that describes what the network will do when it is
given a packet to deliver. To implement addressing, the Internet has numbers that identify end points, somewhat
similar to the telephone system, and the sender identi�es the destination of a packet using these numbers. (But
see the discussion of multicast below.) �e delivery contract speci�es what the sender can expect when it hands a
packet over to the Internet for delivery. �e original delivery contract of the Internet is that the Internet will do
its best to deliver to the destination all the data given to it for carriage, but makes no commitment as to data rate,
delivery delay, or loss rates. �is service is called the best e�ort delivery model.

�is very inde�nite and non-commi�al delivery contract has both bene�t and risk. �e bene�t is that almost
any underlying technology can implement it. �e risk of this vague contract is that some applications might not
be successfully built on top of it. However, the demonstrated range of applications that have been deployed over
the Internet suggests that the service is adequate in practice. As is discussed below, this simple service model
does have limits, and research in the early 1990’s had the goal of extending this service model to deal with new
objectives such as real time delivery of audio and video.

Protocols
�e word protocol is used to refer to the conventions and standards that de�ne how each layer of the Internet
operates.1 Di�erent bodies have created the protocols that specify the di�erent parts of the Internet. �e Internet
layer discussed above is speci�ed in documents that de�ne the format of the packet headers, the control messages
that can be sent, and so on. �is set of de�nitions is called the Internet Protocol, or IP. �ese standards were
initially speci�ed in 1981 by the Internet Engineering Task Force (and its predecessor, the Network Working
Group), an open working group that has grown up along with the Internet.2 �is group created the Internet
Protocol and the other protocols that de�ne the basic communication service of the Internet. �is group also
developed the protocols for early applications such as e-mail. Some protocols are de�ned by academic and industry
consortia; for example the protocols that specify the World Wide Web are mostly developed by the World Wide
Web Consortium (the W3C) hosted at the Computer Science and Arti�cial Intelligence Laboratory at MIT. �ese
protocols, once developed, are then used as the basis of products that are sold to the various entities involved in
the deployment and operation of the Internet.

0.3 The role of the router
�e Internet is made up of a series of communication links connected by relay points called routers. �ere can be
many sorts of communications links–the only requirement is that they can transport a packet from one router to
another. Each router, as it receives a packet, examines the delivery information in the header of the packet and
based on the destination address, determines where to send the packet next. �is processing and forwarding of
packets is the basic communication service of the Internet.

Typically, a router is a computer, either general purpose or specially designed for this role, with so�ware
and hardware that implements the forwarding functions. A high-performance router used in the interior of the

1 �e word protocol may well have been chosen based on its use in diplomacy, where it describes formal and proscribed modes of interaction.
However, the etymology of the word tells another story. �e word comes from the Greek prōtokollon, and means “�rst page,” from prōtos “�rst” +
kolla “glue.” �e Greeks glued the table of contents of a scroll onto the beginning a�er the scroll had been wri�en out; we put the header (not
literally with glue) onto the front of each packet. I have not yet determined whether the researchers who �rst picked the term protocol for our
standards had a good Classical education.

2 �e various standards of the IETF (and other related publications) are published in a series of documents called “Requests for Comment”, which
captures the idea that the IETF is open to suggestions and change. �e RFCs can be found at h�ps://tools.ietf.org/html/. �e speci�cation of IP is
RFC 791.

2 178

David D. Clark Designs for an Internet

Internet may be a very expensive and sophisticated device, while a router used in a small business or at other
points near the edge of the network may be a small unit costing less than a hundred dollars. Whatever the price
and performance, all routers perform the same basic communication function of forwarding packets.

A reasonable analogy to this process is the handling of mail by the post o�ce or a commercial package handler.
Every piece of mail carries a destination address, and proceeds in a series of hops using di�erent technologies (e.g.
truck, plane, or le�er carrier). �e addressing information is on the outside of the envelope, and the contents
(the data that the application wishes to send) is inside the envelope. �e post o�ce (with some limitations) is
indi�erent as to what is in the envelope. At each hop, the address is examined to determine the next hop to
take. To emphasize this analogy, the delivery process in the Internet is sometimes called datagram delivery. 3.
Similarly, routers forward packets based on the header, not the application-level data that is inside the packet.
Routers do not provide application-speci�c services. Because routers in the Internet do not take into account
what application generated the packets they are forwarding, I will use the term application-agnostic to describe
the router function. When some abnormal situation arises, a router along a path from a sender to a receiver may
send a packet with a control message back to the original sender of the packet. Again, by analogy, if the address
on a le�er is �awed in some way, the post o�ce may write: “Undeliverable: return to sender” on the envelope and
send it back so the sender can a�empt to remedy the situation.

Another important aspect of packet forwarding is that the routers do not keep track of the packets they forward.
(Nor does the post o�ce log the le�ers they forward, unless the sender pays a substantial fee for tracking.) Systems
like this are sometimes called memoryless, or stateless. Computer Science uses the word state to capture the idea
that a device with memory can be in di�erent states based on stored information–information that can re�ect
what has happened in the past. Given a similar input (e.g., a packet to forward) a system that can be in di�erent
states might treat the same input di�erently. We talk about the stored information that de�nes the state of a
system as its state variables and from time to time throughout this book I will talk about the state variables of a
component (or say that a component is stateless or has no state variables), as part of explaining why it can or
cannot implement a certain function.

0.4 Application support services in the end-node
�e delivery contract of the Internet is very simple: the best e�ort service tries its best to deliver all the packets
given it by the sender, but makes no guarantees–it may lose packets, duplicate them, deliver them out of order,
and delay them unpredictably. Many applications �nd this service di�cult to deal with, because there are so
many kinds of errors to detect and correct. For this reason, the Internet protocols include a transport service that
runs “on top of” the basic Internet service and tries to detect and correct all these errors, and give the application
a much simpler model of network behavior. �is transport service is called Transmission Control Protocol, or
TCP. TCP o�ers a service to the application in which a series of bytes given to the TCP at the sending end-node
emerge from the TCP so�ware at the receiving end-node in order, exactly once. �is service is called a virtual
circuit service. �e TCP so�ware takes the responsibility of breaking the series of bytes into packets, numbering
the packets to detect losses and reorderings, retransmi�ing lost packets until they eventually get through, and
delivering the bytes in order to the application. �is service is o�en much easier to utilize than the basic Internet
communication service.

Division of responsibility
�e router, which implements the relay point between two communication links, has a very di�erent role than
the computer or end-node a�ached to the Internet. In the Internet design, the router is only concerned with
forwarding the packets along the next hop towards the destination. �e end-node has a more complex set of
responsibilities related to providing service to the application. In particular, the end-node provides the additional
services such as TCP that make it easier for the application (such as the World Wide Web) to make use of the

3 Datagram sounds more like a telegram analogy than a postal service analogy. I think the postal analogy is be�er, but I did not pick the term.

3 178

David D. Clark Designs for an Internet

basic packet transfer service of the Internet.
TCP is implemented in the end-nodes, but not in the packet forwarding so�ware of the routers. �e routers look

only at the Internet information, such as the destination address, when forwarding packets. Only the end-nodes
look at the TCP information in the packets. �is is consistent with the design goals of the Internet, and is a very
important example of layered design. TCP provides a very simple service that most high-level applications �nd
easy to use, but some applications such as real time streaming are not well-matched to the service model of TCP.
If TCP were implemented in the routers, it would be much harder for the high-level service to bypass it and use
some other sort of transport service. So the design principle of the Internet has been to push functions out of the
network to the extent possible, and implement them only in the end-nodes and higher-level service nodes. By
doing so, the high-level services can be modi�ed by adding new so�ware to the service nodes. �is is another
means by which the Internet can evolve rapidly. Installing new services can be done without any need to modify
the routers.

0.5 Routing and forwarding
�ere are also functions that are implemented in the routers, but not the end-nodes. �e router must make a
decision as to how to forward each packet as it arrives. In order to do this, it must have forwarding tables that
specify, for each destination address (or cluster of addresses) what the preferred path is onward towards that
point. In addition to forwarding packets, routers compute the best routes to all the addresses in the network,
in order to construct this table. �is requires that the routers send messages to other routers describing what
links in the Internet are currently in operation, and what routers these links connect. �is results in a collective
decision-making, the routing computation, to select the best overall routes. Routers perform this task in the
background, at the same time that they forward packets. If a low-level communications link fails or a new one is
installed, this routing computation will construct new routes as appropriate. �is adaptation is part of making
the Internet robust in the face of failure. �ere are a number of routing protocols that have been de�ned and
deployed to implement the routing computation.4

End-nodes do not participate in the routing computation. �ey know only the identity of a router or routers
closest to them; when they send a packet they just pass it to this �rst router, which then decides where to send
it next, and so on. �is division of responsibility makes it possible to replace the routing protocol (which has
happened several times in the life of the Internet) without having to change the so�ware in the end-nodes, an
almost impossible task if it had to be done in a coordinated way for all the millions of end-nodes on the Internet.

Regions of the Internet
�e Internet is made up of routers, but every router is part of some region, or Autonomous System, or AS. Each AS
is operated by some entity, which might be a commercial Internet Service Provider (ISP), corporation, university,
and so on. �ere are about 45,000 ASes across the globe as I write this book. �e original Internet used one global
routing protocol, but as the Internet got bigger, it was clear to the designers that the Internet needed at least two
tiers of routing: schemes that operated inside each AS and provided the routes among those routers, and a routing
protocol that connects all the ASes together. �e protocol that currently de�nes this function is called the Border
Gateway Protocol, or BGP. BGP is used to tell each AS where all the others are, and what destination addresses
are inside each AS. To over-simplify (as I will o�en do in this book), BGP works as follows. Imagine an AS at the
edge of the Internet, for example the AS that represents the portion of the Internet that is inside MIT. In order for
MIT to get access to the rest of the Internet, it makes a business arrangement with some Internet Service Provider
that o�ers this service, and once that business arrangement is in place, the border router at MIT (hence the name
of the protocol) sends a BGP message to that provider ISP, saying ”here is where MIT is connected”. �at ISP (call
it A) now knows where MIT is connected, and it tells its neighbor networks (for example, ISP B) ”If you want to

4 I mentioned above, when introducing the concept of state and state variables, that routers do not have state variables to keep track of the
di�erent packets they forward. However, the forwarding table is clearly an example of state in a router.

4 178

David D. Clark Designs for an Internet

get to MIT, just send the packets to A”. ISP B now tells its neighbors (for example, ISP C): ”If you want to get to
MIT, send your packets to B, which will send them to A, which will send them to MIT”. �ese messages (called
path vectors) propagate across the Internet until in principle every AS knows where to send a packet to get it to
any other AS on the Internet.

BGP will come up several times in this book.

0.6 The Domain Name System
�e routers use the destination addresses in the header of packets to select the forwarding path, but these addresses
are not very easy for users to remember or use, so the Internet has a system to provide names for end points that
are more “user friendly”. A machine that receives mail must have an address, but it also will have a name like
“mail.mit.edu”, where the su�x “edu” is reserved for educational institutions. �e system that keeps track of these
names and translates them into numbers on demand is called the Domain Name System or the DNS–“domain”
because the names are typically associated with regions such as MIT. A region that has a name like “mit.edu” in
the DNS might also be an Autonomous System (MIT is AS 3), but that relationship is not necessary. �e DNS is
built out of a large number of servers connected across the Internet that provide name to address translation for
di�erent regions. I will not be discussing the design of the DNS in any detail in this book, but it is important to
understand that it exists and the role that it plays.

0.7 The design of applications
�e Internet itself, as an entity built of links and routers, is concerned with the delivery of packets. Applications
such as the World Wide Web exist at a higher level. Users may think of applications as a part of the Internet (users
tend to say they are using the Internet when they use Facebook, explore the Web or send email), but technically
applications run ”on top of” the basic communication service of the Internet, most o�en on top of TCP.

The World Wide Web as an example
�e World Wide Web was conceived as a set of protocols that allow a Web Client (o�en called a browser) to
connect to a Web server.

A Web server (a particular kind of end-node a�ached to the Internet) stores Web pages, and makes them
available for retrieval on request. �e pages have names, called URLs (Universal Resource Locators). �ese names
are advertised so that potential readers can discover them; they also form the basis of cross-references or ” links”
from one Web page to another; when a user positions the mouse over a link and ”clicks” it, the matching URL
is used to move to the associated page. �e �rst part of a URL is actually a DNS name, and the DNS system I
described above is used to translate that name into the address of the intended Web server. A message is then
sent to that Web server asking for the page. [[[Say more; say less? Need this sort of stu�?]]]

�ere are actually a number of protocols that together de�ne the basic function of the Web. �ere is a protocol
called HyperText Transfer Protocol, or HTTP, that provides the rules and format for messages requesting a Web
page. However, the HTTP standard does not de�ne how pages are represented. �e most common representation
of a Web page is HTML, which stands for HyperText Markup Language

�is description of the Web illustrates the layered nature of the Internet design. �e transfer of a Web page
involves actions at several di�erent layers at the same time: [[[delete this?]]]

IP: At the Internet level, packets are received and transmi�ed when a Web page is requested. At this layer, the
only relevant factors are the Internet addresses in the packets.

TCP: �e TCP so�ware takes a unit of data (a �le, a request for a Web page or whatever) and moves it across
the Internet as a series of packets. It does not examine these bytes to determine their ”meaning”; in fact, the bytes
might be encrypted.

HTTP: HTTP makes use of TCP to move requests and replies. In contrast to TCP, it looks at the contents of
requests, understands the syntax and ”meaning” of these requests. Based on the request, HTTP then transfers the

5 178

David D. Clark Designs for an Internet

Web page in question. However, it does not know the format or ”meaning” of the page itself. �e page could be a
traditional Web page, an image, music, and so on.

HTML: All browsers include so�ware that understands HTML, so that arriving Web pages can be interpreted
and displayed on the screen. HTML is not the only page format. Images, for example, are encoded in a number of
di�erent ways, indicated by the name of the standard: GIF, JPEG etc. �ese are alternative formats that can be
found inside a Web page. Any format is acceptable, so long as the browser includes so�ware that knows how to
interpret it.

E-mail
�e description of the World Wide Web given above was of transfers between two computers, the browser and
the server. Not all applications work this way. An important and early example of an alternative application
design is electronic mail, or e-mail. Since many users are not connected full time, if mail was transferred in one
step from origin to destination, the transfer could only be successful during those occasional periods when both
parties just happened to be connected at the same time. To avoid this problem, almost all mail recipients make use
of a server to receive their mail and hold it until they connect. �ey then collect all their mail from their server.
�e concept is that the mail server is always a�ached and available, so anyone can send mail to it at any time, and
the receiver can retrieve mail from it at any time. �is eliminates the necessity for the sender and the receiver to
be a�ached at the same time. Most mail is actually transferred in three steps, from sending end-node to the mail
server serving that sender, then to the mail server serving the recipient, and then to the �nal end-node.

Di�erent applications are di�erent
As these two examples illustrate, di�erent high-level services have di�erent designs. �e pa�ern of mail distribution
does not resemble the pa�ern of Web page retrieval. �e delivery of email depends on servers distributed across
the Internet, but these servers, in contrast to the application-agnostic routers, are application-aware. �ey are
designed to function as part of a part of a speci�c application, and provide services in support of that application.

�ere are many applications on the Internet today: email, the Web, computer games, Voice over IP (internet
telephone service or VoIP), video streaming and so on. �e list is almost endless (and in fact there is no list–one
does not need to “register” to invent a new application; one “just does it”). Part of the power of the Internet packet
transport service is that it is an open platform that makes it possible for anyone with the right skills and initiative
to design and program a new application.

0.8 Onward
With this background, it is time to proceed to the real focus of the book, which is a study of the basic design
principles of the Internet (what I call its “architecture”), how those principles relate to the requirements that the
Internet should meet (requirements both technical and social), and how alternative conceptions of an Internet
might be�er address these requirements, or perhaps focus on di�erent requirements that the designers consider
more important.

6 178

Chapter 1

Introduction

1.1 What is “architecture”
�is is a book about architecture. So to get o� on the right foot, it is important to understand what is meant
by that word. It is perhaps overused, and used in a variety of contexts; without having a shared understanding
between writer and reader there is a risk of failing to communicate. So what does the word mean?

Architecture is a process, an outcome and a discipline. As a process, it involves pu�ing components and design
elements together to make an entity that serves a purpose. As an outcome, it describes a set of entities that are
de�ned by their form. �e architectural form we know as “gothic cathedral” is characterized by a set of recognized
design elements and approaches–the purpose may have been “place of worship”’, but “gothic cathedral” implies
a lot more. And �nally, as a discipline, architecture is what architects are trained to do. �e �eld of computer
science borrowed the term from the discipline that designs physical things like building and cities, where there is
a well-understood process of training and accreditation.

All three of these faces of architecture apply both to “real architecture” and to computer science.

As a process: �ere are two important parts to the de�nition: pu�ing components together and for a purpose.

• Pu�ing components together: this is what computer scientists are doing when they consider issues such as
modularity, interfaces, dependency, layering, abstraction and component reuse. �ese are design pa�erns
that we are trained to consider as we contemplate one or another design challenge.

• For a purpose: �e process of design must be shaped by the intended purpose of the artifact: a hospital is
not a prison, and a low-power processor is not a super-computer. As a part of architecture, the designers
must address what the system cannot do (or do well) as well as what it is intended to do. In computer
science, there is a peril in system design so well-known that it has a name: second system syndrome, the
tendency, a�er having built a �rst system that perhaps does a few things well, to propose a replacement
that tries to do everything.

As an outcome: In the practice of designing buildings, the design normally results in one copy of the result.
�ere are exceptions, such as tract houses, where one design is constructed many times, but there is only one
copy of most buildings. �e term “architecture”, when describing an outcome, normally implies a class of design,
typi�ed by its most salient features (e.g., �ying bu�resses). �e term is applied to this abstraction, even though
the architect has had to specify the building down to a very �ne level of detail before the construction team takes
over.

When computer science co-opted the term architecture, they slightly rede�ned it. With respect to the Internet,
there have been many di�erent networks built based on the same design: the public global network we call “the
Internet”, private networks belonging to enterprises, militaries, and the like, and special use networks such as

7 178

David D. Clark Designs for an Internet

�nancial networks. In this context the word “architecture” only describes part of what is built, and much of the
design process for a given instantiation occurs at a later point, perhaps speci�ed by a di�erent group.

As a discipline: “Real” architects–those who design building–go to school to learn their trade. Looking over the
fence at what they do is instructive. Architecture (as opposed to structural engineering) is not a design discipline
built on an underlying base of science and engineering principles. Architects do not normally concern themselves
with issues such as strength of materials; they leave that to others. Of course, technical considerations may need to
enter the design process early, as the architect deals with such issues as energy e�ciency or earthquake resistance,
but architects are primarily trained in the process of design. �ey do not study engineering, but buildings. �ey
learn by case study–they look at lots of buildings and how (or not) they are �t for purpose. Do they meet the
needs of the user? Are they considered visually a�ractive? How were the design trade-o�s handled? And so on.

In computer science, we tend to hope that we can base our designs on strong engineering foundations, theories
that give us limits and preferred design options, and so on, but (at least in the past) most of the business of system
architecture has more resembled that of the building architect: learning from previous designs, asking what
worked well and what did not, asking if the design was �t for purpose, and so on. We train computer scientists
in both theory and practice, but we tend to deprecate the study of prior designs as “not science” or ”not based
on fundamentals”. �is book is unapologetically a study of design, not a book centered on a discipline with
quanti�able foundations, like queueing theory or optimization. I am personally excited by a�empts to make
architecture more “rigorous”, but we should not deprecate what we do today with phrases like “seat of the pants”
design. [[[Con�rm I did that.]]]Ours is a design discipline, just as is building architecture, and we should strive to
excel at it, not dismiss it.

So if the “architecture” of the Internet is not the complete speci�cation, but just a part of that speci�cation,
what is included in the architecture? We can say what is not included–we can look at all the di�erent examples of
networks based on Internet technology, or di�erent regions of the global Internet, and note all the ways in which
they di�er. We see di�erences in performance, degree of resilience, tolerance of mobility, a�ention to security and
so on. So design decisions at this level build on the core architecture, but are not speci�ed by the core architecture.
So what should we see as being in that core architecture?

Issues on which we must all agree for the system to function. For example, the Internet architecture is
based on the use of packets, and the assumption that the packet header will the same everywhere. (A di�erent
design might allow di�erent formats in di�erent regions, in which case the architecture might choose to describe
what sort of architectural support is provided for the necessary conversion.)

When we �rst designed the Internet, we thought that the design depended on having a single, global address
space. It is now clear that this assumption was not necessary–there need not be global agreement on a uniform
meaning of addresses (think about Network Address Translation). It is interesting to note that once we realized
that we could build a network out of regions with di�erent address spaces, there was no rush to extent the
architecture to provide any support or guidance as to how disjoint address spaces are interconnected. How “NAT
boxes” maintain enough state to map addresses is taken as a local ma�er. Of course, many view this state of
a�airs as deplorable, since it prevents certain sorts of applications from being deployed easily, but the “Internet
architects”, whoever they are, have not responded with a set of globally agreed conventions by which NAT state
can be managed to facilitate the support of a broader suite of applications.

�ere are a few other points where global agreement is necessary. �e Internet is made up of regions operated
by di�erent entities, called Autonomous Systems, or ASes. Information about how to route packets across multiple
regions is exchanged among these ASes, using a protocol called the Boarder Gateway Protocol, or BGP. To some
extent, all the regions must agree on the use of BGP, or at least the meaning of the packets exchanged across
the inter-AS interface. Even if there were a region of the Internet that did not use BGP for interconnection, it is
probably unavoidable to agree on the existence and meaning of Autonomous System numbers. And within the

8 178

David D. Clark Designs for an Internet

global address space of the core of the Internet, it is necessary to agree on the meaning of certain address classes,
such as multicast. It is worth noting that both multicast addresses and Autonomous System numbers were not
conceptualized as part of the Internet’s original design, but were designed later. In some sense, they have earned
the right to be considered part of the core architecture exactly because a critical mass have agreed to depend on
them. �ings that the original designers thought were mandatory, such as a global address space, have turned out
not to be mandatory, and other things that they were not contemplating have crept in and acquired the status of
“that on which we must all agree”.

Issues on which it is convenient to agree. �ere is no requirement that applications use the DNS, but since
essentially all applications are designed based on the assumption that the DNS exists, it has become essentially
mandatory as a part of the Internet.

�e basic modularity of the system. For example, the speci�cation of the Internet Protocol (IP) de�nes two
sorts of module interfaces. It de�nes layer interfaces, for example the service interface on top of which higher
level services are built, and it de�nes (implicitly and partially) domain interfaces: the interface among the di�erent
regions of the Internet. �e service interface is the best e�ort packet-level delivery model of the Internet: a packet
handed in to the Internet at one interface with a valid destination IP address in the packet will be forwarded to
the interface de�ned by that IP address to the extent the network can do so at the moment. �is service de�nition
defers issues such as reliability onto higher layers. �e other modularity interface in the Internet architecture is
much less well-de�ned, and in fact is hardly visible in the early architectural speci�cation–this is the modularity
that corresponds to the di�erent Internet Service Providers that make up the Internet, the Autonomous Systems
I mentioned above. �e emergence of Border Gateway Protocol (BGP) as a convention to hook Autonomous
Systems together (which only occurred in the 1990’s, as part of the transition of the Internet to a commercial
undertaking) might seem to have the status today of “that on which we must all agree”, but in fact that agreement
is probably more a convenience than a necessity–a region of the Internet could deploy and use a di�erent protocol,
so long as it complied with a few more basic conventions–the role of AS numbers and routing on IP pre�x blocks.

Functional dependencies One aspect of architecture is to make clear the functional dependencies of the design.
I will use the Internet to illustrate what this means. �e basic operation of the Internet is very simple. Routers
compute routing tables in the background so that they know routes to all parts of the Internet. When they receive
a packet, they look up the best route and send the packet on. While there is a lot of stu� going on inside the
Internet, at its core that is really “all” that the Internet does. So for the Internet to provide service, the relevant
routers must be up and providing service. �e proper functioning of the Internet depends of necessity on the
proper functioning of the routers. But what else is necessary for the Internet to provide service? In fact, the
early designers of the Internet tried to be very careful to limit the number of services or elements that had to be
operating in order for packets to �ow. An early design goal was stated as follows: “If there are two computers
hooked to a network, and each one knows the address of the other, they should be able to communicate. Nothing
else should be needed”.1 �is design preference could be expressed as the goal of minimal functional dependencies.
Other proposals for the design of an Internet, which I will explore later in the book, have many more functional
dependencies–they depend on more services to be up and running for basic communication to succeed. �ey are
trading more functionality for (perhaps) less resilience when things go wrong. I will return to this later in the
book.

1 In1987, Leslie Lamport, a well-known and very thoughtful computer scientist, sent an email in which he o�ered the following observation: “A
distributed system is one in which the failure of a computer you didn’t even know existed can render your own computer unusable.” �at is
a condition the designers of the Internet were trying to avoid. h�p://research.microso�.com/en-us/um/people/lamport/pubs/distributed-
system.txt.

9 178

David D. Clark Designs for an Internet

Aspects of the system that are viewed as long-lasting. In a system like the Internet, we know that much
will change. Indeed, the ability to change, and to upgrade and replace aspects of the system, are a key to successful
longevity. (See chapter 6 for an extended discussion of these issues.) But to the extent that there are aspects that
seem like durable invariants, specifying them as part of the design may provide stable points around which the
rest of the system can evolve.

1.2 The role of interfaces
Interfaces are the speci�cation of how modules are interconnected to make up the overall system. Interfaces
become �xed points in the architecture–points that are hard to change precisely because many modules depend
on them. Kirschner and Gerhart [Kirschner and Gerhart, 1998] develop the idea of interfaces as “constraints that
deconstrain”: points of �xed functionality that separate modules so that the modules can evolve independently,
rather than being intertwined. �eir work is in the context of evolutionary biology, but seems to apply to
man-made systems, whether the designers are clever enough to get the interfaces right from the beginning,
or whether the interfaces in this case also “evolve” to re�ect points what stability is bene�cial, and evolution
elsewhere is also bene�cial.2 One could argue that the original Internet architecture posited that certain semantics
of addresses were �xed points–the single global address space–and over time the system has evolved away from
that constraint. But the syntax of the header–that addresses are 32 bits long–is proving very hard to change, since
so many actors depend on it. IPv6 has been “trying to happen” for a painful number of years now.

Layering
Layering is a particular kind of modularity, in which there is an asymmetry of dependence. A system is layered,
or more speci�cally two modules have a layered relationship, if the function of one module (the lower layer) does
not depend on the correct function of the higher-layer module. Operating systems display a layered structure:
the system itself should not be harmed or disrupted if an application running on the system crashes. Similarly,
networks like the Internet are conceived as being layered–the basic packet forwarding service should not be
a�ected by the applications running on top of it.

�e idea of asymmetry of dependency may helps with the overall conception of a system, but is o�en not
quite accurate in practice. One issue is performance–di�erent applications can interact because they compete for
resources, and in networking we see extreme examples of this in what are called Distributed Denial of Service
a�acks, in which a malicious actor tries to send enough tra�c that a host on the network or a region of the
network itself is precluded from making progress. One response to this would be to say that the design of a layer,
if it is truly a “layer” with no dependence on what the modules above it do, must include mechanisms to protect
itself from malicious applications and to isolate the di�erent applications. �e very simple service model of the
Internet, of course, has no such protections in its architecture. In Chapter 5 I discuss a number of architectural
approaches for mitigation of DDoS.

1.3 Summary–Thinking about architecture
I have sketched a basic conception of what I will mean by the word “architecture”. In my view (and as I warned in
the preface, this book is a personal point of view) a key principle is architectural minimality. In the computer
science context, the architecture of a system should not try to specify every aspect of the system. �is conception
of architecture seems perhaps at variance with the architecture of buildings. When the architect of a building
hands o� the plans to the builder, the speci�cation is complete down to the small details–not just the shape and
structure but where the power outlets are. But it is not clear that all of these decisions should be classi�ed as
“architecture”. As I said above, one of the distinctions between the architecture of a building and the architecture
of an artifact like the Internet is that there are lots of networks built out using the same Internet technology, not

2 John Doyle and his co-authors [?] have developed and defended this conception of architecture. Dolye has described constraints as “ hour-glasses”
for interfaces that divide layers and “bow-ties” for interfaces that connect peer modules, like di�erent ISPs.

10 178

David D. Clark Designs for an Internet

just one. �ere are obvious bene�ts if it is possible to use Internet technology in di�erent contexts: commercial
products are cheaper and likely to be more mature, the relevant so�ware is found in almost all computer systems
and so on. However, these networks may not have exactly the same requirements–they may have di�erent
requirements for security, resilience, and so on. So the power of architecture is not that it de�nes exactly what the
network should do (as building plans specify exactly how the building is built) but that it allows these requirements
to be met, but perhaps in di�erent ways in di�erent contexts.

I will argue, to paraphrase Einstein, that architecture should be as minimal as possible, but no less. One might
argue that the most fundamental aspect of the architecture of the Internet as I characterize it is its preference
for minimality. Given that point of view, the scope of what we take as the architecture of a network system
should include only those aspect that �t within the framework I have laid out here, given the requirements that
architecture sets out to address.

�e next step in understanding how to de�ne the architecture of an Internet is to return to the �rst point of the
chapter, that architecture is the pu�ing together of components for a purpose. We must ask: what is the purpose
of an Internet. �at is the topic of the next chapter.

11 178

Chapter 2

Requirements

2.1 Fitness for purpose–What is a network for?
In the previous chapter, I talked abstractly about “architecture”, and about the architecture of an internet, assuming
some common understanding of what it is that an internet actually does. But if we are to be both concrete and
precise, we need to start with a speci�cation of what such a system is expected to do. In this chapter I review a
number of possible design requirements for the Internet (or for an Internet), which will set the stage for several
of the following chapters.

�e �rst requirement for an Internet is that it provide a useful service. �e service model of the original Internet,
while perhaps never carefully wri�en down, is pre�y simple. �e Internet was expected to deliver a packet
(of a certain maximum size) as best it could from any source to a destination speci�ed by an IP address. �is
speci�cation tolerated failure of the delivery, and indeed it was a rather explicit decision not to include in the
speci�cation any bound on the rate of failure. If the network is “doing its best”, then so be it–the user can decide
if this service is be�er than nothing. �e “meaning” of the IP address is not a part of the speci�cation–it is just a
�eld used as an input to the forwarding algorithm in the routers. �e limitations on our ability to design highly
scalable forwarding algorithms imposes “so�” constraints on the use of IP addresses–they have to be allocated in
ways that they can be aggregated into block that the routing protocols can process, as opposed to having the
routing and forwarding mechanisms deal with each address separately.1 But there is no outright prohibition
against having the routing protocols deal with a single address as a routed entity.

As I will detail in Chapter 3, there were good reasons for this rather weak speci�cation of what the Internet
was to do. Had the initial designers challenged themselves with a much more constraining speci�cation that set
limits on such things as loss rates, throughput, etc., it is possible that the network would never have been built
successfully in the beginning. However, as I will discuss in Chapter 7, this weak speci�cation, which among other
things is totally silent on what the network should not do, opens the door to a number of malicious behaviors we
see on the Internet today. In that chapter, I will explore in more depth whether it would be practical and desirable
to start with a more restrictive speci�cation that precludes classes of bad behavior. [[[Con�rm I did that.]]]

Should the network do more?
Part of the appeal of thinking about a “new” Internet is the challenge of devising new services that would make
the network more useful–make it easier to design applications, or make it possible to serve a broader class of
applications, or for the network to function in a wider range of circumstances.

Adding more complex functions to the network might make it easier to deploy new classes of applications, but
obviously adds complexity to the network itself. �ere is thus a tradeo� between what “the network” should do,
and what a service layer on top of the network could do for a class of applications. �is tradeo� is a recurring one
in system design–the early history of operating systems was marked by functions initially being implemented

1 [Caesar et al., 2006] provides an assessment of the practicality of relaxing this constraint. �e conclusions are not optimistic.

12 178

David D. Clark Designs for an Internet

by applications and then migrating into the kernel as their value was proven.2 So several threads of network
research today are exploring the addition of new functionality to the network.

Over time, new services have been added to the speci�cation of the Internet. An IP address originally referred
to a single destination, associated with a network interface on a speci�c machine. However, IP addresses can
now be used in di�erent ways. �e concept of anycast is that multiple destinations can have the same IP address,
and the routing protocols will direct the packet to the “closest” one. �e concept of multicast is that multiple
destinations can have the same IP address and the routing protocols will direct copies of the packet to all of them.
Multicast is distinctive in that it requires a di�erent set of routing and forwarding algorithms to be implemented
in the system–whether to use the multicast or the unicast forwarding algorithm is determined by the pre�x of the
addresses. Another possible service objective would be that the network could tailor the parameters of delivery
to the requirements of the application. �is concept, which today is commonly called �ality of Service (QoS),
requires more complex scheduling in the forwarding mechanisms and/or more complex routing mechanisms.
Without debating here the merits of either multicast or QoS forwarding, we can note their implications on overall
network design–if there are alternative treatments that di�erent packets receive, there has to be some signal,
either in the packet or stored as state in the router, that indicates which treatment each packet gets. With respect
to QoS, the original design of the Internet contemplated such a scheme and used the Type of Service �eld in
the header to trigger di�erent services. With respect to multicast, which was not initially contemplated, a set of
distinct addresses had to be set aside to trigger the desired behavior.

Implicit in the speci�cation of the original Internet was that a router could only forward a packet or drop it.
�e idea that it might store the packet was hardly even discussed, since memory was scarce in the 1970’s, and the
unstated assumption was that the goal of the Internet was rapid delivery–an important early application was
remote login. Storing packets in the network if they cannot be forwarded both adds complexity to the network
(should the speci�cation de�ne how long packets should be stored, and under what circumstances) and as well
complexity to the behavior that the application sees. However, allowing storage as a part of the network behavior
might make it possible to design a new class of applications directly on top of the network, as opposed to requiring
the deployment of storage servers on the network as a part of the application.3

One of the more innovative ideas now being explored with respect to a future Internet is that the basic service
objective should be rethought–rejecting the idea that the correct service is delivering a packet to a destination
speci�ed by an address. One alternative is that the packet should be delivered to a more abstract conception of a
destination, a service. In some respects, this proposal is a generalization of the anycast concept I mentioned above;
for this to be practical the routing and forwarding schemes must be prepared to deal with a very large number
of such addresses (with the current current anycast mechanism, such addresses are exceptions and are few in
number). Another alternative idea is that the goal of the network is to deliver to the requester a packet of contents,
without the requestor knowing anything about the location of the contents. �e equivalent of the “network
address” in this conception is the name of the content that is to be returned. �is concept, called Information
Centric Networking (ICN), has profound implications both for the network and the application. �e network must
be able to forward packets based on the name of the desired content, rather then the address of the destination.
Applications may or may not �nd this a natural model of network behavior, but since it is a very di�erent model,
application designers must learn to work with it.

I return to this design question in Chapter 4: how can we reason about the range of services that the network
might usefully o�er to the higher layers that exploit the network. I will discuss providing generality in the packet
header (the syntax of the network, perhaps) to trigger a range of behaviors (the semantics of the network. In
chapter 5 I return to the design of ICNs.

2 �e operating system on the IBM 1620, in the mid-1960’s, did not include support for a �le system, but le� disk management to the application.
�e system would continue to run if the disk was powered down during operation.

3 �e Delay/Disruption Tolerant Network community represents one example of this approach, as does the Mobility First FIA project. See Chapter 5.

13 178

David D. Clark Designs for an Internet

2.2 Generality
One of the reasons that the Internet has been successful is that it was designed with the goal of generality. In fact,
there are two important aspects of generality that are represented in the Internet: generality with respect to the
applications that run over it, and generality with respect to the sorts of network technology out of which it can
be built.

Generality of purpose
�e Internet was conceived to be a“general purpose” network. It is suited to email, watching a video, playing a
computer game, looking at Web pages, and a wide variety of other applications. �is generality seems a natural
way to structure a network that hooks computers together: computers are general-purpose devices and since
the Internet hooks computers together, it too was intended to be general. When the Internet was initially being
designed, however, this preference for generality was not uniformly accepted. Indeed, this idea was quite alien
to the communications engineers of the time, who worked for the telephone companies. �ey asked what to
them was an obvious question: how can you design something if you don’t know what it is for? �e telephone
system was designed for a known purpose: to carry telephone calls. �e requirements implied by that purpose
drove all the design decisions of the telephone system, and the engineers from the world of telephone systems
were confounded by the idea of designing a system without knowing what its application would be. One can
understand the early history of the Internet by noting that it was designed by people who came from a computing
background, not a classical networking (telephony) background. Most computers are designed without knowing
what they are for, and this mind-set de�ned the Internet’s design.

But this generality has its price. �e service it delivers is almost certainly not optimal for any particular
application. Design for optimal performance does not end up in the same place as design for generality. (�ere
is thus perhaps a tension between design preferences such as generality, optimality, minimality and the like, to
which I will return from time to time.) And it may take more e�ort to design each application than if the network
were tailored to that application. Over the decades of the Internet’s evolution, there have been a succession of
dominant applications. In the early years of the Internet, it was equated to email, and to ask someone if they were
“on the Internet” was to ask if they had an email address. Email is a very undemanding application to support, and
if the Internet had dri�ed too far toward supporting just that application (as was happening to some degree), the
Web might not have been able to emerge. But the Web succeeded, and the emergence of this new application
reminded people of the value of generality. Now this cycle repeats, and the emergence of streaming audio and
video tested the generality of an Internet that had dri�ed toward a presumption that now the Web, and not email,
was “the application”. Now “the application” that drives the constant re-engineering of the Internet is streaming,
high quality video. And it is easy once again to assume that “now we know what the Internet is for”, and optimize
it for streaming video. In my view, the community that designs the Internet should always be alert to protect the
generality of the Internet, and allow for the future in the face of the present.

Generality of technology
�e other dimension of generality that was critical to the Internet’s success is that it was structured so that it could
work over a wide range of communications technologies. �e early Internet interconnected three communications
technologies: the original ARPAnet, SATnet (the Wideband experimental multi-point Atlantic satellite network)
and a spread spectrum packet radio network (PRnet). Because the goal was to operate over as broad as possible a
selection of technologies, the architecture made minimal assumptions about what these technologies could do.
Had the design targeted a known communications technology, it might have been possible to exploit the particular
features of that technology (for example, some wireless systems are inherently broadcast), which might have led
to a more e�cient outcome. But the decision to architect an Internet that could operate over “anything” allowed
new sorts of technology to be added as they emerged, for example local area networks (LANs). We see this tension
between generality and optimization repeating today: a network of limited scope, for example a network internal
to a car, may be based on a known network technology, which will allow more sorts of cross-layer optimization.

14 178

David D. Clark Designs for an Internet

2.3 Longevity
One measure of the Internet’s success is how long its design has remained viable. Presumably, any proposal for a
system architecture has the aspiration of proving durable over time. One view is that a long-lived network must
be evolvable; it must have the adaptability and �exibility to deal with changing requirements, while remaining
architecturally coherent. �e goal of evolution over time is closely linked to the goal of operating in di�erent
ways in di�erent regions, in response to regional requirements such as security. On the other hand, a factor that
can contribute to longevity is the stability of the system: the ability of the system to provide a platform that does
not change in disruptive ways. I explore di�erent theories of how to design a long-lived system in Chapter 6.

For an architecture like the Internet to survive over time, there are several subsidiary requirements:

Support for tomorrow’s computing: �e Internet arose as a technology to hook computers together, so as
the shape of computing evolves, so should the Internet. In 10 years, the dominant form of computing will not be
the PC, nor even the smart phone or tablet, but most probably the small, embedded processor acting as a sensor or
actuator.4 At the same time, high-end processing will continue to grow, with huge server farms, cloud computing
and the like. Any future Internet must somehow take this wide spectrum of computation into account. One point
of view is that this wide range of requirements for performance and for low-cost ubiquitous connectivity cannot
be met by one approach to transport and interconnection, in which case we will see the emergence of more than
one network architecture. We will see the single Internet architecture of today replaced by a range of alternatives
at this level of the design, each targeted toward each of these domains and only interconnected at higher levels.
On the contrary, it is possible that one set of standards will span this range of requirements just �ne.

Utilize tomorrow’s networking: At least two communication technologies will be basic to tomorrow’s
networks, wireless and optical. Wireless (and mobility) implies new sorts of routing (e.g., broadcast), the tolerance
of intermi�ent connectivity, and dealing with losses. Advanced optical networks not only bring huge transmission
capacity, they can o�er rapid recon�guration of the network connectivity graph, which again has large implications
for routing and tra�c engineering. One point of view about the Internet is that the emergence of wireless networks
requires more cross-layer optimization to make e�ective use of wireless technology, and the architecture of a
future Internet should not imply a single way of doing things. �e challenge this raises is how these di�erent
ways should hook together, but the requirement for interoperation does not mean that an Internet has to be based
on the same design everywhere. Interoperation can be achieved at di�erent layers. Part of what an architecture
must do is frame the proposed solution to this problem.

�ere is an interesting interplay between architecture and technology. In the early days of the Internet, the
networks were assembled using communications technology that had been designed for di�erent purposes (e.g.,
telephone circuits). One of the early goals of the Internet was to work on top of “anything”, because that was
seen as the only path to rapid, wide deployment. But as the Internet has matured and proven its success, network
technology has evolved to provide e�cient support for the Internet as de�ned. Over the long run, technology can
be expected to follow the architecture, rather than the architecture having to bend itself to accept technology
designed for other purposes. �e tension between short-term deployment and long-term e�ectiveness is a design
challenge for any architecture. As well, careful design of the architecture can either facilitate or hinder the
emergence of useful sorts of technological heterogeneity.

Support tomorrow’s applications: Today’s Internet has proved versatile and �exible in supporting a range
of applications. �ere is not some important application that is blocked from emerging because of the current
Internet. None the less, applications of today and tomorrow present requirements that a future Internet should

4 As I write this book in 2016, the current buzzword for this future is the Internet of �ings, or IoT. We will see if this term sticks.

15 178

David D. Clark Designs for an Internet

take into account. �ese include a range of security requirements, support for highly available applications,
real-time services, new sorts of naming, and the like.

2.4 Security
�e Internet of today is marked by a number of serious security issues, including weak defenses against a�acks on
hosts, a�acks that a�empt to disrupt communications, a�acks on availability (Denial of Service or DoS a�acks),
and a�acks on the proper operation of applications. Ideally, an Internet architecture would have a coherent
security framework, which makes clear what role the network, the application, the end node, etc. each has in
improving security. I explore the issue of Internet security, and the relationship between architecture and the
resulting security properties, in Chapter 7.

2.5 Availability and resilience
�ese two goals are sometimes lumped into security, but I have listed them separately because of their importance,
and because availability issues arise in the Internet of today independent of security a�acks. Improving availability
requires a�ention to security, to good network management and preventing errors by operators, and to good
fault detection and recovery. Again, what is needed is a theory for availability. While the Internet of today deals
with speci�c sorts of faults and component failures (lost packets, links and routers that fail), it does not have an
architectural view of availability. I return to this topic in Chapter 8.

2.6 Management
Management has been a weak aspect of the current Internet from the beginning, to a considerable extent because
the shape and nature of the management problem was not clear in the early days of the design. Among other
things, it was not clear what aspects of network operation would (or should) involve human operators, and which
would preferably be automated if possible. As I will argue in chapter 10, there may not be a single coherent
issue that is ”management”, just as there is no single issue that de�nes “security”. �e key, both to security
and management, is to break the problem into its more fundamental parts, and address them without necessary
reference to ”basket words” like security and management.

2.7 Economic viability
A fundamental fact of the current Internet is that the physical assets out of which it built, the links, routers,
wireless towers, etc., are expensive. �ese assets, o�en collectively called facilities, come into existence only if
some actor chooses to invest in them. Chapter 9 explores the relationship between system design (and core design
methods such as system modularity) and industry structure. To argue that a system is viable as a real-world
o�ering, a designer must describe the set of entities (e.g., commercial �rms) that are implied by the architecture,
and make an argument that each will have the incentives to play the role de�ned for them by the architecture.
Using the current Internet as an example, there is a tension between a core value of the current Internet–its open
platform quality, and the desire of investors to capture the bene�ts of their investment. In Section 4.3 I introduce
the term tussle to describe the situation where the di�erent actors in an Internet ecosystem do not have aligned
incentives or motivations, and I call the working out of this tension between an open architecture and the desire
to monetize infrastructure the fundamental tussle. Any proposal for a network design must of necessity take a
stance in this space. For example, one tilts the fundamental tussle toward vertical integration and a more closed
architecture if additional functions are bundled with (or to any extent replace) the basic forwarding function.

2.8 Meeting needs of society
A network design will not succeed in the real world unless there is a purpose for which users �nd it useful. �e
Internet is not just a technical artifact connecting computers, but a social artifact connecting people, deeply

16 178

David D. Clark Designs for an Internet

embedded in society. To a large extent, users do not directly observe the core architecture of the system–they
partake of the system using the applications that are designed on top of it. So as I noted above, one measure of a
successful network is that is it suited to support a wide range of applications, both today’s and tomorrow’s. On
the other hand, the core design may impose conventions and provide features that cut across applications, and as
the system in question supports more functions, the core design will become more visible to the users–consider
the di�erences visible to the user between using an Android or IOS smart phone. �e Internet of today provides
a very simple service, and one could argue that many variants of an Internet would be equally successful. But
the core design will in�uence the outcome of some very important social considerations, such as the balance
between surveillance and accountability on one hand and anonymous action and privacy on the other. Users want
a network where they can do what they please–they have choice in their applications and activities–but criminals
have no ability to undertake their activities e�ectively. �ey want a network that is reliable and trustworthy, but
they do not want either the private sector or governments watching what they (and thus the criminals as well)
are doing. Chapter 11 explores some of these socially important tradeo�s, and considers whether, and to what
extent, the core architecture de�nes the balance, or whether the balance is determined by the applications built
on top of the network itself.

2.9 Moving beyond requirements
�e topics listed in the previous sections are posed at a very high level. �ey are not actionable as posed; they are
desiderata, an aide-memoire, as we contemplate design. It is a big jump from any of these to the design of speci�c
mechanism, and that is a big issue. We would like the design process to be based on principles and theory, but
there are no well-honed design methods to aid in the process of moving from these requirements to mechanism
and architecture.

Several things can happen as we move from high-level requirements to speci�c architecture and mechanism.
One is that in the a�empt to reduce an idea such as “security” to practice we discover that lurking inside that
requirement are sub-goals that are actually in tension with each other, or with other requirements. Design is not
optimization along a single dimension, but a balancing of di�erent priorities. Some of these may be quanti�able
(e.g., a performance requirement), but most will end up as qualitative objectives, which makes the balancing harder.
�ere is a tendency in the Computer Science community to prefer to optimize factors that can be quanti�ed, such
as performance, but if an Internet is going to be relevant in the real world, we must face the messy challenge of
evaluating alternative approaches to security or economic viability.

A further problem is that as we move beyond requirements for a system like the Internet, the resulting design
problem may grow too large for one team to contemplate holistically, so the design process may itself need to
be modularized. �e choice of that design modularity may end up be re�ected in the modularity of the system
itself. Another way of understanding this reality is that the fundamental modularity of the system had be�er be
speci�ed before the design process is modularized, so that the modularity dictates the design process, and not the
other way around.

Requirements and architecture
Several of the subsequent chapters are dedicated to exploring in more depth the requirements I have discussed here
and re�ning them so that they become actionable. But there is a high-level question which cuts across all of these
requirements, which is how they relate to architecture. Should we look to the architecture of a network to see
how these requirements are ful�lled? �e de�nition that I o�ered of architecture in chapter 1 de�ned architecture
in a minimal way: it was those things on which we have to agree, things on which it is highly convenient to
agree, the basic modularity of the system, or aspects of the system that are expected to be long-lasting. Given
this preference for architectural minimality, it will turn out that the architecture itself, as I have de�ned it, does
not directly specify a system that meets these requirements. Rather, what it does is provide a framework within
which it is possible to design a system that meets these requirements. In order to make this way of thinking
more concrete, in Chapter 3 I use the existing Internet as an example, and go back to an earlier a�empt to list the

17 178

David D. Clark Designs for an Internet

requirements that the Internet was intended to meet, and how its architecture addressed these requirements.

18 178

Chapter 3

�e architecture of the Internet–A historical
perspective

�e introduction to architecture in Chapter 1 was a bit abstract. I am going to look at what I consider the
architecture of the current Internet as a more concrete example. In 1988 I wrote a paper titled “�e Design
Philosophy of the DARPA Internet Protocols”, which tried to capture the requirements the Internet was being
designed to meet, and the basic design decisions that had been taken in meeting these requirements–what I might
now call architecture, but then called “design philosophy”. It is now over 25 years since that paper was published,
and looking back at that paper is a way to get started with a less abstract, more concrete example of “network
architecture”.

What follows is that original paper, as �rst published in 1988, with extensive commentary from the perspective
of 2015.

19 178

David D. Clark Designs for an Internet

THE DESIGN PHILOSOPHY OF THE DARPA INTERNET PROTOCOLS
David D. Clark

Massachuse�s Institute of Technology
Laboratory for Computer Science (now CSAIL)

Cambridge, Ma. 02139

�is paper was originally published in 1988 in ACM SigComm. Original work was supported in part by the
Defense Advanced ResearchProjects Agency (DARPA) under Contract No. NOOOIJ-83-K-0125. Revised, with
extensive commentary, 2015 . �e original text has been reforma�ed, but is otherwise unchanged from the
original except for a few spelling corrections.

Abstract
�e Internet protocol suite, TCP/IP, was �rst proposed ��een years ago. It was developed by the Defense

Advanced Research Projects Agency (DARPA), and has been used widely in military and commercial systems.
While there have been papers and speci�cations that describe how the protocols work, it is sometimes di�cult to
deduce from these why the protocol is as it is. For example, the Internet protocol is based on a connectionless
or datagram mode of service. �e motivation for this has been greatly misunderstood. �is paper a�empts to
capture some of the early reasoning which shaped the Internet protocols.

Introduction
For the last 15 years [1], the Advanced Research Projects Agency of the U.S. Department of Defense has been

developing a suite of protocols for packet switched networking. �ese protocols, which include the Internet
Protocol (IP), and the Transmission Control Protocol (TCP), are now U.S. Department of Defense standards for
internetworking, and are in wide use in the commercial networking environment. �e ideas developed in this
e�ort have also in�uenced other protocol suites, most importantly the connectionless con�guration of the IS0
protocols [2,3,4].

While speci�c information on the DOD protocols is fairly generally available [5,6,7], it is sometimes di�cult to
determine the motivation and reasoning which led to the design.

In fact, the design philosophy has evolved considerably from the �rst proposal to the current standards. For
example, the idea of the datagram, or connectionless service, does not receive particular emphasis in the �rst
paper, but has come to be the de�ning characteristic of the protocol. Another example is the layering of the
architecture into the IP and TCP layers. �is seems basic to the design, but was also not a part of the original
proposal. �ese changes in the Internet design arose through the repeated pa�ern of implementation and testing
that occurred before the standards were set.

�e Internet architecture is still evolving. Sometimes a new extension challenges one of the design principles,
but in any case an understanding of the history of the design provides a necessary context for current design
extensions. �e connectionless con�guration of ISO protocols has also been colored by the history of the Internet
suite, so an understanding of the Internet design philosophy may be helpful to those working with ISO.

�is paper catalogs one view of the original objectives of the Internet architecture, and discusses the relation
between these goals and the important features of the protocols.

�is paper makes a distinction between the architecture of the Internet and a speci�c realization of a running
network. Today, as discussed below, I would distinguish three ideas: 1

1. �e core principles and basic design decisions of the architecture.

2. �e second level of mechanism design that �eshes out the architecture and makes it into a complete
implementation.

20 178

David D. Clark Designs for an Internet

3. �e set of decisions related to deployment (e.g. the degree of diversity in paths) that lead to an operational
network.

Fundamental Goal
�e top level goal for the DARPA Internet Architecture was to develop an e�ective technique for multiplexed

utilization of existing interconnected networks. Some elaboration is appropriate to make clear the meaning of
that goal. �e components of the Internet were networks, which were to be interconnected to provide some
larger service. �e original goal was to connect together the original ARPANET[8] with the ARPA packet radio
network[9,10], in order to give users on the packet radio network access to the large service machines on the
ARPANET. At the time it was assumed that there would be other sorts of networks to interconnect, although the
local area network had not yet emerged.

�is paragraph hints at but does not state clearly that the Internet builds on and extends the fundamental goal
of the ARPANET, which was to provide useful interconnection among heterogeneous machines. Perhaps even by
1988 this point was so well-understood that it did not seem to require stating.

�ere is also an implicit assumption that the end-points of network connections were machines. �is assumption
seemed obvious at the time, but is now being questioned, with architectural proposals that “addresses” refer to
services or information objects.

An alternative to interconnecting existing networks would have been to design a uni�ed system which
incorporated a variety of di�erent transmission media, a multi-media network.

Perhaps the term “multi-media” was not well-de�ned in 1988. It now has a di�erent meaning, of course.

While this might have permi�ed a higher degree of integration, and thus be�er performance, it was felt that it
was necessary to incorporate the then existing network architectures if Internet was to be useful in a practical
sense. Further, networks represent administrative boundaries of control, and it was an ambition of this project to
come to grips with the problem of integrating a number of separately administrated entities into a common utility.

�is last is actually a goal, and probably should have been listed as such, although it could be seen as an aspect
of goal 4, below.

�e technique selected for multiplexing was packet switching.

E�ective multiplexing of expensive resources (e.g. links) is another high-level goal that is not in the explicit list
but very important and well-understood at the time.

An alternative such as circuit switching could have been considered, but the applications being supported,
such as remote login, were naturally served by the packet switching paradigm, and the networks which were to

1 I am indebted to John Wroclawski, both for the suggestion that led to this revision, and for the insight that there are three concepts to be
distinguished, not two.

21 178

David D. Clark Designs for an Internet

be integrated together in this project were packet switching networks. So packet switching was accepted as a
fundamental component of the Internet architecture. �e �nal aspect of this fundamental goal was the assumption
of the particular technique for interconnecting these networks. Since the technique of store and forward packet
switching, as demonstrated in the previous DARPA project, the ARPANET, was well understood, the top level
assumption was that networks would be interconnected by a layer of Internet packet switches, which were called
gateways.

From these assumptions comes the fundamental structure of the Internet: a packet switched communications
facility in which a number of distinguishable networks are connected together using packet communications
processors called gateways which implement a store and forward packet forwarding algorithm.

In retrospect, this previous section could have been clearer. It discussed both goals and basic architectural
responses to these goals without teasing these ideas apart. Gateways are not a goal, but a design response to a
goal.

We could have taken a di�erent approach to internetworking, for example providing interoperation at a higher
level–perhaps at the transport protocol layer, or a higher service/naming layer. It would be an interesting exercise
to look at such a proposal and evaluate it relative to these criteria.

Second Level Goals
�e top level goal stated in the previous section contains the word ”e�ective,” without o�ering any de�nition of

what an e�ective interconnection must achieve. �e following list summarizes a more detailed set of goals which
were established for the Internet architecture.

1. Internet communication must continue despite loss of networks or gateways.

2. �e Internet must support multiple types of communications service.

3. �e Internet architecture must accommodate a variety of networks.

4. �e Internet architecture must permit distributed management of its resources.

5. �e Internet architecture must be cost e�ective.

6. �e Internet architecture must permit host a�achment with a low level of e�ort.

7. �e resources used in the Internet architecture must be accountable.

�is set of goals might seem to be nothing more than a checklist of all the desirable network features. It is
important to understand that these goals are in order of importance, and an entirely di�erent network archi-
tecture would result if the order were changed. For example, since this network was designed to operate in a
military context, which implied the possibility of a hostile environment, survivability was put as a �rst goal, and
accountability as a last goal. During wartime, one is less concerned with detailed accounting of resources used
than with mustering whatever resources are available and rapidly deploying them in an operational manner.
While the architects of the Internet were mindful of accountability, the problem received very li�le a�ention
during the early stages of the design, and is only now being considered. An architecture primarily for commercial
deployment would clearly place these goals at the opposite end of the list.

Similarly, the goal that the architecture be cost e�ective is clearly on the list, but below certain other goals,
such as distributed management, or support of a wide variety of networks. Other protocol suites, including some
of the more popular commercial architectures, have been optimized to a particular kind of network, for example
a long haul store and forward network built of medium speed telephone lines, and deliver a very cost e�ective
solution in this context, in exchange for dealing somewhat poorly with other kinds of nets, such as local area nets.

22 178

David D. Clark Designs for an Internet

�e reader should consider carefully the above list of goals, and recognize that this is not a ”motherhood” list,
but a set of priorities which strongly colored the design decisions within the Internet architecture. �e following
sections discuss the relationship between this list and the features of the Internet.

At the beginning of the NSF Future Internet Design (FIND) project, around 2008, I proposed a list of requirements
that a new architecture might take into account. Here, for comparison with the early list from the 1988 paper, is
the one I posed in 2008:

2008

1. Security
2. Availability and resilience
3. Economic viability
4. Be�er management
5. Meet society’s needs
6. Longevity
7. Support for tomorrow’s computing
8. Exploit tomorrow’s networking
9. Support tomorrow’s applications
10. Fit for purpose (it works?)

�e list from 1988 does not mention the word “security”. �e �rst 1988 requirement, that the network continue
operation despite loss of networks or gateways, could be seen as a speci�c sub-case of security, but the text in
the next section of the original paper (see below) does not even hint that the failures might be due to malicious
actions. In retrospect, it is di�cult to reconstruct what our mind-set was when this paper was wri�en (which is in
the years immediately prior to 1988). By the early 1990s, security was an important if unresolved objective. It
seems somewhat odd that the word did not even come up in this paper. �e modern list calls out availability and
resilience as distinct from the general category of security, a distinction that was motivated by my sense that this
set of goals in particular were important enough that they should not be buried inside the broader category. So
there is some correspondence between goal 1 in the 1988 list and 2 in the 2008 list.

�e 2008 list has economic viability as its third objective. As I noted above, the 1988 paper discussed “the
problem of integrating a number of separately administrated entities into a common utility”, which seems like a
speci�c manifestation of the recognition that the net is built out of parts. But the focus on economic viability
seems to have been poorly understood, if at all.

Survivability in the Face of Failure
�e most important goal on the list is that the Internet should continue to supply communications service,

even though networks and gateways are failing. In particular, this goal was interpreted to mean that if two
entities are communicating over the Internet and some failure causes the Internet to be temporarily disrupted
and recon�gured to reconstitute the service, then the entities communicating should be able to continue without
having to reestablish or reset the high level state of their conversation. More concretely, at the service interface of
the transport layer, this architecture provides no facility to communicate to the client of the transport service
that the synchronization between the sender and the receiver may have been lost. It was an assumption in this
architecture that synchronization would never be lost unless there was no physical path over which any sort of
communication could be achieved. In other words, at the top of transport, there is only one failure, and it is total
partition. �e architecture was to mask completely any transient failure.

23 178

David D. Clark Designs for an Internet

�is last sentence seems, in retrospect, a bit unrealistic, or perhaps poorly put. �e architecture does not mask
transient failures at all. �at is not the goal, and it seems like an unrealizable one. �e rest of the paragraph
makes the actual point–if transient failures do occur, the application may be disrupted for the duration of the
failure, but once the network has been reconstituted, the application (or, speci�cally, TCP) can take up where it
le� o�. �e rest of the section discusses the architectural approach to make this possible.

Again in retrospect, it would seem that an important sub-goal would be that transients are healed as quickly
as possible, but I don’t think there was any understanding then, and perhaps not now, of an architectural element
that could facilitate that sub-goal. So it is just le� to the second-level mechanisms.

To achieve this goal, the state information which describes the on-going conversation must be protected.
Speci�c examples of state information would be the number of packets transmi�ed, the number of packets
acknowledged, or the number of outstanding �ow control permissions. If the lower layers of the architecture lose
this information, they will not be able to tell if data has been lost, and the application layer will have to cope
with the loss of synchrony. �is architecture insisted that this disruption not occur, which meant that the state
information must be protected from loss.

In some network architectures, this state is stored in the intermediate packet switching nodes of the network.
In this case, to protect the information from loss, it must replicated. Because of the distributed nature of the
replication, algorithms to ensure robust replication are themselves di�cult to build, and few networks with
distributed state information provide any sort of protection against failure. �e alternative, which this architecture
chose, is to take this information and gather it at the endpoint of the net, at the entity which is utilizing the
service of the network. I call this approach to reliability ”fate-sharing.” �e fate-sharing model suggests that it
is acceptable to lose the state information associated with an entity if, at the same time, the entity itself is lost.
Speci�cally, information about transport level synchronization is stored in the host which is a�ached to the net
and using its communication service.

�ere are two important advantages to fate-sharing over replication. First, fate-sharing protects against any
number of intermediate failures, whereas replication can only protect against a certain number (less than the
number of replicated copies). Second, fate-sharing is much easier to engineer than replication.

�ere are two consequences to the fate-sharing approach to survivability. First, the intermediate packet
switching nodes, or gateways, must not have any essential state information about on-going connections. Instead,
they are stateless packet switches, a class of network design sometimes called a ”datagram” network. Secondly,
rather more trust is placed in the host machine than in an architecture where the network ensures the reliable
delivery of data. If the host resident algorithms that ensure the sequencing and acknowledgment of data fail,
applications on that machine are prevented from operation.

See the later discussion about where failures should be detected, and the role of trust.

Despite the fact that survivability is the �rst goal in the list, it is still second to the top level goal of interconnection
of existing networks. A more survivable technology might have resulted from a single multimedia network design.
For example, the Internet makes very weak assumptions about the ability of a network to report that it has failed.
Internet is thus forced to detect network failures using Internet level mechanisms, with the potential for a slower
and less speci�c error detection.

Types of Service
�e second goal of the Internet architecture is that it should support, at the transport service level, a variety of

types of service. Di�erent types of service are distinguished by di�ering requirements for such things as speed,
latency and reliability. �e traditional type of service is the bidirectional reliable delivery of data. �is service,

24 178

David D. Clark Designs for an Internet

which is sometimes called a ”virtual circuit” service, is appropriate for such applications as remote login or �le
transfer. It was the �rst service provided in the Internet architecture, using the Transmission Control Protocol
(TCP)[11]. It was early recognized that even this service had multiple variants, because remote login required a
service with low delay in delivery, but low requirements for bandwidth, while �le transfer was less concerned
with delay, but very concerned with high throughput. TCP a�empted to provide both these types of service.

�e initial concept of TCP was that it could be general enough to support any needed type of service. However,
as the full range of needed services became clear, it seemed too di�cult to build support for all of them into one
protocol.

�e �rst example of a service outside the range of TCP was support for XNET[12], the cross-Internet debugger.
TCP did not seem a suitable transport for XNET for several reasons. First, a debugger protocol should not be
reliable. �is conclusion may seem odd, but under conditions of stress or failure (which may be exactly when
a debugger is needed) asking for reliable communications may prevent any communications at all. It is much
be�er to build a service which can deal with whatever gets through, rather than insisting that every byte sent
be delivered in order. Second, if TCP is general enough to deal with a broad range of clients, it is presumably
somewhat complex. Again, it seemed wrong to expect support for this complexity in a debugging environment,
which may lack even basic services expected in an operating system (e.g. support for timers.) So XNET was
designed to run directly on top of the datagram service provided by Internet.

Another service which did not �t TCP was real time delivery of digitized speech, which was needed to support
the teleconferencing aspect of command and control applications. In real time digital speech, the primary
requirement is not a reliable service, but a service which minimizes and smooths the delay in the delivery of
packets. �e application layer is digitizing the analog speech, packetizing the resulting bits, and sending them out
across the network on a regular basis. �ey must arrive at the receiver at a regular basis in order to be converted
back to the analog signal. If packets do not arrive when expected, it is impossible to reassemble the signal in real
time. A surprising observation about the control of variation in delay is that the most serious source of delay
in networks is the mechanism to provide reliable delivery. A typical reliable transport protocol responds to a
missing packet by requesting a retransmission and delaying the delivery of any subsequent packets until the lost
packet has been retransmi�ed. It then delivers that packet and all remaining ones in sequence. �e delay while
this occurs can be many times the round trip delivery time of the net, and may completely disrupt the speech
reassembly algorithm. In contrast, it is very easy to cope with an occasional missing packet. �e missing speech
can simply be replaced by a short period of silence, which in most cases does not impair the intelligibility of the
speech to the listening human. If it does, high level error correction can occur, and the listener can ask the speaker
to repeat the damaged phrase.

It was thus decided, fairly early in the development of the Internet architecture, that more than one transport
service would be required, and the architecture must be prepared to tolerate simultaneously transports which
wish to constrain reliability, delay, or bandwidth, at a minimum.

�is goal caused TCP and IP, which originally had been a single protocol in the architecture, to be separated into
two layers. TCP provided one particular type of service, the reliable sequenced data stream, while IP a�empted
to provide a basic building block out of which a variety of types of service could be built. �is building block
was the datagram, which had also been adopted to support survivability. Since the reliability associated with the
delivery of a datagram was not guaranteed, but ”best e�ort,” it was possible to build out of the datagram a service
that was reliable (by acknowledging and retransmi�ing at a higher level), or a service which traded reliability for
the primitive delay characteristics of the underlying network substrate. �e User Datagram Protocol (UDP)[13]
was created to provide a application-level interface to the basic datagram service of Internet.

�e architecture did not wish to assume that the underlying networks themselves support multiple types of
services, because this would violate the goal of using existing networks. Instead, the hope was that multiple types
of service could be constructed out of the basic datagram building block using algorithms within the host and the
gateway.

25 178

David D. Clark Designs for an Internet

I am quite surprised that I wrote those last two sentences. �ey are seriously and embarrassingly incorrect. RFC
791 [Postel, 1981] states:

�e Type of Service provides an indication of the abstract parameters of the quality of service desired. �ese
parameters are to be used to guide the selection of the actual service parameters when transmi�ing a datagram
through a particular network. Several networks o�er service precedence, which somehow treats high precedence
tra�c as more important than other tra�c (generally by accepting only tra�c above a certain precedence at
time of high load).

…

Example mappings of the internet type of service to the actual service provided on networks such as AUTODIN
II, ARPANET, SATNET, and PRNET is given in ”Service Mappings” [Jon Postel, 1981].

At the time this RFC was speci�ed (around 1981) the group clearly had in mind that di�erent sorts of network
might have di�erent tools for managing di�erent service qualities, and the abstract ToS �eld was to be mapped to
the network-speci�c service indicators by the gateway (what we now call the router).

For example, (although this is not done in most current implementations) it is possible to take datagrams which
are associated with a controlled delay but unreliable service and place them at the head of the transmission queues
unless their lifetime has expired, in which case they would be discarded; while packets associated with reliable
streams would be placed at the back of the queues, but never discarded, no ma�er how long they had been in the
net.

�is section of the paper may re�ect my own, long-standing preference for QoS in the network. However, the
discussion is about a much more basic set of service types, and an architectural decision (spli�ing IP and TCP),
which gives the end-node and application some control over the type of service. �ere is no mention in this paper
of the ToS bits in the IP header, which were the �rst a�empt to add a core feature that would facilitate any sort of
QoS in the network. Discussions about QoS at the IETF did not start for another several years. But this section
does suggest that the idea of queue management as a means to improve application behavior was understood
even in the 1980s, and the ToS bits (or something like them) would be needed to drive that sort of scheduling. I
think, looking back, that we really did not understand this set of issues, even in 1988.

It proved more di�cult than �rst hoped to provide multiple types of service without explicit support from the
underlying networks. �e most serious problem was that networks designed with one particular type of service
in mind were not �exible enough to support other services. Most commonly, a network will have been designed
under the assumption that it should deliver reliable service, and will inject delays as a part of producing reliable
service, whether or not this reliability is desired. �e interface behavior de�ned by X.25, for example, implies
reliable delivery, and there is no way to turn this feature o�. �erefore, although Internet operates successfully
over X.25 networks it cannot deliver the desired variability of type service in that context. Other networks which
have an intrinsic datagram service are much more �exible in the type of service they will permit. but these
networks are much less common, especially in the long-haul context.

Even though this paper comes about �ve years a�er the articulation of the end-to-end arguments, there is no
mention of that paper or its concepts here. Perhaps this was due to the fact that this paper was a retrospective of
the early thinking, which predated the emergence of end-to-end as a named concept. �e concept is lurking in

26 178

David D. Clark Designs for an Internet

much of what I wrote in this section, but perhaps in 1988 it was not yet clear that the end-to-end description as
presented in the 1984 paper would survive as the accepted framing.

Varieties of Networks
It was very important for the success of the Internet architecture that it be able to incorporate and utilize a

wide variety of network technologies, including military and commercial facilities. �e Internet architecture has
been very successful in meeting this goal: it is operated over a wide variety of networks, including long haul nets
(the ARPANET itself and various X.25 networks), local area nets (Ethernet, ringnet, etc.), broadcast satellite nets
(the DARPA Atlantic Satellite Network[14,15] operating at 64 kilobits per second and the DARPA Experimental
Wideband Satellite Net[16] operating within the United States at 3 megabits per second), packet radio networks
(the DARPA packet radio network, as well as an experimental British packet radio net and a network developed by
amateur radio operators), a variety of serial links, ranging from 1200 bit per second asynchronous connections to
TI links, and a variety of other ad hoc facilities, including intercomputer busses and the transport service provided
by the higher layers of other network suites, such as IBM’s HASP.

�e Internet architecture achieves this �exibility by making a minimum set of assumptions about the function
which the net will provide. �e basic assumption is that network can transport a packet or datagram. �e packet
must be of reasonable size, perhaps 100 bytes minimum, and should be delivered with reasonable but not perfect
reliability. �e network must have some suitable form of addressing if it is more than a point to point link.

�ere are a number of services which are explicitly not assumed from the network. �ese include reliable or
sequenced delivery, network level broadcast or multicast, priority ranking of transmi�ed packet, multiple types of
service, and internal knowledge of failures, speeds, or delays. If these services had been required, then in order
to accommodate a network within the Internet, it would be necessary either that the network support these
services directly, or that the network interface so�ware provide enhancements to simulate these services at the
endpoint of the network. It was felt that this was an undesirable approach, because these services would have to
be re-engineered and reimplemented for every single network and every single host interface to every network.
By engineering these services at the transport, for example reliable delivery via TCP, the engineering must be
done only once, and the implementation must be done only once for each host. A�er that, the implementation of
interface so�ware for a new network is usually very simple.

Other Goals
�e three goals discussed so far were those which had the most profound impact on the design on the

architecture. �e remaining goals, because they were lower in importance, were perhaps less e�ectively met, or
not so completely engineered. �e goal of permi�ing distributed management of the Internet has certainly been
met in certain respects. For example, not all of the gateways in the Internet are implemented and managed by the
same agency. �ere are several di�erent management centers within the deployed Internet, each operating a subset
of the gateways, and there is a two-tiered routing algorithm which permits gateways from di�erent administrations
to exchange routing tables, even though they do not completely trust each other, and a variety of private routing
algorithms used among the gateways in a single administration. Similarly, the various organizations which
manage the gateways are not necessarily the same organizations that manage the networks to which the gateways
are a�ached.

Even in 1988 we understood that the issue of trust (e.g. trust among gateways) as an important consideration.

On the other hand, some of the most signi�cant problems with the Internet today relate to lack of su�cient
tools for distributed management, especially in the area of routing. In the large Internet being currently operated,
routing decisions need to be constrained by policies for resource usage. Today this can be done only in a very

27 178

David D. Clark Designs for an Internet

limited way, which requires manual se�ing of tables. �is is error-prone and at the same time not su�ciently
powerful. �e most important change in the Internet architecture over the next few years will probably be the
development of a new generation of tools for management of resources in the context of multiple administrations.

It is interesting that the limitations of manual route con�guration were understood in 1988, and we are not yet
really beyond that stage. It is not clear even now whether our persistent lack of progress in this area is due to poor
architectural choices, or just the intrinsic di�culty of the tasks. Certainly, in the 1970s and 1980s we did not know
how to think about network management. We understood how to “manage a box”, but we had no accepted view
on systems-level management.

It is clear that in certain circumstances, the Internet architecture does not produce as cost e�ective a utilization
of expensive communication resources as a more tailored architecture would. �e headers of Internet packets
are fairly long (a typical header is 40 bytes), and if short packets are sent, this overhead is apparent. �e worse
case, of course, is the single character remote login packets, which carry 40 bytes of header and one byte of data.
Actually, it is very di�cult for any protocol suite to claim that these sorts of interchanges are carried out with
reasonable e�ciency. At the other extreme, large packets for �le transfer, with perhaps 1,000 bytes of data, have
an overhead for the header of only four percent.

Another possible source of ine�ciency is retransmission of lost packets. Since Internet does not insist that
lost packets be recovered at the network level, it may be necessary to retransmit a lost packet from one end of
the Internet to the other. �is means that the retransmi�ed packet may cross several intervening nets a second
time, whereas recovery at the network level would not generate this repeat tra�c. �is is an example of the
tradeo� resulting from the decision, discussed above, of providing services from the end-points. �e network
interface code is much simpler, but the overall e�ciency is potentially less. However, if the retransmission rate
is low enough (for example, 1%) then the incremental cost is tolerable. As a rough rule of thumb for networks
incorporated into the architecture, a loss of one packet in a hundred is quite reasonable, but a loss of one packet
in ten suggests that reliability enhancements be added to the network if that type of service is required.

Again, this 1988 paper provides a nice “time capsule” as to what we were worrying about 25 years ago. Now
we seem to have accepted the cost of packet headers, and we seem to have accepted the cost of end-to-end
retransmission. �e paper does not mention e�cient link loading as an issue, nor the question of achieving good
end-to-end performance.

�e cost of a�aching a host to the Internet is perhaps somewhat higher than in other architectures, because
all of the mechanisms to provide the desired types of service, such as acknowledgments and retransmission
strategies, must be implemented in the host rather than in the network. Initially, to programmers who were not
familiar with protocol implementation, the e�ort of doing this seemed somewhat daunting. Implementers tried
such things as moving the transport protocols to a front end processor, with the idea that the protocols would be
implemented only once, rather than again for every type of host. However, this required the invention of a host
to front end protocol which some thought almost as complicated to implement as the original transport protocol.
As experience with protocols increases, the anxieties associated with implementing a protocol suite within the
host seem to be decreasing, and implementations are now available for a wide variety of machines, including
personal computers and other machines with very limited computing resources.

A related problem arising from the use of host-resident mechanisms is that poor implementation of the
mechanism may hurt the network as well as the host. �is problem was tolerated, because the initial experiments
involved a limited number of host implementations which could be controlled. However, as the use of Internet
has grown, this problem has occasionally surfaced in a serious way. In this respect, the goal of robustness, which

28 178

David D. Clark Designs for an Internet

led to the method of fate-sharing, which led to host-resident algorithms, contributes to a loss of robustness if the
host misbehaves.

�is paragraph brings out a contradiction in the architectural principles that might have been made more
clearly. �e principle of minimal state in routers and movement of function to the end-points implies a need to
trust those nodes to operate correctly, but the architecture does not have any approach to dealing with hosts that
mis-behave. Without state in the network to validate what the hosts are doing, it seems that there are few ways to
discipline a host. In 1988, the problem was anticipated but we clearly had no view as to how to think about it.

�e last goal was accountability. In fact, accounting was discussed in the �rst paper by Cerf and Kahn as an
important function of the protocols and gateways. However, at the present time, the Internet architecture contains
few tools for accounting for packet �ows. �is problem is only now being studied, as the scope of the architecture
is being expanded to include non-military consumers who are seriously concerned with understanding and
monitoring the usage of the resources within the Internet.

Again, a deeper discussion here might have brought out some contradictions among goals: without any �ow
state in the network (or knowledge of what constitutes an “accountable entity”) it seems hard to do accounting.
�e architecture does not preclude what we now call “middle-boxes”, but the architecture also does not discuss the
idea that there might be information in the packets to aid in accounting. I think in 1988 we just did not know how
to think about this.

Architecture and Implementation
�e previous discussion clearly suggests that one of the goals of the Internet architecture was to provide wide

�exibility in the service o�ered. Di�erent transport protocols could be used to provide di�erent types of service,
and di�erent networks could be incorporated. Put another way, the architecture tried very hard not to constrain
the range of service which the Internet could be engineered to provide. �is, in turn, means that to understand the
service which can be o�ered by a particular implementation of an Internet, one must look not to the architecture,
but to the actual engineering of the so�ware within the particular hosts and gateways, and to the particular
networks which have been incorporated. I will use the term “realization” to describe a particular set of networks,
gateways and hosts which have been connected together in the context of the Internet architecture. Realizations
can di�er by orders of magnitude in the service which they o�er. Realizations have been built out of 1200 bit
per second phone lines, and out of networks only with speeds greater than 1 megabit per second. Clearly, the
throughput expectations which one can have of these realizations di�er by orders of magnitude. Similarly, some
Internet realizations have delays measured in tens of milliseconds, where others have delays measured in seconds.
Certain applications such as real time speech work fundamentally di�erently across these two realizations. Some
Internets have been engineered so that there is great redundancy in the gateways and paths. �ese Internets are
survivable, because resources exist which can be recon�gured a�er failure. Other Internet realizations, to reduce
cost, have single points of connectivity through the realization, so that a failure may partition the Internet into
two halves.

As I said earlier, today I believe that there should be three distinctions:

1. �e core principles and basic design decisions of the architecture.

2. �e second level of mechanism design that �esh out the architecture and make it into a complete imple-
mentation.

29 178

David D. Clark Designs for an Internet

3. �e set of decisions related to deployment (e.g. degree of redundancy in paths) that lead to an operational
network.

�e word “realization” seems to map to the third set of decisions, and the second set is somewhat missing
from this paper. One could argue that that omission was intentional: the paper was about the architecture, and
what this text is saying is that one of the goals of the architecture was to permit many realizations, a point that
might have been listed as another goal. But it is equally important to say that a goal of the architecture was
to allow for many di�erent alternatives for mechanism design as well–the design decisions of the architecture
should permit a range of mechanism choices, not embed those decisions into the architecture itself. I believe that
in 1988 the Internet designers saw, but perhaps did not articulate clearly, that there is a bene�t to architectural
minimality–that is, to specify as li�le as possible consistent with making it possible for subsequent mechanisms to
meet the goals. Were I writing the paper now, I would add a new section, which draws from the previous sections
the set of core principles of the architecture, linking them back to the goals they enable.

Core architectural principles:

Packet switching.
Gateways (what we call routers today)
- Minimal assumptions about what the networks would do.
- No �ow state in routers, which implies no �ow setup, and thus the “pure” datagram model.
- Implies strict separation of IP from TCP, with no knowledge of TCP in routers.
Co-location of �ow state with end-points of �ows (fate-sharing).
No mechanisms to report network failures to end-points.
Trust in the end-node.
Minimal assumptions about service functions and performance.

Totally missing from this paper is any discussion of packet headers, addressing, and so on. In fact, much
earlier than 1988 we understood that we had to agree on some format for addresses, but that the speci�c decision
did not in�uence our ability to address the goals in the list. Early on in the design process (in the mid-1970s),
variable-length addresses were proposed, which would have served us much be�er with respect to the goal of
longevity. It was rejected because at the time, the di�culty of building routers that could operate at line speeds
(e.g. 1.5 mb/s) made parsing of variable-length �elds in the header a challenge. In my 1988 list “longevity” is
missing–probably a signi�cant oversight. But in the 1970s we made a design choice that favored the pragmatics
of implementation over �exibility.

�e packet header also embodied other design choices, which we thought we had to make in order to facilitate or
enable the design of the second-level mechanisms that �esh out the architecture into a complete implementation.

• �e idea of packet fragmentation supported the goal that we be able to exploit pre-existing networks. Today,
Internet is the dominant architecture, and we can assume that issues like network technology with small
packet sizes will not arise.

• �e use of a TTL or hop count was an architectural decision that tried to allow more generality in how
routing was done–we wanted to tolerate transient routing inconsistency. �e architecture did not specify
how routing was to be done (the paper notes the emergence of the two-level routing hierarchy), and indeed
it was a goal that di�erent routing schemes could be deployed in di�erent parts of the network.

30 178

David D. Clark Designs for an Internet

�e Internet architecture tolerates this variety of realization by design. However, it leaves the designer of a
particular realization with a great deal of engineering to do. One of the major struggles of this architectural
development was to understand how to give guidance to the designer of a realization, guidance which would
relate the engineering of the realization to the types of service which would result. For example, the designer
must answer the following sort of question. What sort of bandwidths must he in the underlying networks, if the
overall service is to deliver a throughput of a certain rate? Given a certain model of possible failures within this
realization, what sorts of redundancy ought to be engineered into the realization?

Most of the known network design aids did not seem helpful in answering these sorts of questions. Protocol
veri�ers, for example, assist in con�rming that protocols meet speci�cations. However, these tools almost never
deal with performance issues, which are essential to the idea of the type of service. Instead, they deal with the
much more restricted idea of logical correctness of the protocol with respect to speci�cation. While tools to verify
logical correctness are useful, both at the speci�cation and implementation stage, they do not help with the severe
problems that o�en arise related to performance. A typical implementation experience is that even a�er logical
correctness has been demonstrated, design faults are discovered that may cause a performance degradation of an
order of magnitude. Exploration of this problem has led to the conclusion that the di�culty usually arises, not in
the protocol itself, but in the operating system on which the protocol runs. �is being the case, it is di�cult to
address the problem within the context of the architectural speci�cation. However, we still strongly feel the need
to give the implementer guidance. We continue to struggle with this problem today.

�is paragraph re�ects an issue that could have been explored more clearly. �e goal of continued operation in
the face of failures (resilience) motivated us to design very good mechanisms to recover from problems. �ese
mechanisms were in fact good enough that they would also “recover” from implementation errors. �ey papered
over the errors, and the only signal of the problem was poor performance. What is missing from the Internet,
whether in the architecture or as an expectation of the second-level mechanisms, is some requirement to report
when the error detection and recovery mechanisms are being triggered. But without a good architecture for
network management, it is not surprising that these reporting mechanisms are missing, because it is not clear to
what entity the report would go. Telling the user at the end-node is not useful, and there is no other management
entity de�ned as part of the architecture.

�e other class of design aid is the simulator, which takes a particular realization and explores the service
which it can deliver under a variety of loadings. No one has yet a�empted to construct a simulator which take
into account the wide variability of the gateway implementation, the host implementation, and the network
performance which one sees within possible Internet realizations. It is thus the case that the analysis of most
Internet realizations is done on the back of an envelope. It is a comment on the goal structure of the Internet
architecture that a back of the envelope analysis, if done by a su�ciently knowledgeable person, is usually
su�cient. �e designer of a particular Internet realization is usually less concerned with obtaining the last �ve
percent possible in line utilization than knowing whether the desired type of service can be achieved at all given
the resources at hand at the moment.

�e relationship between architecture and performance is an extremely challenging one. �e designers of
the Internet architecture felt very strongly that it was a serious mistake to a�end only to logical correctness
and ignore the issue of performance. However, they experienced great di�culty in formalizing any aspect of
performance constraint within the architecture. �ese di�culties arose both because the goal of the architecture
was not to constrain performance, but to permit variability, and secondly (and perhaps more fundamentally),
because there seemed to be no useful formal tools for describing performance.

31 178

David D. Clark Designs for an Internet

From the perspective of 2015, this paragraph is very telling. For some goals such as routing, we had mechanisms
(e.g. the TTL �eld) that we could incorporate in the architecture to support the objective. For performance, we
simply did not know. (We proposed an ICMP message called Source �ench, which never proved useful and
may have just been a bad idea. It is totally deprecated.) At the time this paper was wri�en, our problems with
congestion were so bad that we were at peril of failing 2015 goal 10: “It works”. Yet there is no mention of congestion
and its control in this paper. Arguably, we still do not know what the architecture should specify about congestion
and other aspects of performance. We seem to have some agreement on the ECN bit, but not enough enthusiasm
to get the mechanism actually deployed. And there are many alternative proposals: XCP [Katabi et al., 2002]
or RCP [Dukkipati, 2008], etc. that would imply a di�erent packet header. �e debate seems to continue as to
what to put in the packet (e.g. specify as part of the architectural interfaces) in order to allow a useful range of
mechanisms to be designed to deal with congestion and other aspects of performance.

�is problem was particularly aggravating because the goal of the Internet project was to produce speci�cation
documents which were to become military standards. It is a well known problem with government contracting
that one cannot expect a contractor to meet any criteria which is not a part of the procurement standard. If the
Internet is concerned about performance, therefore, it was mandatory that performance requirements be put
into the procurement speci�cation. It was trivial to invent speci�cations which constrained the performance, for
example to specify that the implementation must be capable of passing 1,000 packets a second. However, this
sort of constraint could not be part of the architecture, and it was therefore up to the individual performing the
procurement to recognize that these performance constraints must be added to the speci�cation, and to specify
them properly to achieve a realization which provides the required types of service. We do not have a good idea
how to o�er guidance in the architecture for the person performing this task.

Datagrams
�e fundamental architectural feature of the Internet is the use of datagrams as the entity which is transported

across the underlying networks. As this paper has suggested, there are several reasons why datagrams are
important within the architecture. First, they eliminate the need for connection state within the intermediate
switching nodes, which means that the Internet can be reconstituted a�er a failure without concern about
state. Secondly, the datagram provides a basic building block out of which a variety of types of service can be
implemented. In contrast to the virtual circuit, which usually implies a �xed type of service, the datagram provides
a more elemental service which the endpoints can combine as appropriate to build the type of service needed.
�ird, the datagram represents the minimum network service assumption, which has permi�ed a wide variety of
networks to be incorporated into various Internet realizations. �e decision to use the datagram was an extremely
successful one, which allowed the Internet to meet its most important goals very successfully. �ere is a mistaken
assumption o�en associated with datagrams, which is that the motivation for datagrams is the support of a higher
level service which is essentially equivalent to the datagram. In other words, it has sometimes been suggested
that the datagram is provided because the transport service which the application requires is a datagram service.
In fact, this is seldom the case. While some applications in the Internet, such as simple queries of date servers or
name servers, use an access method based on an unreliable datagram, most services within the Internet would like
a more sophisticated transport model than simple datagram. Some services would like the reliability enhanced,
some would like the delay smoothed and bu�ered, but almost all have some expectation more complex than a
datagram. It is important to understand that the role of the datagram in this respect is as a building block, and not
as a service in itself.

�is discussion of the datagram seems reasonable from the perspective of 2015, but as I said above, were I to
write the paper now I would give similar treatment to some of the other design decisions we made.

32 178

David D. Clark Designs for an Internet

TCP
�ere were several interesting and controversial design decisions in the development of TCP, and TCP itself went

through several major versions before it became a reasonably stable standard. Some of these design decisions, such
as window management and the nature of the port address structure, are discussed in a series of implementation
notes published as part of the TCP protocol handbook [17,18]. But again the motivation for the decision is
sometimes lacking. ln this section, I a�empt to capture some of the early reasoning that went into parts of TCP.
�is section is of necessity incomplete; a complete review of the history of TCP itself would require another paper
of this length.

�e original ARPANET host-to host protocol provided �ow control based on both bytes and packets. �is
seemed overly complex, and the designers of TCP felt that only one form of regulation would he su�cient. �e
choice was to regulate the delivery of bytes, rather than packets. Flow control and acknowledgment in TCP is thus
based on byte number rather than packet number. Indeed, in TCP there is no signi�cance to the packetization of
the data.

�is decision was motivated by several considerations, some of which became irrelevant and others of which
were more important than anticipated. One reason to acknowledge bytes was to permit the insertion of control
information into the sequence space of the bytes, so that control as well as data could be acknowledged. �at use
of the sequence space was dropped, in favor of ad hoc techniques for dealing with each control message. While
the original idea has appealing generality, it caused complexity in practice.

A second reason for the byte stream was to permit the TCP packet to be broken up into smaller packets if
necessary in order to �t through a net with a small packet size. But this function was moved to the IP layer when
IP was split from TCP, and IP was forced to invent a di�erent method of fragmentation.

A third reason for acknowledging bytes rather than packets was to permit a number of small packets to be
gathered together into one larger packet in the sending host if retransmission of the data was necessary. It was
not clear if this advantage would be important; it turned out to be critical. Systems such as UNIX which have a
internal communication model based on single character interactions o�en send many packets with one byte of
data in them. (One might argue from a network perspective that this behavior is silly, but it was a reality, and a
necessity for interactive remote login.) It was o�en observed that such a host could produce a �ood of packets
with one byte of data, which would arrive much faster than a slow host could process them. �e result is lost
packets and retransmission.

If the retransmission was of the original packets, the same problem would repeat on every retransmission, with
a performance impact so intolerable as to prevent operation. But since the bytes were gathered into one packet for
retransmission, the retransmission occurred in a much more e�ective way which permi�ed practical operation.

On the other hand, the acknowledgment of bytes could be seen as creating this problem in the �rst place. If the
basis of �ow control had been packets rather than bytes, then this �ood might never have occurred. Control at
the packet level has the e�ect, however, of providing a severe limit on the throughput if small packets are sent. If
the receiving host speci�es a number of packets to receive, without any knowledge of the number of bytes in
each, the actual amount of data received could vary by a factor of 1000, depending on whether the sending host
puts one or one thousand bytes in each packet.

In retrospect, the correct design decision may have been that if TCP is to provide e�ective support of a variety
of services, both packets and bytes must be regulated, as was done in the original ARPANET protocols.

Another design decision related to the byte stream was the End-Of-Le�er �ag, or EOL. �is has now vanished
from the protocol, replaced by the push �ag, or PSH. �e original idea of EOL was to break the byte stream
into records. It was implemented by pu�ing data from separate records into separate packets, which was not
compatible with the idea of combining packets on retransmission. So the semantics of EOL was changed to a
weaker form, meaning only that the data up to this point in the stream was one or more complete application-level
elements, which should occasion a �ush of any internal bu�ering in TCP or the network. By saying ”one or more”
rather than ”exactly one”, it became possible to combine several together and preserve the goal of compacting

33 178

David D. Clark Designs for an Internet

data in reassembly. But the weaker semantics meant that various applications had to invent an ad hoc mechanism
for delimiting records on top of the data stream.

Several features of TCP, including EOL and the reliable close, have turned out to be of almost no use to
applications today. While TCP is not properly part of the architecture of the Internet, the story of its design and
evolution provides another view into the process of trying to �gure out in advance what should be in, and what
should be out, of a general mechanism that is intended to last for a long time. (�e goal of longevity).

In this evolution of EOL semantics, there was a li�le known intermediate form, which generated great debate.
Depending on the bu�ering strategy of the host, the byte stream model of TCP can cause great problems in one
improbable case. Consider a host in which the incoming data is put in a sequence of �xed size bu�ers. A bu�er is
returned to the user either when it is full, or an EOL is received. Now consider the case of the arrival of an out-of-
order packet which is so far out of order to be beyond the current bu�er. Now further consider that a�er receiving
this out-of-order packet, a packet with an EOL causes the current bu�er to be returned to the user only partially
full. �is particular sequence of actions has the e�ect of causing the out of order data in the next bu�er to be
in the wrong place, because of the empty bytes in the bu�er returned to the user. Coping with this generated
book-keeping problems in the host which seemed unnecessary.

To cope with this it was proposed that the EOL should ”use up” all the sequence space up to the next value
which was zero mod the bu�er size. In other words, it was proposed that EOL should be a tool for mapping the
byte stream to the bu�er management of the host. �is idea was not well received at the time, as it seemed much
too ad hoc, and only one host seemed to have this problem.2 In retrospect, it may have been the correct idea to
incorporate into TCP some means of relating the sequence space and the bu�er management algorithm of the
host. At the time, the designers simply lacked the insight to see how that might be done in a su�ciently general
manner.

Conclusion
In the context of its priorities, the Internet architecture has been very successful. �e protocols are widely used

in the commercial and military environment, and have spawned a number of similar architectures. At the same
time, its success has made clear that in certain situations, the priorities of the designers do not match the needs of
the actual users. More a�ention to such things as accounting, resource management and operation of regions
with separate administrations are needed.

While the datagram has served very well in solving the most important goals of the Internet, it has not served
so well when we a�empt to address some of the goals which were further down the priority list. For example, the
goals of resource management and accountability have proved di�cult to achieve in the context of datagrams. As
the previous section discussed, most datagrams are a part of some sequence of packets from source to destination,
rather than isolated units at the application level. However, the gateway cannot directly see the existence of this
sequence, because it is forced to deal with each packet in isolation. �erefore, resource management decisions
or accounting must be done on each packet separately. Imposing the datagram model on the Internet layer has
deprived that layer of an important source of information which it could use in achieving these goals.

�is suggests that there may be a be�er building block than the datagram for the next generation of architecture.
�e general characteristic of this building block is that it would identify a sequence of packets traveling from
the source to the destination, without assuming any particular type of service with that service. I have used the
word ”�ow” to characterize this building block. It would be necessary for the gateways to have �ow state in order
to remember the nature of the �ows which are passing through them, but the state information would not be

2 �is use of EOL was properly called ”Rubber EOL” but its detractors quickly called it ”rubber baby bu�er bumpers” in an a�empt to ridicule the
idea. Credit must go to the creator of the idea, Bill Plummer, for sticking to his guns in the face of detractors saying the above to him ten times
fast.

34 178

David D. Clark Designs for an Internet

critical in maintaining the desired type of service associated with the �ow. Instead, that type of service would be
enforced by the end points, which would periodically send messages to ensure that the proper type of service was
being associated with the �ow. In this way, the state information associated with the �ow could be lost in a crash
without permanent disruption of the service features being used. I call this concept ”so� state,” and it may very
well permit us to achieve our primary goals of survivability and �exibility, while at the same time doing a be�er
job of dealing with the issue of resource management and accountability. Exploration of alternative building
blocks constitute one of the current directions for research within the DARPA Internet program.

Acknowledgments – A Historical Perspective
It would be impossible to acknowledge all the contributors to the Internet project; there have literally been

hundreds over the 15 years of development: designers, implementers, writers and critics. Indeed, an important
topic, which probably deserves a paper in itself, is the process by which this project was managed. �e participants
came from universities, research laboratories and corporations, and they united (to some extent) to achieve this
common goal.

�e original vision for TCP came from Robert Kahn and Vinton Cerf, who saw very clearly, back in 1973,
how a protocol with suitable features might be the glue that would pull together the various emerging network
technologies. From their position at DARPA, they guided the project in its early days to the point where TCP and
IP became standards for the DOD.

�e author of this paper joined the project in the mid-70s, and took over architectural responsibility for TCP/IP
in 1981. He would like to thank all those who have worked with him, and particularly those who took the time to
reconstruct some of the lost history in this paper.

References
1. V. Cerf, and R. Kahn, ”A Protocol for Packet Network intercommunication”, IEEE Transactions Communica-

tions, Vol. Corn-22, No. 5, May1974 pp. 637-648.
2. ISO, ”Transport Protocol Speci�cation”, Tech. report IS-8073, International Organization for Standardization,

September 1984.
3. ISO, ”Protocol for Providing the Connectionless- Mode Network Service”, Tech. report DIS8473, International

Organization for Standardization, 1986.
4. R. Callon, ”Internetwork Protocol”, Proceedings of the IEEE, Vol. 71, No. 12, December 1983, pp. 1388-1392.
5. Jonathan B. Postel, ”Internetwork Protocol Approaches”, IEEE Transactions Communications, Vol. Corn-28,

N”d: 4, April 1980, pp. 605-611.
6. Jonathan B. Postel, Carl A. Sunshine, Danny Cohen, ”�e ARPA Internet Protocol”, Computer Networks 5,

Vol. 5, No. 4, July 1981, pp. 261-271
7. Alan Shehzer, Robert Hinden, and Mike Brescia, ”Connecting Di�erent Types of Networks with Gateways”,

Data Communications, August 1982.
8. J. Mc�illan and D. Walden, ”�e ARPA Network Design Decisions ’ ’ , Computer Networks, Vol. 1, No. 5,

August 1977, pp. 243-289.
9. R.E. Kahn, S.A. Gronemeyer, J. Burdi�el, E.V. Hoversten, ”Advances in Packet Radio Technology”, Proceedings

of the IEEE, Vol. 66, No. 11, November 1978, pp. 1408-1496.
10. B.M. Leiner, D.L. Nelson, F.A. Tobagi, ”Issues in Packet Radio Design”, Proceedings of the IEEE, Vol. 75, No.

1, January 1987, pp. 6-20.
11. ”Transmission Control Protocol RFC-793”, &DN Protocol Handbook, Vol. 2, September 1981, pp, 2.179-2.198.
12. Jack Haverty, ”XNET Formats for Internet Protocol Version 4 IEN 158”, DDN Protocol Handbook, Vol. 2,

October 1980, pp. 2-345 to 2-348.
13. Jonathan Postel, ”User Datagram Protocol NICRFC- 768”, DDN Protocol Handbook, Vol. 2. August 1980, pp.

2.175-2.177.
14. I. Jacobs. R. Binder, and E. Hoversten, ”General Purpose Packet Satellite Networks”, Proceedings of the IEEE,

Vol. 66, No. 11, November 1978, pp’ 1448-1467.

35 178

David D. Clark Designs for an Internet

15. C. Topolcic and J. Kaiser, ”�e SATNET Monitoring System”, Proceedings of the IEEEMILCOM Boston, MA,
October 1985, PP. 26.1.1-26.1.9.

16. W.Edmond, S.Blumenthal, A.Echenique, S.Storch, T.Calderwood, and T.Rees, ”�e Bu�er�y Satellite IMP for
the Wideband Packet Satellite Network’ ’ , Proceedings of the ACM SIGCOMM ’86, ACM, Stowe, Vt., August 1986,
pp. 194-203.

17. David D. Clark, ”Window and Acknowledgment Strategy in TCP NlC-RFC-813”, DDN Protocol Handbook,
Vol. 3, July 1982, pp. 3-5 to 3-26.

18. David D. Clark, ”Name, Addresses, Ports, and Routes NIC-RFC-814”, DDN Protocol Handbook, Vol. 3, July
1982, pp. 3-27 to 3-40. 114

36 178

David D. Clark Designs for an Internet

3.1 The relation of architecture to function
�e architecture of the Internet as I have de�ned it here (and as I did in 1988) clearly illustrates the point that
architecture does not directly specify how the network will meet its functional requirements.

It is worth looking at the various requirements I laid out in Chapter 2 and considering how the architecture of
the Internet relates to meeting those requirements.

Fit for purpose (it works?) Arguably, the Internet is a success. Its design led to a network that has passed the
tests of utility and longevity. �e basic ideas of packet switching, datagrams (no per-�ow state in the routers) and
the like were well-cra�ed. �ose of us who designed the original Internet are so pleased (and perhaps surprised)
that it works as well as it does that we feel justi�ed in turning a blind eye to the aspects that don’t work so well.
If the Internet of today is not quite as reliable as the phone system, and routing takes rather long to converge
a�er a transient, we say that a�er all routing is just one of those “second-level” mechanisms, and not a part of the
architecture, and who said that “5 nines” is the right idea for the Internet? But overall, I think it is fair to argue
that the architecture of the Internet produced a system that is �t for purpose.

Security In Chapter 7 I will argue that the Internet itself (the packet carriage layer as opposed to the larger
de�nition that includes the applications and technology) can only solve a part of the security problem. Securing
the network itself, which seems to call for secure versions of routing protocols, etc., was relegated to that second
stage of mechanism design that turns the architecture into a complete implementation. �is approach was
probably valid, since di�erent circumstances call for di�erent degrees of security. But there is an open question
as to whether there are architectural decisions that could make this task easier. Protecting the packet transport
layer from abuse by the applications (most obviously in the context of Denial of Service a�acks) is an area that
the architecture probably needs to address, but the early design did not consider this issue. Overall, the linkage
between the key architectural features of the Internet and the requirements for security seem a bit fragmentary
and weak.

Availability and resilience In the 1980’s we did not understand how to think about availability in general.
We understood that packets might get lost, so we designed TCP to recover. But there is nothing in the architecture
itself to help with this problem (unless you consider that at this point, the functions of TCP are essentially a
part of the architecture). We understood that links and routers might fail, so we needed dynamic routing. �e
Internet packet header provides a TTL �eld to allow for dynamic inconsistency in routing. �is is an illustration
of the point that architecture does not always de�ne how a requirement is met, but tries to make it possible (or
easier) for a system designed based on that architecture to meet that requirement. Our intuition was that no other
architectural support was needed for routing, or for availability more generally. As I will argue in Chapter 8, an
architecture of a future Internet needs to take a more coherent view of availability.

Economic viability �ere are essentially no features of the Internet’s architecture that relate to economic
viability, other than the consequences of the core modularity. One way to think about economic viability is that
all the actors in the ecosystem created by the architecture must have the incentive to play the role assigned to
them by that architecture. In particular, if there is a class of actor that does not �nd an economic incentive to
enter the ecosystem and invest, the design will not thrive. �is way of looking at things was roughly understood
early on, but we had no tools to reason about it. In fact, the issues have really only become clear in the last decade,
with ISPs (which make large capital investments) trying to �nd ways to increase revenues by “violating” the
architecture: peeking into packets, exercising discrimination of various sorts, and so on. As well, the current
debates about when interconnection (e.g. peering) should be revenue neutral and whether paid peering should
be acceptable illustrate the complexity of the economic landscape. �ere is nothing in the architecture about
accounting, billing, money �ows or other issues that relate to economics.

37 178

David D. Clark Designs for an Internet

Management As I describe it, the original Internet architecture did not contain any design elements intended
to address the issues of network management. We received some criticism from our friends in the telephone
industry about this; they said that a major part of the design of the telephone system was to address issues of
management: fault detection and isolation, performance issues and the like. Many of the basic data formats used
to transport voice across the digital version of the telephone system contain �elds related to management, and we
were asked why we had not understood that. Our basic headers (e.g. the IP packet header) did not contain any
data �elds that de�ned building blocks for network management.

Meet society’s needs �is very general heading captures a range of issues such as privacy (on the one hand),
lawful intercept (on the other hand), resilience of critical services, control of disruptive or illegal behavior by
users, and so on. �ere is very li�le in my 1988 paper that speaks to these issues. It may not have been clear in
1988 that the way Internet addresses are speci�ed and used (for example) has a material in�uence on the balance
between privacy, tra�c analysis, lawful intercept and the like. �ese issues have now emerged as important, but I
do not think we have clear ideas even now about how to deal with them, and in particular how to deal with them
in a way that leaves a degree of subsequent �exibility to the implementation and the realization.

One could ask if the principle of architectural minimality is the correct approach. Perhaps the architecture
le� too many problems for the designers that then had to de�ne the second-level mechanisms such as routing.
Perhaps a more expansive de�nition of what we classify as “architecture” would lead to be�er outcomes when we
deploy the resulting system. Alternatively, perhaps a di�erent approach, with a di�erent conception of what is
minimally necessary, might lead to be�er outcomes. �ese mechanisms were designed based on our best intuition
at the time, but it is reasonable today to rethink these decisions from scratch–what might the architecture do to
be�er support goals such as security and management, which we dealt with poorly if at all in the 1970’s. In the
next chapter, I develop a framework (one of several in the book) that can be used to compare architectures, and
then in Chapter 5 I look at some di�erent conceptions of what an Internet architecture might be, again mostly
with a preference for minimality but a very di�erent view of what it is “on which we must all agree”.

38 178

Chapter 4

Architecture and function

4.1 Introduction
Chapter 2, with its long list of requirements, may in fact distract the discussion from what is perhaps most central:
the network has to be �t for purpose–it has to perform a useful set of functions in support of the applications that
run over it and the users that employ those applications. So before turning to the question of how the Internet (or
a di�erent possible Internet with a di�erent design) might address those various requirements, I want to start
with the question of how we describe, in architectural terms, what it is that a network “does”.

Computer Scientists o�en use the word semantics to describe the functional capabilities of system–the range
of things it can do. However, when it comes to computer networks, what they do is very simple, compared (for
example) to an operating system or a database system. �e loose packet carriage model of “what comes out is
what came in” is intentionally almost semantics-free. �e packets just carry bytes. Packet boundaries can have
some limited functional meaning, but not much. �e original design presumed some constraints that we might
view as “semantics”, such as global addresses, but the progress of time has violated these and the Internet keeps
working. TCP does impose some modest semantic constraints, but of course TCP is optional, and not a mandatory
part of the architecture.

What de�nes the Internet, and the range of behavior that is available in the Internet, is the expressive power of
the packet header, which has more to do with its format (what we might call its syntax) than any semantics. Most
�elds (e.g. packet length) are unremarkable, some (like the TOS bits) have been rede�ned several times in the
history of the Internet, some (like the options) have atrophied, and some (most obviously the IP addresses) have
had a most interesting history in which the only constants are that they are 32 bit �elds, that whatever value they
have at each end must remain constant for the life of a TCP connection,1 and that at any locale in the network,
they must provide the basis for some router action (e.g., forwarding). �ey can be rewri�en (as in NAT), turned
into logical addresses (as in multicast or anycast), and they can be microcoded in a number of ways to capture
address hierarchy (net/rest, A/B/C, CIDR). All that really seems to ma�er is that they are 32 bits long, and that at
any point, they must have at least local meaning to a forwarding process.

�e evolution in thinking with respect to IP addresses sheds some light on architectural thinking. �e initial
idea that addresses were drawn from a single global address space and mapped uniquely to physical ports on
physical machines turned out not to be a necessary constraint, but just a simple model to get started. We were
initially fearful that if we deviated from this de�nition, the coherence of the network would fall apart, and we
would not be able to ensure that the Internet was correctly connected, or debug it when it was not. Indeed, these
fears are somewhat real, and it is possible today to “mess with” addresses in such a way that things stop working.
But mostly, the Internet continues to work, even with NAT boxes, VPNs and private address spaces, because
the consequences of messing with addresses are restricted to regions within which there is agreement to assign

1 �e source IP address is used at the receiving end to dispatch the packet to the right process. In addition, the TCP computes a checksum over the
packet to detect modi�cation of the packet in transit. It incorporates into the checksum parts of the IP header (called the pseudo-header in the
spec). For this reason, the IP address in the packet can only be changed taking these limitations into account.

39 178

David D. Clark Designs for an Internet

a common meaning to those addresses. �ose self-consistent regions need not be global; it is the scope of the
self-consistent binding from addresses to forwarding tables that de�nes them.

In the limit, each “region” could just be two routers, the sender and the receiver for each hop along the path of
the packet. (�is would somewhat resemble a scheme based on label rewriting.) Regions this small would be hard
to manage without some sort of overarching framework for state management (and would have other drawbacks
as I discuss later), but a single global region–the starting point for the Internet design–has also proven to have
complexities. In practice, the operational Internet has gravitated to regions that represent some sort of rough
balance among the issues that arise from big and small regions.

My point is that the format of the packet header is a de�ning feature of the Internet, in contrast to assertions
about the semantics of addresses. It is for this reason that I focus on the expressive power of the packet header as a
key factor in the speci�cation of a network architecture.

4.2 Per-hop behaviors
We can generalize from this discussion of addressing and ask more abstractly about the local behavior of routers
(and other network elements) and the resulting overall function. In fact, the network is built up of somewhat
independent routers. What applications care about is that the local behavior at a sequence of routers (the “per-hop
behavior”, or PHB) can be composed to achieve some desired results end-to-end.2 If the packets get delivered
(which is really the only thing that de�nes today’s properly operating Internet, except in the context of defense
against a�ack), then the details of how PHBs are con�gured (e.g., the routing protocols or the like) are a ma�er
le� to the regions to work out. �e expectation about forwarding is a core part of the architecture, how routing is
done is not. (If the packets do not get delivered, then debugging may be more or less a nightmare, depending on
the tools for coordination and analysis, but this is a separate issue, which I address in Chapter 10).

Today, a router has a rather simple set of behaviors. Ignoring QOS and source-routes for the moment, a router
either picks (one or more) outgoing paths on which to forward a packet, or drops it. �e router can have as much
state as inventive people de�ne for it–static and dynamic forwarding tables, complex routing protocols, and static
tables that de�ne unacceptable addresses (e.g., so-called Martian and “bogon” packets). �e router can also rewrite
many parts of the packet header. But even today, and certainly looking to the future, not all elements in the
network will be “routers”. Elements, once they receive a packet, can perform any PHB that does not cause the
end-to-end behavior to fail. So when we consider PHBs as the building block of network function, we should be
careful not to limit ourselves to a model where the only PHB is “forwarding”.

4.3 Tussle
One of the distinctive features of networks and distributed systems is that they are composed of actors whose
interests are not necessarily aligned. �ese actors may contend with each other to shape the system behavior
to their advantage. My co-authors and I picked the word “tussle” to describe this process [Clark et al., 2005a].
Sometimes one of the actors is a clear “bad guy”: e.g. someone wants to in�ltrate a computer against the wishes
of the owner. �is tension leads to devices such as �rewalls, which are an example of a PHB that is not simple
forwarding, but rather forwarding or dropping based on the content of the packet. Firewalls are an a�empt by the
receiver to overrule the intentions of the sender: a PHB that the receiver wants executed on the packet, but the
sender does not.

Sometimes the issues are not black and white, but more nuanced: I want a private conversation, law enforcement
wants to be able to intercept any conversation with proper authorization. I want to send a �le privately, copyrights
holders want to detect if I am serving up infringing material. To the extent these tussles are played out “in the
net” (as opposed to in the end-nodes or the courts), they will be balanced through the relative abilities of the

2 �e term “per hop behavior” was coined as part of the e�ort in the IETF to standardize the mechanisms that underpin the di�serv QoS
mechanisms [Nichols and Carpenter, 1998, Section 4].

40 178

David D. Clark Designs for an Internet

di�erent actors to exploit the expressive power of the network. So our discussion of expressive power, and the
tools that implement it, will be strongly shaped by the reality of tussle. Looking at the balance of power created
by a speci�c feature in the architecture is a way to integrate considerations of security into the design process of
an architecture.

4.4 Reasoning about expressive power
As I said at the beginning of this chapter, most computer systems are characterized by a rather details speci�cation
of the functions they can perform–what I called the semantics of the system. However, the functional capabilities
of the Internet are not de�ned by its speci�cation. If (in general) a network element can be programmed to do
“anything” as its PHB, then the resulting overall function is the result of the execution of these PHBs in some
order, where the execution of the PHB is driven by the �elds in the packet header, and the order of execution
is de�ned by the routing of the packet among these devices. Of course, since the devices themselves can de�ne
the routing, the resulting expressive power (the computational power, if you will) is presumably rather complex.
Computer scientists are accustomed to thinking about the implications of semantics: what are the limitations of
some semantic construct. We are less accustomed (and less equipped with tools) to think about the expressive
power of a packet header–what functions are consistent with some format and syntax. It is sort of like asking
what ideas can be expressed in sentences of the form “subject, verb, object”. �e question seems ill-de�ned and
unbounded. Even harder is to catalog what cannot be expressed. But this question is the one that actually captures
the limits of what the Internet can and cannot do. So we should try to think about how to think about it.

�is view of packet processing has not been seriously explored,3 because in the Internet of today, the overall
function we want to achieve is very simple–the delivery of the packet. If that is the desired overall function,
there is not much demand for the complex concatenation of arbitrary PHBs within the network. But as we think
about wanting to do more complex things as a packet moves from source to destination (many having to do with
security), the range of interesting PHBs will grow. (See Chapter 5 for examples.) So it is worth some consideration
of what factors de�ne or limit the expressive power of a network.

In this section, I pose a three-dimensional framework to describe PHB execution: alignment of interests, delivery
and parameterization.

Alignment of interests
�e �rst dimension of the model is to capture the relationship between the sender of the packet and the owner of
the element that implements the PHB. �is dimension directly captures the nature of tussle. I will propose two
cases: aligned and adverse.

Aligned: In this case, the interests of the sender and the element match. Simple routing, multicast, QoS, etc.,
usually falls in this obvious class. �e sender sent the packet, the router forwards it, and this is what both parties
expected.

Adverse: In this case, the PHB performs a function that the sender does not want. A �rewall is a good example
here, as would be other sorts of content �ltering, deep packet inspection, logging and so on.

Delivery
�e second dimension of the model is to ask why or how the packet arrives at the element that implements
the PHB. �ere is a simple four-case model that covers most of the circumstances: delivery is either intentional,
contingent, topological or coerced .

3 With the exception of some of the Active Network research, which I discuss below and in Section 5.3.

41 178

David D. Clark Designs for an Internet

Intentional: In this case, the packet arrives at the element because it was speci�cally sent there. For example,
with source routes, the route is a series of addresses, each of which directs the packet to the next such router. As
another example, a packet arrives at a NAT box because it was intentionally sent there.

Contingent: In this case, the packet may or may not arrive at a given element, but if it happens to arrive, then
the PHB will be executed. �is is the basic mode of datagram operation–if a router gets a packet it forwards it.
�ere are no pre-established paths from source to destination (which would be examples of intentional delivery).
Each router computes routes to all known destinations, so it is prepared to deal if a packet happens to arrive.

Topological: In this case, there is nothing in the packet that causes it to arrive at a particular device, but
instead the topology of the network (physical or logical) is constrained to insure that the packet does arrive there.
Firewalls are a good example of topological delivery. �e sender (assuming he is malicious) has no interest in
intentionally sending his a�ack packet to a �rewall. He would prefer to route around the �rewall if he could. �e
receiver wants some assurance that the �rewall will be in the path. �e receiver will normally not be satis�ed
with contingent protection. So the remaining tool available is to constrain the connectivity or routing graph so
that the only path (or paths) to the receiver pass through the �rewall.

Coerced: �is can be seen as a special case of intentional or topological delivery in which the sender is compelled
to subject itself to a PHB, even though the interests of the sender and the owner of the PHB are adverse. An
a�acker a�empting to reach a machine behind a Network Address Translation box has no choice but to send the
packet to that element–there is no other means of reaching beyond it. In this case, we can expect the sender to
cheat or lie (in terms of what values are in the packet) if it is possible.

Parameterization
�e third dimension of the model is that the packet triggers the execution of a PHB, and thus the data in the
packet is in some sense the input to that PHB, like arguments to a subroutine. �e values in the packet are the
input parameters to the PHB, and if the packet is modi�ed, this is similar to the rewriting of variables in the
invocation of a subroutine. (In other words, to use the vocabulary of programming language, the parameters in
the packet are passed to the PHB by reference rather than by value.) �e element that executes the PHB can have
lots of persistent state (which can be modi�ed as a result of the PHB), and can have distributed or “more global”
state if suitable signaling and control protocols are devised.

In this context, I will again o�er two cases, although these more de�ne ends of a spectrum than distinct modes:
explicit and implicit.

Explicit: While the PHB can in principle look at any data �elds in the packet, in common cases there will be
speci�c �elds set aside in the header as input to speci�c PHBs. �is is the common case for packet forwarding:
since packet forwarding is the basic operation of networking, there is an explicit address �eld used as input to the
forwarding lookup. �e Internet (sometimes) supports QoS, so there is an explicit �eld in the packet that is the
input parameter to the QoS algorithm.

Implicit: In other cases, there is no speci�c �eld used as input to the PHB: the PHB looks at �elds intended for
other purposes. Firewalls block packets based on port numbers, some ISPs assign QoS based on port numbers,
packets are sometimes routed based on port numbers (e.g., when Web queries are de�ected to a cache or an
outgoing SMTP connection is de�ected to a local mail server.) If the PHBs have state, they can also base their
actions on implicit information such as the arrival rate of packets.

Implicit parameters can be expensive. In the worst case (deep packet inspection), the PHB may process the
entire contents of the packet as input to its operation. Clearly, this is not as e�cient as a pre-designed action

42 178

David D. Clark Designs for an Internet

where the PHB picks a preset �eld (e.g. an address �eld) and uses this for a table lookup. So implicit arguments
must be used sparingly, but in the case of adverse interests, implicit parameters may be the only option.

�is model suggests that there is some rough analogy between the expressive power of a network and a
programming language of some sort, where the “computation” is a series of subroutine executions, driven by the
input parameters carried by the packet, and where the order of execution is de�ned by the routing protocols,
together with the expressive power of the packet to carry the addresses that drive the forwarding. Of course, the
addition of tussle and nodes that are hostile in intent with respect to the sender adds a twist that one does not
�nd in programming languages, and in fact this “twist” may be one of the most important aspects of what the
network actually “computes”. So the power of an analogy to a programming language remains to be explored.4

�is taxonomy classi�es activity based on the alignment of interest among the senders and the PHBs in the
network. Another way to classify activities is to look at the alignment of interests between sender and receiver.
In the case that the interests of the sender and receiver are aligned, then the PHBs would normally be used to
enhance the service being provided, unless they are inserted into the path by an actor with interests adverse
to the communicating parties. �ey are functional, in that the application being used by the communicants are
invoking them as part of the service. (While only the sender can directly control the sending of the packet and its
contents, there are certain architectures, which I discuss in Chapter 5, where the receiver as well as the sender
can directly exercise control over what PHBs are applied to the packet.) If the interests of the sender and receiver
are aligned, then if there is an adverse PHB in the path, it must be there because of some third party (e.g an ISP
or a government authority) has interposed it, or because the network itself has previously su�ered an a�ack
such that some of its elements have been taken over by an a�acker. �e resulting questions are �rst, whether
the architecture is providing support to functional PHBs through some aspect of its expressive power (delivery,
parameters, etc.) and (the negative aspect of the analysis) whether the architecture needs to provide support
to protect the communicants from the misuse of this expressive power, and whether the architecture needs to
provide support for the task of detecting and isolating a faulty or malicious element. (See Section 4.9 and Chapter 8
for a discussion of fault diagnosis. [[[Con�rm later.]]] If the interests of the sender and receiver are not aligned
(in which case the receiver either wants protection during communication or does not want to receive tra�c at
all), then the PHBs are serving a di�erent purpose: they are deployed to protect the receiver from the sender, a
role which creates di�erent potential roles for the architecture. I will return to security analysis in Chapter 7.

4.5 Pruning the space of options
What I just described is a 2x4x2 design space. But in fact it is less complex than that. �e method that helps to
sort out this space is “tussle analysis”, which starts with understanding the alignment of interests.

Aligned: If the sender wants the PHB to be executed, then intentional delivery and explicit arguments make
sense. Contingent delivery may be suitable in some cases (e.g. the basic forwarding function), but explicit
arguments (e.g. the address �eld) still make sense.

Adverse: If the sender does not want the PHB to be executed, then it cannot be expected to provide any explicit
arguments to the PHB, so the design must be based on implicit approaches. Nor can the PHB count on intentional
delivery, so coerced delivery is the best option, with contingent or topological delivery as a fallback.

4 �is idea is by no means original to me. In an early paper with the delightful title of Programming Satan’s Computer
[Anderson and Needham, 2004], the authors observe: “a network under the control of an adversary is possibly the most obstructive com-
puter which one could build. It may give answers which are subtly and maliciously wrong at the most inconvenient possible moment.” �eir
focus is on the design of cryptographic systems, but their point is more general: “In most system engineering work, we assume that we have a
computer which is more or less good and a program which is probably fairly bad. However, it may also be helpful to consider the case where the
computer is thoroughly wicked, particularly when developing fault tolerant systems and when trying to �nd robust ways to structure program
and encapsulate code.”

43 178

David D. Clark Designs for an Internet

Some examples
NAT boxes Network Address Translation devices (NAT boxes) implement a PHB that is not simple forwarding,
but include rewriting of the destination address �eld. �ey are as well a wonderful example of how one can
disrupt two of the most fundamental assumptions of the original Internet and still have enough functions mostly
work that we accept the compromise. �e assumptions of the original Internet were that there was a single, global
address space, and there was no per-�ow state in forwarding elements. NAT boxes, of course, have per-�ow state,
and early NAT devices, lacking a protocol to set up and maintain so� state, depended on a “trick”: they use the
�rst outgoing packet to set up the state, which then persisted to allow incoming packets to be forwarded. �is
trick does not allow state to be set up for services waiting for an incoming packet that are “behind” the NAT box.
(Protocols have subsequently been developed to allow an end-node to “open a port” to a service behind the NAT
device. 5)

NAT boxes are an example of intentional delivery with explicit parameters (the addresses and port numbers). If
the interests of the end-points are aligned, NATs are mostly a small nuisance; if the interests are not aligned, they
provide a measure of protection, and in that respect fall into the coerced category.

Firewalls Firewalls, as I described above, are an example of a PHB that is adverse to the interests of the hostile
sender (the potential a�acker) and thus must depend on implicit information. �e �rewall has the poorly-de�ned
task of trying to distinguish “good” from “bad” behavior, based on whatever hints can be gleaned from the packets.
Normally, all a �rewall can do today is a very crude set of discriminations, blocking tra�c on certain well-known
ports and perhaps certain addresses. �e roughness of the discrimination is not necessarily a consequence of the
details of the current Internet, but perhaps the intrinsic limits of making subtle discriminations based only on
implicit �elds in the packets.

�is outcome is not necessarily a bad thing. Sometimes users want the blocking to succeed (when they are
being a�acked) and sometimes they want it to fail (when some third party such as a conservative government is
trying to block their access to other sites on the Internet). If we decide to make the job of the �rewall easier, we
should consider whose interests we have served.

Tunnels Tunnels, or packet encapsulation, is o�en thought of as a way to control the routing of a packet, but
more generally it is a way to interpose an explicit element in the path toward a destination. �e encapsulated
packet is the explicit information used as input to the end-point of the tunnel. Sometimes the starting point of the
tunnel is contingent or topological; some times it is coincident with the sender; sometimes it is intentional. For
example, TOR can be seen as an example of nested tunnels, each with explicit information as input to the PHB at
each TOR forwarder.6

4.6 Tussle and regions
Consider the example discussed above of a �rewall, put in place by the receiver to block a�acks by the sender. In
this adverse circumstance, the receiver must depend on implicit arguments and topological delivery (or coerced, if
the architecture permits). For this to work, the region of the network within which the receiver is located must
provide enough control over topology (connectivity and routing) to ensure that the �rewall is in the path of the
packets. �e receiver must have su�cient control over this region of the network to make sure that the topology
is as desired, and enough trust in the region to be con�dent that the forwarding will be done as requested.

5 �e Port Control Protocol [Wing et al., 2013] and the Internet Gateway Device Protocol, part of the UPnP protocols
[Open Interconnect Consortium, 2010] allow an end node to set up a new port mapping for a service on the end node.

6 TOR, or �e Onion Router, is a set of servers sca�ered across the Internet with the goal of allowing anonymous communication between parties.
By the clever use of nested encryption, a message is sent from TOR node to TOR node, while hiding the identity of the sender from the receiver.
Each forwarder peels o� a layer of encryption (hence the name–an analogy to peeling the layers of an onion). For information on TOR, see
h�ps://www.torproject.org/.

44 178

David D. Clark Designs for an Internet

To generalize, what this illustrates is that di�erent actors within the network (the sender, the receiver, the ISPs,
other third party participants) will have the right to control certain parts of the network (or the expectation that
certain parts will be operated consistent with their requirements), and within each such region of the network,
the expressive power of the parts found there (the PHBs and the routing) will be used to further the intentions of
that actor.

�e factor that will determine the outcome of the tussle (e.g. the balance of power) is not the PHBs (which, as I
noted, can be more or less anything), but the information in the packet that can serve as the input to the PHB,
and the order of processing of the packet.

�e order of processing arises from the natural nature of packet forwarding: the packet originates in the region
of the sender (who thus gets �rst crack at any desired PHBs), then enters into the global network, and �nally
enters into the region of the receiver and the PHBs found there. �e information that is in the packet at each stage
is a consequence of this ordering. For example, the sender can include data in a packet that is used by the PHBs in
the region of the sender and then stripped out so that the other regions cannot see it. While the packet is in the
global “middle” region, some or most of the packet can be encrypted to prevent it being examined, and so on.

But as I have noted, PHBs can do more or less “anything” that can be derived from the information in the
packet, and the routing is under the control of each of these regions. �e �xed point in this design is the packet
header itself. So when we think about pu�ing more or less expressive power into the header (e.g. a more or less
expressive format), we should consider whether the di�erent options shi� the balance of power in ways that
match our preferences.

4.7 Generality
I have been talking about PHBs in a rather abstract and general way. As I have used the term, it could equally apply
to a low-level function like forwarding or an application-speci�c service like content reforma�ing or detection of
malware. �e taxonomy of delivery modes, alignment of interests and parameter modes applies equally to both
general, packet level PHBs and higher level services. One could use the term PHB generally to mean any service
element that is inserted into a data �ow, or restrict the term to lower level functions like �rewalls or routers. Since
my goal is to discuss the role of architecture, I will prefer to restrict my use of the term PHB to cases where there
might be a bene�t to adding to the expressive power of the architecture as part of invoking the PHB. In general,
application-level services would would not �t into this category, but this is a presumption, not a given, as some
architectures directly support the insertion of application-level services into the �ow of packets.

Structurally, it would make sense to assume that higher-level services are intentionally inserted into the pa�ern
of communication by the design of the app. �e design of the email system speci�es that mail is sent to a mail
forwarding agent, and the packets are addresses to that element–intentional delivery. In this case, especially
where the packets of the data �ow are reassembled into a larger unit for processing (an application data unit or
ADU), the explicit parameters used by the service are in the body of the packets, not the packet header. �at sort
of data is not part of the architecture–it is not something on which there has to be agreement; quite the opposite.
However, it would be an error to assume that all application-speci�c services are invoked by intentional delivery
of the packets. Especially where the interests of the communicants and the network are not aligned, the network
may try to intercept the communication using topological delivery in order to inspect (e.g., DPI) or modify the
contents; an intervention that is thwarted if the data is encrypted, which in turn leads to complaints by network
operators that encryption prevents them from managing their network properly. I consider this sort of tussle in
Chapter 7, but from the point of view of balance of control, it would seem that a network operator should have
to make a very strong argument that it is appropriate for them to be inserting a ‘service” into a communication
where at least one end-point did not request or expect that service to be there.

However, it is conceivable that there might be some understanding that PHBs provided by the network should
have some visibility into what is being sent. As part of the overall architectural design of the system, and balancing
the interests of the di�erent parties, it is a valid question as to whether there should be any parameters that

45 178

David D. Clark Designs for an Internet

allow the sender to reveal what sort of treatment the packets should receive, to allow for accounting and tra�c
planning and the like. My preference for architectural minimality (and as well, concerns over security I discuss
later), would lead to a conclusion that while adding expressive power to the header may be very bene�cial, the
option should be used sparingly.

4.8 Architectural alternatives for expressive power
Using the lens of expressive power, here are few architectural concepts that would change (usually enhance) the
expressive power of a design. Some of these have been incorporated into the alternative architectures I discuss in
the next chapter. I mention some of those proposals brie�y here.

Addressing
It is generally recognized that the current approach of using the IP address both as a locator and as an identi�er
was a poor design choice. Mobility is the obvious justi�cation for this conclusion. In today’s Internet, dealing
with mobility is complicated by the fact the IP address is used both for forwarding and for end-node identity.
Separating these two concepts into two di�erent data �elds in the packet would allow the location �eld (e.g.,
that data that is input to the forwarding PHB) to be changed as the mobile host moves. �is division does not
solve two resulting problems: how to keep the location information up to date, and how to make sure the identity
information is not forged. Linking identity to location provided a weak form of security: if two machines have
successfully exchanged packets, the location is su�ciently unforgable that it can stand as a weak identi�er. But by
separating the two problems, they can each be resolved separately, and managed di�erently in di�erent situations
as circumstances require.

An alternative design approach might result in two �elds, or perhaps three, each serving a distinct purpose.

• Locator: �is �eld is used as input to the forwarding PHB of a router. It may be rewri�en (as in a NAT
device), highly dynamic (in the case of a mobile device) and so on.

• End point Identi�er (EID): �is �eld is used by each end of the connection to identify itself to the other
end(s). �ere are in general three issues with such a �eld: how to make sure a malicious sender cannot forge
a false identi�er, how each end associates meaning with this �eld (is there some sort of initial exchange of
credentials associates with the EID, or do high-level protocols associate some meaning with it once the
connection is in place), and third, should elements other than the end-nodes (e.g. PHBs in the network) be
allowed to see and exploit this value?

• In-network identi�er (INID): if the decision is taken that the EID is private to the end-nodes of a connection,
then there may be need for some other identi�er that can be seen and used by PHBs in the path from the
sender to the receivers. �is possibility raises many sub-questions in turn, such as how the INID is obtained,
whether there are security issues associated with its use, for what duration is it valid, and so on.

So while the general idea of the locator-identity split is well understood, there is no clear agreement on how to
design the system that would result. Most of the architectures that I will discuss in Chapter 5 implement some
sort of location-identity split, and illustrate the range of approaches that have been taken to address this issue.

Increasing the expressive power of a design
If there seems to be some value (some increase in function or generality) from the ability to provide richer input
data to a PHB, it is worth at least brie�y speculating on how this might be done. I have argued that since a PHB
can in principle compute “anything”, the expressive power of an architecture will depend on what arguments can
be presented to the PHB–in other words what data is captured in the packet header. Here a a few options, quickly
sketched.

46 178

David D. Clark Designs for an Internet

Blank “scratch-pad” in the packet A simple idea is to leave a �xed, blank area in the packet header, to be
used creatively from time to time. One need only look at all the creative ideas for reuse of the fragment o�set �eld
to appreciate just how powerful a li�le extra space can be. To avoid the issues that arose with the IP option �eld,
the expectation for this �eld should be that a contingent element would not normally look at it. Only elements
that have the speci�c requirement for an input value would parse the �eld. �is might most easily be implemented
as a rule that says only the intentional recipient of a packet will examine the scratch-pad area.

�e drawback of this scheme is that there might be more than one PHB along the path from the sender to the
receiver, so there might be a con�ict as to how the scratch-pad should be used. So we might consider a more
complex scheme.

Push-down stackmodel A more complex model for explicit data in packets is a pushdown stack of records
of explicit data, carried as part of the packet header. In this model, the packet is explicitly directed by the sender to
the �rst element that should perform a PHB using data from the stack. �at element (conceptually) pops the �rst
record o� of the stack of explicit information and uses it as input to the PHB. �en, using either stored PHB state
or information in the record that was just popped o� the stack, it identi�es the next element to which the packet
should go. �is PHB can push a new record onto the stack, or leave the one provided by the original sender, based
on the de�nition of the intended function.

Issues of performance would suggest that the design would not literally pop a record o� a stack (thus shortening
the packet and requiring that all the bytes be copied.) A scheme involving o�set pointers could be devised that
would achieve the desired function.

�e push-down stack model can be seen as a more nuanced alternative to the IP option �eld. One way to
describe the problem with the IP option was that it was conceived more in the spirit of contingent execution
rather then intentional execution. �e sender sends the packet addressed to the destination, and routers along the
path can look at the options to see what they are supposed to do with it. In the context of aligned interests and
per-�ow state, we can see a movement toward intentional delivery of packets to nodes with speci�c PHBs. �e
push-down stack model (and the more simple scratch-pad model) are more a�uned to the intentional delivery
model.

�is sort of mechanism seems to build on the rough analogy between PHB sequencing and some sort of
programming language. And packet encapsulation is a rough version of a push-down mechanism, in which the
whole header is “pushed” onto the stack by the encapsulating header. A related use of a push-down stack in the
header can be found in two of the architectures I will describe in Chapter 5, i3 and DOA, which use a push-down
stack to carry the sequence of IDs that order the sequence of PHB executions.

A heap �e proposal for a Role-based Architecture (RBA) [Braden et al., 2003] (part of the NewArch project)
is perhaps the closest example of an architecture that captures the idea of general PHBs and the expressive power
of a packet header. In this proposal, PHBs are called roles, and the data that is input to each node is called the
Role-speci�c Header, or RSH. �e packet header is described as a heap of RSH’s. �e implication of the heap is
that the roles are not always executed in a pre-determined order, so the idea of push and pop is too constraining.
RSH’s are an example of explicit arguments. �e proposal discusses both intentional and contingent delivery,
where the intentional addressing would be based either on the ID of a role, or the ID of a role at a speci�c node.
�e paper does not delve into tussle to any degree, or work through the case of roles that are adverse to the
interest of the sender, so there is not much a�ention to implicit arguments or to topological delivery. However,
the idea of a network as a sequence of computations performed on a packet based on explicit input arguments is
the core concept of role-based architecture.

ActiveNetworks �e concept of Active Networks, initially proposed in [Tennenhouse and Wetherall, 1996],
was that packets would carry small programs that the routers would execute in order to process the packet. In

47 178

David D. Clark Designs for an Internet

other words, the packet rather than the router would de�ne the PHB. �is idea may well de�ne the end-point on
the spectrum of expressive power. I defer the discussion of Active Networks to the next chapter, in Section 5.3.

Per-flow state
I have described the current Internet as more or less a pure datagram scheme, in which each packet is treated in
isolation, there is no per-�ow state, so all the parameters to the PHB must come from the packet header. Per-�ow
state in the router can enrich the range of PHBs that can be invented, by linking the treatment of di�erent packets
in a sequence.

Signaling and state setup In the original Internet, the designers avoided any hint of a signaling protocol or
se�ing up per-�ow state in the routers. �ere were several reasons for this preference. One was simplicity–if
we could do without we would avoid yet another thing that could go wrong. In particular, once per-�ow state
is instantiated in a router, then it has to be managed. When should it be deleted? What happens if the router
crashes? �e simplicity of the stateless model makes it easier to reason about resilience and robust operation.

Another reason is overhead. It seems a waste to go to the overhead of se�ing up state for an exchange that
may involve only one packet. Much be�er to have a system in which the sender can “just send it”. But if this
works for one packet, why not for all the packets?

However, control messages can be an important aspect of the expressive power of an architecture. Control
messages may play a selective role in the design. Per-�ow state might only be needed in speci�c elements to deal
with special cases. Second, we are now dealing with per-�ow state (e.g. in NAT boxes) whether we design for it or
not. And some emerging ideas such as indirection schemes depend on per-�ow state. So it seems worth revisiting
this design decision.

State initiation bit If we are prepared to consider per-�ow state as part of the design, we need to consider
whether the protocols should include a standard way to establish and maintain this state. �e original preference
in the Internet design was to avoid an independent control plane as a mandatory component of the network. (Of
course, there is no way to prevent parties from a�aching controllers to the network if they choose to, but these
would not be a part of the architecture.) �e original design preference was to carry control information (to the
extent that it existed at all) using �elds in the data packets, which �owed along the data forwarding path. It is
possible to imagine a similar scheme as a standard means for an end-node to establish and maintain per-�ow
state in intermediate elements.

Such an idea would enrich the expressive power of the packet header by building the idea of state establishment
into the design, which would link the treatment of a succession of packets.7

Without claiming that all the details are worked out, one can imagine that just as TCP has a state-establishment
phase and a connected phase, protocols that establish state in intermediate elements could follow the same pa�ern.
A bit in the header (similar to SYN) could signal that the packet contains state-establishment information. �is
packet might require more processing overhead (and thus represents a vector for DDoS a�acks), but in normal
circumstances would only be sent at the initiation of a connection. Once the state is established, some much
more e�cient explicit indication in the packet could link subsequent packets to that stored state. �e two sorts of
packets could have di�erent formats.

Maintaining state in intermediate elements Assuming that the state is so�-state (a choice that could be
debated), the protocol should include a means to reinstate the so� state if it is lost. One could imagine a new sort
of ICMP message signaling that some expected state is missing. To recover from this, the sender would have to

7 A related activity in the IETF is SPUD, an acronym variously expanded as Session Protocol Underneath Datagrams, Substrate Protocol for User
Datagrams, or Session Protocol for User Datagrams. Like any protocol that creates a control/communication path between end nodes and the
network, SPUD raises security questions which received a�ention due to the Snowden leak [Chirgwin, 2015].

48 178

David D. Clark Designs for an Internet

transition back from a fully “connected” mode into a state-setup mode. One could imagine that the sender could
re-establish the state in two ways. First, it could do so “from scratch” by sending whatever initial information
was used. Second, the intermediate node that holds the state could send back to the source a bundle (perhaps
encrypted) of state information that could be used to re-establish the state e�ciently, re-sent from the source on
demand.

Such a scheme might make sense in the special case of intentionally sending a packet to an anycast address. In
this case, the sender is sending to a logical service, but the actual physical machine implementing the service
might change. In this case, it might be necessary to reestablish some state in that box.

In-network state associated with receivers �e discussion above covered the case of a sender establishing
state along a path as part of session initiation. But an equally common case is state set up along a path that arises
from the receiver rather than the sender. Se�ing up and maintaining this state is actually the trickier part of the
scheme.

As an illustration of the problems, consider the case where, as a part of protecting the receiver from a�ack,
connection validation is outsourced to a set of indirection elements. Since a sender (either legitimate or malicious)
may connect to any one of these (perhaps using an anycast address), every one of these elements must have
available the information necessary to validate all acceptable senders, or else there must be an authentication
protocol for those devices to send o� credentials to a back-end service. At a minimum, the protection devices
need to be able to �nd this service.

In practice, this pa�ern sounds more like hard state, somewhat manually set up and torn down, rather than
dynamic so� state.

In other cases, so� state may make more sense. A transient service behind a “�rewall of the future” may want
to open an incoming port (assuming that a future network has ports, of course), and this may best be done as a
dynamic setup of so� state. In this case, mechanisms will need to be provided to make sure the state is still in
place, even though the receiver is not necessarily sending any data packets.

4.9 PHBs and control of network resources
I observed above that with the exception of architectures that allow for complex PHBs, the objective of the
network is very simple–deliver the bits. But a necessary component of delivering the bits is that the network has
to manage its resources to that end. �ese functions, which come under the heading of control and management,
are critical but less well studied than the actual forwarding of data. In the early days of the Internet, just ge�ing
the packet forwarding right was so challenging that we did not have much a�ention le� over to think about
network control. As a result, a key control issue–network congestion and our inability to control it e�ectively–was
a major impediment to good network performance (actually delivering the bits) until the mid-80’s, when Van
Jacobson proposed a congestion control scheme that is still in use today [Jacobson, 1988]. Since then, there has
been a great deal of research on congestion control algorithms, but the relationship between architecture and
network control is poorly understood.

An important component of a router’s PHB is the manipulation of data related to the management and control
of the network. Routers perform tasks that are fairly obvious, such as counting the packets and bytes forwarded.
�e PHB related to system dynamics, such as congestion control, may be more complex, and will relate to what
data the router retains about the tra�c it is forwarding. I will return to this issue, and the relation of architecture
to network control and management, in Chapter 10.

Debugging
All mechanisms fail. Complex mechanisms fail complexly. If we design a network that permits all sorts of complex
routing options and invocation options for PHBs, the potential for failure will certainly go up. Tools to debug and
recover from such failures will be critical if we are to meet goals of availability and usability.

49 178

David D. Clark Designs for an Internet

PHBs that are contingent are the hardest to debug, since the sender did not invoke them intentionally. �e idea
of trying to diagnose a failure in a box the sender did not even know about is troubling. �is fact suggests that
when e�ective diagnosis is desired, the design should prefer intentional invocation of PHBs.

If the interests of all parties are aligned, it would make sense that the tools for debugging would be e�ective and
useful. However, if the interests of the parties are adverse, the situation becomes more complex. If, for example, an
a�acker is being thwarted by a �rewall, it may be in the interest of the �rewall to prevent any sort of debugging
or diagnosis of the failure. �e goal (from the point of view of the defender) is to keep the a�acker as much as
possible in the dark as to what is happening, so as to prevent the a�acker from sharpening his tools of a�ack. So
while tools and approaches for debugging and diagnosis must be a part of any mechanisms to provide expressive
power for a future Internet, tussle issues must be taken into account in their design.

(Certain classes of failure are easy to debug, even for contingent PHBs. Fail-stop events that cause the element
not to function at all can be isolated and routed around just like any other router failure. “Fail-go” events do not
require diagnosis. It is the partial or Byzantine failures of a contingent PHB that may cause diagnosis problems
for the sender. It is for this sort of reason that intentional invocation of PHBs is to be preferred unless the goal of
the PHB is to confound the sender.)

4.10 Expressive power and evolvability
In this context, the term evolvability refers to the ability of the network architecture to survive over time and
evolve to meet changing needs while still maintaining its core coherence. Chapter 6 explores this issue in depth.
But here I consider the relationship between the expressive power of an architecture and how that architecture
may evolve over time. �e history of the Internet provides some informative case studies.

In the early days, the designers of the Internet thought that the concept of a single global address space was
part of the Internet architecture, and we bemoan the emergence of NAT devices, VPNs etc, as an erosion of the
architectural coherence of the Internet. To some extent this is true; NAT makes the deployment of passive services
behind the NAT barrier more complex, and leads to such inelegancies as STUN. On the other hand, it is also clear
that in the large, the Internet has survived the emergence of NAT, and perhaps global addresses did not need to
be such a central assumption of the presumed architecture.

Perhaps less mourned but more relevant is the atrophy of IP options. IP options were developed to allow
for future evolution of the architecture, and they could have provided a substantial degree of expressive power.
However, IP options were hard to process in the fast path of routers, and were deprecated in practice to the point
where they are essentially gone. �ey vanished. One could speculate about the implications of this fact:

• Perhaps this degree of expressive power was not in fact necessary, and made the network over-general.

• Perhaps IP options were not well designed, and required much more processing than a be�er-designed
option.

• Perhaps the loss of IP options represents an un-orchestrated decision to favor short-term cost reduction
over future evolvability.

However, at the same time that we have seen IP options atrophy, there have been any number of papers that
try to add some new functionality to the Internet by repurposing under-used �elds in the IP header, in particular
the �elds related to fragmentation. �is behavior suggests that some additional expressive power in the header
would have been of great bene�t.

Whatever the mix of actual reasons is, one can learn two lessons from the above.
First, avoid mechanisms that are costly to maintain when they are not needed. For example, if there are �elds

in packets that are used to carry “extra” input values to PHBs, design them so that only the device that actually
implements the PHB has to parse those �elds or otherwise pay any a�ention to them. If the packet is intentionally
addressed to the device, then the processing rule is clear: if the packet is not for you, don’t look at the extra �elds.

50 178

David D. Clark Designs for an Internet

Second, any mechanism added to a packet header should have at least one important use from the beginning, to
make sure that the implementation of the mechanism remains current. If designers propose something intended
to facilitate evolution, but cannot think of a single use for it when it is proposed, perhaps it is overkill and will
atrophy over time.

Finally, the addition of tools to promote evolvability may shi� the tussle balance, so enthusiasm for rich
expressive power may need to be tempered by a realistic assessment of which actors can exploit that power.
Indeed it would seem that the goal of evolution over time is inseparable from the goal of operating in di�erent
ways in di�erent regions of the network at the same time, in response to di�erent perceived requirements within
those regions.

Making design choices about the potential expressive power of a future Internet seems to call for a tradeo�
between evolvability and �exibility on the one hand, simplicity and understandablity on the second hand, and
tussle balance on the third hand. However, there is no reason to think that this tradeo� is fundamental. Creative
thinking might lead to alternative ways of de�ning packets and routing such that we gain in all three dimensions.
To explore this space, it may be helpful to ask ourselves challenge questions of the sort that a clean slate thought
process invites, such as why do packets have to have addresses in them, or why do we need routing protocols?

4.11 What is new
It could be argued that in introducing the term expressive power, I have actually not said anything new. What is
the di�erence between discussing the expressive power of an architecture and just discussing the architecture? I
use the term expressive power to draw a�ention to and gather together the aspects of architecture that relate to its
network function, as opposed to other aspects that might relate to issues of economic viability or longevity. Equally
important is to conceptualize expressive power in the context of PHBs and how they are invoked. Some PHBs can
be designed and deployed without any support from the architecture: we have added �rewalls and NAT boxes
to the current Internet more or less as extra-architectural a�er-thoughts. But thinking about expressive power
in the context of invoking PHBs is a structured way to reason both about function and about security–indeed I
will argue that the taxonomy I o�ered for how PHBs can be invoked and alignment of interest will provide a
structured way to reason about the security implications of an architecture.

PHBs and layering
�ere is a convenient �ction that some Internet architects, including me, like to propagate, which is that there are
a limited set of functions that are “in” the network, but that most of the elements that we �nd intermediating
communication today (e.g., “middleboxes”) are somehow “on” the network but not ”in it”. �is �ction lets us
continue to argue that what the Internet itself does (and what as architects we might be responsible for) continues
to be very simple, and the “middlebox mess” is someone else’s problem. It is not hard to argue that complex
services such as content caches are not “in” the network, but things like �rewalls and NAT boxes are harder to
ignore.

One basis to de�ne a service as “on” or ”in” is which actor operates it. ISPs operate the Internet, so if the element
is not under the control of an ISP, how can it be “in” the network? In this respect, an ISP might correctly say that
since it is not responsible for an element that it does not operate, and since the ISP has the responsibility to make
sure the packet carriage function continues to work even if such services fail, these other services must be at a
higher layer. Indeed, sorting di�erent PHBs along an axis of which depend on which is a good design principle.
Very few network operators would allow an element (with its PHB) that they do not control to participate in the
routing protocol of the region, for the same reason that the early design of the Internet did not anticipate that
hosts would participate in the routing protocols. (�is view is consistent with the architectural goal of minimal
functional dependency, which I discussed in Chapter 1. An ISP that is providing a packet carriage service should
work to ensure that the availability of that service does not depend on any element over which they have no
control.) However, the taxonomy of how PHBs are invoked (modes of delivery, parameters, etc.) is a cleaner way
to classify di�erent PHBs than “in” or ”on”. As I look at the relation between architecture and economic viability

51 178

David D. Clark Designs for an Internet

in Chapter 9 [[[check]]]I will argue that design of expressive power will in fact shape which actor is empowered
to play one or another role in making up an Internet out of its parts, which is a critical factor in the economic
viability of an architecture. �ese design alternatives, which derive from such things as intentional vs. contingent
delivery, are the important issues, not a vague concept of “in” or “on”.

52 178

Chapter 5

Alternative network architectures

5.1 Introduction
[[[Note to readers of this dra�. �e discussion of the FIA projects in this chapter is based on earlier material I
have wri�en in the course of the program. �e project descriptions are perhaps out of date in parts, and are no
doubt a bit brief. I am engaging each of the projects to produce a more substantial version that they each consider
current.]]]

Talking about network architecture in the abstract can seem, in a word, abstract. Chapter 3 used the Internet as
one case study, but it is useful to have more than one example to draw on. Having several examples helps the
analysis to tease apart what is just a consequence of some particular prior design decision, and what is perhaps
more fundamental. �e motivation for this book arose in the context of the U.S. National Science Foundation’s
Future Internet Architecture project (FIA) and its predecessors. As well, there have been projects in other parts of
the world that have developed distinctive visions for a future Internet. However, the NSF Future Internet program
was not the �rst moment when the research community has considered an alternative network architecture.
�ere have been a number of proposals, going back at least 25 years, that have looked at di�erent requirements
and proposed di�erent architectural approaches. In this chapter I review a selection of the earlier proposals for a
new network architecture, and then brie�y describe the FIA projects, so that I can draw on their similarities and
di�erences in the subsequent chapters. In the Appendix to this book, I provide a somewhat more complete review
of proposals for addressing and forwarding.

As examples of proposals for an alternative network architecture I look at the following:

• Two requirements documents from the time of the proposal for the National Information Infrastructure
(the NII) [National Telecommunications and Information Administration, 1993]:
the Cross Industry Working Team Report [Cross-Industry Working Team, 1994] and the Computer Systems
Policy Project [Computer Systems Policy Project, 1994],

• Application Level Framing (ALF) [Clark and Tennenhouse, 1990],

• the Metanet [Wroclawski, 1997],

• Plutarch [Crowcro� et al., 2003],

• Triad [Cheriton, 2000],

• the DARPA New-arch project [Clark et al., 2004],

• Data-Oriented Network Architecture [Koponen et al., 2007],

• the Framework for Internet Innovation or FII [Koponen et al., 2011],

53 178

David D. Clark Designs for an Internet

• Publish/Subscribe Internet Routing Paradigm (PSIRP and PURSUIT) [Trossen et al., 2008,
Trossen and Parisis, 2012],

• Network of Information (Netinf) [Dannewitz et al., 2013],

• Internet Indirection Infrastructure (i3) [Stoica et al., 2004],

• Delegation Oriented Architecture (DOA) [Wal�sh et al., 2004],

• Delay/Disruption Tolerant Network Architecture (DTN) [Fall, 2003],

• ANTS [Wetherall, 1999]

• Active Networks [[[TBD]]],

• What else?

A review chapter such as this faces an inherent dilemma. it can either describe the projects in turn, which
provides the reader with a perhaps coherent view of each proposal but a weak basis for comparison, or it can
look at di�erent requirements and how di�erent architectures address these requirements, which gives a be�er
framework for comparison but may not paint a complete picture of each architecture. My approach is to do some
of both–�rst look at architectures through the lens of their driving requirements, and then summarize the FIA
architectures themselves.

5.2 Di�erent requirements–di�erent approaches
In some respects, architectural proposals are creatures of their time. Since the Internet has proved quite resilient
over time (an issue I consider in Chapter 6), it is interesting that many of the proposals are driven by a concern
that the Internet cannot survive one or another change in the requirements it faces.

As I have noted before, both I and many of the architectural designers discussed here have a preference for
architectural minimality, but that minimality is shaped extensively by the set of requirements they choose to
address.

NewArch �e NewArch project spent a great deal of its e�ort trying to understand the set of requirements
that a successful future architecture would have to address. �e list of requirements discussed in the �nal report
include economic viability and industry structure, security, dealing with tussle, supporting non-technical users
(balanced with a desire for user empowerment), the requirements of new applications and new technology, and
generality. �is list has a lot in common with the set of requirements I have discussed in Chapter 2, which is
not an accident. �e NewArch work laid the foundation for much of my subsequent thinking. While NewArch
did propose some distinctive mechanisms, which I will discuss in their place, the discussion of requirements is
perhaps as important a contribution as the exploration of new mechanism.

Requirement: regional diversity in architecture
Today, the Internet, with its particular format for packets, seems to have dominated the world. In earlier times,
there was much less con�dence in the research community that this outcome would prevail. �ere were competing
architectural proposals, in particular Asynchronous Transfer Mode, that were claiming to provide an alternative
architecture with an alternative protocol stack. �is potential outcome drove the development of a number of
higher-level architectural frameworks that were intended to allow di�erent architectures, each running in a region
of the Internet, to be hooked together so as to provide end-to-end delivery semantics supporting a general range
of applications.

One very early proposal that addressed this idea was ALF, but since this was not its major goal, I postpone its
discussion.

54 178

David D. Clark Designs for an Internet

Metanet �e Metanet, described in a white paper by Wroclawski in 1997, laid out the requirements for such a
regional network very clearly. Here are some quotes from the Metanet white paper:

We argue that a new architectural component, the region, should form a central building block of the next generation
network.

…

�e region captures the concept of an area of consistent control, state, or knowledge. �ere can be many sorts
of regions at the same time - regions of shared trust, regions of physical proximity (the �oor of a building or a
community), regions of payment for service (payment zones for strati�ed cost structures), and administrative
regions are examples. Within a region, some particular invariant is assumed to hold, and algorithms and protocols
may make use of that assumption. �e region structure captures requirements and limitations placed on the network
by the real world.

…

[D]ata need not be carried in the same way in di�erent parts of the network - any infrastructure which meets the
user’s requirements with high con�dence can be used to construct a coherent application. Packets, virtual circuits,
analog signals, or other modes, provided they �t into a basic service model, are equally suitable. �e overall network
may contain several regions, each de�ned by the use of a speci�c transmission format.

…

Paths of communications must thus be established in a mesh of regions, which implies passing through points of
connection between the regions. We call these points waypoints.

…

�ree essential aspects of the Metanet are a routing and addressing system designed for region-based networks,
end-to-end communication semantics based on logical, rather than physical, common data formats, and abstract
models for QoS and congestion management; mapped to speci�c technologies as required.

While the Metanet white paper lays out these requirements, it does not propose a speci�c architectural
response–this is posed as a research agenda.

Plutarch In developing an architecture to meet these requirements, a key question is what, if anything, the
regions share in common. Are there common addresses or names, for example, and at what level in the architecture?
A speci�c proposal for a multi-region architecture is Plutarch, by Jon Crowcro� and his co-authors. Plutarch is
an experiment in minimality–an a�empt to put together a cross-region “glue” architecture that makes as few
assumptions as possible about common function, common naming, and so on. In Plutarch, regions (the Plutarch
term is contexts) have names, but they are not globally unique. Within a region, addressable entities have names,
but they are also not unique beyond the scope of a region. Regions are hooked together by interconnection entities
(the Plutarch term is interstitial functions or IFs) that have names within the regions. To deliver data, Plutarch
uses a form of source address, which is of the form (entity, region, entity, region,…entity). �e sequence of entity
values name the interconnection entities that connect to the next region, where the next entity name has meaning,
until the �nal entity name describes the actual destination point. Source strings of this form are only meaningful
in the context of a particular source region, where the initial entity name is well-de�ned and unique.

Plutarch includes a mechanism for state establishment at the region boundaries, to deal with the conversions
that are required. In the view of the authors, there might be many regions, but perhaps only a few types of regions
(ten or less) so the number of conversions that would have to be programmed was practical.

55 178

David D. Clark Designs for an Internet

FII A key assumption of Plutarch was that the various architectures were pre-existing, and had to be taken
as given. �is assumption drove many of the basic design decisions, since Plutarch could make only the most
minimal set of assumptions about the feature of each regional architecture. In contrast, the Framework for Internet
Innovation (FII) made the assumption that the various architectures would be speci�ed in the context of the
overarching FII design, so FII could make much stronger assumptions about what the regional architectures would
support. At the same time, the authors of FII again strove for minimality–they wished to constrain the di�erent
architectures as li�le as possible while meeting the basic requirements they identify. FII identi�es three critical
interfaces. �e �rst, similar to Plutarch, is the region interface. �e second is the API at the application layer.
Plutarch does not emphasize this interface, but it is implicit in the design of Plutarch that the end-points share
a common view of the semantics of the interchange. �e third critical component of FII is a common scheme
to mitigate DDoS a�acks. �eir view is that DDoS a�acks must be mitigated at the network level, and require
a common agreement on an approach. �eir approach, the shut up message or SUM, requires that all regions
implement a rather complex trusted server mechanism, and requires an agreement to carry certain values intact
across the region boundary.

�e central mechanism they describe at the region interface is an agreed means to implement routing. �eir
approach is pathlets [Godfrey et al., 2009], but they stress that an alternative mechanism might be picked. However,
since there must be global agreement on the scheme, it has to be speci�ed as part of the architecture. In fact, there
are a number of values that have to be passed across the region boundaries, which implies that there must be an
agreed high-level representation for the values: the destination address, the information necessary to mitigate
DDoS a�acks, and so on. Any regional architecture that is to be a part of the FII system must comply with the
requirement to support these values and the associated mechanisms. In this respect, as noted above, FII imposed a
much larger set of constraints on the regional architectures than does Plutarch. In part, this re�ects the di�erent
design goal. Plutarch is intended to hook together preexisting architectures. FII is intended to allow new regional
architectures to emerge over time, within the pre-existing constraints imposed by FII. It is the view of the FII that
the constraints are minimal.

In fact, there might well be some argument as to whether FII is under-speci�ed. For example, the authors take
the view that there is no need for any abstract model to deal with congestion or quality of service, in contrast to
Metanet, which considered congestion to be one of the key problems that must be dealt with globally.

Discussion One of the key challenges with both Plutarch and FII is the balance between how much per-�ow
state is created and retained at the regional boundaries, and the range of data conversions that can be done there.
FII assumes that the devices at the regional boundaries have no knowledge of the semantics of the transport
protocol, so all parameters related to the payload itself must be embedded in the payload transported within the
various regional architectures. �e FII paper hints that across all regional architectures there must be a common
concept of a “packet”, which can be converted into a speci�c representation in each regional architecture.

It is perhaps informative to compare the goal of Plutarch or FII with the goal of the original Internet. �e
original goal was hooking together disparate networks: the ARPAnet, a satellite network and a packet radio
network. How does the solution the Internet took to this challenge di�er from the approach of Plutarch or FII?
When dealing with the interconnection of disparate technologies, there are two general approaches: overlay or
conversion. In a network architecture based on conversion, such as Plutarch or FII, the assumption is that the
interconnected networks provide, as a native modality, a service that is similar enough that the service of one can
be converted to the service of the other. Given this approach, what a conversion architecture such as Plutarch or
FII must do is to de�ne an abstract expression of that service in such a general way that the conversion is likely,
while still making it possible to build useful applications on top of the service. In contrast, an overlay network
de�nes an end-to-end service, perhaps expressed as a common packet format and the like, and the underlying
service of each type of network is used to carry that service over its base service. So, in the case of the Internet,
the basic transport service of the ARPAnet was used to carry Internet packet, rather than trying to somehow

56 178

David D. Clark Designs for an Internet

convert an abstract Internet packet into an ARPAnet packet.
When the Internet was being designed, the designers did not think of it as an overlay network. �e term

did not exist back then, but more to the point the term has come to have a slightly di�erent meaning. As the
Internet architecture has gained dominance, the need to deal with di�erent regional architectures has faded.
Today, the term overlay network is used to describe a service that runs on top of the Internet to provide some
specialized service, such as content delivery. �e possibility that such a specialized service might want to run over
heterogeneous lower layer network architectures, such as the Internet and “something else,” is not particularly
relevant. But in the beginning, it was the presence of those disparate networks that made it possible for the
Internet to exist.

In this context, FII is conceived as solving a very particular problem–by abstracting the service model away
from the details of how it is implemented (e.g., the packet formats, and the like) it should be possible to move
from one conception of the embodiment to another over time, as new insights are learned about good network
architecture design. It is the speci�cation of that abstract service model, and the demonstration that it is really
independent of the current embodiment, that is the key architectural challenge for an architecture based on
conversion.

As I write this book in 2016, the latest technology that might call for a heterogeneous regional architecture is
what is currently called Internet of �ings (IoT). �is technology space, previously called sensor and actuator
networks, involves devices that may be very low power, �xed function, and perhaps wireless. �ere is a hypothesis
that the current Internet protocols will not serve these sorts of devices well. �e challenges go beyond simple
performance–the IoT environment raises issues related to management and con�guration, issues that the current
Internet architecture does not address at all. However, my suspicion (again, as I write this in 2016) is that since
many IoT devices are �xed function, the interconnection between an IoT network (if it has a distinct architecture)
and the current Internet will happen at the application layer, not at a lower transport layer. In other words,
there will not be a strong motivation to treat an IoT network as a region across which we establish end-to-end
connections at the data transfer layer to devices on the current Internet.

Another set of requirements that trigger regional diversity arise in Delay/Disruption Tolerant Networks (DTNs),
where regions with di�erent sorts of latency and intermi�ency are connected together. i discuss DTNs below.

Requirement: performance
ALF A number of proposals address one aspect or another of performance. For example, architectures that
include tools to allow a client to �nd the closest copy of some content are certainly addressing performance. But
few of the proposals address the classic concept of performance, which is ge�ing the protocols to transfer data
faster. One proposal that focused on performance was Application Layer Framing, or ALF. However, the aspect
of performance addressed in ALF was not network performance, but end-node protocol processing performance.
In particular, the functional modularity of ALF was motivated in large part by a desire to reduce the number
of memory copies that a processor must make when sending and receiving packets. In principle, ALF allowed
the protocol stack to be implemented with as li�le as two copies of the data (including the application layer
processing), which was seen at the time as a key factor in improving end-to-end throughput. �is issue seems
to have faded as a primary concern in protocol processing, but in fact it may be the case that the overhead of
copying data by the various layers of the protocol stack is still a limiting factor in performance.

ALF also allowed for regional variation in architecture; in particular, the authors were considering the Internet
protocols and ATM as candidate regional architectures. �is degree of variation implied that packets would have
to be broken into cells or incoming cells combined into packets at a regional boundary, which in turn implied a
lot of per-�ow state at a regional boundary. �e common element of payload across all the regional architectures
was a larger data unit called an Application Data Unit, or ADU. ADUs were to be transmi�ed as sequences of
bytes, which could be fragmented or reassembled as desired. �e loss of part of an ADU due to a lower layer
failure caused the whole ADU to be discarded, which presumably implied a potentially large performance hit for
a lost packet or cell.

57 178

David D. Clark Designs for an Internet

Requirement: Information Centric Networking
�e idea behind Information Centric Networking, or ICN, is that users do not normally want to connect across the
network to a speci�c host, but rather to a higher-level element such as a service or a piece of content. �e content
or service might be replicated at many locations across the net, and the choice of which location to use is a lower
level decision that is not fundamental to the user’s goal. (Of course, the lower level considerations, which might
include performance, availability and security, do ma�er to the user, and should not be ignored all together.)

TRIAD TRIAD is an example of an ICN that is largely inspired by the design of the Web. �e names used for
content in TRIAD are URLs, and the user requests content by sending a lookup request containing a URL. To
over-simplify, TRIAD, routers contain routing tables based on URLs (or pre�xes of URLs), so lookup requests
can be forwarded toward a location where the content is stored. �e lookup request is actually a modi�ed TCP
SYN packet, so once the lookup request reaches the location of the content, a somewhat normal TCP connection
(using lower level IP-style addresses) is then established to transfer the data.

TRIAD does not actually require that all routers support a URL-based forwarding table. TRIAD assumes a
regional structure (a connected set of Autonomous Systems or ASes, similar to today’s Internet) and requires
that each AS will maintain a set of routers with a URL forwarding table, and can forward a setup request to one
of those routers when it is received by the AS. So most routers could function as today, with only an IP-based
forwarding table. Another feature of TRIAD is a loose source-routing function, so that di�erent addressing regions
can be tied together. �is scheme would allow a TRIAD Internet to reuse IP addresses within di�erent regions, so
as to avoid running out of addresses.

�e key challenge with TRIAD is to design a URL-based routing system that scales to the size of the Internet
and the anticipated number of content names in the future. �eir proposal is a BGP-like route announcement
scheme, where what is forwarded would normally only be the �rst and second levels of a DNS name. So the
forwarding table would have to be of a size to hold all the second level DNS names, which is many millions but
not billions. For a URL where the third or subsequent name components describe a piece of content not stored
at the location of the second level name, that location would store an indirection binding to allow the lookup
request to be redirected to the proper location.

Multiple content sources can announce the same DNS pre�x, and the routing protocol would then compute
paths to whichever source is closest, so the TRIAD scheme provides a form of DNS-based anycast. Further,
elements that announce a DNS name can perform functions other than the simple delivery of the content. For
example, an element might transform the content into a format appropriate for the requester, as it retrieves it from
the original source. In this way, certain sorts of middlebox function can be supported by the TRIAD architecture.
�e TCP-like connection from the requesting client would be intentionally forwarded to the transform element,
in contrast to a “transparent” element that imposes itself (contingent or topological receipt) into the path without
the knowledge of the end point.

DONA �e Data-Oriented Network Architecture (DONA) system is in many respects similar to TRIAD. A
lookup message (called a “FIND” request in DONA) is sent from the requesting client, which (when it reaches a
location with the content) triggers the establishment of a TCP-like connection back to the client to transfer the
content. A key di�erence is that in DONA the DNS names are replaced by �at, self-certifying names. Content is
created by a principal, an entity de�ned by a distinct public-private key pair. A name for a piece of mutable content
is of the form P:L, where P is the hash of the principal’s public key and L is a label unique within the namespace
of P. For immutable objects, L can just be a hash of the content. Similar to TRIAD, names are propagated in a
BGP-like routing system to special routers in each AS that support name-based forwarding. A principal can
announce names of the form P:L (which give the location of a speci�c content object), or P:*, which provides the
location of the principal. Again, the principal can announce these names from multiple locations, providing an
anycast-like character to the lookup process.

58 178

David D. Clark Designs for an Internet

When content is retrieved, what is actually returned is a triple of the form <data, public-key, signature>. �e
recipient can �rst verify that P is the hash of the public key, and then verify the signature (which would have been
computing using the private key matching that public key). In this way, a recipient can verify the authenticity of
content without needing a veri�ed connection to the original source. Content can be cached (ignoring issues of
stale or malicious cache entries with old version of the mutable data).

Because names are �at in DONA, the number of distinct routing entries will be much higher than with TRIAD.
DONA proposes an important scalability assumption. �e DONA Internet, similar to today’s Internet, is assumed
to have a somewhat hierarchical structure, with Tier-1 providers at the core, as well as the option of peering at
any lower level. In today’s Internet, a peripheral AS need not keep a complete forwarding table but can have a
default route “toward” the core. Similarly DONA routers outside the core need not store a complete name-based
forwarding table. Only in the DONA equivalent of the “default-free” region of today’s Internet must a complete
name-based forwarding table be stored.

�e authors of the DONA scheme provide an analysis of the rate at which routers must process FIND messages
and routing update messages (which they call REGISTER messages), and make a claim in their paper that the
performance demands are feasible.

DONA, like TRIAD, can use the basic lookup semantics to implement a number of advanced features. �ese
include caching, a substitute for the session setup semantics of a protocol like SIP, middlebox functionality, a
publish-subscribe semantics, and client-controlled avoidance of an overloaded or mis-functioning content server.
�is la�er scheme is important to avoid a class of malicious behavior that leads to a loss of availability, where
a malicious server purports to deliver content matching the name P:L. �e receiver can detect that the content
is invalid, but without some way to “route around” that malicious source, there is no way to ask for a di�erent
copy. To address this problem, an extension to DONA allows the requester to ask for the “second-closest” copy, or
“k-th closest”, rather than the default closest copy. How the routing protocols can support this semantics is an
interesting challenge.

Named Data Networking Named Data Networking, or NDN, described in more detail below, takes some of the
ideas from TRIAD and DONA and pushes them into the data plane. In particular, instead of using a name-based
lookup packet to trigger a TCP-like content transfer phase, NDN uses content names rather than addresses in
every packet, and removes from the scheme any concept of routable lower-level addresses. �e names, like TRIAD,
are URL-like in format, but now every router must have a name based forwarding table. Names for content in
NDN describe packets, not larger data units, and include both a URL-like element for forwarding as well as a
self-certifying name for security. Interestingly, the DONA proposal also notes that names could describe chunks
of data, not the complete data unit, but this is a secondary consideration for DONA.

PSIRP/PURSUIT �e Publish/Subscribe Internet Routing Paradigm (PSIRP) and its successor, PURSUIT, is
a di�erent example of ICN architecture. Objects in PURSUIT are higher level, more closely related to what
applications, services or users might require, rather than packets. In this respect, PURSUIT objects are similar to
DONA or TRIAD objects. Each object is identi�ed by a rendezvous ID (RID), and published to make it available in
one or more scopes. Abstractly, a scope is a namespace within which an RID is unique, instantiated as a set of
services (servers) across the network that can translate that name into a location. Scopes themselves are named
using a form of RID (in other words scopes do not necessarily have globally unique IDs) so the name of an object
is a sequence of RIDs. Objects are published by their creator by contacting a scope to assign an RID to the object.
Subscriptions express interest in receiving the object. �e architecture is explicit about both publish and subscribe
in order to create a balance of control between source and destination. Scopes also contain a topology manager
(TM), which is responsible for keeping track of where copies of the content are stored, either in a cache or at
the location of the publisher. When a subscribe request is received by the scope, the RNs contact the TM, which
determines how to deliver the content to the requesting subscriber.

59 178

David D. Clark Designs for an Internet

Network of Information (Netinf) Netinf, like DONA used �at, globally unique names to identify data objects
(in contrast to NDN that names packets). �e security architecture of Netinf, like some other schemes, de�nes the
name of an object to the hash of its contents. Netinf, like NDN, de�nes a standard format for the data object (in
this case a MIME representation) so that any element in the system, not just the end node, can verify that an
object corresponds to the name associated with it. �e authors stress the importance of being able to validate a
data object independent of where it comes from, since (like many ICN proposals) Netinf includes the management
of content caching as part of the architecture.

�e Netinf retrieval model is similar to DONA: a get message is routed using the ID of the object to a site where
the object is found, at which point a transport connection is opened to deliver the object. �e Netinf designers
contemplate a system with regional diversity, as discussed above, and discuss two approaches to realizing this:
either state is established at region boundaries as the get is forwarded so that subsequent transport connections
can be linked together through that boundary point to deliver the object, or some sort of return source route is
assembled in the get message to allow a response to be returned.

Netinf discusses two modes of ID-based routing. One is a system of Name Resolution Servers (NRS), in their
proposal organized as a hierarchy rather than a DHT, which can forward the request toward a location where the
object is stored. �eir scheme seems similar in general terms to the scheme described in DONA. As well, they
discuss direct routing on IDs in the routers in the system, perhaps in a local region of the network. In this respect,
the scheme is similar to that of MobilityFirst, where the GNRS does not return the exact location of an object, but
just the region (an AS, or network, or whatever) where the routers maintain a per-object forwarding table. Netinf
refers to this sort of information as a routing hint, and point out that the hint need not get the request all the way
to the region of the destination, but only toward it, where another NRS may have more speci�c information. �ey
note that these schemes can support peer caching–an end-node could inform an NRS that it holds a copy of some
content, or respond directly to a GET that is broadcast in some region. With respect to routing, Netinf and NDN
have some similarities: both architectures allow for a range of routing/forwarding options that may get a request
to a location of the content. However, Netinf allows for a query to a NRS as well as a local per-object forwarding
table. �e cited Ne�nf paper included an analysis arguing that a global NRS of object IDs is practical.

Netinf contemplates several sorts of caches. One is an on-path cache. �is sort of cache works by what I called
contingent delivery: if the request packet happens to encounter a node with the content, the content will be
returned. Netinf also allows for o�-path caching, where an NRS node maintains explicit knowledge of where a
copy is stored, and explicitly provides the address of that node to the router forwarding the request, so that the
request is explicitly delivered to the cache.

Discussion Unlike NDN, PURSUIT subscriptions and publications are persistent, with the state for that managed
at the network edges. In contrast, NDN requests for data (interest packets) are re�ected as state ”inside” the
network at each node. PURSUIT, like DONA or TRIAD, has a lookup phase to �nd the best location of the
content, followed by a transfer phase that actually retrieves the content. One could imagine using TCP for this
phase, although PURSUIT is de�ned as a free-standing architecture that need not use the Internet as a supporting
architecture. �e large, two-level address space of DONA is replaced in PURSUIT by the nested sequence of RIDs
that de�ne the nested set of scopes within which the rendezvous information about the object is contained. In
this respect, the names are hierarchical, somewhat like TRIAD, but are in no way modeled on URLs. �ere is no
implication that the nested names in PURSUIT have “meaning” in the same way that DNS names have meaning.
�e scope names and object names in PURSUIT are just IDs, and do nothing but identify which scope is being
used to provide the rendezvous service. If there are “meaningful” names in PURSUIT, they will exist at a higher
level.

DONA (as well as Netinf) can be seen as pushing the idea of �at identi�ers to the limit (the DONA names P:L
have global scope), which is a good strategy for a research project. In this respect, there is a similarity with a key
component of the MobilityFirst architecture, discussed below. �e problem addressed in DONA and MobilityFirst

60 178

David D. Clark Designs for an Internet

architectures are slightly di�erent: in DONA the challenge is to give information objects stable names, and to �nd
them as they move. In MobilityFirst, the challenge is to track mobile devices (which could include objects on
those devices) as they change their point of network a�achment. �ese slightly di�erent use cases will imply
di�erences in the rates of registrations and lookups, but both schemes call for a global system that can resolve �at
names with low latency. �e nested scope structure of PURSUIT implies more steps to a lookup, but avoids the
need for a single global registry of object names.

I noted in Chapter 3 that the Internet required but did not specify a routing protocol that could deal with
Internet-scale end-node addressing. �e Internet of today depends on a degree of topological aggregation of
addresses (the Internet routes to blocks of addresses, not individual addresses) but the size of blocks is not speci�ed
in the architecture. Rather, it is a pragmatic response to the capabilities of current routers. Similarly, the challenge
for schemes such as Dona, Netinf, NDN and MoblilityFirst is whether a routing scheme can be devised that can
meet the requirements of the architecture–a scheme which in each case they require but do not specify. (In each
case, the proposals include a sketch of a possible solution to give credence to the scheme, but like the Internet, the
routing scheme used in practice would be expected to evolve over time.)

Requirement: architecting for change
As I will discuss in Chapter 6, there are several views as to how to design an architecture so that it survives over
time. Di�erent schemes here take di�erent views of this objective. FII assumes that over time new architectures
will be designed, and thus the goal of the higher-level FII design is to de�ne a minimal set of constraints on these
di�erent architectures so they can interwork, thus providing a path for migration. �e XIA system, discussed
below, assumed that there would not be a need for that radical a replacement of the overall architecture, and
assumes a common packet format, which FII explicitly rejected. XIA allows for incremental evolution of the
addressing format, which has proved the most challenging aspect of the current Internet to change.

Requirement: intermi�ent and high-latency connectivity
�e Internet and its kin were conceived in the context of immediate delivery of packets: immediate in the sense that
they were suitable for interactive applications. A well-engineered region of the Internet today will o�en deliver
packets within a factor of 2 or 3 of the latency of light. However, not all operating contexts have characteristics
that can even a�empt to support this class of interactive applications. �e Interplanetary Internet initiative laid
out the extreme form of the challenge–intermi�ent connectivity (perhaps as satellites come in and out of range)
and latencies of seconds if not minutes.1

In response to these challenging requirements, a class of network called Delay/Disruption Tolerant Networks
(DTNs) has been proposed. �e discussion here is based on a seminal framing paper [Fall, 2003]. As described
there, the core idea is that the basic forwarding model must be store-and-forward (rather than direct end-to-
end forwarding) and that the unit of storage is not the packet (which might not be a uniform standard across
the system, but a higher-level entity (similar to an Application Data Unit) which they call a bundle. �e DTN
architecture is based on regional variation in underlying architecture (for example classic Internet on any given
planet), and is thus similar in some respects to proposals such as Metanet, Plutarch or FII. (�e DTN proposal
makes speci�c reference to Metanet.) However, DTN does not a�empt to stitch together regional architectures to
achieve something end-to-end that resembles the behavior of the individual regions. DTN assumes devices at
region boundaries that terminate transport connections, receive and reassemble bundles, and potentially store
those bundles for long periods of time until onward transfer is possible. Di�erent transport protocols might be
used in di�erent regions, depending on whether the latencies are on-planet (where TCP would be suitable) or
multi-minute.

�e names for DTN bundles are of the form <region-name, entity-name>. �is structure is similar to what is
seen in MobilityFirst, where the region names are globally meaningful and the entity names are only routable

1 �e interested reader may refer to h�p://ipnsig.org/ for background on this initiative.

61 178

David D. Clark Designs for an Internet

within the region. In the DTN paper, each of the names is a variable-length text string, rather than any sort of
�at self-certifying ID. However, those names could be introduced into DTN without disrupting the scheme. Like
many of the other schemes I have discussed here, what DTN depends on is a routing scheme that is not speci�ed
as part of the architecture, but must be realized. In this case, the routing scheme is not dealing with routing to
objects–it is routing to a potentially small number of regions. �e challenge for DTN routing is to deal with
the complex and multi-dimensional parameters of the overall network, which may include satellite links that
provide intermi�ent connectivity on a known schedule, or (as a terrestrial example) so-called data mules such
as a rural bus or delivery vehicle with a wireless base station that can pick up or drop o� bundles whenever it
drives by. �ey propose a framework in which routes are composed of a set of time-dependent contacts, which are
assembled by a routing algorithm, perhaps somewhat the way pathlets are composed.

Due to the long delays in the system, the classic end-to-end reliability model of the Internet with acknowl-
edgements �owing back to the source will o�en not be practical. Instead, DTN requires that the inter-region
store-and-forward elements be reliable enough to assume responsibility for the assured forwarding of bundles.
In this respect, the basic communication paradigm of the DTN architecture resembles Internet email, with (pre-
sumed reliable) Mail Transfer Agents and no architected end-to-end con�rmation of delivery. As well, since
store-and-forward nodes will have �nite storage, DTNs raise complex �ow control issues.

What distinguishes DTNs from (for example) FII is not the structure of the names, but the requirements that
the designs put onto the key elements–requirements that the architecture speci�es but leaves to the implementer
to realize, such as inter-region routing and �ow control.

MobilityFirst, with its emphasis on mobile devices, also discusses the need to store objects at key points in
the network if intermi�ent connectivity prevents them from being delivered. [[[Not sure if they store packets or
ADUs. I don’t know of any ADU naming in MF. Ask about this aspect of the design.]]]

Requirement: mobility
�e previous discussion has hinted at most of the key requirements for an architecture that supports mobility:
separation of location from identity, intermi�ent connectivity, variable performance characteristics, and the ability
to track the location of moving devices, networks and content. Architectures di�er in how they deal with theses
issues. MobilityFirst assumes a low-latency Global Name Resolution Service that can look up the current location
of a mobile entity while a packet is in transit. Other schemes assume a less aggressive approach to mobility, in
which the sender must determine the new location of the entity and retransmit the packet. MobilityFirst allows
for short-term storage of packets if onward transit is not possible. NDN assumes that routing protocols suited for
di�erent sorts of regions (such as broadcast for wireless regions) can be used as a part of dealing with mobility of
content. If devices move in NDN, they will have to re-transmit any pending interests, but since the mobile device
initiates this action, there is no need for any sort of name resolution service to track mobile devices.

Requirement: expressive power–services in the net
�is class of architecture has the goal of invoking service “in” the network as packets �ow from sender to receiver.
�e proposals in this class directly address the question of the expressive power of an architecture, the balance of
control held by the sender and the receiver, and the di�erent sorts of delivery modes and PHB arguments (see
Chapter 4). I look at �ve examples of this class of architecture: TRIAD, i3, DOA, Nebula and ANTS.

TRIAD �e �rst of the architectures I discussed that support this function is TRIAD. TRIAD establishes a
connection to a abstract entity (typically a item of information) using a setup packet with a URL in the initial
packet. As I described in Section 5.2, the provider of content advertises that content by inserting the top-level
components of its URL into the TRIAD name-based routing function. Once this mechanism is in place, it can
be used to route any sort of session initiation request to a location advertised by the provider, so the scheme is
a somewhat general form of intentional delivery to a service point. �e URL provides an explicit parameter to
whatever PHB that service node implements. However, the granularity of the TRIAD routing is only the second

62 178

David D. Clark Designs for an Internet

(or perhaps third) level of DNS name in the URL, so whatever service node is referenced by that URL will end up
being invoked by a large number of URLs.

Internet Indirection Infrastructure (i3) In i3, receivers express an interest in receiving a packet by creating
a ID, and announcing to the i3 system the pair (ID, addr), where addr is (for example) an IP address. (See below
for what “announcing” actually means.) �e term used in i3 to describe what the receiver is creating by this
announcement is a trigger. A�er this, the receiver might then create an entry in a DNS-like system that mapped
some user-friendly name to that ID. �e sender would look up that name in this i3 DNS system, which would
return the ID to the sender. �e sender would then initiate communication by sending a packet addressed to
the ID. i3 associates the ID with a node in the i3 system where the trigger is stored. In the simple case, once the
packet has been delivered to this node, the trigger provides the actual address of the receiver, and the packet is
forwarded onward to the receiver using that address.

i3 actually supports a more complex use of IDs, to allow both the sender and the receiver to forward the packet
through a sequence of servers (PHBs) on the way from the sender to the receiver. A receiver (or a third party) can
include in a trigger a sequence of items, not just a single address. �is trigger sequence can include both IDs and
addresses. As well, the sender can include in the packet a sequence of IDs, rather than a single ID (that might
have been retrieved from the i3 DNS). �ese IDs represent the services (PHBs) that the sender wishes to have
performed on the packet. �e sender puts this sequence of IDs in the packet and sends it to the node associated
with the �rst ID (the location where the trigger is stored). At that point, the service looks up the trigger, retrieves
the trigger sequence, prepends it to the sequence in the packet, and then forwards it to the �rst item on the
modi�ed list, which could be another ID or an address.

If that �rst item is an address, the packet is sent directly to that node using the lower level mechanism. �at
site might be a location where a PHB is implemented. A�er the PHB is executed, that node will remove its address
from the front of the sequence and once again forward the packet to the item now at the head of the sequence.
�e execution order of the di�erent services identi�ed by the various triggers is potentially complex, although if
the sender prepends its IDs in front of the ID from the receiver, the execution should proceed in a sensible order.
(If the sender does something more complex to the sequence, such as pu�ing some of its IDs a�er the ID of the
receiver, this might be a signal that the interests of the sender and receiver are not aligned, and something like an
a�ack is contemplated.)

In i3, the nodes where triggers are stored are organized as a DHT. �e �rst packet of a sequence is sent by the
originator to a nearby node in the DHT, which forwards it according to the distributed algorithm of the DHT (the
prototype used CHORD) until the packet reaches the node responsible for that ID, which is where the triggers
are stored. A�er the �rst packet is processed, the mechanisms of i3 provide to the sender the IP address of the
node in the DHT where the trigger is stored, so a�er the �rst packet of the sequence, the sender can forward
the subsequent packets directly to the correct DHT node. However, every packet follows the triangle path from
sender to DHT node to receiver. If there is a sequence of IDs in the path, the packet will �ow through a number
of DHT nodes. �is process could be highly ine�cient, depending on which DHT node the ID maps to, so the
authors suggest an optimization where the receiver create a session ID (they call this a private ID), which has
been carefully selected to hash to a DHT node near the receiver.

�ere are a number of enhancements in i3, including the idea of longest pre�x match on IDs, to allow selective
delivery based on the location of the sender. But the performance of i3 will be fundamentally determined by the
routing required to send the packets to the nodes in the DHT where the triggers are located.

Delegation Oriented Architecture (DOA) DOA has much in common with i3 (including a joint author) but
simpli�es and makes more e�cient the forwarding mechanism. Like i3, forwarding in DOA is speci�ed by �at,
unique IDs, in this case associated with a network entity (as opposed to a service in i3). As with i3, the conversion
from an ID to a network-level address (e.g., an IP address) is done using a DHT. Similar to i3, what is associated in

63 178

David D. Clark Designs for an Internet

the DHT with an ID can be either an IP address or one or more IDs. However, in contrast to i3, where the packets
are forwarded through the node in the DHT hosting the ID, in DOA the DHT is used to retrieve the matching data.
If the returned data is an IP address, the packet can then be sent directly to that location. If what is returned is a
further sequence of IDs, the lookup process is repeated by the sender until it yields an IP address. �e sequence of
IDs is included in the header of the packet, so as the packet proceeds through the network from service point to
service point, further lookups of the IDs will occur.

What the DHT actually returns is called an e-record. �e security architecture of DOA requires that the ID is
the hash of a public key belonging to the entity creating the e-record. �e e-record includes the ID, the target (the
IP address or sequence of IDs) an IP hint that provides improved e�ciency (see the paper), a TTL a�er which the
e-record must be discarded, the public key of the creator, and a signature of the e-record made using the private
key associated with that public key. So a recipient holding an ID can con�rm that the e-record was made by the
party that holds the public key from which the ID is derived. DOA assumes but does not specify some higher
level naming mechanisms that would map a user-friendly name (e.g., a URL) to an ID.

Since e-records can be veri�ed independently of where they are obtained, there are useful optimizations that
can improve the performance of DOA. For example, when a client (which would be identi�ed by its own ID)
contacts a server, it can include the e-record for its ID in the data, thus side-stepping the necessity for the server
to query the DHT to return a packet to the client.

Both the sender and the receiver have some control over how a packet is forwarded in DOA. �e sender can
prepend to the data returned from the DHT a sequence of IDs representing the needs of the sender. So the packet
will �rst �ow to services speci�ed by the sender, then to services speci�ed by the receiver. I believe that the
expressive power of i3 and DOA to de�ne an execution order for PHBs is equivalent, but there may be creative
ways of using the two architectures, perhaps ways not contemplated by their creators, that could create very
complex execution orders. Because in DOA the DHT is used as a query mechanism rather than a forwarding
mechanism, it is probably simpler for a sender to determine what the execution order of the PHBs will be. A
sender could look up the �rst ID, look at the returned data, recursively look up the sequence of IDs in that data,
and eventually construct the �nal sequence of service points through which the packet will �ow. Of course, an
intermediate node could rewrite the header or otherwise misdirect the packet, but since all the services in the
path are speci�ed by either the sender or the receiver , if a service mis-directs tra�c it is a signal that the service
is not trustworthy. Normal execution would not involve the invocation of a service unless either the sender or the
receiver requested it. (In DOA all delivery is intentional–there is no contingent delivery in DOA at the level of
services speci�ed by IDs.)

DOA must deal with the situation where the interests of the sender and receiver are not aligned. If the sender
is an a�acker, he can be expected to manipulate the data that comes back from the DHT before sending the
packet. He might omit some of the IDs and a�empt to send a packet directly to the �nal ID in the sequence, thus
bypassing some services speci�ed by the receiver (presumably these might be protection services rather than
functional services). DOA does not provide a clean way to map adverse interests into a coerced delivery mode,
where the sender must send the data to the IDs in turn. �ere are two options in DOA that can deal with this
situation. If the later IDs map to a di�erent address space from the sender, then the sender cannot address the
�nal receiver directly. (�e coercion in this case would be a form of topological delivery, using a DOA node that is
an address translator to coerce the sender to traverse it.) DOA also speci�es a way for an intermediate node to
sign a packet using a key shared between the intermediate node and the receiver, so that the receiver can check
that the packet actually passed through that node. �is scheme gets complex if multiple intermediate nodes need
to sign the packet, but can insure that the packet has been properly processed. However, it cannot prevent a
malicious sender from sending packets directly to the address associated with the �nal ID, so DOA cannot prevent
DDoS a�acks based on simple �ooding. �e paper notes that some other mechanism is required for this purpose.

64 178

David D. Clark Designs for an Internet

Nebula Nebula, discussed in more detail below, de�ned a much more robust mechanism to control routing of
packets through services, in order to prevent (among other things) the problem in DOA of an untrustworthy node
that might mis-direct a packet, skip a processing step, and so on. In Nebula, the sender and receiver can each
specify the set of services they would like to see in the path between them, but the query to the DHT to retrieve a
set of IDs is replaced by a query to the NVENT control plane, where there is an agent representing the interest of
every such server, and all such servers must consent to serve the packet before it can be sent. NVENT computes,
with some clever cryptography, a Proof of Consent (POC) that is returned to the sender. �e POC serves as a
form of source route, and only by pu�ing this POC into the packet can the packet be successfully forwarded;
Nebula is “deny by default”. As the packet traverses the sequence of services, the POC is transformed into a
Proof of Path (POP), which provides cryptographic evidence that all the service nodes have been traversed in the
correct order. �ese mechanisms address the issue brie�y mentioned in the DOA paper where it is suggested that
a cryptographic signing be used to con�rm that the packet has been processed by an intermediate node.

ANTS ANTS is an example of Active Networks, as initially proposed in [Tennenhouse and Wetherall, 1996].
�e concept proposed there was that packets carry small programs that are executed by ”active routers” when the
packet arrives. �e program in the packet determines the packet treatment (for example, exactly how the packet
is forwarded). In other words, the packet rather than the router speci�es the PHB applied to the packet. ANTS
is a reduction to practice of this idea. In ANTS, the program is not actually in the packet; rather, the name of
the program (a cryptographic hash of the code) is in the packet, along with initial invocation parameters (what
they call the type-dependent header �elds). �e type-dependent header �elds are the explicit arguments to the
named PHB; the packet is intentionally delivered to the node by the address in the packet. A packet carrying this
information is called a capsule.

�e idea of active code in a packet raises a number of thorny challenges related to security, such as protecting
the router from malicious code and protecting �ows from each other. ANTS takes a pragmatic approach to these
problems, and requires that the code be audited by a trusted party before being signed and deployed. As well, the
code execution is sandboxed–placed in a constraining environment that limits what the code can do. �e code is
distributed to each active router along the path using a clever trick. Part of the header is the IP address of the
previous active node that processed this packet. If this router does not have the code, it asks that router to send it.
�at previous router presumably has the code because it just processed the packet itself. In this way, the �rst
packet in a �ow proceeds from active router to active router, sort of dragging the required code behind it. Code,
once retrieved, is cached for some period so subsequent packets can be processed e�ciently.

When a capsule is forwarded, the type-dependent header �elds can be modi�ed, in order to modify the execution
of the program at subsequent nodes. �e active code can also store state in the router, which permits a range of
sophisticated PHBs. However, the code cannot perform arbitrary transformations on the router state. �e code is
restricted to calling a set of speci�ed low-level router functions; the paper describes the active code as being ”glue
code” that composes these functions in ways that implement the new service. �ese low-level router functions
(what they call the ANTS Application Program Interface or API) now become a part of the ANTS architecture.
Ideally, all active routers would provide these same functions, so they end up being an example of ”Issues on
which we must all agree for the system to function”, which was one of my criteria in Chapter 1 for classifying
something as architecture. �e ANTS paper identi�es the router functions, the structure of capsules, the address
formats, the code distribution scheme, and their use of a TimeToLive �eld to limit packet propagation as the
elements of the ANTS architecture.

One cannot write arbitrary PHBs in the context of the ANTS system. �e goal of the design was to allow
di�erent sorts of forwarding algorithms to be implemented for di�erent classes of packets. In this respect, ANTS
has something in common with XIA, which has di�erent routing schemes for di�erent classes of packets. XIA
actually has more expressive power, since in ANTS the active code cannot implement a di�erent, long-lived
routing protocol among all the nodes–the state variables in the router associated with a given program are

65 178

David D. Clark Designs for an Internet

short-lived. In XIA, there can be a separate routing protocol running to support each class of identi�er. But there
is a similarity between an XIA identi�er of a particular type and an ANTS program name. XIA does not discuss
how the code for a new identi�er class is deployed–this is le� as a exercise in network management. XIA allows
for a series of identi�ers to be in a packet header–it would be interesting to work out whether an ANTS-like
scheme could allow more than one program invocation to happen in processing a capsule. �e PLAN scheme also
allows a incoming packet to select from a range of routing functions to derive how it is to be forwarded.

�ere are schemes similar in objective to ANTS. �e PAN proposal [Nygren et al., 1999] uses a language that
permits high-performance execution to argue that this style of active networking is practical. �e PLAN proposal
[Hicks et al., 1999] similarly proposes a new language speci�cally designed for this sort of active code. ANTS
used Java as its programming language, which had some performance implications.

Requirement: shaping industry structure
One of the requirements I listed for an architecture was its economic viability and the industry structure that its
structure induced. Few of the academic proposal for architecture directly address this goal, but architects from
industry have been quick to understand and respond to this requirement. In 1992, when the government, under
the urging of then Senator Gore, announced the vision of the National Information Infrastructure, industry was
quick to respond with what it considered its critical concern, which was the modularity of the design and the
resulting implications for industry structure. �ey understood that since the private sector was to deploy the NII,
the structure of the industry was key to its success. Two di�erent groups developed a response to the call for an
NII.

CSPP �e CSPP, now called the Technology CEO Council, responded to the concept of the NII with a high-level
vision document, perhaps consistent with dra�ing by a group of CEOs. It does not talk about architecture,
but contains a requirements list that is in some respects similar to what I have discussed here (access, �rst
amendment, privacy, security, con�dentiality, a�ordability, intellectual property (protection of), new technologies,
interoperability, competition and carrier liability (freedom from)).

XIWT �e Cross-Industry Working Team, convened by Robert Kahn at the Corporation for National Research
Initiatives, dug deeper into the potential architecture of an NII. �ey described a functional services framework
and a reference architecture model. A�er their own list of requirements (sharability, ubiquity, integrity, ease of use,
cost e�ectiveness, standards and openness), this group focused on the critical interfaces that would de�ne the
modularity of the NII. �ey emphasized two interfaces that were not well-de�ned in the Internet: the Network-
Network interface (the data and control interface that de�nes how ISPs interconnect) and the Network Service
Control Point to Network interface, which would allow for intelligent control of the network, perhaps supporting
the ability of third parties to control the behavior of the network. �is la�er interface is somewhat reminiscent of
the intelligent network interface being contemplated by the telephone system to allow the control of advanced
services, and is a hint that the members of the XIWT were not totally commi�ed to the idea of the “dumb,
transparent” network. Perhaps in the proposal for a Network Service Control Point we see an early glimmer of
So�ware De�ned Networking.

5.3 Active Networks and virtualization
�e ANTS scheme mentioned above is an example of Active Networks, a concept proposed in
[Tennenhouse and Wetherall, 1996]. Active Networks is a point of view about design, not a speci�c architecture,
and a number of di�erent approaches, with di�erent architectural implications, have been proposed under the
banner of Active Networks. ANTS, mentioned above, is only one of them. �e general idea is that a router should
not be a statically programmed device with function �xed by the vendor, but a device in which new code can
be added at run-time to implement new functions. Various examples of Active Networks can be classi�ed along

66 178

David D. Clark Designs for an Internet

several dimensions: the purpose of the active code that is added to the router, how the active code is installed,
what set of packets the code is applied to and whether the headers of the packets need to be modi�ed to exploit the
capabilities of the active code. Depending on the answers to these criteria, the di�erent schemes can be described
as more or less “architectural”, depending on the degree to which they de�ne and depend on ”Issues on which we
must all agree for the system to function”.

Delivering the code One of the original concepts in Active Networks was that active code was delivered in a
packet and was executed when that packet arrived as part of forwarding that packet. As the concept evolved,
alternatives emerged in which the code is delivered and installed to be executed on subsequent packets, either
packets that are part of a given �ow, or in some cases on all incoming packets. �us, the Active Network
concept includes both programmability at the packet level and extensibility of the node. An example of a scheme
that focused only on router extensibility is Router Plugins [Decasper et al., 1998]. �e Smart Packet system
[Schwartz et al., 1999] puts a very compact code element into the packet that is executed when the packet arrives
at a given node. �e PLANet scheme [Hicks et al., 1999] supported both programmability of the packet and the
ability to extend the router functionality. It thus exploits two di�erent languages, Packet Language for Active
Networks (PLAN), which is carried in the active packets, and OCaml for router extensions. �e ANTS scheme did
not put the program in the packet, but had each router retrieve the code as needed. �is removed the requirement
that the code �t into the packet. ANTS packets speci�ed which code was to be executed when they arrived, so
execution of the code was limited to the �ows of packets that requested the treatment.

�e function of the active code For a variety of reasons, most Active Network proposals carefully limit what
the active code can do. One reason is security–code that can make arbitrary modi�cations to the router state
would seem to pose an unacceptable risk of malicious perversion of router function. Schemes that allow the
dynamic installation of highly functional code have to restrict the ability to install such code to trusted network
managers. Second, especially if the code is delivered to the router in a single packet to control the processing
of that packet, the code has to be compact. For these reasons, many Active Network schemes provide a set
of primitives that the active code can call, and the active code (several schemes call it “glue code”) composes
these primitives to achieve the desired function. Di�erent schemes focus on di�erent functional objectives, and
characterize these objectives by the primitives the scheme de�nes. �e ANTS scheme described above has the
objective of �exible forwarding of packets, and the primitives support that goal. In contrast, the Smart Packet
scheme has the goal of supporting sophisticated and �exible network management, and thus provides primitives
to read management data from the router. �e PLANet system includes both �exible forwarding and network
diagnosis as functional objectives. �e paper on PLAN describes how PLAN active code can be used to implement
diagnostics similar to ping and traceroute.

Program isolation and security �e concept of active code raised many challenging security issues, perhaps
most obviously how to keep a piece of active code from interfering with �ows that do not want to be a�ected by
the code. “Pure” active schemes address this problem by having the code delivered in the packet and executed
on behalf of that packet. In other words, the role of any piece of code is limited to the packet that carried it.
ANTS addresses this problem by having the packets name the code that is to be executed on behalf of that
packet. PLANet describes an option at the other extreme, where one source can send a packet that installs a
router extension that changes the queuing discipline of the router for all �ows through the router. �e Active
Bridge project [Alexander et al., 1997] describes the downloading over the network of active code (which they
call switchlets) that bootstrap a box with ethernet bridge functionality, starting from a machine that only supports
loading dynamic code. �is code, once loaded, is used to handle all packets passing through the switch, so clearly
the ability to install this sort of code must be restricted to the trusted network manager. �e Active Bridge system
also uses a strongly typed language (Caml) to provide isolation among di�erent modules, so the system achieved

67 178

David D. Clark Designs for an Internet

security both through restricting which actors can download code as well as strong, language-based mechanisms
to protect and isolate di�erent code elements from each other.

Network virtualization �e Active Network concept is that routers can be dynamically augmented with
enhanced functionality, and di�erent packet streams can potentially receive di�erent treatment based on the
execution of di�erent functionality that has been downloaded in one way or another. One variant of this concept
is that a router is just a specialized computer that supports virtual routers (by analogy to other sorts of device
virtualization). It permits di�erent versions of so�ware implementing router functionality to be dynamically
loaded into into di�erent slices of the physical device. �is allows one physical device to support several network
architectures (of the sort I have been discussing here) at the same time, so that they can co-exist on the same
infrastructure. Multiple routers connected together and running code supporting the same network would then
be a virtual network.

Virtual networks have something in common with active networks, but there is a di�erence in emphasis. �e
idea of virtual networks has emerged in large part from a desire to allow multiple network architectures to
co-exist on a common physical infrastructure, as opposed to the goal of having di�erent packet streams within a
given architecture receive di�erent treatment, or to perform advanced network diagnostics. Virtual networks
require the installation on the physical router of code that performs all of the network functions associated
with an architecture (forwarding, routing, network management and control, and so on), which means that
virtualization code is a complete protocol implementation, not “glue code” that sits on top of functional building
blocks associated with a given architecture. For this reason, the isolation among the di�erent code modules has
to occur at a lower level of abstraction, and the installation of the code is almost certainly much more tightly
controlled than if a packet carries its own processing code with it. So active networking tends to focus on the
speci�cation of a language for de�ning functional enhancements, clever schemes for code dissemination and the
expressive power created by di�erent code modules and packet headers, while network virtualization tends to
focus on low-level schemes for code isolation. Network virtualization also depends on schemes to disseminate
code, but they tend to have a very di�erent character than some of the active network schemes, since they must
depend on some basic forwarding architecture to distribute code that then instantiates a di�erent architecture.

One of the earliest virtualization schemes that I know of is Tempest [van der Merwe et al., 1998], which does
not focus on diverse network architectures (all of the virtual networks are based on the ATM architecture) but
on diverse control schemes for the same data forwarding mechanism. �at paper, from 1998, introduces the
term virtual network, perhaps for the �rst time. �e idea of a virtualized router, and building virtual networks
by con�guring connected virtual routers, is well-understood, and in fact commercial routers today are in some
respects virtualized, in that they can run multiple copies of the forwarding so�ware at the same time, although it
is the same so�ware. In other words, today’s routers will allow an operator to build multiple networks out of
one set of physical elements, but they all run the Internet Protocol. Building multiple IP-based networks is an
important capability in the commercial world, in that it allows Internet Service Providers to provision private IP
networks for customers (for example, large corporations) that run their own private networks.

In the context of the Future Internet Architecture program, a virtualized router was proposed early on as a
way to allow the research community to deploy multiple experimental architectures on one common platform
[Anderson et al., 2005]. �is idea, put forward in the early stages of the FIA program, was in part the motivation for
the development of the Global Environment for Network Innovations (GENI) project, an NSF-funded experimental
network platform.2

Architectural considerations Di�erent Active Network schemes (and network virtualization schemes) have
di�erent architectural implications. Schemes that carry executable code in packets must standardize a number of
conventions, which will become part of the architecture. �ey have to standardize the programming language,

2 For information on GENI, see h�ps://www.geni.net/.

68 178

David D. Clark Designs for an Internet

how programs are embedded in packets and how they are executed, and what functions that code can call. �ey
may depend on some underlying forwarding architecture, such as IP. �ese schemes will specify many aspects
of the packet header, including the parameters that the packet carries that are handed to the code when it is
invoked. In contrast, schemes that more resemble network virtualization try to minimize what is standardized
(or made a part of the architecture). �ey have to specify how code is wri�en and installed into routers, but the
only requirement they impose on the packet header is some simple identi�er that the virtualized router can use
to dispatch the packet to the correct virtual router (or slice, or switchlet, depending on which scheme is being
discussed).

Most of the Active Network schemes use intentional delivery of packets to the smart router where the active
code is to be delivered. PLANet and ANTS fall in this category. In contrast, the Smart Packet scheme included
the option of contingent execution of the in-packet code, so all smart routers along the path had to examine the
packet to see whether it required evaluation at that site. �e Smart Packet scheme encoded this information as an
IP option. �e NetScript system [Yemini and da Silva, 1996] has some of the �avor of both active nets and virtual
networks. �e NetScript system allows the network operator to install very low-level code (essentially di�erent
architectures), but emphasized the use of a cra�ed programming language to enhance secure execution.

In general terms, Active Networks tend to shi� the architectural focus away from exactly how packets are
forwarded, and rather to how code is installed and run. �ey shi� a�ention from the architecture of the data
plane, which becomes more plastic, to the architecture of the management and control interfaces that allow the
network to be con�gured.

5.4 The Future Internet Architecture project
�ere were several di�erent architectural proposals that were developed as a part of the NSF Future Internet
Architecture program, some of which I mentioned earlier. I describe them below.

Expressive Internet Architecture (XIA)
�e emphasis of the XIA scheme is on expressive addressing in packets, to allow the network to use a variety
of means to deliver the packet to the intended destination, and to provide a range of services in the network.
�e rich addressing/forwarding mechanisms in XIA allow a packet to carry several forms of addresses at once.
For example, they can carry the content id (a CID) of a desired piece of content, but as well the ID of a server
hosting that content (a SID), or the host where the service is located (a HID) or an administrative domain in which
the CID is known (an AD). �is richness is described as expressing intent, and the other addresses allow various
forms of fallback forwarding. �is �exibility allows the end-host to select from a richer set of network services. It
also should contribute to the longevity of the design, as it would permit a more incremental migration to a new
sort of XID than the current migration from IPv4 to IPv6.

Some speci�c features of the XIA scheme are:

• �e various IDs, collectively called XIDs, are speci�ed to be self-certifying. For example, they may be the
hash of a public key, or the hash of the content to which they refer. �is design allows the end-points
(e.g. the applications or perhaps the actual human users) to con�rm that the action they a�empted has
completed correctly: that they connected to the host they intended, got the content they intended, and so
on. Put otherwise, these mechanisms transform a wide range of a�acks into detected failures.

• XIA gives the end-point options for control to bypass or route around points of failure in the network.

• �e SCION mechanisms (part of XIA) provide a structure to break up the overall network into what are
called trust domains, which allow a variety of end-point controls over routing.

XIDs provide a means to con�rm that the correct action occurred once the end points have the correct XIDs.
However, most network operations start with “higher level” names that describe what is desired, such as URLs,

69 178

David D. Clark Designs for an Internet

email addresses, and the like. Since di�erent applications may involve di�erent sorts of high-level names, the
XIA architecture does not de�ne how these names should be converted to XIDs in a trustworthy way. �e XIA
architecture gives requirements as to what the application and its supporting services must do, but does not
dictate a mandatory way of doing it.

MobilityFirst (MF)
�e MobilityFirst architecture is motivated by the desire to deal with issues raised by mobile end-nodes–in
particular movement of devices from one network access point to another, and transient outages when devices
become unreachable. In this architecture, naming/addressing is done at two levels. At a higher level, a number
of name services similar to the DNS, which they call Naming Services (NSs), map from a host, service, sensor,
content or context (a context is a set of things that match some criteria) to a �at ID, a GUID. At a lower level,
there is a service, the Global Name Resolution Service or GNRS, that maps from a GUID to its current location,
which is a Network Address, or NA. A network address has a network part NA:N and a port part NA:P.

�e essential idea behind the MobilityFirst design is that both the destination GUID and the destination NA are
included in the header of a packet. �is allows rapid forwarding based on the NA:N, but also allows elements in
the network to deal with mobility and redirection by making dynamic queries of the GNRS as the data is moving
through the network. If the NA included in the packet by the source is not the current location of the destination
(e.g. the network N cannot resolve the GUID), routers in the network can a�empt to look up a new NA. �e design
also has the ability to store data in transit at intermediate points if the destination is temporarily unavailable due
to wireless connectivity issues. When data is stored, it is identi�ed by its GUID, until a new NA can be determined
for the destination.

To enhance security, both the GUID and the NA are public keys, so anyone having a GUID or a NA can con�rm
that the binding is valid. �e namespace of NAs is thus �at. �eir design assumption is that there might be as
many NA:N values as there are routing table entries today.

�e piece of mechanism that must be designed to make MobilityFirst realistic is the GNRS, which must be able
to map a large set of GUIDs (perhaps 100B) to the corresponding NA in “real time”, as the packet is in transit.

Named Data Networking (NDN)
�e NDN architecture is distinctly di�erent from the current approaches to addressing and forwarding. Instead
of sending a packet to a host, in NDN one sends a packet addressed to a piece of information, and gets the
information in a return packet. In NDN, there are two sorts of packets, interest and data. An interest packet is
sent to request some named content, and the data packet returns that named content. In neither case is there a
“host” address in the packet, only the name of the desired information.

An interest packet contains the name of the content being requested. A data packet contains the name of the
content, the data itself, and a signature, which con�rms the contents, as described below.

Names of content are hierarchical, and begin with the authoritative owner of the content, followed by the name
of the speci�c content. Any owner/creator of content has a public/private key pair, and uses the private key to
produce the signature. �us, anyone with the public key of the owner can verify the data packet: in particular the
integrity of the content and the binding to the name.

A distributed mechanism will allow nodes to build up a catalog of public keys for di�erent owners, a key
certi�cation graph. In this way, routers can learn public keys, which will allow them to validate packets (as
appropriate) as they forward them. (In particular, forged data packets that claim to match an interest can be
detected in the net, not just at the �nal end-point.)

�e name of data also describes its location. When information moves to a new location, there is a variation of
a data packet called a link that encapsulates a content packet and is signed by the operator of the current location.
�is signature allows anyone with the public key of the current location to verify that the location named in the
packet is the actual sender of this packet.

It is assumed that on top of this mechanism there will be a variety of search tools, content providers and so on
70 178

David D. Clark Designs for an Internet

that, among other things, provide for translation between other sorts of names and queries and the speci�c names
used by NDN.

A key technical aspect of NDN is that when an interest packet is routed toward the location of the content, a
copy of the interest is kept at each router. In NDN, there is thus per-packet state in each router along the path
followed by the interest. �e copy of the interest records the router port from which the interest came, as well
as the name of the content being requested. �e interest packet itself does not carry any “source address” from
where the interest originated: this information is recorded in the per-packet state in all the routers along the path
back to the original requestor.

When a router forwards a data packet, it has the option of keeping a cached copy for some period of time. �is
cached copy can be used to satisfy a request, rather than having to fetch the content from the original location.
�is mechanism allows for the e�cient delivery of popular content.

Nebula
Nebula is concerned with the implications of cloud computing on a future Internet architecture. �e Nebula
architecture o�ers the application access to and control over a much richer set of services than are available in
the Internet. �e responsibilities of the network are highly reliable availability, predictable service quality, and
assuring that the requirements (policies) of all the relevant actors are taken into account as tra�c is routed across
the network. �e relevant actors include networks themselves, and as well higher-level service elements.

An example will help to illustrate what is meant by that last responsibility. Nebula, like essentially all architecture
proposals, assumes that the network is made up of regions that are separately built and operated, o�en by private-
sector providers (like today’s ISPs). �ese providers will have policies governing which sorts of tra�c (e.g. for
which classes of senders and receivers) they will carry, and so on. Today, the only tools that can be used to express
these policies are the expressive power of BGP, which may be very limiting. In addition, the application may
want to control the routing of tra�c by directing it to higher-level service elements. A simple example might be
a “packet scrubber” that tries to detect and remove malicious tra�c, or a higher-level processing element such
as a virus detector in email. A service might wish to assert that it will only receive packets that have �rst gone
through the scrubber, even though the scrubber is not directly adjacent to the service. In Nebula, the network
itself can enforce this sort of routing policy.

To do this, the Nebula architecture has two relevant parts: a data plane (NDP) that can enforce arbitrary
forwarding policies, and a distributed control plane (NVENT) that can compute these policies. Every actor in the
network will have an agent in the NVENT layer, and these layers run a distributed algorithm to construct a set of
forwarding rules (a policy) for any requested transfer. While the control plane is still under development, there is
a speci�c proposal for the data plane, and a claim that it can enforce arbitrary policies with respect to valid routes
through sequences of actors.

Nebula is not a pure datagram network–to send a packet the NVENT policy mechanisms must �rst compute
and return to the sender a string of information that will authorize the data plane to forward the packet. However,
these routes can be computed in advance and cached. NDP is “deny by default”; without this NVENT information
to put in the packet, it will not be forwarded. What is returned by NVENT is a “proof of consent” (POC), which is
a cryptographically signed sequence of values that (for each step in the processing/forwarding) encode all the
previous steps that must have processed the packet before this actor receives it. Agents in NVENT representing
all the regions must cooperate to construct this POC. Clever use of crypto and XOR allow this to be coded in
a way that is linear in the number of actors. As the packet is forwarded, each actor that processes the packet
computes, using a similar set of methods, a “proof of path” (POP), which allows each subsequent actor to con�rm
that the previous step actually did process the packet. �us, by comparing at each stage the POP at that point
with the POC that was computed by NVENT for that stage, the NDP can con�rm, for each actor in the path, that
the packet has already passed through all the required previous actors. For a detailed explanation of how this
mechanism works, see the paper that describes ICING [Naous et al., 2011].

71 178

David D. Clark Designs for an Internet

ChoiceNet (CN)
In contrast to the other FIA projects, which describe a speci�c forwarding mechanism (e.g. the data plane),
ChoiceNet is focused at a higher level: the control plane and what they call the economy plane. �e assumption
is that the data plane (which might be implemented using one of the other FIA proposals such as Nebula) will
provide alternatives or choices among services: such as IPv4, IPv6, di�erent paths with di�erent qualities, or other
services in the network. For example, a user might choose to pay more to get a higher quality movie. �e goal is
to make these options explicit and allow the user to pick among them.

�e assumption is that the network will have a connection setup phase, and the user will express his choices at
that time. �e setup phase is implemented in the control plane, where component services can be selected, or
composed to make new services. �e result will be implemented in the data plane.

A way to conceive of the economy plane is to think of an app store for services. Di�erent service o�erings
would be advertised, there would be rating systems, and so on. �e user would make simple choices, which would
translate into actual services by the composition of elements in the control plane.

Introspection or veri�cation is an important part of a control plane. Did the user get what he paid for? ChoiceNet
includes components that measure what is going on to verify what has been provided. More speci�cally, an
overall service may be composed of many parts. �ey all get a share of money, but should also get the correct
share of blame for failure. So ChoiceNet will provide some external veri�cation as part of any service. Service
proofs and payment veri�cation are exchanged between data and control plane.

�e term “user” in this discussion might be an actual person, or a so�ware agent, or expert (human agency)
like a sysadmin se�ing up service for user.

One challenge for ChoiceNet has to do with whether the users can realistically make these choices, whether the
o�ered services (in the service app store) will be well-enough speci�ed that the user will not be misled, and so on.

Some comparisons of the FIA projects
In general, all the schemes that specify a data plane share a feature that distinguishes them from the current
Internet: a two-step rather than one-step name-to-address resolution scheme. In the Internet, a high level name
(e.g. a URL) is mapped to an IP address by the DNS. �is happens in one step. �e IP address is being used as
both an identi�er for the end-point and its location. All of these schemes have a separate identity and location
schemes, and separate mechanisms for mapping from name to identity and from identity to location, except for
NDN, which has e�ectively eliminated any concept of a location. Most of the schemes have a way to assign an
identity to things other than physical end-nodes, including services and content.

In contrast to the current Internet, which uses IP addresses as a weak form of identity for end-nodes, all of
these schemes implement the idea that the identi�er of an end-point entity, whether a host, a service, a piece of
content or the like should be “self-authenticating”. Mechanically, this is done by making the identi�er a hash of a
public key or the content. Assuming that the entity holds the private key, a challenge-response exchange can
con�rm to each end that the other end is as expected. �is check prevents many sorts of a�acks in the network,
including DNS poisoning, packet mis-direction, and so on, from being successful.

However, detecting a failure or an a�ack is not enough to assure successful operation–all it can do is give a
clean signal of failure. To provide successful operation in the face of these sorts of a�acks, two more functions are
required: �rst a means to detect where in the network the failure or a�ack is happening, and a means to avoid
or “route around” this region. I discuss this framing in more detail in Chapter 8 Many of these schemes contain
mechanisms to try to isolate the region of a failure, and many of them give the end-point control over the route
selection to some degree. �is choice re�ects a preference for a basic design principle of the current Internet:
since the network is not aware of what applications are trying to do, the network cannot detect when a failure
has occurred. Only the end-points of the communication, which are aware of the desired application semantics,
can detect problems and a�empt to restore service.

�e projects are rather di�erent with respect to the range of services that they provide to the higher layers.

72 178

David D. Clark Designs for an Internet

• Nebula and ChoiceNet: these designs assume that service building blocks in the network can be composed
to present a rich selection of end-to-end services to the applications.

• XIA and MF: these designs provide a small number of service classes, corresponding to di�erent classes
of IDs–for example content, services and hosts. Each of these classes would correspond to a forwarding
behavior in each router. MobilityFirst also allows for additional functions to be installed on routers in the
path. MF does not support per �ow QoS.

• NDN: this design implements a single, general service that returns a set of bits associated with a name. It
allows for variation in service quality (e.g. QoS) using a �eld in the packet similar to the IP header of today.
�e only way that an application could embed service elements into the path from a client to the content
would seem to be to use some sort of “trick”, and create a URL in a request packet (what NDN calls an
interest) that names an intermediate service as its target and then embeds the name of the desired content
into the body of the URL.3

One way to understand these distinctions is that if the set of anticipated service classes is limited and speci�ed (as
with XIA) the relationship between the provider behavior (or a router PHB) and the resulting end-to-end service
can be de�ned as part of the speci�cation of the service class. On the other hand, if the set of anticipated services
is open-ended (as the example of the HIPAA-compliant path used by Nebula, or a path that avoids a particular
region of the world), the composition of the service from component parts must include end-point control over
the path, and a more complex and sophisticated composition algorithm, which implies a separate control plane.
All these schemes presume that there will be private sector actors, similar to the ISPs of today, that provision,
control and operate regions of the network.

In general, these architectures give these ISPs a larger role in the operation of the network.

• NDN: they are responsible for the dynamic caching of packets of data, validating the legitimacy of the data,
and so on.

• XIA: they provide a range of services (tied to types of XIDs) that can include content caching, multicast,
anycast to replicas of service or content, and so on.

• Nebula: they provide a validation that packets have followed the path that was generated by the data plane.

• MobilityFirst: like XIA, ISPs provide a range of services; they also host third party computing services on
their infrastructure and provide mobility-speci�c services such as short-term caching, redirection and the
like. Collectively, they implement the core function of binding name to location, the GNRS.

• ChoiceNet: the data plane is not speci�ed in ChoiceNet, but it must provide a set of interfaces to the control
plane, through which the data plane can be con�gured to deliver services. Enhanced services, and the
ability for the user to select them, is the central point of ChoiceNet

With respect to routing, all these schemes take the view that the network is build of regions (like the autonomous
systems or ASes of today) that are separately managed and deployed. Nebula and ChoiceNet give the end-points
control over routing at the level of picking the series of ASs to be used, but give each AS control over its internal
routing. XIA and MobilityFirst assume a rather traditional two-level routing scheme, as does NDN, but routing in
NDN has a very di�erent �avor, since it is identi�ers and not locations that drive the forwarding decisions.

Essentially all these schemes try to avoid the problems that have arisen from the hierarchical nature of DNS,
and its dominant role as a naming service, by allowing multiple naming services to co-exist. �e goal is to avoid a

3 One would have to consider if this “trick” of pu�ing one URL inside another would confound the security architecture of NDN, where the names
are used as a basis to relate certi�cates to content.

73 178

David D. Clark Designs for an Internet

single “root of trust”. However, this approach raises its own set of issues, which in general have not yet been
resolved.

I talked in Chapter 1 about the aspect of architecture that I called functional dependencies. �e architecture
should identify and make clear which operations depend on others, and what services have to be up and running
for the basic function of the network (packet forwarding) to operate successfully. I noted that the Internet re�ects
a preference for a minimum set of functional dependencies. Several of the schemes I have described here have a
richer set of functional dependencies.

• XIA: XIA is somewhat similar to the current Internet in its functional dependencies. Routers have a
somewhat more complex task, since they have to compute more than one set of routes for di�erent sorts of
identi�ers. It, like the Internet, presumes some sort of higher-level name service like the DNS.

• Nebula: Nebula depends on a presumably complex control plane (NVENT) that computes and authorizes
routes. If the distributed control plane malfunctions, there is no way to send packets, since Nebula is “deny
access by default”.

• MobilityFirst: In MobilityFirst, forwarding depends on the GNRS. �e GNRS is a complex, global system
that must map from �at ID to network ID in real time. �e robustness of this system is critical to the
operation of MobilityFirst.

• NDN: NDN depends on a routing scheme that provides routes for names, not numbers. However, it does
not depend on anything else. It shares with the Internet the goal of minimal functional dependencies. In
order for a node on NDN to request information (send an interest packet) it is necessary for that node to
know how to construct the name of the information (which may require a bit of context) but in principle
the nodes can construct that context in real time if necessary, depending only on each other rather than
any third party service.

5.5 Di�erent requirements–similar mechanisms
I discussed above a set of architectural proposals that had the goal of allowing the insertion of service elements
(what I call PHBs in Chapter 4) into the path of a �ow of packets. In general, they use some mechanism that lets
the provider of the overall service make an assertion that binds the name of that service to one (or a sequence
of) PHBs as the packets �ow from client to service. A quick comparison will suggest that the mechanisms used
to implement this goal have much in common with the mechanisms used by architectures focused on content
retrieval. In both cases, the provider of the content or service makes some binding from the name of that content
or service to some location in the network to which the client should send packets. Some of the other architectural
proposals make this point explicitly. For example, the designers of DONA stress that it can be used for a variety
of purposes, not just for retrieval of content. Similarly, the designers of NDN stress that while content retrieval is
the starting goal used to explain the NDN architecture, the mechanism is much more general.

Here is a summary of some of the naming/addressing/forwarding mechanisms I have discussed:

74 178

David D. Clark Designs for an Internet

Proposal Name Mechanism Resolution Mechanism
NewArch Forwarding Directive Relies on underlying routing

protocols
TRIAD URL style First packet: Forwarding

through AS-level routers
with name-based forwarding.

DONA P:L, where P is hash of public
key of creator and L is label
unique to P

First packet: Forwarding
through AS-level set of
routers with name-based
forwarding table. Subse-
quent packets: network-level
source address

i3 Sequence of global, �at IDs Forward packet through
DHT to location where ID is
hosted.

DOA Sequence of global, �at EIDs DHT system to convert EID
to IP or further EIDs

FII Region:ID, where ID is
unique in region.

Forwarding driven by Pathlet
source route.

MobilityFirst Region:ID, where the ID is a
global, �at identi�er, and Re-
gion is a hint

Route packet to Region. If ID
is not known, consult GNRS
for valid NET

XIA Content, Host, Net IDs in
DAG

Route to �rst entry in DAG,
fall back to next entry if �rst
routing does not succeed.

NDN URL style Longest pre�x match for-
warding on URL for every
packet.

PURSUIT Nested scope/entity IDs Recursive query of Ren-
dezvous Servers in the nested
scopes.

Netinf Global �at ID Name Resolution Service or
Name-based routing.

DTN Region:Entity, where Region
is global and Entity is known
within region.

Inter-region routing scheme.

In general, there are two sorts of high-level names that are used–those that are “�at”4 (and o�en self-certifying–
the hash of a public key or content) and those that have a hierarchical structure typi�ed by a URL. A further
distinction is whether the names have global uniqueness and routeability, or are only meaningful within some
scope.

TRIAD and NDN use URL-style names, and both depend on a name-level routing protocol that distributes
knowledge of (at the least the high-level component of) the name across the global network. However, TRIAD
only propagates the top two or three levels of the DNS name, and only to select “name-based routers” in each

4 �e term “�at” implies that the addresses have no structure to make the forwarding process more e�cient. �e current Internet assigns addresses
so that regions of the network are associated with blocks of addresses; this means that the routers only need to keep track of these blocks (the
pre�xes of the addresses) rather than every destination in the Internet. Even so, a forwarding table in a core Internet router today has over 400K
entries. �e size of the forwarding table in a router is an important consideration in the design of a forwarding scheme.

75 178

David D. Clark Designs for an Internet

Autonomous System. NDN propagates some part of the name (perhaps to a �ner degree than TRIAD) to every
router in the system.

For �at addresses to work, there has to be some way to use those addresses as a basis for forwarding in the
routers. One extreme would be to a�empt to construct per-address forwarding tables in each router. As I noted in
Chapter 2, the scalability of that approach was explored in [Caesar et al., 2006] and the results are not encouraging.
Many of the schemes sidestep the issue of scale by using as the address both the �at identi�er and some sort of
forwarding “hint” that can be used by the router. DONA, i3, DOA, MobilityFirst and XIA all use �at identi�ers
with global meaning, but with di�erent tricks to deal with the complexity of routing to a large number of �at
identi�ers.

• DONA uses a name of the form P:L (where P is the hash of a public key) to allow the option of propagating
routes of the form P:*, thus allowing a route to a principal rather than an individual piece of content. �e
forwarding table may still be very large (on the order of the number of content objects in the system, rather
than servers or physical end-points.) �is scheme is perhaps the most aggressive in terms of pushing the
limits of a routing protocol. �e routing challenge in DONA may be of the same scale as with NDN, even
though they use di�erent style names.

• i3 and DOA associate identi�ers with services or entities, not content, so the number of IDs is probably
smaller than with DONA. Both use DHTs as their preferred mechanism to resolve these IDs.

• MobilityFirst has �at, global self-certifying identi�ers for hosts, services and content. Normally, when a
sender looks up a user-friendly name and gets back the global identi�er, it also gets back a “hint”: the id
of a region (similar to an Autonomous System) within which the ID is likely to be known. It is assumed
that within the scope of an Autonomous System it is reasonable to have a �at forwarding table at the level
of content objects. Only if the ID is not known to the region is it necessary to deliver the packet based
on the ID. For this purpose MobilityFirst includes a Global Name Resolution Service, which is similar in
function to the mapping service in i3 or DOA, except that there may be many more names, if the IDs in
MobilityFirst include names of content objects. �ere are two approaches being explored in MobilityFirst to
build a demonstration GNRS: one based on a DHT and [[[Ask Arun for the latest description of where the
research is going.]]]

• XIA similarly has �at, global self-certifying identi�ers for hosts, services and content. To avoid having to
depend on a global service to map IDs to locations, XIA takes advantage of the rich address structure in XIA,
which is a DAG of IDs. �e �rst ID expresses the intent of the sender (i.e., the desired item), and subsequent
IDs in the DAG provide a fall-back forwarding option if the �rst ID is not known at a forwarding point.
For example, the ID of a network (an Autonomous System, similar to MobilityFirst) can be included in
the DAG, so that the packet can be forwarded toward the right AS where (again, as in MobilityFirst) it is
presumed the forwarding tables will know about the ID that expressed the actual intent of the sender. �e
architecture of XIA does not include the requirement for any service that can take in an arbitrary ID and
resolve it to a routable lower-level address.

All these schemes depend on the assumption that within some region of the network, forwarding on �at
addresses will be practical. While [Caesar et al., 2006] drew pessimistic conclusions about the ability to forward
based on �at addresses across the entire Internet, schemes to forward based on �at addresses in a region seem
more practical. For example, [Kim et al., 2008] describe a scheme that can handle millions of �at addresses in a
region. �e approach they use is in fact somewhat similar to the GNRS of MobilityFirst: a Distributed Hash Table
(DHT) in the various routers that can map an address to a forwarding decision. �e scheme takes advantage of the
more controlled environment of a region (for example, that the routers in the region can be reliably enumerated
using a link-state routing protocol).

76 178

David D. Clark Designs for an Internet

While most of the schemes above assume that names (whether of entities, services or content) have global
meaning, TRIAD, FII, PURSUIT and DTN assume that entity names have meaning only within some region.
Some schemes, such as MobilityFirst and Newinf, assume that names are globally unique but not always globally
routeable. Both FII and DTN do not require that entities have IDs that are globally unique. �ere is no mechanism
in either of them to look up an entity name and �nd out the region within which it is located. �e user must �nd
the location of the entity by query of a higher-level service. �e NewArch proposal (see below) is similar in that it
tried to avoid the creation of any names with global meaning.

NewArch NewArch is somewhat distinctive in this taxonomy, in that its abstract forwarding architecture
(Forwarding, Association and Rendezvous Architecture, or FARA), did not include any sort of global ID of end
points. �e assumption in FARA was that some sort of ID would be needed so that sender and receiver could
verify themselves to each other, but that these IDs should be a private ma�er between the end-points. FARA tried
to avoid pu�ing into the architecture (or more speci�cally, into the packet header) any ID that would act as a
global identi�er of the recipient. FARA assumed that communication occurred between entities, a term that could
be applied to an application on a machine, a machine, a cluster, and so on. It was an abstraction that could be
manifested in a number of ways. What the architecture required is that it be possible to construct a forwarding
directive or FD that would allow the network (and perhaps the operating system of the receiving host) to forward
the packet to that entity. In most reductions of FARA to practice, it was assumed that the FD would be some sort
of source route. Once the packet had been delivered to the entity, there was a further element in the packet, which
identi�ed the association of which this packet was a part. A common form of association would be a TCP-like
connection, and the association value in the packet would identify the right state variables in the entity for that
association.

It was assumed that the association ID had no meaning outside the set of associated entities. It was assumed
that the FD might contain some name for the destination entity as one of its elements, but that this would have
meaning (like many source route elements) only in the context of that step in the forwarding process. For example,
it might be a process ID inside a host. One of the goals of FARA was to hide, to the extent possible, exactly what
parties were communicating across the network by avoiding IDs with global, long-lasting meaning. Of course, the
FD may well contain a machine-level address, which provides considerable information about the communicating
parties. But FARA did not preclude having stateful forwarding elements (such as a NAT device) and an element in
the FD that was some sort of dynamic selector for the forwarding state stored in that device.

FARA presumed, but did not specify, some mechanism by which an entity that wished to receive communication
would be able to construct a FD that would cause tra�c to reach it. In a network like the Internet, this might just
be an IP address followed by a process ID. Di�erent instantiations of FARA might have FDs of a di�erent form.
FARA presumed but did not specify that there would be some sort of rendezvous system or RS to allow senders to
�nd receivers. �e receiver would initiate an entry in the RS with some higher-level name that could be used
later to query the RS and retrieve the FD (or the instructions as to how to construct it). �e discovery operation
would take the high-level name as an input and return the FD. �e RS also allowed the receiver to pass to the
sender a rendezvous string (or the instructions as to how to construct it) which tells the sender how to format the
information in the �rst packet of the communication to the receiver. Again, the meaning of this string was seen
as a private ma�er between the sender and receiver–the mandatory function of the RS was just that a opaque
string could be passed through it from receiver to sender. (�is mechanism could be seen as a limited form of
adding expressive power (a “scratchpad” in the packet)–weak since it is only intended for use by the end-points
and is only used in the rendezvous mechanism.

If the FD turned out to be invalid (the desired entity was not at the location indicated by the FD), FARA
deliberately did not provide any sort of global ID that could be used to �nd out the current location of the entity.
�e logic was thus: all the global name resolution schemes require that the receiver, if it moves in the system
and changes the path to reach it, must update the information stored about it in the DHT, or routing table, or

77 178

David D. Clark Designs for an Internet

whatever. Given that the receiver has to take some action to update its FD if the old one no longer works, it makes
just as much sense to use the RS for this purpose. So if a sender cannot reach a receiver, its recovery action should
be to make a fresh query of the RS and see if the FD has changed.

Dealing with adverse interests
Most architectures are described through the lens of aligned interests between sender and receiver. But most
also contemplate to some extent the problem of adverse interests–when the sender is not trustworthy or perhaps
simply an a�acker. One can look at the di�erent schemes in terms of how they deal with adverse interests. One
must look at both directions of the communication. Most of the architectures are described in terms of sender and
receiver (where the sender is the initiator of the connection–both ends will end up sending) or in terms of client
and server, or in terms of content requestor and content provider. Whatever the framework, either end can show
malicious intent with respect to the other.

�e architectures introduced in this chapter that serve to con�gure services in the path from sender to receiver
make explicit their role when interests are not aligned. All of the architectures use some sort of “�rewall” device
as an example of their utility. �ey deal to a varying degree with the problem of making sure that the a�acker
cannot bypass the protection device, but at least they acknowledge the issue. In contrast, the architectures
that are focused on the delivery of content pay less a�ention to this problem–in particular to the problem that
the receiver of the content may need protection in case the content contains malware. �e DONA proposal is
an exception; it explicitly discusses inserting a middlebox into the path of the returning content, although the
described mechanism seems clumsy, as the task of inserting the protection service is delegated to one of the nodes
that does name-based routing. TRIAD and NDN do not dwell on the issue of protecting the requestor from the
content it requests; they describe a scheme in which the requestor simply gets the content as sent. �ey focus
on the (admi�edly hard) problem of routing the content request to the closest copy of the content, and do not
discuss the problem of deploying services in the path from the content to the requestor, either protection services
or functional services such as format conversion, which is an example used in the DOA paper of a useful service
that might be delegated to an element in the net.

Counterpoint–the minimality principle
Some of the architectures I have described in this section o�er a very rich delivery service. �ey support sending
a packet in order to retrieve named content, or contact a service, or to a destination (or set of destinations in the
case of multicast.) A contrarian (and minimalist) view might be that no ma�er what the high-level objective of
the sender, in the end a packet is delivered to some location(s). �ese higher-level names (content or service)
must somehow be translated into a destination so that the packet can actually be forwarded. �e minimalist
principle would suggest we ask why the network itself, in a manner speci�ed by the architecture, should have the
responsibility of doing those translations. Perhaps that function ought to be assigned to some higher-level service.
�e sender of the packet would query this high-level service, perhaps just before sending the packet, in order
to get a low-level destination to which the packet is then directed. An example of such a design for multi-level
naming is described in [Balakrishnan et al., 2004].

Why is it useful to embed the translation service into the network itself? In some cases, the network may be in
the best position to make the translation. If the goal is to reach a version of a service (or a copy of some content)
that is the fewest network hops away, or the closest in terms of round trip, or over a path that is not congested,
the network might well have be�er access to this information. On the other hand, if the goal is to select a server
that is not overloaded, or not failing, the network does not know this. �e application is in a be�er position to
implement this sort of selection. To make the problem harder, an application might want to make a selection
based on both of these sorts of metrics, which implies some sort of cooperative decision-making–an idea that to
my knowledge has never been embedded into an architectural proposal.

�e same minimality question could be asked as a challenge to architectures such as DOA, which provide
architectural support for the placement of services into a path from a sender to the �nal destination. Perhaps this

78 178

David D. Clark Designs for an Internet

function should be implemented at a higher level. �is is the way the Internet works: it provides no support for
the con�guration of services, and still works. �e placement of services into a �ow of content is either done at the
application layer (as with Mail Transfer Agents in email) or is done using devices such as “transparent caches”,
which depend on contingent (or topological) delivery of the content to perform their function.

A possible criticism of architectures that focus on delivery to higher-level entities is that they have pulled down
into the network architecture part of what used to be an application-layer function, without pulling all of the
service requirements into that layer. �e design of email, with its application-speci�c forwarding architecture,
allows for certain sorts of protection services to be put in place in an application-speci�c way. �e initial design
of the Web did not address the issue of adding service elements to Web content delivery, which has led to various
sorts of ad hoc implementation strategies. Pulling a content retrieval model that is Web-like into the network
layer may actually make development of sophisticated application-speci�c forwarding architectures harder, not
easier.

Expressive power
It is interesting that most of the architectures I describe here do not include in their design any explicit arguments
to service points (PHBs). �e schemes with URLs as content identi�ers can encode any sort of information in
the variable length ID, of course. Nebula has a very rich set of explicit arguments–the Proof of Consent and the
Proof of Path. In general , most of the architectures seem to assume that the service elements will operate on the
data payload (doing format conversion, inspection for malicious content and the like). Many of the architectures
do distinguish the �rst packet in a connection, because that packet requires extra work to resolve IDs to more
e�cient network addresses. A careful review of all these architectures would include a catalog of any state in any
service elements, how that state is maintained, and to on.

Almost all of the architectures try to avoid contingent delivery except for the basic packet forwarding mecha-
nisms. �ey use intentional delivery, with the sender and/or the receiver specifying the path of the packet across
the service points. �e use of intentional delivery is probably an aid to be�er debugging when things go wrong.

79 178

Chapter 6

Longevity

6.1 Introduction–the goal of longevity
In comparison to many artifacts of computing, the Internet has lived to an old age–it is over 35 years old. Opinions
di�er as to the extent that it is showing its age, and among some researchers, there is a hypothesis that the Internet
of 15 years from now might be built on di�erent principles. Whether the network of 15 years from now is a minor
evolution from today’s network, or a more radical alternative, it should be a �rst-order requirement that this
future Internet be designed so that it also can survive the test of time.

I have used the terms “longevity”, or “long-lived”, to describe this objective. �e objective is easy to understand,
but the principles that one would use to achieve it are less well understood. In fact, there are a number of di�erent
theories about how to design a network (or other system) that survives for a long time. In this chapter I argue
the point of view that many of these theories are relevant, and that one can achieve a long-lived network in
di�erent ways, by exploiting various combinations of these theories in di�erent degree. While some theories are
incompatible, many are consistent with one another.

�e approach I take here is inspired by the book �eories of Communication Networks
[Monge and Contractor, 2003]. �e topic of that book is not networks made of routers, but social networks made
out of people and their relationships. �ey identify many theories that have been put forward to explain the
formation and durability of social networks, and their thesis is that many of these theories are valid, to di�erent
degrees, in di�erent such networks. So it is necessary to have a multi-theory, multilevel framework in order to
explain the character of any given social networks. Since there are many examples of social networks in the real
world, one can do empirical research to try to determine how (for example), theories of self-interest, collective
action, knowledge exchange, homophily and proximity shape a given network. While we have fewer networks as
examples than these authors do, we can still a�empt to catalog the theories that have been put forward to explain
why a network might or might not be long-lived.

6.2 Classes of theories
With some degree of over-simpli�cation, many of the theories of longevity can be classi�ed into three subclasses,
as follows:
�eories of change: �ese theories presume that over time, requirements will change, so a long-lived network

must of necessity change. �eories of this sort sometimes use the word “evolvability” rather than “longevity” to
describe the desired objective, since they assume that a network that cannot change to meet changing requirements
will soon cease to be useful. �e word “change” as used here, usually has the implication of uncertain change; if
the future trajectory of the requirements on a system could be completely characterized, one could presumably
fold these into the initial design process, if the cost were not prohibitive. �e XIA and FII proposals would �t in
this category.1

1 �e various architectural proposals I use as examples here are introduced and discussed in Chapter 5.

80 178

David D. Clark Designs for an Internet

�eories of stability: in contrast to theories of change, theories of stability presume that a system remains
useful over time by providing a stable platform on which other services can depend. �e NDN proposal might �t
into the category.
�eories of innovation: �ese theories assume that change is bene�cial, not just (or rather than) inevitable.

�ese theories stress the importance of change and innovation as economic drivers. �e FII proposal is speci�cally
an example of this category.

�ese classes of theories are not incompatible. �eories of innovation are o�en theories of stability, in that
the stability of the network as a platform allows innovation on top of that platform by what innovation theory
would call complementors. Taking an example from operating systems, it is the stability of the interfaces to the
operating system that invites application designers to take the risk of developing and marketing new applications
for that system.

6.3 Architecture and longevity
I have de�ned the term “architecture” to describe the basic design concepts that underlie a system like a network:
the top-level modularity, interfaces and dependencies, the assumptions that all parties must take as globally
consistent, and so on. Within a theory of stability, architecture plays a natural role: it is part of what de�nes the
stability. With respect to theories of change, however, the relationship is more complex. If architecture de�nes
those things that we want to have longevity, how does architecture encompass change
Stable architecture that supports change: in this view, the architecture embodies those aspects of the

system that do not change. It is the stability of the architecture that permits the overall evolution of the system.
�e XIA proposal, with its �exible address header, is an example of this category.
Evolving architecture: in this view, the architecture itself can (and does) evolve to address changing needs.

If the architecture cannot adequately evolve, this leads to violations of the architecture, which (according to these
theories) leads to a gradual loss of function, and an increasing di�culty of further change, an ossi�cation of the
system that gradually erodes its utility. �e FII proposal is an example of this category, where the higher-level
architectural framework allows the introduction of new embodiments over time.

The theory of ossification
�e theory of ossi�cation was perhaps �rst put forward with respect to operating systems by
[Belady and Lehman, 1976]. �ey pose their First Law of Program Evolution Dynamics, the Law of Con-
tinuing Change, which states that a system that is used undergoes continuing change until it is judged more cost
e�ective to freeze and recreate it. According to this point of view, systems lose the ability to evolve over time,
and eventually have to be redone from scratch in order to allow continued change. So this theory is a theory of
change, but an episodic theory, which predicts that systems (or architectures) have a natural lifetime, and need to
be renewed from time to time by a more revolutionary phase.

New theories of design suggest that it may be possible to derive an architecture from a set of requirements
by a rigorous and formal process. It is an open question how such an architecture will deal with change. If one
changes the requirements and then derives a new architecture, the di�erences may be pervasive: essentially a
new design rather than a modi�cation of the old one. But if one takes an architecture derived in this way and
modi�es it a�er the fact, all of the theory that applied to the original design process no longer applies. �is sort of
action is like taking the output of a compiler and patching the machine code. It is thus possible that architectures
that have been algorithmically derived from requirements will be bri�le with respect to change, or (in term of
these theories) easily ossi�ed.

6.4 The theory of utility
All discussion of longevity must occur in the context of a network that is used. A network that is long-lived is a
network that continues to be used over time. So it is a precondition of a long-lived network that it be useful in the

81 178

David D. Clark Designs for an Internet

�rst place. (Chapter 2 lays out my framework for considering the extent to which an architectural proposal is
�t for purpose.) So any theory of longevity must have inside it some theory of utility, which explains why the
network is useful. �e �rst theory of longevity I identify is based on a speci�c theory of utility.

The theory of the general network
According to this theory, a fully general system, which could meet all needs, would not need to evolve, and would
thus be long-lived. �e theory of the general network is thus a theory of stability.

�e challenge, of course, is to de�ne exactly what a general network might be.
�e theory of the ideal network and impairments: according to this theory, networks provide a very

simple service that can be described in its ideal (if unrealizable) form. One statement is as follows:

An ideal data network will reliably deliver any amount of data to (and only to) any set of intended and willing
recipients in zero time for zero cost and zero consumption of energy.

Of course, such a network cannot be realized. Some limits, such as the speed of light, are physical limits that
cannot be violated. Others, such as cost, seem to improve over time as a consequence of innovation. Taken
together, these limits, sometimes called impairments, de�ne how far any practical network diverges from the
ideal. In this theory, a maximally general network minimizes the various impairments, and to the extent possible,
allows each set of users to trade o� among the impairments to the maximum extent possible. �us, queuing
theory seems to capture a fundamental set of tradeo�s among speed, cost (utilization) and delay. A network that
(for a given class of tra�c) does as well as queuing theory would predict, and allows the users to move along the
performance frontier de�ned by queuing theory, would be seen as a maximally general network.

According to this theory, if a network is maximally general with respect to the fundamental impairments
(a theory of stability) and is open to change with respects to impairments that change over time (a theory of
innovation), then such a network will be long-lived.

Many have seen the Internet as a good, if pragmatic example of a general network, and see its longevity as
a consequence of that fact. �e use of packets as a multiplexing mechanism has proved to be a very general
and �exible mechanism. Packets support a wide range of applications, and allow for the introduction of new
technology as it evolves. Tools for �ality of Service allow the application to control the tradeo� among such
parameters as cost, speed, and delay.

The theory of real options
Real option theory captures the idea (in common with options as a �nancial instrument) that one can a�empt to
quantify the cost-bene�t of investing now to “keep options open”, or in other words to deal with uncertainty.
It is thus a theory of change, to the extent that change equates to uncertainty. It is also a theory of the general
network, but in economic terms, in that it suggests that one can spend money now to purchase �exibility later to
respond to uncertain change. It does not describe what the resulting general network is (in contrast to the o�ered
de�nition above), but just postulates that generally is o�en to be had, but at a price.

Real option theory is perhaps more o�en applied to the construction of a network (e.g. how much spare capacity
to purchase now) than to the architecting of a network. But the theory none the less reminds us that generality
may come at a price, and that price is one of the impairments to the de�nition of the ideal network postulated
above.

6.5 The theory of tussle and points of control
�e discussion of the ideal network does not fully capture what happens inside networks, because the ideal is
stated from the perspective of only one class of actors–the parties desiring to communicate. �e statement of the
ideal does not a�ord any a�ention to other actors, such as governments that want to carry out lawful intercept on
tra�c, to employers and others who want to limit what can be carried over their networks, and so on. �e list of

82 178

David D. Clark Designs for an Internet

stake-holders that can be identi�ed in the current Internet is substantial, and each of these stake-holders tries to
put forward their interests, perhaps at the expense of other stake-holders.

�is ongoing process has been called tussle [Clark et al., 2005b], and seems to be a fundamental aspect of
any system (like the Internet) that is deeply embedded in the larger social, economic and regulatory context.
According to the theory of tussle, systems will prove to be long-lived if they are designed to minimize the
disruptive consequence of tussles, and in particular so that tussle does not lead to violations of the architecture of
the network. Various aphorisms have been used to describe how a system should be designed to tolerate tussle.

�e tree that bends in the wind does not break.
You are not designing the outcome of the game, but the playing �eld.

�e idea behind these aphorisms is to design your systems so that they do not a�empt to resist tussle and impose
a �xed outcome, but to be �exible in the face of the inevitable. However, they give li�le practical guidance as to
how one might do it, other to hint that one can tilt the playing �eld to bias the resulting tussle consistent with the
values of the designer.

Tussle isolation: One design principle that emerges from the consideration of tussle is a new modularity
principle called tussle isolation. Computer science has a number of theories of modularity, such as layering (e.g.
the avoidance of mutual dependency). �e idea behind tussle isolation is that if the designer can identify in
advance an area where there is likely to be persistent tussle, then the design should isolate that area so that the
resulting tussle does not spill over into other aspects of the network.

• DNS: if the early designers had understood that the DNS would include names over which there would be
trademark disputes, that use of such names could have been made a separate service, so that the scope of
the trademark disputes could be minimized.

• Secure BGP: if the designers of tools to secure BGP had understood that the real tussle would be over which
actors would be trusted to vouch for di�erent regions of the Internet, they might have designed a di�erent
trust framework that allowed these tussles to be be�er contained.

Placement of interfaces: In addition to isolating tussle, one can “move it around” by the placement of critical
interfaces within a system–another example of a non-technical principle for modularizing a system.
Removal of interfaces: a sub-class of the above theory is the idea that by intentionally removing interfaces

and making the system less modular and more integrated, one can increase the power of the �rm that owns the
system, and limit competitive entry as well as other forms of tussle. �is theory is an example of a theory of
stability (as well as a theory of market power and hegemony–see below.)
Asymmetric struggle: Many tussles are de�ned by the fact that di�erent stake-holders have access to di�erent

sorts of tools and methods. Network architects de�ne module interfaces and shi� function around, governments
pass laws and regulations, network operators make investments and con�gure the physical network. Each of
these actions can advantage the particular stake-holder and disadvantage the adverse interests. Given this fact,
it is worth some study (a full exploration is beyond the scope of this chapter) as to how these various methods
interact with each other. Like a game of “rock, paper, scissors”, they sometimes seem to circle around each other
in endless cycles. One sub-theory that characterizes some of the interactions is the theory of the blunt instrument,
the idea that while each stake-holder has distinct powers, the design of one part of the system can blunt the tools
of control that the others have, and thus render them less e�ective. �us, for example, the use of encryption as
part of the network design greatly limits the ability of other actors to observe (and thus to impose limits on) what
the users are doing. In the extreme, the network operator is reduced to carrying all tra�c, blocking all encrypted
tra�c, or refusing to serve the relevant customer–an example of blunting the network operator’s instrument of
control.

83 178

David D. Clark Designs for an Internet

Tussle and longevity
�e theory of tussle might be seen as the theory of change, but in fact it may be closer to a theory of dynamic
stability. Stability need not imply a �xed system, but can also imply a system that has checks and balances, or
feedback, to home it to a stable point. Tussle can be viewed as such a mechanisms–a set of forces that tend to
bring a system back to a stable compromise point if some new input (e.g. a technical innovation) shi�s it away
from that point. Over time, the compromise point may shi� (as social norms shi� over time) and the stable point
may be di�erent in di�erent cultures. So tussle can be seen as a dynamic and ongoing mechanism that contributes
to system longevity, and further as a mechanism that allows the outcome to be di�erent in di�erent cultures, as
opposed to a rigid system that a�empts to impose global agreement in contexts where global agreement is not
feasible. �is variation in outcome, as well, is a contributor to longevity.

6.6 The theory of building blocks and composable elements.
�e theory of the general network assumed that one could describe what an ideal, or fully general network would
do. It was based on the concept of a network as a system with a very simple core function. Another point of view
is that a network should be capable of o�ering a much richer set of services (perhaps not all at the same layer).
�e measure of a network would not be how well it does at limiting the impact of impairments, but how easy it is
to incorporate new sorts of services between the communicating parties. In this point of view, if the network
is built only of �xed-function routers, that is a limiting rather than a stabilizing outcome. My discussion about
expressive power in Chapter 4 gets at this tension: should a network strive for minimal expressive power or a
rich set of tools to add new PHBs as needed. �e proposals i3, DOA, and Nebula a�empt to capture the generality
of arbitrary service composition.

�is point of view becomes more prevalent if one looks not just at the simple, packet-forwarding layer, but at
services “above” that layer, which might do things such as convert information formats, validate identity, provide
various sorts of security services and the like. In this layered view, one would then ask of the packet layer whether
it was optimally suited to support the deployment and con�guration of these higher-level services. For example,
to insure the proper operation of security services, it might be important to make sure that the packets cannot
bypass the services as they are being forwarded. So the desire to deploy these higher layer services may change
and expand the requirements at the packet level, even if these services are seen as “higher layer” services.

�ere seem to be two, perhaps contradictory, theories of building blocks and composable elements–the maximal
and the minimal theory.

In the maximal theory, a network will be long-lived if it has rich expressive power, so that new service elements
can be introduced and invoked. At the packet level, expressive power would be increased by adding more powerful
addressing modes (such as source addressing, which could route a packet through a series of service elements) and
additional �elds in the packet header that could be used to convey additional information to the service elements.
If the service elements act on larger data units that are assembled out of packets at the point where the element is
located, this sort of expressive power will be controlled by data at the application layer. (Mail Transfer Agents are
an example of higher-level, or application-level service elements. �ey act on and modify the header of the mail
message, and schemes for mail encryption are de�ned to encrypt the body but leave the header visible so the mail
system can function properly.)

�e opposite, or minimal, theory about service elements and expressive power arises within the theory of
tussle. In this point of view, any service element will be a point of contention and tussle, as di�erent stake-holders
try to control the service being provided. �us, ISPs sometimes block access to third-party mail transfer agents in
an a�empt to force a customer to use their mail service; by doing so the ISP may be able to impose limitations
on what the customer can do (for example what are acceptable email names). �is theory would suggest that a
network design might deliberately limit the expressive power of the design (perhaps at certain of the layers in the
design), to limit the points of tussle in the network, and thus bring about longevity through stability.

84 178

David D. Clark Designs for an Internet

The theory of programmable elements (active networks)
�e theory that building blocks bring bene�cial �exibility has an aggressive version in which elements within the
network can be programmed dynamically, perhaps even by means of programs carried within the data packets
themselves. �is point of view, sometimes called Active Networks, can be argued as reducing tussle rather than
facilitating it, since it tilts the playing �eld toward the end-user, and blunts the instruments of control that belong
to the stake-holders “in” the network. �e programs come from the edge, selected and installed by the end-user
or his agents; the stakeholders who are in the network only provide the platform for these programs. �ey cannot
easily regulate what those programs do, except by a�empts to impose limits on how they are composed. With no
ability to see what the programs do, and only a “blunt instrument” capability to limit how they are composed, the
result (according to this point of view) is a stable platform (see below) on which innovation can be driven from
the edge.

6.7 The theory of the stable platform
�e theory of the stable platform is a theory understood by those who study innovation. According to this theory,
innovation (which represents a valuable form of change) is facilitated by a stable platform with an unchanging
interface and service de�nition. In the language of this theory, those who innovate “on top of” the platform are
called complementors. If the platform itself is unstable and subject to change and innovation, this increases the
cost of building complementary systems (e.g. applications) that exploit the platform (as the application must be
upgraded to keep pace with the platform changes) and increases the risk (due to uncertainty about changes in
the platform that might reduce the functionality of the application). �is theory is an example of a theory of
innovation that is a theory of stability. For an extended discussion of platform theory as it relates to the Internet,
see [Cla�y and Clark, 2014].

�e theory of the stable platform can be stated in dynamic form: to the extent that there are a number of
complementors, they will use their power to argue for the stability of the platform, which will induce more
complementors to join, and so on, in a positive feedback situation. �e reverse of this dynamic is also a part of
the theory; if a platform is not useful, it makes no di�erence if it is stable. Again, the packet forwarding service
of the Internet has been seen as a good illustration of a stable platform that permits innovation on top of that
platform. �e theory of the stable platform has been used to explain the longevity of the current Internet.

6.8 The theory of semantics-free service
�e theory of the stable platform does not say anything about what function the platform should implement
in order to be useful and general. �e theory of the general network provides one answer to that question: the
platform should provide a general service that is as close to the ideal (the minimum set of impairments) as can be
fashioned.

�e version of the theory of the general network o�ered above was that the network should just deliver bytes.
In contrast to the theory of composable building blocks, the network should not have any model of what those
bytes represent, or what the high-level objective of the application is. �is version of the theory has sometimes
been called the semantics-free network, or the transparent network, or (in more colloquial terms), “what comes
out is what goes in”. �e assumption is that if the network begins to incorporate a model of what one or another
application is trying to do, it will end up being specialized to those applications, at the cost of generality.

It has been argued that the longevity of the Internet is due to its semantic-free design, and the refusal of its
designers to allow the protocols to be optimized to the popular application of the day. It could be argued that
semantics-free service is an example of the theory of utility, but it is not clear what line of reasoning would
be used to make this point in advance. However, the theory of the general network may imply the theory of
semantics-free service, since (as it was stated earlier) the general network was de�ned as “delivering data”, which
seems to imply a semantics-free service.

�is theory is a close relative to the end-to-end argument, but in the beginning that argument was about correct
85 178

David D. Clark Designs for an Internet

operation, not about generality. �e interpretation of the end-to-end argument as an argument for generality
can be found implicitly in the original paper [Saltzer et al., 1984], but has become more elaborated and explicit in
some of the subsequent writings about the argument.

6.9 The theories of global agreement
One conception of network architecture, as I proposed in Chapter 1, is that it de�nes those aspects of the system
about which there must be global agreement: architecture de�nes those parts of the system that “work the same
way everywhere”. In this context, there are actually two theories about global agreement and longevity: the
minimal theory and the maximal theory.
�e theory of maximal global agreement: �is theory postulates that the more aspects of the system are

well-de�ned, the more stable the platform. By providing a well-speci�ed functional speci�cation for the platform,
the di�culty and risk to the complementor is minimized. �e word “maximal” is probably an overstatement of
this theory–the more careful statement would be that “up to a point”, increased speci�cation and careful de�nition
is a good thing.
�e theory of minimal global agreement: �is theory is a theory of change. It states that the fewer things

we all have to agree to in common, the more we will be able to accommodate a range of uses with di�erent needs.
As long as the platform remains useful, having fewer points of global agreement is bene�cial, and will allow the
network to evolve over time without disrupting the utility of the platform. So in contrast to the maximal or “up to
a point” theory, this is a “down to a point” theory, or perhaps (to paraphrase the quote of Einstein): Architecture
should be made as minimal as possible, but no less. �e FII proposal is an explicit example of this theory.
False agreement: Whichever version of the theory is put forward, there remains the question of when a

global agreement is really an agreement, and when it is the illusion of agreement. An example from the Internet
might be the initial assumption that the Internet was based on the global agreement that there was a single global
address space. It was thought that this agreement was important, and one of the basic tenets of the stable IP
platform, but then Network Address Translation devices were introduced, and the Internet survived. Some would
say that because NAT devices impair certain classes of applications (in particular, passive servers located behind
NAT devices), we should view NATs (and the loss of global addresses) as a signi�cant violation of the stable
architecture. Development of protocols, discussed in Chapter 4 that allow state to be installed dynamically in
NAT devices (perhaps an example of the theory of the building block), have the potential to support essentially all
the applications it did in the era of global addresses.

However the reader might choose to analyze this example, the more general question is how one would test a
proposed point of global agreement to see whether agreement is actually required about the point in order to
have a stable platform. Clever reconceptualization may allow what was seen as a global agreement to be set aside
with no loss of power.

One might pose an informal “test of time” approach: that a presumed point of global agreement should only be
judged in hindsight based on whether people actually depend on it. But this seems like a poor candidate for a
design principle. On the other hand, it seems di�cult to take the position that we can force dependency to force
stability. �e theory of utility suggests that if a feature is not useful, it does not ma�er if it is stable, or if it is a
point of nominal global agreement.

6.10 The theory of technology independence
�e theory of technology independence is another theory of stability in the face of change. �is theory states that
a system will be long-lived if it allows new generations of technology to be incorporated into the system without
disrupting the stable platform that the system provides to the complementors. Since technology evolved rapidly
in the CS world, it would seem that any long-lived system must be designed so that it is not rendered obsolete by
new technology.

Again, this theory can be used to explain the longevity of the Internet. �e simple, packet-based platform of the

86 178

David D. Clark Designs for an Internet

Internet can be implemented on top of all sorts of communication technology. �e Internet has accommodated
circuits that have increased in speed by at least six orders of magnitude during its lifetime. It has accommodated
multi-access local area networks, wireless networks, and the like. �e applications running on top of the IP
interface are largely una�ected by these innovations.

6.11 The theory of the hourglass
�e combination of the theory of the stable platform and the theory of technology independence lead to a theory
(or a picture) that is a hourglass: a picture of a narrow waist representing the common point of agreement (a
global agreement?) on the IP layer, with great diversity in technology below and great diversity in application
above.

Once the image of the hourglass was identi�ed and associated with a theory of longevity, further study revealed
that the Internet had many hourglasses in it: the reliable byte-stream on which email sits (the Internet standards
for email work quite well on transport protocols other than TCP), HTTP, and so on. [other useful examples?]

6.12 The theory of cross-layer optimization
�e theory of cross-layer optimization is a contrarian theory, contrary to the theory of the hourglass. �e theory
of cross-layer optimization states that over the long run, the evolution of technology will be so substantial that a
stable, technology-independent platform will become limiting, and eventually, uncompetitive compared to an
approach that allows the application and the technology to adapt to each other. �e application designer will
have a harder task than with a stable platform, but in exchange for doing the additional design work so that
the application can adapt to di�erent technologies, the designer will achieve greatly improved performance and
function.

�e theory of cross-layer optimization has been put forward in the past in the context of various emerging
technologies, perhaps starting with multi-access local area networks. In the past, the theory of the stable platform
has dominated. Today, cross-layer optimization is being put forward in the context of some wireless networks,
especially wireless designed for very challenging circumstances, such as ba�le�eld networks. It is not clear
whether longevity is the primary requirement for such networks.

6.13 The theory of downloadable code
�e theory of downloadable code is a theory of change, or perhaps of innovation. �is theory states that the need
for global agreement can be minimized by the approach of downloading code into the communicating elements, so
that the agreement is achieved not by the mandate of standards but by an agreement to run compatible so�ware.

If the code were downloaded into the network elements that forward packets, this would be the same as the
theory of active networks. �is theory has not achieved much traction in the real world. However, code that is
downloaded into the end-node (most commonly at the application layer, or as a supporting service to applications)
has been a very powerful tool to support innovation. New formats for audio and images (still, animated and video)
are introduced by allowing end-nodes to download new rendering code. Standards such as PDF, Flash, various
representations of audio and video and the like enter the market by means of free viewer so�ware provided by the
creator of the standard. Pragmatically, once a format can be implemented in downloadable so�ware (as opposed
to hardware, for example), proliferation of competing standards does not seem to be an impediment to progress
and longevity.

�e theory of downloadable code is an example of a theory of the stable platform: in this case the platform is a
so�ware platform, not a network service platform (such as the IP layer). �e browser of today, with its “plug-in”
architecture, becomes a stable platform on which innovation (e.g. new downloadable modules) can be built.

�is observation begs the question of what parts of the network could be based on downloadable code, rather
than on global agreement. Today, for example, transport protocols such as TCP are more or less a global agreement.
Alternatives cannot be downloaded, because the code that implements TCP is embedded in the kernel of most

87 178

David D. Clark Designs for an Internet

operating systems for a number of reasons: performance, dealing with interrupts and timers, multi-threading,
e�cient demultiplexing and bu�er management, security and the like. However, is this a fundamental consequence
of some aspect of transport protocols, or just a historical accident? It might be possible to design a framework (or
platform, to use the earlier word) into which di�erent protocols at this level could be downloaded, just as the web
browser provides a framework for downloadable code at a higher level. Were this framework demonstrated, one
could argue that the theory of downloadable code would be a be�er path to longevity that the theory of global
agreement, even at the transport layer of the protocol stack.

6.14 Change: hard or easy?
More abstractly, the theory of downloadable code challenges us to take a rigorous look at what makes change
hard or easy. �e need for global agreement seems to make change hard (if everyone had to change at once).

Version numbers are sometimes put forward as a technique to manage change. Version numbers in protocols
can allow two incompatible designs to co-exist, either transiently during a time of change, or (more realistically)
forever. Version numbers work so long as it is possible to verify that all the components that will be involved in
some operation support at least one version in common. Proposals such as XIA and FII try to facilitate change (in
di�erent ways) by making it easier to make changes gradually, across di�erent parts of the network at di�erent
times.

Changes to production code are o�en viewed as very hard to make, or at least not quick to make. Vendors
need to be convinced of the need for change, and then the change must be scheduled into the development
cycle. Especially if the change is based on a standard that requires broad agreement, such changes can take years.
However, one should not mistake the time it takes to make a change with fundamental di�culty. What makes a
change easy or hard to implement is more its interaction with other parts of the system (which, according to the
theory of ossi�cation, will increase over time).

On the other hand, when the change is more a bug-�x and the need is urgent (as with the discovery of a
security vulnerability) changes can be made in a ma�er of days or weeks, and the current trend to automate the
downloading of new versions (e.g. of operating system and major so�ware packages such as O�ce) can allow
substantial deployment of updates in days.

Overall, there is a trend in the current Internet (and the systems a�ached to it, such as operating systems)
to make change (updates, patches, releases of new versions) easier to accomplish. �is trend begs the question
of which changes are actually hard to make, and why. �e theory of minimal global agreement would suggest
that if the right tools are put in place to allow so�ware to be upgraded, there is li�le that cannot be changed in
principle, and more and more that can be changed in practice. With the trend of moving function from hardware
to so�ware (e.g. so�ware-de�ned radios) functions that had traditionally been viewed as �xed and static have
turned out to be very amenable to change, and not fundamental at all.

�e FII proposal, as well as the DTN work, bring our a�ention to an aspect of the current Internet that, while
not a formal part of the architecture, seems to have frozen in a way that resists change. Today, most applications
get access to the Internet via a “socket” interface that presumes a two-way interactive reliable �ow among the
end-points, which in practice means TCP. In contrast, in a DTN many nodes may only be connected intermi�ently,
and many applications may be able to tolerate a more “store-and-forward” mode of transport between the end-
points. So a more general network API may be an important part of building a more general version of the stable
platform. FII includes in its required points of agreement a set of tools to allow the network API to evolve.

6.15 The theory of hegemony
�e theory of hegemony is a theory of stability. It postulates that a system will be long-lived if a single actor
is in charge of the system, an actor that can balance change against stability, and balance the needs of the
various stake-holders in an orderly way. By taking tussle out of the technical domain and into the planning or
administrative (regulatory) context of the controlling actor, the platform becomes more predictable and thus more

88 178

David D. Clark Designs for an Internet

appealing as a platform. So the theory of hegemony is a theory of innovation based on stability.
�e telephone system, for most of its life, was an example of a system managed according to the theory of

hegemony, with single providers (o�en parts of the government) in most regimes, and standards set through
a very deliberative body: the ITU (or earlier the CCITT). One interpretation of history is that this approach
led to a very stable system that was easy to use, but to a system that inhibited innovation. However, the low
rate of innovation can be explained by the theory of utility: the platform provided by the telephone system, the
3kHz channel, was not very general (in other words, not useful except for the carriage of phone calls), so the
failure of innovation is due to the limited utility of the platform, not the presence of the controlling interest.
However, following the reasoning one step deeper, one could argue that this outcome is due to the lack of interest
in innovation by the controlling interests.

6.16 The present Internet
A number of theories have been identi�ed as contributors to the observed longevity of the Internet: the theory
of the general network, the theory of the stable platform, the theory of semantics-free service, the theory of
technology independence, the resulting theory of the hourglass, perhaps the theory of minimal global agreement,
and (to some extent increasing over time) the theory of downloadable code (in the end-nodes). �e Internet seems
to reject the theory of hegemony, and the theories of composable elements and downloadable code in the network.

Global agreement:
�e early designers of the Internet assumed that substantial global agreement would be a necessary step toward
an interoperable network. (In those days, downloadable code was not a practical concept.) Over time (in an
application of what was called above the “test-of-time” approach), the real degree of global agreement has emerged.
Addressing: �e original design assumed a single, global address space in which all end-points (or interfaces,

to be precise) were found. �is idea has been replaced by a more complex concept, in which there are lots of
private address spaces, with translation among some of them using NAT devices, but there is still a single common
addressing region–a region in the “center” of the network where a pool of addresses are given a consistent
common meaning. Services that want to make themselves widely available obtain an address (or an address and a
port) in the common addressing region, so that other end-points can �nd them.
TCP: �e original design was careful not to make TCP mandatory–the designers were careful to say that

alternatives to TCP should be anticipated. �e socket interface to TCP is not a part of the Internet standards, Over
time, however, in an example of the dynamic form of the theory of the stable platform, enough applications have
used TCP that it is mandatory in practice, which means that other applications take on li�le risk in depending on
it, and TCP has emerged as a required point of global agreement.
TCP-friendly congestion control: �is idea was not part of the original design–in the beginning the designers

did not have a clear idea about dealing with congestion. However, in the 1990s (more or less), as congestion control
based on the slow-start algorithms and its enhancements matured, there was a sense that every application, and
every transport protocol, needed to behave in the same general way. So there was a call for a global agreement on
the congestion behavior called “TCP-friendly”. To a considerable extent, this norm was imposed, but it seems
today as if there is a dri� away from this approach (based on economic issues and the theory of tussle) to a model
where the network takes on a more active role in enforcement.

DNS: �e architects of the Internet have always been ambivalent about whether the DNS is a core part of
the architecture. It is not strictly necessary: one can use other tools to translate names into addresses (as some
applications do), or just type IP addresses where one would normally type a DNS name (e.g. in a URL). However,
as a practical ma�er, the DNS is a necessary component of the Internet for any real use, and the amount of tussle
surrounding the DNS (trademark, diverse alphabets, governance, TLDs, etc.) both suggest that it is a point where
global agreement is required, and also that it is a prime illustration of tussle. One can look at the simple interface
(send a name, get a number) as a stable platform interface under which all sort of change has happened.

89 178

David D. Clark Designs for an Internet

�eWeb: �e web standards have emerged as a critical platform for the growth of the Internet. While the web
is “�just one application among many” it is clearly (as of now) the dominant application, and as such, embodies
many a�ributes that can be explored using these various theories–tussle, platform, downloadable code and so on.
But without global (if rough) agreement on many aspects of the web, the Internet experience would not be what
it is today. �e speci�cation and deployment of SSL and TLS a good example of the injection into the Internet of a
new set of points about which there needs to be widespread (if not quite global) agreement.
�e packet header: Participation in the Internet does require agreement on how a packet is forma�ed, and

what (at least some of) the �elds mean. �e address �eld may be rewri�en as the packet traverses NAT boxes, but
there are still some constraints imposed by Internet addressing (e.g. the length, the TCP pseudo-header and the
like) to which all players must conform. Despite the push to deploy IPv6, the IP header seems to be a manifestation
of the stable platform, rather than something that is shaped by a theory of change.

6.17 The future
As I have indicated through this chapter, there are a number of considerations and theories about how to design
a future network such that (among other things) it is long-lived. Several of the architectural proposals I have
discussed take a very di�erent approach in striving for longevity: stability vs. change, minimality vs. evolving
services and so on. But the relevance of these choices only applies if the architecture passes the basic test: the
theory of utility. If the network is not useful–if it cannot ful�ll basic requirements–it will not be given a chance to
demonstrate its ability to be long-lived.

In the next chapters of the book, I turn to a detailed look at some of the critical requirements I identi�ed in
Chapter 2, starting with security. But here I note some speci�c considerations that link these various requirements
to di�erent theories of longevity.

Security A �rst order objective for a future Internet is that it be more secure. Security (a�ack and defense) is
perhaps the extreme example of tussle; it implies ongoing (and unpredictable) change, even if a�ack and defense
stays in some tolerable balance. So the presence of a�ackers in the system would seem to imply that at least some
part of a future Internet must seek longevity using a theory of change, not a theory of stability.

Any component in the network will be a target for a�ack. So the theories of building blocks and composable
elements might seem to lead to a future network with more options for security vulnerabilities. �is concern
must be addressed by advocates for those theories.

Management �e discussion of the Internet of today focused on the data plane, and considered issues of
addressing and naming from the point of view of global agreement and stability. �at discussion paid li�le
a�ention to issues of management, in part because that area is so poorly developed from an architectural
perspective. In a future Internet, management must receive more a�ention, for a number of reasons. �is objective
will lead to the creation of a new set of interfaces, and will raise a new domain to which these various theories
must be applied. Many of the Interfaces will be between peer components (between ASes or ISPs) so they are not
platform or layering interfaces. It is not clear what theory of longevity should apply to such interfaces.

90 178

Chapter 7

Security

7.1 Introduction
�e Internet of today is generally considered to provide a poor level of security. In this chapter I a�empt to discuss
why this is so: the mix of historical, architectural and pragmatic reasons why Internet security is found lacking.

�is chapter will perhaps not resemble a normal paper on security, which might identify a vulnerability and
pose a solution. �is chapter is concerned with a more general challenge, which is how to identify and classify
the range of security problems that will arise in the context of a global Internet, how to allocate the responsibility
for dealing with these problems to di�erent parts of the network ecosystem, and how to decide which issues rise
to the level that implies an architectural response. �is chapter is concerned with what might be called security
architecture, and a more traditional security paper might take up where this chapter leaves o�.

7.2 Defining security
�e �rst issue is to consider what is actually meant by the word “security”. Without a clear de�nition of what is
meant by the word, it is not very meaningful to discuss whether we have enough of it. �e concept of security
captures a range of issues, which may not actually have that much to do with each other–“security” is a “basket
word”, like “management”, which I will deal with in a later chapter.

Computer science tends to de�ne security in terms of the correct operation of a system: a secure system is one
that does what it is supposed to do, and does not do unacceptable or unsafe things, even when it is under a�ack.
�is approach, of course, requires the functions of a system to be well-speci�ed. �ere is an old saying among
security experts: “A system without a speci�cation cannot fail; it can only present surprises.”1

A user might not think about security in the same way. What a user cares about is whether adequate steps have
been taken to reduce the probability of bad events to a tolerable level. Users care about outcomes; technologists
tend to address inputs. An analogy from the physical world may help. A home security expert might say that
a home has a “secure door” if it has a good lock and is strong enough to resist being kicked in. But what the
home-owner cares about is whether, all things considered, the probability of being burgled is low enough to
accept.

As another perspective, a political scientist of the realist school might de�ne security by saying that a nation
is secure if it can sustain peace at an acceptable cost, or alternatively if can prevail in war. Security is not
automatically equated to peace; unconditional surrender will create a state of peace, but not one of security, since
the price of unconditional surrender is presumably very high. In this framing of security there is no a�empt to
de�ne what “correct operation of the system” would mean; that would be nonsense with respect to a nation taken
as a whole. It is a pragmatic decision of the leadership whether the costs of peace are lower than the costs of war.
�e military exists both to deter war and prevail at war.

1 I cannot determine who �rst said this. I have questioned a number of elders in the �eld, all of whom agree that they said it, but believe they got
it from someone else.

91 178

David D. Clark Designs for an Internet

While users may care about outcomes–keeping the risk of harms to a realistic level–network designers are
forced to work in the space of inputs. We are forced to address security by making the components strong (correct),
exactly because the Internet is a general system. Just as we designed the Internet without knowing what it is for,
we have to design its security components without knowing what security problem we are solving. Most folks
would understand that it would be nonsense to ask for a door to be designed without knowing whether it was
for a house or a prison cell. But dealing with that sort of uncertainty is the price of building a general-purpose
network. Perhaps it will turn out to be fundamentally easier to deal with functional generality than security
generality; perhaps we have just not yet �gured out how to think about security in this general, abstract way. But
that is the challenge I must address in this chapter.

�e rest of the chapter proceeds as follows. First, I o�er a way of sorting out the landscape of network security,
to provide some structure to the discussion that follows. Building on that, I focus on the issues of trust, and trust
management, as a key to be�er overall security. I then proceed to a narrower topic that brings me back to the
theme of the book, the relation of architecture to these various aspects of security; I consider how architecture,
within the minimalist framing, can contribute to be�er security.

Defining network security
Se�ing aside for the moment the range of possible de�nitions of security, we should look more speci�cally at the
range of issues that make up network security. �ere is no one single issue that de�nes network security; in fact it
might be more useful to abandon the term and just talk about the range of security issues that come up in the
context of the Internet.

Security is sometimes de�ned by breaking the problem into three sub-goals, con�dentiality, integrity and
availability (the CIA triad), and I will refer to that structure when it is relevant, but in fact, for many of the issues
that I list, this structure is not very helpful. To begin, I structure my discussion of network security by looking at
the structure of the system, a taxonomy that derives loosely from the layered structure of cyber-space (asking
where a malicious action manifests). Later in the chapter I will return to an output or “harms-based” taxonomy
of security, and ask what this might teach us about how to think about the inputs–the correct operation of the
system elements under a�ack.

Here is my taxonomy based on where the a�ack manifests:

• Attacks on communication: �is is the problem, sometimes classi�ed as information security, where
parties a�empting to accomplish mutual communication are thwarted by an a�ack, perhaps launched by
the network or by some party that has gained control of some critical control point.2

�is is a space where the traditional triad of con�dentiality, integrity and availability (CIA) has some validity,
as I will discuss below. Another set of issues in this category falls under the heading of tra�c analysis. �at
term describes the form of surveillance where the observer is not looking at what is being sent but who the
sender and receiver are. Knowledge about who is talking to whom can be as revealing as exactly what is
being said.

• Attacks on the attached hosts: A�acks on a�ached hosts can occur as a result of communication with a
malicious party (who uses the capabilities of one or another layer to deliver an a�ack) or as a result of an
unsolicited incoming packet that somehow exploits a vulnerability to launch a successful a�ack. In the
discussion of expressive power in Chapter 4, this class of a�ack maps onto the case where the interests of

2 A few years ago, there was a furor in the U.S. because Comcast blocked a peer-to-peer music sharing application (BitTorrent) by injecting
forged packets into the data stream. �is was not characterized at the time as a “security” event but as a violation of the norms of service,
but in the language of security, this was without a doubt an a�ack on a communication by the network. End-to-end encryption would have
detected this particular a�ack, but since this was intended to be an a�ack on availability of service (see below) there could have been many
other approaches. In the discussion of expressive power in Chapter 4, this class of a�ack maps onto the case where the communicating actors
have aligned interests, but some element in the network is hostile to those interests.

92 178

David D. Clark Designs for an Internet

the end-points to a communication are not aligned. �e receiver may choose to draw on resources in the
network (PHBs) as a means of protection. �e expressive power of the network must be analyzed to see in
what ways it can be exploited by either the a�acker or the defender.

• Attacks on the network itself: �ese include a�acks on network elements, the routing protocols, a�acks
on critical supporting services such as the Domain Name Service (the DNS), and the like. Since the core
function of the Internet is actually rather simple, there are only a few of these services; the interesting
question is why they remain insecure. I return to this below. To the extent that this layer cannot detect and
remedy the consequences of failures and a�acks internally, the consequences of a�acks at this layer will
become visible to the layers above, which will have to take corrective action.

• Denial of Service attacks: Denial of service a�acks (usually called Distributed Denial of Service a�acks
or DDoS, because many machines are exploited to launch the a�ack), do not quite �t into these devisions.
�ey can be classi�ed as an a�ack against the network if they exhaust the capacity of a link or switch, or
as an a�ack against a host if they exhaust the capacity of that host. So I consider this class of problem
separately.

7.3 A historical perspective
Some of the early Internet architects, including me, have been criticized for not thinking about security from the
start. �is criticism is to some extent valid, but in fact we did consider security; we just did not know at that time
how to think about it. We made some simplifying assumptions that turned out to be false. Interestingly, much of
our early advice about security came from the intelligence community (the NSA) and their particular view biased
our thinking.

�e NSA had a very simple model of protecting the host from a�ack: the host protects the host and the network
protects the net. �ey were not prepared to delegate the protection of the host to the network because they did
not trust the net. So our job was to deliver everything, including a�acks, and then the host would sort it out. We
now see that this view is over-simple and thus not totally realistic.

Within the CIA framing, the intelligence community gives the highest priority to con�dentiality–the prevention
of declassi�cation and the� of secrets. �eir view is that once secrets are stolen, the damage is done. What we
now see is that users care most about availability–their ability to get the job done.

Because the intelligence community assumes an a�acker with a very high skill level and motivation, they
argued only for mechanisms that were “perfect”. A mechanism that only provided a degree of protection just
de�ned how much e�ort the adversary would have to expend, and they assume the adversary would be prepared
to expend it. Today, we see that in many cases the a�ackers are very concerned with the amount of e�ort required,
and it is probably a foolish idea to pursue perfection.

�e CIA framing separates the world into two sets of people–those who are authorized and those who are
not. If an actor is authorized, then they can see the information, and if they modify it, this is not corruption, just
modi�cation, since they are authorized. If an actor is not authorized, then the goal of the system is to deny them
access.

�is framing is deceptive, but it shaped our early thinking. We knew that some routers might be suspect, so
there was no way we could insure that a router did not make a copy of a packet–the packet forwarding layer
could not itself provide con�dentiality. And a malicious router might modify a packet–the packet forwarding
layer could not itself provide integrity for data in transit. We took a very simple view, which is associated with the
“end-to-end” mode of thinking: only the end points could undertake to mitigate these vulnerabilities and achieve
these objectives because only they could know what the objective was, and only they were (presumably) trusted
and authorized to exchange this data. End-to-end encryption is the obvious approach: if the data is encrypted
making a copy is useless and any modi�cation can be detected.

93 178

David D. Clark Designs for an Internet

When the Internet was initially being developed, encryption algorithms were too complex to be implemented
in so�ware. �ey had to be o�-loaded to specialized hardware. �is reality was a barrier to deployment; not
only did every machine have to be augmented with such hardware, there had to be broad agreement as to the
algorithm to be used, which was hard to negotiate. But there was an expectation that we could move to the use of
end-to-end encryption at some point in the future.

�is approach theoretically resolved con�dentiality and integrity, and le� only availability for the network to
solve. Of course, “all” the network does is deliver packets, so it would seem that availability is the core requirement.
In this context, it is interesting that we have no “theory of availability”, which is the subject of a later chapter.

Why was this conception of security deceptive? It implied a simple world model–mutually trusting parties
communicate and parties that do not trust each other do not. It concerned itself only with information security
among mutually trusting actors. What we missed was that most of the communication on the Internet would be
between parties that were prepared to communicate but did not know whether to trust each other. We agree to
receive email knowing that it might be spam or have a�achments that contain malware. We go to web sites even
though we know (or should know) that web sites can download malware onto our computers. �is is the space
we need to make secure, not just the space of CIA communication among known, trusting parties.

In this context, the end-to-end principle is not wrong, just incomplete and in need of re-interpretation (for a
reconception of the end-to-end principle in the context of trust, see [Clark and Blumenthal, 2011]). An analogy
may help. If trusting parties want to send a private le�er, they want assurances that the le�er is not opened in
transit. But if recipients suddenly realize that they may get a le�er full of anthrax, then their “security objective”
reverses–they want that le�er opened and inspected by a trained, trustworthy (and well-protected) intermediary.
End-to-end encryption between an a�acker and his target is the last thing the target wants–it means that the
target can get no help from trusted third parties in protection. An encrypted exchange with an untrustworthy
party is like meeting them in a dark alley–there are no witnesses and no protections.

�e overall security problem is not solved by telling the higher layer to use end-to-end encryption. Encryption
addresses the problem of protecting communication between trusting users from disclosure or corruption, but
fails to address the mirror problem of adversarial end-points using network protocols to a�ack each other. �e
problem of operation in an untrustworthy world has to be handled by involving the higher layers in the system,
speci�cally the application layer, and it was this design problem that we neither clearly articulated nor explored
how to accomplish.

In the next sections of this chapter, I look in more detail at the three classes of security, using the �rst set of
categories above.

7.4 A�ack and defense of the network itself
�e physical layer of the Internet is made up of links, routers, servers, and the like. Routers and servers are
computers, and thus potentially susceptible to remote a�ack using cyber-tools. Links themselves seem more
immune to this sort of a�ack, and are mostly susceptible to physical a�ack based on close access–cu�ers and
explosives. �ere are physical responses to these sorts of a�acks: links can be hardened against a�ack (both
against destruction and tapping), and routers can be placed in physically secure facilities.

�e functional speci�cation of this layer, as we normally conceive it, is rather weak: these components are
expected to do what they are designed to do except when they don’t. We know that links can fail, routers can
crash, and so on, and it would be foolish to pretend that we expect these components to be completely dependable.
But given this weak speci�cation, how would we think about the security speci�cation? I return to this question
below, since the security analysis of this layer resembles the analysis of the layer above.

�e next layer up, the Internet itself, is a global collection of links and routers, which serve to forward packets
from an entry point to an exit point. �e exit point is de�ned by an address that is speci�ed in the header of the
packet. While there are many details about what the Internet does, at its essence this is the functional speci�cation.
And the functional speci�cation is again very weak. �e service model has been called “best e�ort”, by which

94 178

David D. Clark Designs for an Internet

is meant that the network is expected to do its best, but failure is accepted. �e network may fail to forward a
packet, deliver packets out of order, deliver them multiple times, deliver them a�er inexplicable delays, and so on.

�ere is a well-understood conception of what “good service” would mean–acceptable levels of loss, delay and
so on, but there is no hard and fast speci�cation. �e reason for that was clear in the minds of the early designers:
a poor service is be�er than none. Designers should be held to a high standard of doing well at ”best e�ort”, but
there are circumstances where best is not very good. If that situation were deemed “out of spec”, then those times
would be considered times of failure. However, there may be applications that can still make use of whatever
function there is. So this weak speci�cation is provided to the application designers, who then have to decide
how much e�ort to put into adapting and compensating for circumstances where “best e�ort” is not very good.
Some applications such as real time speech that depend on good packet forwarding service may themselves not
function, or even a�empt to function, when the packet forwarding is functioning poorly. Others, such as delivery
of email, can struggle forward even if most of the packets are being lost. �e higher layers just keep resending
until eventually the data gets through.

In a system like this, each layer has to take into account the failure modes of the layer below in its own design.
�e Internet layer is designed to take account of link and router failures–it includes a dynamic routing scheme
that �nds new paths if a path fails. �e end to end Transmission Control Protocol (TCP) copes with packet loss in
the Internet. TCP numbers the packets, keeps track of which are received and which are lost, resends the lost ones,
gets them in correct order, and then passes the data up to the next layer. So the overall resilience and function
of the system is based not on precise speci�cation but on a pragmatic balance of e�ort and investment at each
layer. �e be�er each layer, the less the layer above has to do, and (probably) the be�er the resulting behavior
is. Di�erent parts of the Internet can be engineered to di�erent levels of performance and reliability (driven in
many cases by pragmatic considerations of cost), and each layer above is expected to cope with this variation.
Investment at the lower layers bene�ts all of the next layer functions, but over-investment at the lower layer may
add unnecessary cost to the service. None of this is part of the Internet’s “speci�cation”; the interplay between
performance and reliability at the di�erent layers is a point of constant adaptation as the Internet evolves.

In this context, how would we characterize the “security” of the packet forwarding service of the Internet? A
formally correct but useless response would be that since the network is “allowed” to fail, it need not concern
itself with security. Pragmatically, of course, this is nonsense. �ere are well-understood expectations of the
Internet today, and an a�ack that materially degrades that service is a successful a�ack. But it is a ma�er of
degree. Degraded service may still be useful.3 But with a loose functional speci�cation like this, the determination
of how to make the system resistant to a�ack is potentially ad hoc. One must look to the design mechanisms,
not the speci�cation, to see where a�acks might come. �us, one would look to the routing protocols, and ask if
they are robust to a�ack (they are not, as I will discuss below). But the core function of the Internet is actually
very simple. If there are links connecting routers, and the routers are working, and the routing protocols are
computing routes, the Internet is mostly working.

�e Internet provides a general service, useful for many applications in many circumstances. �is generality
raises a security conundrum: di�erent contexts will face di�erent security threats. �ere is no uniform threat
model against which to design the network defenses. None the less, the security challenge must be faced; designers
(and architects) must make pragmatic decisions about how robust the forwarding service must be to di�erent
sorts of a�ack. But any security analysis must begin with an assessment of the range of motivations behind such
an a�ack, understanding that with high probability the motivation will be to carry out a subsequent a�ack on
either an a�ached host or (more likely) an a�ack on communication.

3 Security experts understand that the most dangerous a�acks are those that might cause massive, correlated failure of components, for example
a�acks on routers that exploit a common failure mode and take out so many routers that the dynamic routing algorithms of the network are
overwhelmed and the network essentially ceases to function.

95 178

David D. Clark Designs for an Internet

A case study: Why is securing the network hard? Securing interdomain routing in the Internet
�e challenge of securing inter domain routing in the Internet is a good case study of the barriers to be�er security;
it illustrates the challenges caused by lack of trust and di�culties of coordination. �e Internet is made up of
regions called Autonomous Systems, or ASes. Each AS must tell the others which addressed are located within
the AS and how the ASes are connected in order for the Internet to come into existence. �e way this works in
the network today is that each region announces the addresses that are in its region to its neighbors, who in turn
pass this on to their neighbors, and so on, until this message reaches all of the Internet. Each such message, as it
�ows across the global network, accumulates the list of ASes through which a packet can be sent to reach those
addresses. Of course, there may be many such paths–a particular AS may be reachable via many neighbors, and
so on. So a sender must pick the path it prefers, or more precisely, each AS computing a route back to a particular
set of addresses must pick among the options o�ered to it, and then o�er that option to its neighbors in turn.

Originally, there were no technical security controls on this mechanism. �at is, any rogue AS can announce
that it is a route (indeed, a very good route) to any other AS in the Internet.4 What may then happen, if other
ASes believe this announcement, is that tra�c is de�ected into that AS, where it can be dropped, examined, and
so on. �is sort of event, in fact, is not uncommon in the Internet today, resulting in failures along all dimensions
of CIA. How is it �xed today? Network operators monitor the system, problems of reachability are reported from
the edge by end-users (who o�en have to resort to phone calls, since their systems cannot in�uence routing) and
over some period, perhaps a few hours, the o�ending AS is identi�ed and isolated until some suitable discipline
can be devised.

Ignoring details, there might seem to be an obvious technical �x. Why are these announcements not signed,
using some sort of cryptographic scheme, so that they cannot be forged? Indeed, this was the path down which
the designers started when they set out to secure interdomain routing. But there are two formidable barriers to
this, one having to do with trust and one have to do with migration to the new scheme.

�e migration problem is easy to understand. In the global Internet, there is no way that everyone is going to
switch to the new scheme at once. Unless some draconian discipline is applied (disconnection from the net), some
actors may just refuse to undertake the e�ort of upgrading, and they will continue to originate route assertions
that are unsigned. �ere are two options to deal with this. One is to reject them (which is the draconian outcome
of disconnecting them) or accept them, in which case a malicious actor cannot be distinguished from a lazy actor,
and we are essentially no be�er o�. Until the last AS converts, we get li�le value from the scheme, unless we
wrap it in complex high-level systems, such as globally distributed, trustworthy lists of ASes that have converted,
so that a router knows which unsigned assertions to accept.

�e issue of trust is a li�le more complex. When an AS signs an assertion (for example, when MIT signs the
assertion that it is AS 3, and that it has a particular set of addresses that it holds within that domain), it has to use
some encryption key to sign that assertion. �e obvious technical approach is to use a public or asymmetric key
system, where MIT has a private (secret) key it uses to sign the assertion, and a public key it gives to everyone so
they can decrypt the assertion and con�rm that MIT signed it. So far so good, but where does that public-private
key pair come from? If MIT can just issue itself a set of keys and start signing assertions, it might seem that we
are no be�er o�, because a malicious actor could do the same thing–make up a public-private key pair and start
signing assertions that it owns AS 3, controls those addresses, and so on. To prevent this from being e�ective,
the technical proposal was to create a trusted third party that could con�rm, based on its own due diligence,
which public key is actually associated with the real MIT. But why in turn would anyone trust that third party? A
scheme like this ends up in a hierarchy of trust, which seems to require a root of trust at the beginning, a single
node that all parts of the Internet trust to tell them which second-level parties to trust, and so on until we get to

4 It was understood as early as 1982 that an AS could disrupt routing by making a false statement. RFC 827 [Rosen, 1982, Section 9] says: “If any
gateway sends an NR message with false information, claiming to be an appropriate �rst hop to a network which it in fact cannot even reach,
tra�c destined to that network may never be delivered. Implementers must bear this in mind.” �e situation was identi�ed as a vulnerability
but not a risk. �e advice to “bear this in mind” could have multiple interpretations.

96 178

David D. Clark Designs for an Internet

the party that asserts that it know who the real MIT is.
An engineer might think this was a simple, elegant scheme, but it runs agound in the larger world. First, what

single entity in the world would all the regions of the world agree to trust? �e United Nations? �is issue is
serious, not just abstractly but very concretely. When this scheme was proposed, several countries (including
Russia) asserted that they would not assent to a common root of trust with the U.S. �e agent who has the power
to validate these assertions must, almost of necessity, have the power to revoke these assertions. Can we imagine
a world in which the United Nations, by some sort of vote, revokes its trust assertion about some nation and
essentially ejects that region from the Internet? What about those second-level entities, that almost certainly are
within some legal jurisdiction and thus presumably subject to the legal regime of that region?

�is fear is not hypothetical. �e institutions that allocate Internet addresses are the Regional Internet Registries
(RIRs). �e RIR for the EU is RIPE, and is located in Holland. �e Dutch police brought a police order for them to
revoke the addresses of an AS. RIPE correctly said that it did not have the technical means to revoke an allocation.
However, if they were issuing certi�cates of authenticity for AS allocations, then they would no longer be able to
make that claim.

So does this scheme make the Internet more stable and secure or less? Once people understood the social
consequences of this scheme, there was substantial resistance to deployment. �e problem with adding a “kill
switch” to the Internet is to control who has access to it.

A di�erent design approach might mitigate these concerns, one that allows actors (e.g., ASes) to make assertions
about who they are, but validates these assertions in a way that makes them very hard to revoke. �at would
solve the “jurisdiction” problem. But if a false assertion ever got started, how could it ever be revoked? Once
we grasp the complexity of functioning in a space where not all the actors share the same incentives, not all are
equally trustworthy by di�erent measures, and that these actors of necessity are in the system, it becomes a very
di�cult problem indeed to design a system that is robust at ejecting actors that are “bad” but also robust at not
ejecting actors that are judged “bad” if we don’t accept that they are bad. Management of trust relationship, and
the expression and manifestation of those relationships, becomes the de�ning feature of a successful scheme, not
exactly how crypto is used.

So in this respect, the landscape of security becomes a landscape of trust–regions of mutual trust will be more
connected, more functional, more e�ective, and regions that don’t trust each other will still try to communicate,
but with more constraints, more limitations, and perhaps more failures, especially with respect to availability.
And this pa�ern will be found within any application that tries to tailor its behavior to the degree of trust among
the communicating parties, whether the function is exchange of routing information or email.

What happens today is that “the Internet” does not try to solve these problems using technology. We �x some
of these problems using management–oversight of the system by trained operators and managers. We just tolerate
some of the residual consequences.

An alternative to the scheme described above to secure the AS routing system will illustrate how a di�erent
scheme �ts into a socio-technical architecture. �e scheme described above, with a hierarchy of trusted certi�ers
and a single root of trust, is technically robust, in that it will always give the right answer if the trust relations are
valid and accepted by all the parties. �is approach may be technically robust but is not socially robust. Here is an
alternative approach that is less technically robust (one cannot prove that it will give the correct answer under
certain assumptions) but is more socially robust. Above, I rejected the idea that MIT just make up a public-private
key pair and start signing its assertion. What would happen if that scheme were adopted? At �rst, various regions
of the Internet might get con�icting assertions, if it happened that there was a malicious actor in the system at
the time when the assertions started to be signed. �at situation, while not desirable, is exactly what we have
today. But over time–days or weeks–it would become clear what key went with the “real” MIT. Each AS in the
network could learn this for itself, or groups of mutually trusting ASes could cooperate to learn it. If necessary,
the public key could be exchanged by side-channels. Once the other ASes in the Internet have decided which key
to trust, they have independent possession of that fact, and there is no authority that can compel a third party to

97 178

David D. Clark Designs for an Internet

invalidate it. �e scheme decentralizes control: any AS can decide on its own to stop forwarding tra�c to MIT,
just as they can today.

What this scheme exploits is not a technical scheme for propagating trust, but a social scheme called “ge�ing to
know you”, which humans have been running, probably for millions of years. We can be fooled, but in fact we are
pre�y good at it. And it is simple. It requires no trusted third parties, li�le administration (except that each AS
should try very hard not to lose their own private key) and great adaptability to changes in the landscape of trust.

7.5 A�acks on network communication
�is category of a�ack relates to parties that are a�empting to communicate across the Internet, and are being
thwarted by some malicious action. �is category can be decomposed using the traditional three CIA sub-objectives:
con�dentiality, integrity and availability: information should not be disclosed except to parties authorized to see
it, information should not be corrupted, and it should be available. With respect to network communication, these
goals take a rather simple form–particularly with respect to integrity. Since the current Internet does not perform
computation on content, the simple form of integrity is that data is transmi�ed without modi�cation. 5

As I discussed above, cryptographic algorithms �t into the CIA triad by giving strong assurance that data is not
disclosed, and strong indications if data is modi�ed. �ere are several well-understood contexts in the Internet
today in which encryption is deployed, such as IPsec and TLS. Cryptography is a powerful tool to improve security.
However, it is important to see how cryptographic methods tend to function in the larger context. �ese protect
the user from failures of integrity by halting the communication. �ey map a wide range of a�acks into a common
outcome–cessation of communication. But this outcome, while potentially be�er than a failure of con�dentiality
or integrity, is just a failure along the third CIA dimension–availability. Essentially what these schemes do is
turn a wide range of a�acks into a�acks on availability. And that is not the desired outcome–we want to o�er
assurances about all dimensions of CIA.6

If the best we can do using cryptography is to turn a range of a�acks by untrustworthy actors into a�acks on
availability, what can we do to improve the situation? �ere are two ways to try to deal with untrustworthy actors:
constrain or discipline them, or reduce our dependency on them–in the limit avoid them. Imposing constraints on
untrustworthy or malicious actors that both compel them not to misbehave and as well compel them to perform at
all are hard to devise; the fail-stop semantics of a�ack detection is the common outcome. �e only way to compel
correct operation is to so design the larger ecosystem so that the cost to the actor from expulsion from the system
outweighs the cost from foregoing malicious behavior. �is might work for an ISP who is hosting both legitimate
customers and spammers (and ISPs have been expelled from the Internet for hosting spammers, essentially driving
them out of business), but malicious individuals show great resilience to constraint and discipline, especially
across region boundaries. �is leaves the other option as a path to availability: accept that untrustworthy actors
are in the system but avoid them.

Tra�ic analysis
�e term tra�c analysis describes a form of surveillance in which the observer does not look at what is being
sent, but the source and destination of the communication. Most obviously, in the Internet context, the observer
capture the IP addresses in the packets. �is sort of logging, sometimes (for historical reasons) called pen/trap
logging, has its roots in the logging of telephone numbers on phone calls. From a legal perspective in the U.S.
(and many countries) it is easier to get a court order allowing pen/trap logging than data logging, which has led
to a set of legal debates about what sorts of data can be gathered using pen/trap logging. Such data is o�en called
meta-data because it is data about other data. �e complexity of the Internet makes the distinction between data

5 If PHBs are added to the network that transform the data in transit, a more complex theory of integrity will be needed, such as
[Clark and Wilson, 1987].

6 �is observation provides one explanation as to why so many users deal with dialog boxes warning about potential hazards by clicking the
“proceed anyway” option–what they want is to make progress. Another reason, of course, is the o�en inexplicable content of those warnings.

98 178

David D. Clark Designs for an Internet

and meta-data contentious: since a packet is a sequence of headers, each with information about the next header,
one layer’s meta-data is another layer’s data.

From a technical perspective, encryption can limit what can be seen in the network, but the headers that are
processed by the routers (and other PHBs) must be visible (barring very complex uses of encryption, such as
TOR), so there seem to be limits to the extent that a network design can substantially shi� the balance of power
with respect to tra�c analysis. One exception to this presumption is the NDN proposal, which (though the use of
per-packet state in each router) removes from the packet any source address. �is means that an observer can tell
that a piece of information has been requested, but cannot easily tell which source requested it.

It turns out that a great deal of information can be deduced by observing an encrypted stream of packets
[Chen et al., 2010, Wright et al., 2008] [[[@@What to cite? there is so much]]]. It is possible to deduce a great
deal about what is being communicated, a great deal about the communicants and so on. �is so-called side
channel leakage is a serious problem in high-security contexts, and may be a serious problem for typical users as
tools for analysis improve. So while encryption may protect the data in transit, the idea that encryption protects
the communicating users from harm related to con�dentiality should be viewed with some skepticism.

One way to limit the harms from tra�c analysis is to avoid routing packets through regions of the network that
are more likely to practice this form of surveillance. �ere is no obvious way to detect in real time that packets
are being subjected to tra�c analysis, but if a group of users can make a judgment about which regions of the
network are less trustworthy, and have some control over routing (similar to the control discussed above in the
context of availability), they may be able to somewhat mitigate the peril.

7.6 A�acks on the a�ached hosts
Today, we see a wide range of a�acks in this category, ranging from a�acks that involve a malicious sequence of
packets sent to a machine that was not a willing participant in the communication (an a�ack that exploits an
unintentional open port, or a �aw in the network so�ware and the like) to a�acks that use an intentional act of
communication (receiving email or going to a web site) to download malicious code.

Again, it may be helpful to return to a historical perspective to understand the current situation with respect to
these classes of a�acks. As I said above, there was a presumed division of responsibility: the network protected
the network and the host protected the host. Security thinkers of the time did not believe it was responsible to
delegate protection of the host to the network, because they had no reason to trust the network. �e assumption
was that the designers of operating systems could and would develop systems that were resistant to a�ack. Given
this presumption, the job of the network was simpli�ed: it delivered whatever the sender sent, including possible
a�acks, as e�ciently as possible. �e host sorted out what it did and did not want to receive.

In fact, this description of the network and the host is actually an over-simpli�cation of how early security
experts thought about secure networking. �e security experts that consulted in the early days of the Internet were
primarily from the military/intelligence community, and had as a primary concern con�dentiality–preventing
disclosure of classi�ed information. �is mind-set shaped some of the early deliberations about Internet security.
As I noted above, this framing of security tends to ignore the issue of communication among parties that do not
necessarily trust each other. As well, this framing tends to divide the world cleanly into trusted and untrusted
regions of the net. In the context of classi�ed work, it made sense to accept that there were trusted regions of the
network, typically inside facilities where users had clearances and computers could be trusted. �ese regions
might be connected together over a public, untrusted Internet, but in this case the packets across the public
internet would be encrypted and wrapped in outer IP headers that only delivered the packet to the distant trusted
region. �is concept, called encrypted tunnels, made sense from a technical perspective, since only one encryption
device would be needed at the interconnection point between the trusted region and the public Internet. At the
time, encryption boxes were expensive, and even a point-to-multipoint device was pushing the state of the art.
Having such a device per host was not practical. �e concept also made sense in the security calculus of the day.
�ere was no way an untrusted computer on the public Internet could make a connection to a trusted computer

99 178

David D. Clark Designs for an Internet

in a trusted region, because the encryption device would not allow in a packet that was not encrypted at another
region. End nodes did not need to worry about being a�acked, because within the trusted region the prospect of
a�ack was discounted, and from outside the region packets were totally blocked.

�e security analysis of this sort of architecture became quite sophisticated. �ere were concerns about
the possibility that corrupt insiders could leak information by hiding it in “covert channels”, low bandwidth
communication channels exploiting such features as the timing of packets in the channel. �e con�nement problem
was understood in 1973 [Lampson, 1973]. �ese concerns did not end up being the real threats, and a focus on
this framing may have distracted the early thinkers from a broader consideration of the security landscape, such
as the need for users with clearances to talk to people without such clearances.

�is simple division of responsibility has proved �awed, for several reasons. First, of course, the operating
systems of today are �awed. Second, application designers have favored functionality over security, and designed
applications with rich features (e.g., the ability to download and execute programs of various sorts), so the
applications become the vector of a�ack. Very early on in the design of the Internet, security experts (some from
the NSA) identi�ed the problem of a “trojan horse” program, and made clear that in their opinion, if executable
code was transferred across the network, the only practical protection would be to transfer it from trustworthy
sources–trying to vet code for malicious content was a losing game.

So here we are today, with a need to reconsider more or less from scratch all of these assumptions. First, we
have started to depend on (in other words, to trust) at least some elements in the network, as I discussed in
Section 4.6. Firewalls provide a crude protection from the a�acks that involve packets sent to a machine that did
not want to participate in the communication. Firewalls block unwanted ports, and (if combined with Network
Address Translation) hide the IP addresses of machine. For this protection to work, we must depend on the reliable
operation of the �rewall, and rely on the topology or routing of the network not to bypass the �rewall. �is sort
of trust is both simple and local, but it re�ects a recognition that the hosts being protected and at least the local
region of the network to which they are a�ached should share responsibility for protection. �e next question is
what services might the packet forwarding layer provides to make the “security job” of the host and the higher
layers easier. �is question is the one I asked in Chapter 4–how can the expressive power of the network be
designed to help the defender in the case that the interests of the end-points are not aligned. �e network cannot
make the end-points “secure”, but perhaps it can be a part of the solution, rather than delivering the a�acks with
best e�ort.

A more general question that one might ask, in this light, is if the host must depend on other elements as part
of its protection, which elements are be�er suited for this task? Perhaps depending on the network (or even more
speci�cally the region of the network that provides service to the host), is not the only or the best idea. Perhaps
there are new sorts of elements, or new actors that could provide protection services. In the language of Chapter 4,
what PHBs can we devise to protect an end-point, what actor would be best trusted to deploy and operate them,
and �nally what architectural support, if any, is needed to utilize them. If we allow ourselves to rethink from
scratch this framework for security, new design approaches might emerge that have additional actors and services
beyond the host and the network.

As well, there has been considerable progress in devising ways that the operating system of the end-node, in
addition to being more robust itself to a�ack, can help protect the application running on the end-node from
a�ack. �e concept of sandboxing describes an approach where the code of the application is placed in a con�ning
environment before it interacts with the network, and this environment is conceptually discarded at the end of
the interaction, thus discarding in passing any malware or other modi�cations that may have resulted from the
interaction.

The role of applications
A network such as the Internet, as I have repeatedly stressed, is a general network that moves packets. But packets
only �ow because some higher layer so�ware chooses to send and receive them. It is applications that de�ne what
actually happens on the network. It would be nice if the packet carriage layer of the Internet, perhaps properly

100 178

David D. Clark Designs for an Internet

augmented by innovative PHBs, could protect one host from a�ack by another independent of the application
being used, but this is not a realistic hope. �e simple semantics of the Internet–best-e�ort delivery of packets–is
(for the moment) about all the network can do. It is the higher-layer so�ware–the application–that translates
between information sent over the Internet and actions on the end-nodes. Many of the security problems we
deal with today arise because of design decisions at the application layer, and it is to that layer that we must turn
for an overall improvement in the landscape of security. Applications can, by their design, either create security
vulnerabilities or limit them.

�e lesson we learn by looking at the design of applications is in some respects a bleak one. Applications today,
in the pursuit of more powerful functionality and appealing features, have incorporated functions that are known
to be risky, and were known to be risky at the time they were designed. �e ability to download active code (e.g.,
Javascript) from a web site and execute it on a client machine was understood as risky from the beginning, and
was decried by the security community at the time. It was implemented anyway. We must accept that applications
today are insecure by design, and we must �gure out how to deal with this, since this preference is not going to be
reversed.

One answer lies in the operating system, where features such as sandboxing can potentially prevent malicious
code from having any persistent consequences. Another answer may lie in designing applications so that they only
enable risky modes of operation when there is good reason to trust the communicating parties. Since applications
de�ne and control the pa�erns of communication among the entities, it is applications that can, by their design,
invoke PHBs as part of their security architecture. And it is applications that can tailor their behavior based on
the extent to which the participating actors trust each other. Actors that choose to trust each other may want to
exploit applications in a mode that imposes fewer constraints and allows more �exible communication, while
actors with less mutual trust may want a mode that provides more protection.

Applications can play another key role in an overall framework for security. My analysis to this point has swept
a serious problem under the rug. What if our a�empts to protect the host from a�ack fail, and the host falls under
the control of a malicious actor. At this point, that malicious actor may undertake activities (e.g., data transfers)
that seem entirely legitimate with respect to the network (they seem like transfers between mutually trusting
parties), but the security goal is to block them. In other words, in the case where a machine has been compromised,
the security goal reverses. �e goal is to “a�ack” (block) what otherwise would be legitimate communication.

Perhaps some cases of this sort can be classi�ed as malicious by behavioral monitoring–a user who suddenly
transfers gigabytes of data out of a secure area might a�ract a�ention in any case. But in general the way to think
about this situation is to distinguish, as I did earlier, between penetration of a host and a harm. �e harm arises
from the use of applications, which de�ne the legitimate data �ows. Applications can be designed so that they
reduce the risk of harms, using designs that require (for example) multiple machines to concur before potentially
dangerous actions are permi�ed. Consider, for example, that a �rewall might block all outgoing data �ows above
a certain size unless a second machine has �rst authorized the transfer. Applications could be designed such
that this second machine is noti�ed of the need to issue this authorization, which could then carry out some
independent check of identity, authorization and the like. �e design goal would be to minimize disruption of
normal work �ow, but that second machine should be implemented in such a way that the penetration of the
�rst machine by a malicious actor does not provide a means to penetrate or subvert the function of the second
machine.

What I have described here is a sophisticated design challenge for the application designer. But suggesting that
potentially dangerous tasks should require dual authentication is not a novel idea. My point is that this sort of
constraint is going to be built into, or at least controlled by, the application, not the network. I discussed earlier
the basic design approach of the Internet, which is that layers must be designed to deal with failures in the layers
below. TCP deals with lost packets, and so on. What I propose here is just the application of this approach at a
higher layer–the design of the overall system must take into account the possibility of failure in the layers below,
in this case corruption of machines on which (part of) the application is running. �e network does have a role,
which is to insure that only authorized �ows take place. One could imagine using so�ware de�ned network (SDN)

101 178

David D. Clark Designs for an Internet

technology to allow only �ows that are consistent with the application-de�ned security policies.

The role of identity
My repeated reference to trust seems to beg a more basic concern–it is nonsense to talk about whether actors
trust each other unless they have su�cient information about each other’s identity. So identity management
must be part of any framework that depends on trust management. �is fact, in turn, raises the question of which
entities or layers within the system should implement the mechanisms of identity management.

One view is that the architecture itself should specify how identity is managed. �ere have been calls for
an “accountable Internet”, which seems to imply that the architecture assures the identity of the participants
to all interactions. I think this is a very bad design approach, as I have argued, along with my co-author
[Clark and Landau, 2011]. Identity is used in a very nuanced way in society–sometimes we need strong, mutual
con�rmation of identity, sometimes we function well with total strangers. It is the mode of interaction that
determines the need for identity, and on the net, it is the applications that de�ne the modes of interaction. So
we must turn to and rely on the applications to establish the correct level of mutual identi�cation, and use this
information to deploy the correct level of protection.

Application designers should not have to solve these problems from scratch each time a new application is
designed; what is needed is advice and guidance, perhaps applicable to a class of applications, that suggests how
these problems might be approached. What is needed is a collection of application design pa�erns that can be
o�ered to designers. Trying to think about design pa�erns in an organized way should yield another bene�t; by
looking across applications to see common needs, new ideas may emerge for common services that the lower
layers can o�er to help improve the security of applications. It is highly unlikely that there will be some new
service at the packet forwarding layer that can suddenly make applications secure, but is is possible that there
are supporting services that can make the task easier. �e way to �nd these services is to look at application
requirements, generalize from them, and see what concepts emerge.

7.7 Denial of Service a�acks
Abstractly, the fact of DDoS a�acks can be taken as a fundamental indictment of the architecture–the essence of a
layered design is that the lower layer should not be a�ected by the behavior of the layer above it. Since DDoS
a�acks can disrupt the lower layer just by sending packets, the design of the lower layer is de�nitionally �awed.
However, one should not be too harsh in judging the design. Simple approaches to protecting the transport layer,
such as fair queuing and rate limiting, can only do so much if the a�acker can assemble a large fraction of a
million a�ack machines. [[[Cite Perman thesis to put “simple” into context�?]]]

Another point of view is that the architectural �aw is that a sender can send at will, without the permission of
the receiver. If the Internet required the permission of the receiver before delivering a packet, perhaps certain
sorts of DDoS a�acks could be thwarted. However, many of the machines that are a�acked are intended to provide
services to any comer–services like providing Web content. �ese machines need to accept tra�c from anyone if
they are to ful�ll their intended purpose.

Another perspective on DDoS a�acks is that they persist only because of an “economic �aw” in the ecosystem–
the state of a�airs that in many cases, users pay a �at rate for access rather than a usage-based charge. �is pricing
model reduces the incentive of the user to remove malware–if the user suddenly got a large and unexpected
monthly bill, there would be a much larger incentive to remedy the situation.

In my view, once we take into account the need of services (server machines) to be open to connections from
anywhere, and the potential scale of DDoS a�acks, the only realistic approach is to identify the a�ack tra�c as
such so it can be stopped or at least thro�led to an extent that renders the a�ack ine�ective. (�e idea of di�using
the a�ack against a su�ciently large a�ack surface also seems to have merit.)

However, once we contemplate the idea that certain tra�c will be classi�ed as malicious, we must then think
through the potential of this mechanism as itself a vector of a�ack. We must ask which entity would have
the authority (or be trusted) to declare tra�c as malicious, and which actors would be expected to honor this

102 178

David D. Clark Designs for an Internet

declaration. Again, this is an exercise in cra�ing the expressive power of the architecture so that the “right” actors
can preferentially exploit that power. I return to this topic when I discuss architecture and security in section 7.9.

7.8 Balancing the aspects of security
�e preceding discussions suggest that there are four general problems to address: protect regions of the network
from being a�acked, protect communication among aligned parties, protect parties with adverse interests from
harming each other, and mitigate DDoS a�acks. It would be very nice if these could be addressed independently,
and to some extent they can, but I will argue that there are tensions between protecting the host and protecting
the communication, and part of the overall security design of an architecture will be to balance to requirement to
protect communication and the requirement to protect end-nodes from each other.

One could imagine the design as proceeding as follows:

• First, make sure that critical algorithms that support key PHBs are secure. Interdomain routing is the
obvious example–since routing, as currently conceived, is a distributed algorithm in which all regions of
the network participate, it creates opportunities for one region to a�ack another. �ere are other PHBs,
such as anycast, that may need to be be�er secured.

• Second, put in place schemes to protect communication. Assume that applications (which de�ne the pa�erns
of communication), will deal with issues of con�dentiality and integrity by using encryption, and assume
that the application will intentionally route communication to any service elements that are needed. To deal
with the goal of availability, the application must design its communications, and take advantage of any
expressive power provided by the system, to detect and localize if and where a PHB or service component
is mis-functioning, and recon�gure itself to avoid it.

• �ird, put in place PHBs that can prevent or constrain communication among untrusting or hostile end-
points. Assume that the application can modulate its behavior based on su�cient identity information, and
add or remove protective PHBs as necessary.

• Fourth, put in place suitable mechanisms to di�use or disable DDoS a�acks.

�is assessment is both glib and incomplete. It is glib overall in that is seems to trivialize very hard tasks, even
if they are well-de�ned. In more detail, it is glib, �rstly, with respect to the issue of localization of malfunction
and availability. However, since the current Internet does nothing in this respect, any new capability would be
be�er than what we have today. Second, it is glib with respect to the degree it depends on the designer of the
application to get all this right. For this approach to work, the application designer has to be given a lot of help
and design guidance, even if this is not embedded in the architecture.

However, if this analysis is well-structured, it can suggest a research approach, even it it seems to trivialize
the challenges. However, I also described it as incomplete. �e lists begs the question of whether these tasks are
independent–whether we can proceed with each separately, doing the best we can at any time. In fact, I believe
that they are not independent; it is possible that the design space of secure operation implies a tradeo� between
two perils–a�acks on the communication and a�acks on each other. �e more protections that are put in place to
protect one end-point from the other (in the language of Chapter 4 the more PHBs), the more points of a�ack are
created that might be used to disrupt the communication. A clean, encrypted channel between two end-points is
a very simple concept, with few modes of failure and few points where an adversary can exploit a PHB to disrupt
the communication.

If untrustworthy PHBs can indeed be ejected from the path of communication (task two above) then perhaps
this risk is hypothetical. But we see today in parts of the Internet a situation that brings this issue into sharp
focus–the situation within countries with more repressive or restrictive governments who require that their ISPs
act as agents of the state to regulate communication. In this case there are PHBs in the network that are, from the
perspective of the users if not the state, untrustworthy, and the users have no ability to avoid using them.

103 178

David D. Clark Designs for an Internet

For the users in that country, there is no way to avoid using that network (it may be the only network available)
so communication becomes a “cat and mouse” game in which the expressive power of the network is used by
both sides to achieve their goals. A sender can encrypt as much as possible, so that the only PHB it a�empts to
exploit is the most basic forwarding. �e PHB of the state may try to force more revelation by blocking encrypted
packets. �e sender may tunnel to a exit node; the PHB may respond by blocking those destination addresses.
By revealing less, the sender tries to prevent the PHB from doing �ne-grained discrimination–it forces on the
PHB a “blunt instrument” response, such as blocking all encrypted �ows, which may have such collateral damage
that the censor is forced to forego that behavior. So part of what an architecture (through the lens of expressive
power) can do is provide tools to shape this game, and perhaps bias the outcome. �is is a classic example of tussle,
carried out using the tools of the architecture.

In this context, rich expressive power may be intrinsically dangerous. If a network provides rich expressive
power, and applications are designed to take advantage of these powers, even as an “optional” mode, a PHB with
adverse interests may take the approach of blocking modes of communication that do not exploit these options,
on the grounds that the collateral damage is reduced: the user still has a mode that will achieve communication,
but one that forces maximal revelation. User choice is also dangerous. One can see a simple example of this with
respect to encrypted connection to Web pages. Today a Web server makes the decision as to whether to use
TLS. �e client has no control. If a censorship PHB blocks encryption, it blocks access to all TLS web sites. But
if the use of TLS were a choice under the control of the client, blocking all encryption would “only” have the
consequence of forcing the user to communicate in the clear. Choice can be a bad option if the end-node can be
coerced into making bad choices. Be�er a simple architecture with no choice.

Expressive power is dangerous in another related way. As we add capabilities for the sender to add more
expressive explicit data to the packet header, the possibility arises that third parties “in the network” (exploiting
topological delivery), with interests adverse to both the sender and receiver, and with topological control, will
be able to use the available mechanisms to coerce explicit information from senders as a condition of usage.
Section 7.9 gives an example of this tension related to identity management. So when the goal is protecting
communication from a�ack by the network, the best design point may be minimal expressive power with no
choice given to the end-nodes over how that expressive power is exploited. �is approach, almost of necessity,
will make the target of availability much harder to achieve.

I have used the terms control point and control point analysis to describe a way of looking at the design of a
system–an approach that involves cataloging all the actions that must be completed in order for some undertaking
to succeed, and methodically cataloging all the points in the �ow of actions where the design creates an opportunity
for some actor to control that action. A focus on control points guides the analysis away from the data plane
and toward the control plane. Control points are points of tussle, and what we have called tussle is the aspect
of security that emerges when an undertaking must tolerate the presence in the system of actors with adverse
interests. In this context, eliminating control points, or di�using the architecture of control so that it cannot be
co-opted by an actor with adverse interests, may be as important to the overall usability of the architecture as
adding more complex network functions that are intended to improve the functional performance of the network.
[[[Perhaps add a box on control point analysis…?]]]

7.9 The role of architecture
�e preceding sections propose a way to view the landscape of network security.�e focus of this book is
architecture; the �nal question for this chapter is what does architecture have to do with security. According to
my minimality argument, architecture should say as li�le as possible, but no less. And architecture does not, in
and of itself, determine how a system meets its requirements (such as a requirement for secure operation), but
rather provides the framework and necessary starting points for the subsequent design to meet its requirements.
�e previous discussion about expressive power and its potential dangers suggests a starting point of view, but
here are some more speci�c concepts.

104 178

David D. Clark Designs for an Internet

A�acks on the network
I discussed in Section 7.4 why securing the routing protocols of the current Internet is not a simple technical
problem solved by the use of encryption, but a complex problem embedded in a space of trust management and
tussle. To the extent that designers add complexity to the network (for example additional PHBs with distributed
control algorithms), I would assume that the failure modes and a�ack modes will become more complex–an
argument for simplicity. But at the architectural level, the question is what sort of expressive power might be
added to make such protocols more robust, or aid in localizing faults in the protocols. Perhaps the methods used
to detect malicious PHBs in the context of end-point communication can be used to detect malicious PHBs in the
context of the network’s control algorithms. Again, the role of architecture is not to make the system secure, but
to provide critical building blocks so that subsequent mechanisms can be built to achieve these goals.

One key design choice with important security implications is the expressive power in the packet header
to represent interdomain routes. Schemes like those in Nebula and SCION in XIA allow the sender to put a
cryptographically signed interdomain source route in the packet. �e pathlet proposal in [Godfrey et al., 2009]
similarly requires the packet header have su�cient expressive power to describe a sequence of pathlets. In
schemes like these, the sender or its agent composes the path from routing assertions made by the di�erent
regions of the network. �e resulting delivery sequence can still be confounded if these basic routing assertions
are not trustworthy, but the sender need not worry about whether the computation that composes the resulting
source route is corrupted, since that computation is done by the source or an agent the source has reason to trust.
In BGP, where the interdomain paths (the path vectors) are computed by each AS along the path in turn, any
corrupt AS can disrupt the proper delivery of packets to the destination, leaving no option to the source to route
around that AS.

Protecting PHBs and their invocation Apart from the tension I describe above, if the network is to contain
a richer selection of PHBs, perhaps invoked using explicit parameters in the packet, the design must take into
account protecting both the PHBs and the parameters of the packet header.

Once we recognize the existence of intermediate elements (and their PHB) as a part of the system, we have
to take methodical steps to deal with a�acks on these devices themselves. �ese devices are perhaps (o�en?)
simpler than general purpose operating systems, and it may be possible to engineer them to a higher standard of
resistance to penetration a�acks. To the extent that these are protective PHBs–“�rst line” elements exposed to
the full open Internet, while shielding resources behind them, it will be necessary to engineer them to a high
standard of penetration resistance. More generally, we have to ask about DDoS a�acks against these devices.
Intermediate elements with their PHB will be a�acked if this provides a way to disrupt access to the overall
service. So the ability to protect �rst-line elements from DDoS a�acks is a general problem the architecture should
solve. Mechanisms such as anycast may be useful as a tool in this pursuit, so long as the issues of shared state
across the replicated PHBs can be managed.

Once we introduce the concept of explicit data carried in the packet and used as input to various PHBs
in the communication path, we have to ask about the security implications of this data. �e classic triple of
“con�dentiality, integrity, availability” is a useful place to start, but we must not forget the concerns around tra�c
analysis. Another summary is “that which is not encrypted can be seen, that which is not signed can be changed”.

For example, the proposal for a push-down stack of records of explicit data for di�erent PHBs, as I sketched
in Chapter 4, reveals a number of issues. �e problem of gross corruption of the header by some hostile PHB is
perhaps not worth considering–if an element is that malicious, the outcome is the same as a failure to forward,
which is a more general problem that can only be dealt with by avoiding that element. �e more interesting
question is spying on the information, or more purposeful modi�cation of information on the stack, to somehow
break a PHB further along the path. To prevent this, in the extreme, each record on the pushdown stack could be
encrypted using a public key of the element in question. �is implies considerable processing overhead, and some
way to get the right public key reliably. �e Nebula proposal realizes a scheme of this sort. �e overall complexity

105 178

David D. Clark Designs for an Internet

is somewhat similar to a client using the TOR system, so we do have evidence that users are willing to tolerate
this overhead. However, in some cases, it may be desirable for one PHB to modify the input data for a subsequent
PHB, so the approach taken to secure the data should not be in�exible.

Concerns about corruption of a packet header are in fact only an example of the more general problem I
discussed above–if an intermediate element is untrustworthy, in the general case the only option is to reduce
ones dependency on it to a su�cient degree, perhaps avoiding it all together. �is approach depends as much on
the ability to detect and localize a problem as to prevent it. So the design approach that the architecture takes
around explicit parameters in the packet header should focus on fault localization as well as continuing to employ
elements with adverse interests. Again, the context of the repressive government must be a cautionary thought at
this point.

In the discussion on applications above, I proposed that applications might want to adapt their modes of
operation based on the degree to which the end-points were prepared to trust each other. �e reality of operating
in a network where there are untrustworthy intermediate elements suggests that there is a second dimension
along which the end-nodes will need to adapt their behavior, which is the extent to which they choose to try
to exploit intermediate elements and their PHBs. �e less explicit information that is in the packet (the less the
end-points try to exploit the expressive power of the architecture), the less opportunity is available to adverse
elements to disrupt communication.

Protecting addressing modes Addresses in packets seem like the most basic form of explicit parameter, so
they make a good case study of the tradeo�s as we add expressive power. Addresses in the current Internet
are very simple: just one �eld of 32 bits (until we get IPv6). �is simplicity and lack of structure imposes some
operational requirements: we organize addresses into blocks for routing purposes, rather than computing routes
for individual end-points. �ese address blocks are usually subsets of addresses that belong to an Autonomous
System, so a possible form of address with more expressive power is that the address contain the destination AS
explicitly, as well as an end point address. If the AS is not too big, routing on �at addresses within it would be
feasible, so addresses would not have to re�ect location. �is proposal is a nice example of a di�erent sort of
expressive power in the header; the challenge with this idea, as with all proposals for expressive power, is to ask
how it can be exploited by malicious actors.

A�acks on the routing system would seem to have about the same potential in this scheme as in the current
scheme, in that whether the AS number is explicitly in the packet or derived from a mask on the IP address, a
bogus routing assertion could equally send the packet o� in the wrong direction. If an a�acker could somehow
modify the AS number in a packet, it could be sent o� in the wrong direction without any a�ack on the routing
system, but it is not obvious how an a�acker would undertake that a�ack unless the network of the sender is
untrustworthy (as in the censorship example).

Perhaps more interesting is the question of how a malicious sender could manipulate this scheme as part of
an a�ack. �e opportunities for a�ack begin to emerge when we look at the options that the receiver might
exercise to deploy PHBs to protect itself. For example, a machine that is protecting itself from a DDoS a�ack
might purchase a service that provides many machines sca�ered around the network to di�use the DDoS a�ack,
and let only legitimate tra�c through. To direct DDoS tra�c to these widely distributed machines, they might be
given addresses that are in an AS which itself is multi-homed onto the network at many places, a form of AS-level
anycast. �e receiver might give out its address as being inside that DDoS protection AS, but if an a�acker can
guess the �nal AS within which the target is ultimately located, it can compose this address and send directly to
it, thus using the increased expressive power of the header to bypass the DDoS protection. �e DOA proposal
explicitly noted that some additional mechanism such as having the protection node sign the packet would be
required to protect against a�ackers that a�empt to bypass the node.

One could try to mitigate this a�ack by structuring the DDoS system as an address indirection scheme, in which
the DDoS protection devices rewrite the destination address or add some sort of capability to the packet, to signal

106 178

David D. Clark Designs for an Internet

that the packet has been validated. In addition to the i3 and DOA proposals mentioned above, there have been
other schemes proposed: [Andersen, 2003, Yang et al., 2005] to improve the security of services on the network
by interposing some sort of checkpoint or intermediate relay in the path from the client to the server. �is relay
can permit or deny access based on the rights of the client, or perhaps rate-limit or otherwise constrain clients as
appropriate. �ese devices depend, in general, both on state stored in the relay and additional information in
the packets. Since today there are no �elds to carry additional information, such schemes are required to build
on such �elds that already exist (implicit parameters, to use my term). Perhaps an important form of expressive
power to add to a future network is some sort of credential to control forwarding of packets among PHBs, or
some other mechanism to compensate for more expressive addresses by limiting the uses of these addresses as
a�ack vectors. But more generally, the consequence of de�ning an address format with more expressive power is
the need to add yet more expressive power that can be used to control the abuse of the address, which might in
turn trigger the need for expressive power to limit that mechanism from being abused, and so on.

A simpler example of tension over expressive power is anycast. With anycast addressing, a number of endpoints
can have the same address, and the network rather than the sender picks the one that receives what is sent,
perhaps the “closest” receiver by some metric. What if the particular receiver selected by the network is not
functioning correctly? Perhaps a malicious actor joints the anycast address group and tries to a�ract tra�c in
some region. If the sender has no way to exercise choice and select another receiver, this is a classic example of
an availability failure due to lack of control by the sender. All the sender can do is wait for the failing receiver
to be �xed or removed. �e DONA proposal allows the requester to ask for “the k-th closest” copy. But if the
architecture gave any form of control to the sender, would this expressive power become an a�ack vector for a
malicious sender to pick a particular receiver out of the anycast set and launch a DDoS a�ack? Part of the power
of an anycast address is to di�use a DDoS a�ack, which implies that the sender must not be given any power to
tailor the address. Is this tradeo� intrinsic?

A�acks on communication
Assuming that con�dentiality and integrity are managed using encryption, the remaining problem, availability, I
defer to Chapter 8. �e potential consequences of tra�c analysis can be greatly in�uenced by architecture design.
�e expressive power (or lack thereof) of the header can greatly in�uence what is exposed in the packet, and thus
the perils of adverse observation, as for example the lack of a source address in NDN.

A�acks on hosts
I argued that to a large degree, the opportunities for a�ack are created at the application layer, and the application
(supported by mechanisms in the end-nodes like sandboxing) will have to mitigate these risks. What can the
network, and in particular the network architecture, do to help mitigate these problems? One answer is that the
network can provide means to prevent data �ows that are not authorized by trusted elements in the network. If
applications are designed so that authorization from trusted elements is obtained before dangerous data �ows are
permi�ed (e.g., ex�ltration of data from a trusted region), then the network should prevent rogue applications
(perhaps based on malware) from initiating these �ows. Mechanisms such as So�ware De�ned Networking (SDN),
which allow forwarding policies to be downloaded into routers, could be used in a way that trusted elements
control the SDN policy, and applications are designed to negotiate permission from these trusted elements before
taking action such as sending data.

Another potential role for architecture is to add to the expressive power of the packet header some way to
convey identity information, so that hosts and applications can discriminate between trusted and untrusted actors
earlier in the initiation of communication. I discuss below both bene�ts and risks of this idea, and a designer
should think carefully whether there is bene�t in having any greater indication of identity visible in the packet,
or whether this information should be conveyed at a higher level (end-to-end, perhaps encrypted) so that issues
of identity become private ma�ers between the communicating end-points.

107 178

David D. Clark Designs for an Internet

Architecture and identity
I argued above that it would be a very bad idea for a future Internet architecture to include as part of its speci�cation
a �xed method to manage identity. �is approach would (in abstract terms) be embedding too much semantics
into the network. But perhaps as part of the expressive power of the header there should be a �eld into which
any sort of identity information could be put by the sender as speci�ed by the receiver. Di�erent applications, in
di�erent contexts, could demand one or another sort of information be put into this �eld, so that the credential
could be checked on receipt of the �rst packet, perhaps by a element in the network that had credential-checking
as it PHB. �e NewArch proposal included a rendezvous �eld in a session initiation packet, whose meaning was
private to the communicating nodes.

As with any proposal to add some form of expressive power to the architecture, this must be examined from all
perspectives–protecting a receiver from a sender and protecting communication from a�ack by the network. For
example, a conservative government might demand that some explicit identifying information be added to the
packet as a condition of making a connection out of the country. Today, there is no practical way to demand that,
exactly because the packet header is not expressive enough. As we make the header more expressive, we have to
consider how we have shi�ed the balance of power among the various actors.

DDoS a�acks
DDoS a�acks are a problem that has to be solved (at least to some degree) at the network layer. A network must
have a way to manage and protect its resources–this is not an problem that can be “kicked up the layers” to the
application. But again, the question is what sort of architectural support would be useful in mitigating these
a�acks.

�ere are several ways to think about dealing with DDoS a�acks. One is to increase the barriers to the
construction of botnets to the point where they become impractical. Perhaps, with careful a�ention to all the
issues discussed so far in this chapter, that might be possible, but I set that approach aside for the moment. A
second approach is to make it easier to disrupt the control of a botnet once it has been created. Again, a di�erent
architecture might make that goal easier, but since there are many conceptional ways to communicate with
an in�ltrated machine, this approach would require a rethinking of the basic communication paradigms of the
architecture. Proposals such as NDN do not allow the sending of unsolicited data packets, so all they can send is
interest packets. �is limitation certainly changes the landscape of a�ack.

Assuming that in a new architecture it is still possible for an a�acker to assemble and control a substantial set
of in�ltrated machines, which can then send tra�c with the goal of overloading a target resource, the mitigation
of this a�ack seems to have two components: �rst to determine which machines are sending the tra�c and second
to block the malicious �ows. In the context of the current Internet, much of the work on DDoS has focused on the
�rst problem: determining which machines are originating the a�ack. �is is an issue in the current Internet
because it is possible for a sender to put a source address in a packet other than the one associated with that sender.
�is might seem to be a malicious action, but in fact there are o�en legitimate reasons to do this: mobile IP (RFC
5944) requires that the source address in a packet be that of the ”home agent” (a persistent address) rather then the
current address assigned to the mobile device. �e IETF tried to address this issue by proposing a “Best Current
Practice” (BCP 38, RFC 2827) that recommends that source ISP check and validate the source address of packets
they originate. However, there is no requirement that ISP conform to BCP 38 (other than some mild and probably
ine�ective peer pressure and shaming) and complying with BCP 38 imposes additional costs and complexity on
ISPs. BCP 38 was promulgated in 2000, and has achieved some but by no means complete compliance.7

�e situation with the current IP architecture raises the question of whether, in some alternative design, it
could be made impossible for an a�acker to forge a source address. A designer could take the naive approach of
making a test similar to the one proposed in BCP 38 “mandatory”, but how would such a mandate be enforced?

7 See h�ps://spoofer.caida.org/, which reports on their a�empts to measure compliance. �eir report as of April 2016 is that about 57% of ASes,
covering about 80% of routed IP addresses, detect false source addresses.

108 178

David D. Clark Designs for an Internet

As I noted in section 4.10, features described as part of an architecture that are not actually necessary for the
operation of the network have a tendency to atrophy over time. To assure that source addresses are validated in
packets, an architecture would ideally make that validation an integral part of forwarding the packet, so that the
step could not be skipped in pursuit of performance.

Some architectural proposals explicitly allow the source address (the address to which a return packet should
go) to be di�erent from the address (location) of the sender. DOA, which concerns itself with delegation of services
to other points in the network, makes clear that the sender of a packet can indicate in the source information
the sequence of services to which a returning packet should transit, which is di�erent from the processing of
the initial packet. �is design would seem to open up many opportunities for DDoS a�acks. �e DOA paper
(see Chapter 5) discusses the use of an intermediary to protect a server from a DoS a�ack, but does not seem
to address much a�ention to the use of malicious source (return) addresses. At the other extreme, schemes like
Nebula, which require a sender to obtain a Proof of Consent from the control plane before sending a packet,
would seem to preclude the forgery of source addresses.

Traceback A number of papers have proposed to augment the current Internet architecture with a traceback
scheme, to allow a victim to identify the sender of a malicious tra�c (to within some range of accuracy) even
if the source address has been forged. �ese schemes, in general, exploit some mix of two mechanisms–packet
logging, where the routers are augmented to keep track of packets passing through them, and packet marking
where routers add to packets they forward some indication of that router’s identity. It would seem that, almost
independent of architecture, the �rst sorts of schemes will impose signi�cant processing costs on every router,
and the second must deal with how this information is wri�en into the packet in a practical way. An example
of packet marking, the Source Path Isolation Engine (SPIE) is described in [Snoeren et al., 2002], where routers
compute and record a digest of every packet they forward, and record this digest in a Bloom �lter. In principle, a
victim, by computing the digest of a single a�ack packet, and sending a query into the net that follows paths
where the digest has been recorded in successive routers, can determine the source of that packet. While the exact
details of how the digest is computed clearly depend on the speci�cs of the IP header, this scheme would seem to
be generalizable to di�erent architectures.

Most proposals for packet marking make the assumption that it is impractical to record the complete sequence
of routers forwarding a packet into that packet. �e IP Record Route option did provide this capability, up to a
�xed maximum number of hops.8 A simple packet marking scheme requires each forwarding router to record its
identity into a single �eld in the packet with some probability. A victim, receiving enough packets, will get the
identity of each packet along the path, and (armed with some topology information) can reconstruct the path
back to the sender. Perhaps a be�er scheme is for the packet to provide enough space to record the address of
two packets: if the �eld has not been �lled in, a router records its address in the �rst �eld, which then triggers
the next router to put its address into the second �eld. �e marked packet thus records a link or segment of
the path, between two routers. Again, with enough packets, a victim can reconstruct a path to the a�acker by
concatenating these records. See [Savage et al., 2000] for a description of this edge marking scheme. A scheme by
[Song and Perrig, 2001] describe di�erent encoding schemes for the link, including more security for the marking.
A hybrid scheme is described in [j. Wang and l. Xiao, 2009], in which the packet records the exit router from the
source AS and the entry router into the AS of the victim, and those routers log information about the packet.

A key feature of many of these packet marking schemes is that they are designed to work in the current Internet,
and thus spend much of their e�ort in designing a way to �t the marking into the existing IP header. �e only
real option available is to repurpose the usually unused fragment o�set �elds. In fact, the papers are so focused
on the the necessity of con�rming to the extreme constrains of the IP header that the papers do not give much

8 �is option itself is not useful to tracking a�ack packets. �e function is not widely implemented today, and further depends on the sender
inserting the option into the packet, which an a�acker is not likely to do. A scheme that can be used to track a�ackers must be mandatory, and
not subject to defeat by the sender.

109 178

David D. Clark Designs for an Internet

insight how one might best do packet marking in a di�erent architecture where the header could be designed for
this purpose. Looking at the various alternative architectures described in Chapter 5, very few of them include a
serious and complete analysis of dealing with DDoS a�acks. DOA discusses the use of a service to block a DoS
a�ack, but does not discuss in any detail how this service might work.

Blocking the attack �e previous discussion of traceback (or ensuring that the source address in the packet
cannot be forged) begs a perhaps more signi�cant question: if the victim knows the actual address of the sender,
how can the victim exploit this information. �e key to DDoS mitigation is blocking the tra�c, not just �guring
out which machines are sending it. Most of the traceback papers I cite above do not address the question of how
blocking can be done in a secure fashion; they leave this aspect of the problem as future work. �is fact may
be one of the reasons why none of these schemes has caught on in practice. A number of schemes have been
proposed to block unwelcome tra�c, including the indirection schemes I mentioned in Chapter 5, such as i3. A
number of other schemes have been proposed. SOS [Keromytis et al., 2002] protects an end-point from DDoS
a�acks by pu�ing in place a set of �lters in the region of the network that hosts that end-point, such that all tra�c
must �ow through those �lters. (In the language of Chapter 4, SOS depends on topological delivery to the �lters
in order to protect the receiving end-point.) �ey try to prevent a further class of a�ack by keeping the addresses
of the �lters secret. Mayday [Andersen, 2003] elaborates on the design approach of SOS. �ere are a number of
papers that propose and elaborate the idea of pu�ing some sort of capabilty in packets sent from valid receivers, so
that �lters can distinguish valid from unauthenticated or malicious tra�c. �ese include [Anderson et al., 2004],
TVA [Yang et al., 2005], Pi [Yaar et al., 2003], SIFF [Yaar et al., 2004] and Portcullis [Parno et al., 2007].9 . �ese
proposals do not describe themselves as a “new Internet architecture”, but they all require new �elds in the packet
header (new expressive power), new function in routers, and new protocols and mechanisms for connection setup.
�ey should thus qualify as new proposals, and should be evaluated using all the criteria I have laid out in this
book. Presumably, various sorts of packet �ltering mechanisms could be deployed in routers along the path from
the source, if such a router could be identi�ed and it was willing to provide this service. But this general concept
raises in turn many questions. One has to do with incentive–why should a router perhaps distant from the victim
agree to provide this service? Another critical aspect of blocking is to ensure that any mechanism put in place
cannot itself be used as an a�ack vector. If a malicious machine can forge a request to block content from a source
to a destination, it can shut down valid communication–yet another form of an availability a�ack.

A very di�erent approach to limiting DoS a�acks is in the Framework for Internet Innovation (FII). �e FII
proposal is overall an exercise in just how minimal an architecture can be, and in fact devotes most of its complexity
to blocking DoS a�acks, which the authors argue is the only aspect of security which must be dealt with at the
level of network architecture. �eir scheme requires that each host be associated with a trustworthy component
that can verify the source address and block tra�c from that source to a given destination on request from that
destination (using what they call a Shut Up Message or SUM). �ey de�ne two �elds in their header that must have
global meaning: a valid address of this trusted agent and an identi�er that this agent can map to the actual sender.
(Note that with this design the actual location or identity of the sender need not be revealed to observers in the
network. Only this trusted agent has to be able to map this identi�er to the actual source.) �e FII paper discusses
in considerable detail the design of the SUM mechanism, with the goal of making sure that this mechanism
itself cannot be abused. �e resulting scheme is very complex and appears to require substantial cryptographic
processing at the trusted agent.

One aspect of blocking an a�ack has to do with the design of the source addresses. Se�ing aside for a moment
the issue of forged source addresses and forged blocking requests, what information in a source address would be
useful (or in fact necessary) to implement a blocking scheme? Many of the architectures I have described use
some form of separation between identity and location. �e identity is considered to be robust (perhaps a public
key hash that can be validated with some sort of challenge-response protocol, the execution of which on each

9 For a more complete discussion of these schemes, see the Appendix of the book.

110 178

David D. Clark Designs for an Internet

packet may prove a resource-intensive step that can be exploited for DoS), but the location information may be
transient and with no global meaning. It may just be an identi�er for the source AS, under the assumption that
within the AS �at routing based on the identi�er is practical. �is scheme might allow for e�ective blocking,
assuming the sender is not forging this information. On the other hand, a scheme like NewArch, in which the only
meaningful information in the packet is the locator, may not provide a useful framework for blocking unwelcome
tra�c. A number of proposals (including the design of IPv6) have noted that for privacy reasons, a sender should
be able to use a variety of locators, which partially mask the ability of an observer to map from locator to actual
machine. Obviously, that AS within which the locator is meaningful must be able to resolve the binding from
locator to speci�c machine, but the privacy goal is to prevent this from being done in general. In such a scheme,
the only region of the network in which e�ective blocking can be done is in that AS actually hosting the source.
Closer to the victim, there is, by intention, no robust mapping from source address to speci�c machine.

Assumptions of trust Any scheme to mitigate a DDoS a�ack will end up depending on the trustworthy
operation of some set of components in the network, whether a trustworthy Network Interface Card on a
corrupted sender, a trustworthy router along the path, and so on. Mitigating DDoS is another example of a
situation where the design of a scheme does not just depend on a good technical design but as well the design
of a system that is “socially correct”–a system that makes the correct assumptions about trust and incentive. In
general, most of the architectures I have discussed here do not devote full a�ention to the issue of DDoS, which is
perhaps a missed opportunity, since the range of options for DDoS a�acks may depend very much on the speci�cs
of the architecture, and a full analysis might have revealed what architectural options would be best suited to
mitigate DDoS a�acks.

7.10 Conclusions
Barriers to be�er security
Security problems in the current Internet are in part a result of technical design decisions. But the �awed
technology is not the result of error or lack of a�ention. Applications that are insecure by design are perhaps
the most di�cult problem to address, and the decisions to design applications in this way are deliberate, driven
by larger economic considerations of appeal and usability. Barriers to the security of distributed systems such
as the interdomain routing system, email or the web are problems of coordinating and incentivizing collective
action, dealing with negative externalities and costs imposed on �rst-movers, understanding how to cope with a
lack of uniform trust across the system, and the like. To overcome these barriers will require good system design,
but that design is not exclusively technical. �ere must be complementary aspects of technology, operational
requirements, governance, and the like.

Comparing the “computer science” and “user” or “political science” de�nitions of security sheds some light on
these issues. �e computer science de�nition of security–that a system will only do what it is speci�ed to do, even
under a�ack–defends against unexpected outcomes or behavior but is not framed in terms of preventing speci�c
harms. It is an appealing de�nition to a system engineer, because it seems to frame security in a way that bounds
the problem to the system in question. Framing security in terms of preventing harms (e.g., preventing credit
card fraud) brings many more elements into scope. For example, preventing or mitigating some forms of credit
card fraud may best done by modi�cation of the credit card clearing system. �is de�nition of security frustrates
the designer of a component, because the scope of the solution is no longer within the scope of the designer to
�x. Of course, if the system in question is a multi-component system with multiple actors responsible for parts,
even the “computer science” de�nition of security may be hard to contemplate. But only by contemplating the
potential harm can one begin to determine the level of e�ort to put into defending the system elements. As I
noted above, the design of the Internet presumes that the lower layers are not perfect, so the degree of e�ort put
into hardening them must be a ma�er of judgment, not the pursuit of perfection.

111 178

David D. Clark Designs for an Internet

The centrality of trust
What has repeatedly emerged in this analysis is that whatever technical mechanisms are used to improve security
are embedded in a larger context of trust management. Trust management is the ugly duckling of security,
compared to cryptography. Cryptography is lovely and complex mathematics, it has provable bounds and work
factors, it is an amazing tool. Tools to manage trust are messy, socially embedded, not amenable to proofs, and the
like. Sadly, crypto is almost always wrapped inside one of the larger, messy contexts. At a minimum the problem
of “key management” is always present, and the problem of securing the routing protocols of the Internet (or the
DNS, for another example), or improving availability, or allowing applications to adapt their behavior based on
the apparent threat, all depend on trust as a central issue.

�e actor that gets to pick which element to trust has the power to shape the security landscape. Mechanisms
that create points of control may initially easier to reason about, but given the potential tussle that arises around
any centralized point of control (e.g., certi�cates), a be�er real solution may be to prefer “socially stable” solutions
such as highly decentralized control and decision-making.

7.11 Acknowledgement
�is chapter has greatly bene��ed from discussion with Josephine Wol�, Shirley Hung, John Wroclawski and
Nazli Choucri at MIT.

112 178

Chapter 8

Availability

Since “all” most networks do today is deliver data, it would seen that their ability to carry out this function, even
under adverse conditions, would be a primary consideration. �e term used to describe this general character is
availability. �e term resiliance is sometimes used in this context, and captures the idea that the challenge of
availability is to function when things are going wrong, not when everything is working as it should. An available
network is a network that is resilient in the face of failures. �e opposite of availability is outage, a term used to
describe a failure of availability.

8.1 Characterizing availability
A de�nition of availability only makes sense within the scope of the particular functional speci�cation of a
network. A delay tolerant network that promises to deliver email within a day under normal operation (the utility
of such a network is a separate question) would presumably de�ne a failure of availability di�erently than a
real-time delivery service that promised delivery within a factor of 2 of the latency of light.

�ere seem to be at least two dimensions of availability (or its lack): time and scope. For how long was the
service not available, and over what portion of the network did the failure apply? �e dimension of time is
essential here. In the current Internet, we do not consider the loss of a packet as a failure of availability. TCP
retransmits the packet, and application designers are expected to anticipate and deal with this sort of �uctuation
of delivery time as “normal”, not exceptional. When links or routers fail, this can cause a loss of connectivity that
lasts long enough to disrupt some applications (e.g., a voice call [Kushman et al., 2007]), so it might be reasonable
to describe these events as a transient lost of availability. However, these would not rise to the level where a
regulator tracking outages would expect the event to be reported. An outage that lasts for hours or days is of a
di�erent character.

�e dimension of scope is similarly essential. For a user of the Internet in the U.S., the loss of connectivity to
a small country in Africa might not even be noticed. For the citizens of that country, the disruption would be
severe. �e measure of availability (or the assessment of the importance of a failure) is a ma�er of the observer’s
point of view.

�ese example also suggest that availability must be seen as a concept that requires a layered analysis, just
as with security. Higher layers can (in many cases) compensate for failures at a lower layer. For example, data
can be cached in many locations to improve the availability of the data even in the presence of failures of the
communications infrastructure.

8.2 A theory of availability
I start with the assumption that a system in which its components are working according to speci�cation is
available. While networks may have very di�erent service commitments, it makes li�le sense to talk about
a network that fails its de�nition of availability under normal operation. �is framing ties a potential loss of
availability to a failure of part of the system. When something fails, two sorts of correction can occur. First, the

113 178

David D. Clark Designs for an Internet

layer in which the failure occurred can undertake to correct the failure. Second, a higher layer can undertake
corrective or compensatory action. Ideally, these two actions will not be in con�ict. �is implies that one valuable
component of a layer is some way to signal to the layer above the nature and duration of a failure, or perhaps a
speci�cation of the normal duration of a failure.1 I return to this issue of inter-layer interfaces for management in
Chapter 10.

In order for a layer to recover from a failure, either the failed component itself must recover, or there must be
redundant elements that can be exploited to restore service. �ere is thus a division of responsibility in achieving
high availability–the design of the system must allow for the full exploitation of redundancy, and the system as
deployed must include enough redundancy to cope with anticipated failures. Redundancy must both be present
and exploitable for a system to recover from failures and restore availability.

�ere is thus, at an abstract level, a series of steps that must be part of a scheme to cope with failures.

• It must be possible to detect the failure.

• it must be possible to localize the failed parts of the system.

• It must be possible to recon�gure the system to avoid depending on these parts.

• It must be possible to signal to some responsible party that a failure has occurred.

Each of these may seem obvious, but all can be tricky. �e list above is in the passive voice, which is deceptive.
It begs the question of what actor has the responsibility for each of those steps.

Detecting failures: With respect to detecting a failure, simple “fail-stop” failures are the easiest to detect. �e
hardest are failures where the element is partially operational so that it responds (for example, to management
probes) but does not fully perform. A mail forwarding agent that has failed is easy for a sender to detect (and
using the DNS, there is a scheme to avoid the failed component by moving to a backup server.) A mail forwarding
agent that accepts the mail and then does not forward it is harder to detect. It is possible that some future design
for an Internet might argue that its architecture allows the network layer to detect all the failures that arise at
this level, but I would �nd this assertion to be very bold. It is probably possible to enumerate all the elements in
the network (although even this task gets more di�cult as more PHBs creep into the network, perhaps only with
contingent invocation.) However, as network functions get more complex, to enumerate all the failure modes
(or to create a robust taxonomy that covers all classes of errors) seems a rather daunting challenge, especially
in the context of security-related failures. I argue that in general, only an “end-to-end” check can con�rm if
something is failing (e.g., the mail is not ge�ing through), but the end-to-end check does not help with the second
step–localizing the problem. So the resolution of the “passive voice” with respect to this step is that while a layer
should do all it can to detect failures, the end-nodes must play an essential role of last resort.

�is line of reasoning about detection of errors applies speci�cally to availability issues that arise in the context
of a�acks on communication (see Section 7.5). Given that faults that arise from malice may be cra�y and Byzantine,
both detection of faults and their localization may be di�cult.

Consider a very simple example–a router that drops or adds packets to a packet �ow. �is sort of action does
not break the forwarding layer, just the end-to-end communication. Should the packet forwarding layer keep
count of packets, and exchange these counts to see what is being lost or gained? Or consider the more subtle
a�ack of changing a bit in an encrypted packet. �is a�ack disrupts the higher-level �ow. Should the network
re-compute the encryption function at each node to detect that (and where) the packet is corrupted? �is may
turn out to be a useful mechanism, but the complexity and performance cost seems daunting.

1 For example, the ring topology of the SONET technology had a design target of 30 ms to recover from a single �ber cut. �e speci�cation to the
higher layer was to wait for 30 ms. before undertaking any adaptive steps to deal with a perceived failure, to see if the SONET recovery was
successful. If connectivity did not return in 30 ms., the problem was more severe and higher-layer action was justi�ed.[[[Fact check]]]

114 178

David D. Clark Designs for an Internet

Localizing the fault: For simple faults, where the layer itself can detect the failure, localization is o�en a direct
consequence of discovery. Routers send recurring messages to each other, which serve to construct routes and
also to con�rm that the remote router is still functioning. Dynamic routing protocols are designed to recover
… [[[discuss distributed recovery vs. centralized, such as 4D or SDN]]] �e more complicated situation arises
when the end-nodes have detected the problem. In this case, there does not seem to be a single, general approach
to localizing the fault. One approach is some sort of monitors or “validation” units at interconnection points
within the network that could make records of what passes–by comparing the records the end-nodes could
somewhat localize where there had been manipulation of the packets. Schemes like ChoiceNet (Section 5.4) have
proposed such an idea. But the question remains as to what sort of architectural support would facilitate this
sort of scheme–perhaps some sort of control �ags in the packet that would trigger various sorts of logging and
debugging. Another approach is route diversity, trying selective recon�guration of the system, avoiding di�erent
parts of the system in turn, to see whether the problem persists.

As I discussed in Section 4.9, it is not always desirable to assure availability. When an end-node is being a�acked,
and prevents the a�ack from reaching it (perhaps using some PHB in the network) what it has implemented is a
deliberate loss of availability (as seen by the a�acker). In this case, where the interests of the sender and receiver
are not aligned, not only should the sender be deprived of tools to ‘remedy” this impairment, the sender should
not be facilitated in localizing the source of the impairment. In the current Internet, there seems no obvious
way to resolve this dilemma if the resolution depends on the network knowing whether the sender and receiver
are aligned in their intention to communicate, and further given that it might be the network that is a�acking
the communication. Perhaps, as I speculate below, there is an architecture feature that might help resolve this
situation.

Recon�guring to avoid failed elements: With respect to recon�guration, the idea is fully understood in
speci�c contexts. �e example of email above uses the DNS to allow a sender to try a backup forwarding agent.
Dynamic routing uses probing to try to detect failed elements and route around them. And so on.

With respect to enhancing the availability of packet forwarding (the essential element of network layer
availability) the current Internet faces a serious conundrum. �e design of today’s Internet is based on the
defensible assumption that while some failures (“simple” failures) can be detected by the network, in general
failures, especially those due to malicious a�ack, can only be detected at the end points, so the task of detecting
them is delegated to the end. But assuming that the end-point detects a failure, what can it do? In today’s Internet,
the end-points have very li�le or no control over network functions like routing. If communication between
end-nodes is being a�acked, the end-nodes have no general way to localize the problem, and no way to “route
around” it.

�ere are (or were) some means in the Internet to give the user control over which entities to trust. �e
mechanism of source routing, which would have supported this sort of control, has vanished from the Internet.
�ere are several reasons why source routing has been deprecated. One is economics: if the user has choice over
routes, should not that capability be links to a way of charging the user for the resources he chooses to use?
Another reason is security. If the network design gave that sort of control to the end-nodes, those mechanisms
themselves might become a�ack vectors, so they would have to be designed with great care.2

Today, what happens is that we accept that a range of a�acks are going to result in loss of availability. If
a network must function at high levels of availability, we use non-technical means to make sure that only
trustworthy components and actors are in the system. So to achieve the full complement of CIA, both technical
means and operational and management means must be combined as part of the approach.

2 For one discussion of potential security risks associated with source routing, see https://www.juniper.net/documentation/
en US/junos12.1/topics/concept/reconnaissance-deterrence-attack-evasion-ip-source-route-understanding.
html.

115 178

https://www.juniper.net/documentation/en_US/junos12.1/topics/concept/reconnaissance-deterrence-attack-evasion-ip-source-route-understanding.html
https://www.juniper.net/documentation/en_US/junos12.1/topics/concept/reconnaissance-deterrence-attack-evasion-ip-source-route-understanding.html
https://www.juniper.net/documentation/en_US/junos12.1/topics/concept/reconnaissance-deterrence-attack-evasion-ip-source-route-understanding.html

David D. Clark Designs for an Internet

At the higher layers of the system, the current Internet indeed gives the end-node a degree of choice over which
versions of a network service are used. A sophisticated user may know to manually select a di�erent DNS server
if the default server is not acceptable. As I mentioned, the email system uses the DNS to provide the sender with
alternative forwarding agents if one is not responding. A very sophisticated user may know that it is possible to
edit the list of Certi�cate Authorities that he chooses to trust. I would claim that while these features do exist,
they are not designed as a part of an overall conception of how to improve availability.

Reporting the error: With respect to reporting the error, I defer that problem to Chapter 10 on management.

8.3 Availability and security
�e discussion to this point suggests that the objective of availability is enhanced by allowing both the system
and the end-users to have enough control to select elements for use that are functioning correctly. In the context
of an a�ack on communications, this objective needs to be re�ned. What the end-user should be doing is selecting
elements that do not a�ack him or otherwise disrupt him. A crude approach might be to select alternatives at
random until one is found that serves. A more constructive approach is to allow the end-nodes to structure
their interactions so that they only depend on elements they consider trustworthy. If there is a malicious ISP,
don’t route through it. If there is a email sender that seems to send only spam, block receipt from it (this sort of
treatment is what anti-abuse organizations such as Spamhous try to coordinate). Essentially, if we want all of the
CIA triad for communication security, we must organize the system so that even if untrustworthy actors are in
the system, we do not depend on them. We tolerate them if we must, but we do not make any interactions among
mutually trusting actors depend on untrustworthy elements unless they are so constrained that we can rely on
them.

�is point of view has been slow to come into focus for some designers of security mechanisms, because it is a
shi� in mind-set. �is logic is completely obvious to designers when it comes to failures: if a router has failed, the
protocols must be able to detect the failure, and there must be su�cient redundant routes that a dynamic routing
protocol can “route around” the failure. But for some in the security community, with its history of a focus on
con�dentiality and integrity, the idea that availability must depend on assessment of trust rather than a technical
mechanism is perhaps disconcerting, and perhaps disappointing.

Routing and availability
�e previous discussion dealt with one aspect of security (as I classi�ed security problems in Chapter 7): a�acks
on communication by a hostile third party. A more basic aspect of security from the perspective of availability
is an a�ack on the network itself that disrupts availability, most obviously by disrupting the routing protocols.
Clearly, the stability and proper operation of routing is essential for network availability.

In addition to making the routing mechanisms more resistant to a�ack, having multiple routing schemes running
in parallel might be a way to improve the resilience of the network when it is under a�ack. XIA implements this
idea, with their di�erent sorts of end-point identi�ers (content, service, network, host, etc.), and di�erent routing
schemes for these di�erent classes of entity, and the ability to fall back to a di�erent scheme if the preferred one
is not available.

As I discuss in Chapter 10, the Internet is moving to more centralized route computation schemes such as
So�ware De�ned Networking, or SDN. Perhaps a centralized scheme like SDN could be complemented with a
simpler and perhaps less e�cient backup scheme that can be used if the centralized scheme seems to be impaired.
�e network could fall back to this simpler scheme as a resilience mode. However, this idea, while it might improve
availability when the network is under a�ack, could at the same time worsen another aspect of security, which
is protecting a node from being a�acked by other nodes. Part of the power of SDN is supporting �ner-grained
routing decisions based on policy in each router. Having another scheme that bypasses these controls could
thwart those policy goals. �is tension illustrates that di�erent security sub-goals may end up in con�ict, and in

116 178

David D. Clark Designs for an Internet

particular that it takes cra�y design to balance the dual goals of high availability even when parts of the system
are failing and selective availability to block hostile tra�c, especially in a “dumb network” that does not know
what the users are sending.

Assuming that these tensions can be resolved, the emergence of new routing schemes, perhaps operating at the
same time, raises the question as to whether a new �eld should be considered in the packet header, (somewhat
as XIA has done) to indicate which of several routing schemes should be used for this packet. Alternatively, a
future architecture could use di�erent address ranges to trigger di�erent routing (as the current Internet does for
multicast), thus giving the receiver control over which schemes can be used to reach it (by controlling which sorts
of addresses it gives out for itself) and allowing the sender to pick among them (by picking which destination
address to use). By tying the choice of the routing protocol to the address range, third parties in the network
cannot override the end-node choices by rewriting a �eld in the router. �e NIRA scheme [Yang, 2003] uses
addresses to control routing in this way. �is might allow senders and receivers to select between more availability
and more protection based on their speci�c needs.

8.4 Architecture
A key challenge for a future architecture is to resolve the basic conundrum I identi�ed above: if only the end-nodes
can detect failures of availability due to a�acks, and the end-node cannot be trusted to recon�gure the network
lest this be another a�ack vector, there would seem to be no way to resolve such problems. Working around this
conundrum is a challenging design problem that involves creation of control structures that build on trustworthy
components (which would have to be speci�ed and implemented) to provide a foundation for these sorts of
functions. A component trusted by both the user and the network might be able to intermediate between the two
in order to provide a measure of choice and control to the end-node that has detected a failure or a�ack.

Another potential role of architecture is to facilitate fault localization. As I noted above, this capability is not
always in the interest of the receiver, if the receiver is being a�acked. Perhaps it is worth exploring a shi� in the
basic architecture of the Internet. �e Internet of today is “deliver by default”: a sender can send to any receiver
at will. Perhaps there is merit in an approach that is to some extent “deny by default”, so that the receiver has
to take some action to indicate its willingness to receive tra�c, or to receive tra�c from which set of senders.
Several of the architectures I discuss in this book are to some extent “deny by default”.

�e discussion of invoking PHBs in Section 4.4 provides one possible way to improve this situation. In that
section, I proposed a rule that (with the exception of routing itself) any invocation of a PHB that facilitates
communication between willing parties should be intentional–the packets should be delivered to the location of
the PHB by being sent there. A more abstract way of saying this is that between senders and receivers that have
aligned interests, the end-points should be explicit about what PHBs are being invoked. (�is action may be done
by an application on behalf of the end-node, in which case it will be the application that has to a�empt to localize
the point of failure when something goes wrong.)

What this rule would imply is that third parties should not claim to be “helping out” an application by inserting
PHBs into the path that neither the sender nor the receiver know about [[[[?]]]]. Once this rule is in place,
encryption can be used to limit the failure modes that manifest from unknown PHBs that show up in the path. It
may be cleaner (and more secure in practice) to put in place an encryption scheme that lets selected PHBs decrypt
a transfer (or parts of it) rather than have an ambiguous relationship between sender, receiver and arbitrary PHBs
in the path. [[[Is this clear? Probably not.]]]

�e di�erent proposals in Chapter 5 provide a range of mechanisms to deal with these various aspects of
availability. To some degree, all those schemes depend on the end-node as the ultimate detector of failures and
loss of availability. With respect to localization, Nebula and XIA (both with its basic addressing scheme and
in particular the forwarding scheme called SCION) provide a way for the user to pick di�erent routes through
the network, potentially making choices to avoid regions that are proving untrustworthy. ChoiceNet provides
monitoring elements at region boundaries that are intended to check if the user is ge�ing the promised service.

117 178

David D. Clark Designs for an Internet

It is unclear what range of problems they will be able to detect. ICNs raise a slightly di�erent version of the
availability challenge. ICNs a�empt to exploit all the redundancy in the network, o�en through some sort of
anycast search for a nearby copy of the content, so that a failure may be side-stepped as part of the basic content
request function. �e malicious a�ack that can disrupt availability in ICNs is a malicious provider that o�ers up
a malformed version of the content, which can be detected as such but prevents the anycast mechanism from
�nding another copy that is valid. DONA provides an enhancement to the FIND operation that allows the user to
ask for the n-th closest copy rather than the closest copy. NDN allows the receiver to include the public key of the
sender in the content request packet, so that nodes along the path can check for themselves the validity of the
content and reject malformed copies.

[[[elaborate]]]

8.5 Conclusion
[[[TBD]]]

118 178

Chapter 9

Economics

[Note to readers of this version of the book. I view this chapter as preliminary. I think there is more to be said,
but I have to �gure out what it is. Comments and thoughts welcome.]

9.1 Introduction
�e viability and success of a network architecture cannot be divorced from the economics of its deployment and
operation. At the same time, there has been very li�le a�ention in the literature to understanding the relationship
between architectural alternatives and economic viability.

In order to understand the issues, it may be helpful to look at the current Internet as a case study, and then
explore the issues that emerge in a more abstract and perhaps fundamental way.

�e current Internet is composed of regions (we typically call the larger regions Autonomous Systems), which
are deployed and operated by di�erent actors. �ere are about 45,000 ASes active in the Internet today. Of these,
about 5,000 can be classi�ed as service providers; they o�er packet carriage service to other parties. �e rest are
customers of these providers. Most of these service providers (ISPs) are private-sector, pro�t-seeking actors. �e
interconnected mesh of these ASes, taken collectively, is what we call the Internet. It is the platform on which
higher level services (applications) run, and has become the platform on which society is increasingly dependent.
�is Internet platform has taken on the status of societal infrastructure, and probably the status of essential or
critical infrastructure. �e Internet may not be as important as water, sewers or roads, but it is now infrastructure
on which society clearly depends.

In comparison to these other infrastructures (roads or water systems), what is distinctive about the Internet is
that it has been largely built by these unregulated, pro�t-seeking actors. Roads and water systems are normally
built by governments, and while the telephone system (our previous communications infrastructure) was built by
a private sector actor (Bell Telephone/AT&T) it was a highly regulated, government sanctioned monopoly, not at
all like the ISPs of today.

Today, we take this situation for granted. We assume we can count on the Internet to be there, and we assume
these private-sector actors will continue to provide it. But this assumption should be carefully inspected for
�aws. �e Internet exists because ISPs chose to enter the market with this product. Nobody forced them to do
so. We could ask, looking backwards, why they did so. We should ask, looking forward, whether this situation
will continue to be stable. If the Internet is societal infrastructure, can we assume that the private sector will
continue to invest in it at a suitable level to meet the needs of society, and can we assume that the private sector
will continue to build and operate the Internet that society wants? Perhaps investment will stagnate. Perhaps the
ISPs will be motivated to mutate the Internet they o�er into a di�erent sort of platform, perhaps more closed or
dedicated to speci�c purposes such as delivery of commercial video.

In chapter 11 I explore in some detail what it means for an Internet to meet the needs of society, but it is
necessary to begin that discussion here to identify those issues that strongly relate to economics. Should the
future of the Internet be whatever the private sector chooses to deliver, or does society want to have a say in the

119 178

David D. Clark Designs for an Internet

future? If so, by what means can society have a say in shaping what the private sector does? How can “society”,
whatever that term means, even discuss and decide what its Internet should be? Is this a call for the government
to step in and de�ne the future of the Internet?

In fact, governments are starting to do so, for be�er or worse. �e most obvious evidence in the U.S. is the
sequence of e�orts by the FCC to impose network neutrality rules on the Internet.1 One response (or threat?) by
the ISPs covered by these regulations is that the rule will sti�e investment. �e question of whether ISPs will
continue to invest, and whether they will build the Internet society wants, is not abstract. it is being acted out
today as we watch. In fact, there are observers who assert that we cannot continue to count on the private sector
to be the driver of the future Internet, and that the public sector will have to invest as they do in roads or water
systems. [[[�nd a few cites–perhaps Australia?]]] We see governments today using public sector funds to build
Internet access in rural and other low-pro�t areas the private sector has ignored. But this approach has its own
perils–why should we expect governments to have the skills and will to build something as dynamic and evolving
as the Internet? So looking to the future, an optimist may see the Internet as so compelling that it will obviously
continue to be there, and a pessimist may see several paths to the future, all fraught with perils. Society must pass
between Cylla and Charybdis, those eponymous perils between which society always sails, avoiding on the one
hand sti�ing investment and on the other hand ge�ing investment in an Internet that is not suited for its needs. It
is in this space that we must consider the economics of the Internet.

A look back
How is it that the Internet (and the investment that brought it to market) actually happened? In the early days,
the Internet was built on top of circuits constructed by the telephone company. �e option of constructing new
capacity dedicated to the Internet was not practical, so the early Internet worked with what could be purchased
at the time–the �rst long distance circuits that made up the ARPAnet were 50 kb/s telephone circuits. ARPA
did invest in experiments in alternative technologies such as packet radio, but one of the reasons the Internet
protocols were designed to “work over anything” is that using what was to hand was the only way to move
forward.

In the mid-1980s’, NSF took over the operation of the national backbone, and built (using public sector funds)
the NSFnet, upgrading the capacity as it was practical. �is public-sector investment demonstrated the viability of
the Internet as a information technology, and justi�ed the entry into the ecosystem of pro�t-seeking, private sector
actors. It is not clear if the private sector would have chosen to enter the market if the NSF had not taken this
high-risk (from a private-sector perspective) step of “building it to see if they came”. But even in the mid-1990s’,
when NSFnet was being decommissioned in favor of a private-sector o�ering, the appeal of the Internet as a
product was not clear to many of the existing private sector actors. In a conversation about broadband to the
home, a telephone company executive said the following to me:

If we don’t come to your party, you don’t have a party. And we don’t like your party very much. �e only way you
will get broadband to the home is if the FCC forces us to provide it.

Of course, he thought the copper pairs into the house were the only option for broadband access. One could
argue that this executive could have been more forward-looking, but given this a�itude, why did the telephone
companies start to invest in residential broadband? To a considerable extent, it was the emergence of the cable
industry as a competitor in the residential market, using a separate physical infrastructure to deliver broadband
access. Competition can be a powerful driver.

In the U.S., the government seems to vacillate between regulatory intervention and faith in competition as a
tool to shape the future. In the FCC’s National Broadand Plan, the FCC, a�er describing a number of aspirations
for the future of the Internet, wrote:

1 Discuss the three open orders, citations? etc. How much is needed?

120 178

David D. Clark Designs for an Internet

Instead of choosing a speci�c path for broadband in America, this plan describes actions government should take to
encourage more private innovation and investment. �e policies and actions recommended in this plan fall into
three categories: fostering innovation and competition in networks, devices and applications; redirecting assets that
government controls or in�uences in order to spur investment and inclusion; and optimizing the use of broadband
to help achieve national priorities. [Federal Communications Commission, 2010a, pg. 5]

One can realistically ask if this approach is an act of massive wishful thinking. Competition may be a powerful
driver, but in what direction? What evidence is there that competition will drive the private investors in Internet
infrastructure to build the Internet that the FCC (or society more broadly) desires? And as well, one can realistically
ask if competition based on separate physical facilities (as between the coaxial cable infrastructure of the cable
industry and the twisted pair infrastructure of the telephone industry–now both mutating into �ber) can be
sustained. Dividing up the market between two or more more providers means (among other things) that the
potential market for each provider (the “take-rate”) is divided up among the competitors. But each competitor
must still build an access network that passes every house. If a market has the character that the more customers
a given �rm has, the lower its costs (positive economies of scale at all scales), economists describe this situation as
a natural monopoly. �e phone system of the Bell era was taken to be a natural monopoly, and was accepted and
regulated for the public good. Perhaps the Internet of the future will turn out to be a natural monopoly, especially
the access architecture.

So the particular set of issues that we must consider as we contemplate the economic viability of an Internet
architecture are as follows:

• What are the incentives of the private sector to invest in infrastructure? Can it be sustained?

• To the extent that society wants to have a say in the future of the Internet, what are the means to shape the
behavior of the private sector to get the outcomes that society desires?

• Can we assume that competition in the access market will continue, or will the future be one more de�ned
by regulation rather than competition?

And, for each of these issues, there is the related question about architecture:

• Can architectural decisions shape (or reshape) the Internet ecosystem so as to be�er provide incentives
for investment? Should we make decisions about architecture based on the assumption that the private
sector will continue to build an Internet? Would di�erent decisions be preferable if a future Internet were a
public-sector infrastructure?

• Can architectural decisions serve to nudge the outcome of private sector investment in directions that meet
the needs of society?

• To the extent that one accepts competition as a desirable discipline in shaping the Internet of the future,
can architectural decisions improve the potential of competition (including and speci�cally competition in
providing infrastructure based on di�erent physical facilities) as a long-term option?

Earlier, I used the term tussle to describe the contention among actors with di�erent and perhaps mis-aligned
interests who seek to shape the Internet. I have named as the fundamental tussle the tension between ISPs who
assert that they should be able to use the infrastructure they paid for in any way they see �t, and regulators who
wish to constrain how that infrastructure is used so as to pursue an Internet suited to the needs of society.

121 178

David D. Clark Designs for an Internet

Scarcity
Economics is a discipline that studies the allocation of scarce resources. If there is no scarcity, there is no need
to allocate (we can all have as much as we want) and issues of economics fade into the background. So is the
Internet a scarce resource? One way to look at the Internet is that once the facilities to carry tra�c are in place,
the incremental cost of sending additional tra�c is essentially zero, so we should think about usage as free. �is
statement may be true in the short run, but the Internet requires physical facilities in order to exist. �ese include
long distance and metro �bers, residential access networks, wireless base-stations, and so on. �ese cost money.
So to encourage investment in additional capacity, usage has to be seen as generating cost. Providers must recover
enough costs that there is a positive return on investment. It is not clear how this fact relates to architecture, but
it brings into focus the critical question of who pays for the Internet, and how the money �ows among the actors
in the ecosystem.

I will return to money �ows in a later section. But there is a more fundamental question. Before we can ask
which actors are paying for the Internet and how the money �ows among them, we must ask why the industry
structure of the Internet looks as it does. Why do we have the actors that we do in the Internet? Why do ISPs
exist in the form that they do?

9.2 What shapes industry structure?
A useful place to start is fundamentals: can economic theory tell us anything about the relationship of system
design, the resulting industry structure and the incentives of the the various actors that make up the system to
invest and play their part in making a healthy economic ecosystem. In fact, there is a wonderful framework that
helps to explain this space, based on the work of Ronald Coase.

�e economist Ronald Coase received a Nobel Prize for his theory of the �rm, which builds on the concept of
transaction cost. When �rms engage to buy and sell, there are costs aside from the actual cost of the product or
service itself: the costs of searching for the providers, the costs of bargaining, the costs that arise due to lack of
accurate information about the other �rms, and so on. Collectively, these are transaction costs. When transaction
costs are low, e�cient inter-�rm competition can occur, but if transaction costs are high, a �rm may incur a lower
total cost by realizing the service or function internally. Competition in principle drives down costs, but not in
practice if transaction costs are high. One conception of this situation is that inter-�rm competition and intra-�rm
planning and coordination themselves compete to deliver the lowest cost of products and services. Large �rms
exist when and if the cost savings from internalizing the function exceed the cost savings from competition.

�e link between Coase’s theory and network architecture is the role of well-de�ned interfaces between
modules. If an interface between modules is well-de�ned and easy to understand, then exploiting this interface as
a basis for competitive interaction among �rms may have a su�ciently low transaction cost to be viable. If, on the
other hand, there is no clear interface at a particular point, it is hard to “open up” that point to inter-�rm action,
and that point will normally remain internal to the �rm. So the modularity of a system like the Internet, which a
technologist might think of in functional terms, is also very likely to end up de�ning the industry structure of the
system.

Defining the relationship between the parts
If architecture de�nes the shape of the industry, what de�nes the relationship among the di�erent actors? It is the
interfaces de�ned by the architecture. In the current Internet, we see several key interfaces.

�e Internet protocol and the Internet Service Provider �e Internet protocol (IP) actually de�nes a
number of interfaces, each of which has helped to de�ne the market structure of the Internet. Most obviously, IP
de�nes the packet carriage service of the Internet–the service that “the network” provides to the higher layers. It
is the service de�ned by the IP speci�cation that becomes the service provided by an Internet Service Provider.

122 178

David D. Clark Designs for an Internet

If IP had been speci�ed di�erently, the business of an ISP would be di�erent. For example, if IP had speci�ed
reliable delivery, ISPs would have the responsibility for reliability.

�e service speci�ed by the IP spec is minimal. RFC 791 says:

�e internet protocol is speci�cally limited in scope to provide the functions necessary to deliver a package of bits
(an internet datagram) from a source to a destination over an interconnected system of networks. �ere are no
mechanisms to augment end-to-end data reliability, �ow control, sequencing, or other services commonly found in
host-to-host protocols.

Perhaps a di�erent speci�cation of the service, with more a�ention to the features of the service, would have
created di�erent revenue-generating opportunities for the ISPs.

�e interface to the communications technology A second interface created by the IP speci�cation is
between the service itself and the technology used to deliver it. �e IP spec says nothing about the technology,
other than it be able to forward sequences of bits. �is decoupling, while perhaps implicit, means that the
speci�cation allows (and thus encourages) innovation in network transmission technology. Over the decades
since IP was speci�ed, there have been any number of network technologies invented, including Local Area
Neworks (LANs), WiFI and cellular networks and so on. It is the limited requirement that IP places on these
technologies that facilitates these innovations.

�e interface between the ISPs �ere is a third interfaces that is relevant to the IP layer, but it is poorly
developed in the original design of the Internet–the interface between ISPs. In the original Internet, the designers
downplayed the importance of this interface (sometimes called the network-network interface, or NNI). �at
decision was perhaps short-sighted. �e original designers were not thinking about industry structure–they were
designing a network built out of routers. �e address in the header of the packet (together with other �elds in
the header) de�nes what the router has to do when it gets a packet. Ge�ing that function right was the initial
focus of the designers. When the architects started to focus on the fact that di�erent parts of the network were
run by di�erent entities, there was some confusion as to how the interconnection would be implemented. One
view was that there would be two routers, one belonging to each of the providers, connected to each other at
the point of interconnection. Technically, this seemed ine�cient–why have two routers next to each other? �e
alternative view was that there might be one router, jointly operated by the two providers. �is idea reduces
the number of routers in the system (a serious consideration at the time) but would have required some sort of
division of responsibility within this one element. Only a�er it became clear that this idea was totally unworkable
for operational and management reasons did the question arise as to what information two routers belonging to
di�erent providers would need to exchange with each other. 2

RFC 827, published in 1983, provides some insight into the level of understanding about the inter-AS interface
at the time that IP was being deployed.

In the future, the internet is expected to evolve into a set of separate domains or ”autonomous systems”, each of
which consists of a set of one or more relatively homogeneous gateways. �e protocols, and in particular the routing
algorithm which these gateways use among themselves, will be a private ma�er, and need never be implemented in
gateways outside the particular domain or system.

�e Exterior Gateway Protocol enables this information to be passed between exterior neighbors. … It also enables
each system to have an independent routing algorithm whose operation cannot be disrupted by failures of other
systems.

2 Today we do see the other con�guration, with a common switch between a number of ISPs. �is con�guration is called an Internet Exchange,
and a neutral third party is usually created to operate that shared switch.

123 178

David D. Clark Designs for an Internet

The Expressive Power of the Interface
In Chapter 4 I distinguished di�erent architectures by their expressive power. Some packet headers have richer
expressive power than others, which can enable a richer set of services in the network (as well as new potential
security issues). �ere is another dimension to the concept of expressive power, which relates to the possible
set of protocols that are de�ned for the control plane. Control plane protocols de�ne the messages that can be
exchanged among network elements, and if these are of global scope (that is, if all the regions are expected to
agree on their meeting) they rise to the level of architecture. �e only relevant control plane protocols in the
current Internet are the routing protocols, and the interdomain routing protocol (e.g., the one with global scope)
is the Border Gateway Protocol (BGP).

BGP is perhaps one of the �rst examples in the Internet (or at least, a substantially worked out example) of a
protocol that was designed to shape industry structure. �e predecessor of BGP, the original EGP, assumed a
hierarchical pa�ern of interconnection among the regions (the ASes), with NSFnet as the root of the hierarchy.
If EGP had become the routing protocol for the commercial Internet, a single commercial provider would have
ended up taking the place of NSFnet, in a position that seems close to an architecturally-created monopoly. BGP
was speci�cally designed to allow for multiple, competing wide-area Internet Service Providers.

At the same time, BGP has limited expressive power, and these limitations have arguably limited the business
relationships among the interconnecting ISPs. See [Feamster, 2006] for one discussion of the limited expressive
power of BGP.

At the time of the transition to the commercial Internet, industry had a clear understanding of the importance
of critical interfaces. As I discussed in Chapter 5, the Cross-Industry Working Team laid out their vision of
an architecture for a National Information Infrastructure [Cross-Industry Working Team, 1994], and a central
component of their conception was a set of critical interfaces, including the interface between ISPs: the network-
network interface, or NII. �ey fully understood that ge�ing this interface right was critical to the health of
the emerging private-sector industry. �e designers of Internet protocols may not have fully appreciated the
importance of this interface.

Alternative architectures
�ere are some aspects of industry structure that seem to derive from more basic considerations than architectural
variation. �e idea that a global network is built out of parts (ASes, regions, and so on, by whatever name they are
called), and that these parts have some geographic locality and are operated by distinct providers, seems common
to all the architectures that I described.

However, to see that architecture de�nes industry structure, consider the implications of information-centric
networks such as NDN. In NDN, the provider of the forwarding layer has a much richer set of responsibilities, and
access to a much richer set of explicit information in the packet headers. �ese providers can see the names of what
is being sought, not just a end-point address, which might open up new opportunities for tra�c discrimination.
�ese providers provision caches in their servers, which are critical to the e�cient operation of the protocols.
�ey thus have control over what is cached, and on what basis. One must look at a scheme such as NDN not
just through the lens of a mesh of interconnected routers, but rather as a mesh of interconnected ASes with
independent pro�t-seeking motivations, to try to understand the economic implications of the architecture.

Architectures such as Nebula and Choicenet make the negotiation over how and whether tra�c will be carried
an explicit part of the design. �ey include a control layer (or in Choicenet an economy layer) in which negotiation
over service and payment can occur. �ey a�empt to bring the economics of the architecture out and make it
an explicit part of the design. �ey include new components, such as monitors at AS boundaries to verify what
service is being provided, and stress the power of competition and user choice to drive the network to a desired
future.

124 178

David D. Clark Designs for an Internet

Incentives to invest
What motivates a private-sector actor to invest, speci�cally in infrastructure for the Internet? At a high-level,
investment is motivated by anticipation of adequate return on investment (RoI), and the greater the risk (the
uncertainty about the RoI) the higher the anticipated RoI must be to justify investment.

Looking speci�cally at the communications sector, there are a number of factors that can in�uence investment
decisions:

Assured RoI: In the era of the highly-regulated Bell System, investment in capital assets was incentivized by
Rate of Return regulation, which set a guaranteed return on capital upgrades. �is return, which was factored
into the regulated rates paid by users of the telephone system, probably resulted in over-investment, and brought
the U.S. a highly engineered and reliable phone system which probably cost a bit more than it needed to, and
supported a world-class industrial research lab, Bell Labs. Most economists with whom I have spoken say that a
return to rate-of-return regulation would be a Bad Idea.

Competition: Competition, in particular when competitors have separate physical access technologies (“facili-
ties”) can be a powerful driver of investment. Today we seen the telephone companies and the cable companies,
occasionally further goaded by new entrants gleefully pulling �ber to the home, making signi�cant investments
in upgrades to their capabilities.

Sometimes fear of competitors will motivate investment even when the RoI is uncertain. When the telephone
companies were �rst thinking about whether to move beyond simple deployment of DSL and contemplating
advanced technologies that involve pulling �ber at least part way into their access networks, I asked an executive
of one such company whether they had a clear model of what the return would be on this investment. He said
more or less the following:

We actually don’t have a clear business model for doing these upgrades. But we have a clear model for what happens
if we don’t do these upgrades: in 10 years we are out of the wireline business. Be�er to bet on uncertain success
than certain failure.

On the other hand, a di�erent pa�ern of competition, based on a di�erent sort of regulation, can damp the
incentive to invest. In other parts of the world, regulation has required that owners of access facilities (in
particular the copper pairs of the telephone companies) must lease these facilities to other �rms so as to create
retail competition over these shared facilities. In general, the regulated rates at which these circuits must be
shared has been set low to stimulate entrance into the retail market, but the facilities-based telephone companies
have complained, with some justi�cation, that they see no motivate to invest in upgrades if they carry all the risk,
and at the same time gain no competitive advantage and a low RoI.

Suitable pricing structures: �e current pricing structure for retail (residential) Internet access is probably
not the best structure to incentivize investment in upgrades. Flat-rate pricing (“all you can eat/send”) means that
as usage goes up, the providers get no incremental revenues. Indeed, with the massive increases in usage we see
today associated with streaming video, we see access ISPs moving to usage caps or tiers, which would either limit
the need to upgrade or reward the ISPs for such upgrades. �is transition, which has mostly happened in the
mobile space, is probably inevitable in the wireline case as well. I once had an operator (from another part of
the world) quite explicitly say that in a �at-rate context, they only invest in upgrades where there is a facilities
competition; in other locations they see no reason to improve the service.

Architecture? �e factors above are understood to in�uence the incentive to invest. But what about architecture.
Again, in general terms, architecture can increase incentive by reducing risk and creating opportunity. It can

125 178

David D. Clark Designs for an Internet

reduce risk if it can make the relationship among the actors clear and stable. (Of course, the fundamental goal of
architecture is to produce an Internet that is �t for purpose, but that goal is more basic than just improving RoI.)
Architecture can potentially improve opportunities by the creative but careful design of features that add to the
range of service o�erings.

What we see in the market today is that ISPs are a�empting to increase the diversity of their product o�erings
by innovation at a layer that exploits the IP technology, but not just in support of the global Internet. IP technology
is being used by ISPs to o�er a range of services, including VoIP, IPTV, and so on, as well as Internet access. In the
early days of the Internet, the designers did not see this distinction as they were designing protocols. �e use of
the Internet Protocol (IP) was equated to the public Internet. With the emergence of IP as a converged platform
for a range of service o�erings, a new architectural question emerges–should the distinction between the packet
forwarding mechanisms implied by IP (which can be used in a number of ways) and the creation of the global
Internet (which depends, among other things, on the speci�cation of the network-network interface, be made
more explicit in the architecture?

To a large extent, this distinction, which is becoming very important in practice today, is not emphasized in
any of the architectural proposals that I discuss in Chapter 5. One could take this as a criticism of the network
research community, which continues its focus on how the data plane (packet forwarding) works, rather than the
sort of issues I discuss in this chapter. At the present time, it would seem that further exploration of this issue,
both policy and architecture, is an open research question. For a deeper discussion of the issues, see a paper by
my co-author and me [Cla�y and Clark, 2014].

9.3 Money flows
If architecture de�nes the industry structure, and at least some of the features of the relationship among the
actors, the next question is what de�nes how money �ows among these actors. Here are two stories:

A while back I had a conversation with a well-known economist that studied the Internet. It went like this:

Economist: “�e Internet is about routing money. Routing packets is a side-e�ect. You screwed up the money-
routing protocols.”
Me: “I did not design any money-routing protocols!”
Economist: “�at’s what I said.”

And another story–the creation myth of revenue-neutral peering.

It is said that when the �rst two commercial ISPs met to negotiate their interconnection, one of the engineer-
businessmen who was at the meeting was heard to say: “Wait, I thought you were going to pay me money”. �ey
discovered that they did not even have a common basis to agree on which direction the money should �ow, let
along how to set an amount. �en, as the story goes, these engineers heard the sound of running feet and realized
that the lawyers were coming, to start a three year negotiation over the interconnection agreement. �ey looked
at each other and said: “�ick, before the lawyers get here, lets agree that neither of us pays the other; we just
interconnect; shake hands.” And thus, so the story goes, was revenue neutral peering born.

So should we, as �e Economist said, have designed “money-routing” protocols? �ere have actually been
a�empts to add “money-routing” to the Internet architecture.

One of the earliest proposal was [MacKie-Mason and Varian, 1996]. �is paper, one of the �rst to explore the
economics of the Internet, proposed that in addition to a possible �xed cost for sending data, there should be a
congestion price, which re�ects the cost one user imposes on another by sending when the network is fully loaded.
�eir approach was a smart market, where users specify their willingness to pay, but the price charged to the
users that send is the price speci�ed by the marginal user–the user with the lowest willingness to pay that can be
accommodated. �is idea, which is a form of a Vickery market, provides an incentive for the user to disclose their

126 178

David D. Clark Designs for an Internet

true willingness to pay, since they will not be charged that price unless that is the minimum price that gains them
admission.

�ey describe this scheme as preliminary, and there are indeed issues–for example, does the user want to pay for
individual packets or for an overall transfer. �e authors were clear that there were many details and modi�cations
that would arise were this to be implemented. �e high-level point is that they proposed that this price be in the
packet header–they were proposing an architectural component that realized a pricing scheme–money routing.

�ere were a number of other pricing schemes proposed in the1990’s. I dabbled in this area. In 1989, I wrote
RFC 1102, on Policy Routing, which included a �ag in the control-plane routing assertions to control whether the
ISP should be paid by the originating ISP, the terminating ISP, or separately by the sender (as was then happening
with long distance telephone service.) In 1995 I proposed a more complex scheme, which described a more
complex marking scheme in the packet header to re�ne the direction of money �ow as packets are forwarded
[Clark, 1997].3

Needless to say, none of these proposals went anywhere.

Architecture and money flows
With respect to routing money, as with other objectives, if architecture has any role to play, it is not de�ning how
the system works, but rather making it possible for a desired range of things to happen. Like the TTL �eld in the
IP header, which allows the Internet to exploit routing protocols that induce temporary routing loops, perhaps
a “direction of payment” �ag in the header might allow a range of billing models that would otherwise not be
possible. However, the networking community has so li�le experience with “money routing” that this area is
essentially uncharted territory. In general, architects learn what should or could be built into the core of a system
by looking at what application designers have tried to do in earlier generations. So, given perhaps two decades of
experience with the commercialization of the Internet, what lessons can be learned about money �ows? I �nd the
lessons both uninformative and troubling.

We have seen a number of changes in the pa�ern of money �ows among ISPs since the entrance of commercial
ISPs into the ecosystem. �e early pa�ern of routing among ASes was transit: small ISPs paid large, wide area
ISPs to carry their tra�c to its destination. Payment went from the customer to the provider, independent of
direction of the packet �ow. Packet counts were su�cient as input to the billing system. �e idea of “sender pays”
vs. “receiver pays” (by analogy to the 800 numbers in the telephone system), never emerged and did not seem of
any interest. One could argue that it might have emerged if the necessary �ags in the tra�c had been there from
the start, but conversations with ISPs suggest that the simplicity of the bulk payment for transit, compared to the
complexity of a scheme with more discrimination, was not seen as worth the trouble. In any rate, there was never
a way for the idea to be tried in the market.

�en the payment system shi�ed as a result of the increased use of peering among ISPs. Peering (providing a
interconnection between two ISPs so each can have access to the customers of the other) emerged as a revenue-
neutral scheme, as I noted above. In parallel, the telephone system was moving in this direction, away from
schemes for interconnection “se�lement” (where the telephone companies paid each other for tra�c they carried)
to what was called a “bill and keep” pa�ern, where the customers paid their local telephone company, and each
company retained those payments. Calls were exchanged on a revenue-neutral basis. Given that the telephone
system was moving toward this revenue-neutral pa�ern of interconnection, there was li�le motivation to bring a
more complex scheme into the Internet, given that it would require a complex set of inter-provider agreements,
which are hard to negotiate, and can (without care) lead to fears of anti-trust sanctions.

�e next shi� in Internet payment models has now emerged with the emergence of direct interconnection
between content providers and access ISPs for the delivery of high-volume tra�c such as video. From a routing
perspective, these connections resemble peering connections, but a�er some very public disputes, the payment

3 �e various papers in the anthology from which that paper comes give an excellent snapshot of the state of understanding of Internet economics
in 1995.

127 178

David D. Clark Designs for an Internet

model that emerged was that the content provided paid the access ISP for the dedicated, high-capacity direct
interconnections. �e unstated assumption that was embedded deeply in these negotiations was the the value
�ow matched the packet �ow–that is, the sender paid the receiver. One might have argued that when a viewer
watches a video, it is the viewer that is extracting the value, rather than the sender, but this idea does not seem to
have emerged in any of the negotiations. �ere was no question in the minds of any of the negotiating parties as
to which way the money was �owing–only disagreement about the rate. No packet marking is needed to inform
that sort of dispute.

We now see more complex models emerging for payment between content providers and access ISPs, for
example the idea of “zero-rating”, where a user with a monthly usage quota can receive certain content without
it counting against that quota, because the sender has paid the ISP to deliver this content. �is concept is most
common in mobile access networks, and without pretending that I understand the details of how it is implemented
there, the complexity of the cellular networks (with rich control mechanisms, o�en layers of nested headers and
the like) provides lots of tools to implement any required packet marking. �e important observation about this
context is that it is a local, bi-lateral context between the two actors, there is no requirement that the mechanisms
for implementing the accounting for tra�c need work across the global Internet.

�e next stage in billing may be schemes that a�empt to link payment by content providers to the value of the
content being delivered, rather than some formula that derives from the cost of delivery. Value pricing represents
an a�empt by the access providers to extract revenues based on what is delivered, and its perceived value to
the sender. For example, a recent paper [Courcoubetis et al., 2016] describes an analysis of the di�erent services
provided by Google, and a�empts to model the value per byte of the di�erent �ows (e.g., search vs. Youtube) so as
to set a per-service fee for delivery. Whether one views this as the next stage in the future of access network
funding or a throwback to telephone era se�lement, the tra�c classi�cation is not going to be derived from any
simple marking in the header, but by looking at �elds such as port numbers, IP source addresses and the like. (In
the language of Chapter 4, this is implicit parameterization.)

�e idea of service-speci�c billing is not restricted to zero-rating for cellular access to the global Internet. An
interconnection architecture called Internet Protocol eXchange (IPX, not to be confused with Internet eXchange
Point, or IXP, nor to be confused with Internetwork Packet Exchange) has been deployed for interconnection of
private IP networks (not the global, public Internet), networks that support services such as carrier grade VoIP. It
is used by the cellular industry to interconnect their VoIP services (which are over IP but not over the Internet.
IPX contains explicit support for per-service interconnection and cascading payments.4

9.4 Bad outcomes in the future
Per-service se�lement for Internet interconnection may be an example of the pessimistic fears about the future
that I articulated earlier in this chapter. We see a number of forces today that might drive the future of the
Internet into a darker place, including pressures from those who carry out surveillance and regulation of access to
content, but economics is probably the most potent driver. As long as the Internet is a creature of the private
sector, pro�t-seeking behavior is a natural behavior and what we must expect.

In this respect, it may be that some architects will prefer to push for designs with less expressive power, to
prevent the implementation of sophisticated toll-booths in the Internet. Architecture is not value-free, and this is
an excellent example of a place where values will be close to the surface as we make design decisions.

It may not be possible for the private sector to recover the costs of building expensive infrastructure, if our goal
is an open network. In the long run, we may need to think about networks the way we think about roads–as a
public sector undertaking. Alternatively, if we do not accept that facilities investment can derive from public
sector involvement, then designs that restrict the opportunities to reap returns on facilities investment may
limit revenues to the point that facilities buildout does not occur at a suitable rate. Some degree of vertical

4 For a good tutorial on IPX, Wikipedia is perhaps good place to start. See h�ps://en.wikipedia.org/wiki/IP exchange.

128 178

David D. Clark Designs for an Internet

integration or discriminatory treatment of tra�c (including billing) may be the price of a healthy infrastructure.
Any architecture must think carefully about the extent to which it a�empts to take an ex anti position on this
point. If an access provider supports both a healthy open Internet and as well other services over the same IP
infrastructure, is this a driver of investment or a threat to that Internet service?

9.5 Summary–architecture and economics
Architecture indeed plays a key role in the economics of an Internet ecosystem. Architecture de�nes the industry
structure, and the key interfaces de�ne the potential relationships between the actors. It is less clear what role, if
any, architecture should play in enabling di�erent money-routing protocols. It may be necessary to wait another
20 years to see how the economics plays out before we can see what we should have added to the architecture
now. Perhaps even with the current Internet, in 20 years we may not have the ISPs that we have today, but a
di�erent set of actors trying to work within the existing architecture. If so, it will be economic forces that will
make that future happen.

129 178

Chapter 10

Network Management and Control

10.1 Introduction
One of the requirements that I listed for a future Internet in Chapter 2 was that it do a be�er job of dealing with
network management and control, which has been a weak aspect of the Internet from the beginning. In this
chapter, I will take what is admi�edly a somewhat preliminary try at linking these requirements to network
architecture.

Using an approach that mirrors what I have done in other chapters, I will pose two key questions that will help
to sort out this space:

• What is implied by the term “management”?

• What does architecture have to do with management?

I start with the �rst question.

10.2 What is management?
Management is in one respect similar to security–the word is ill-de�ned. I began the discussion of security by
asserting that the term “security” was so general that it was aspirational, not operational. I argued that only when
we �nd a substructure for security can we begin to understand the relationships (and potential con�icts) among
the sub-goals, and thus understand how to improve security in practice. I believe that this same observation
will be true about management. While I will identify some common themes that run through di�erent aspects
of management, I will argue that the substructure of management contains distinct objectives that need to be
considered separately.

One de�nition of network management is that management encompasses those aspect of network operation
that involve a human. We o�en talk about the “data plane” of the network, which is that set of mechanisms that
actually forward the packets, and the “control plane”, which is that set of automatic mechanisms (such as routing
and congestion control) that provide the information necessary for the data plane to function. An important
part of that de�nition is that the control plane is automatic–there are no people in the loop. In this framing,
management is those set of actions where a person needs to be in the loop. However, while this de�nition may
unify the concept from one perspective, there is no reason to think that the totality of issues that require human
intervention are homogeneous with respect to network architecture. I will argue that the answer is quite the
opposite.

From a design perspective, there are two points of view about management: views that de�ne the ends of a
spectrum. At one end are designers who say that a properly designed network should run itself, so the need for
management is a signal of failure. At the other end are pragmatists who believe that what they would call “policy
decisions” are not worth trying to codify into algorithms, and having a human in the loop for many decisions is
the be�er (and more realistic) way to go. Part of this debate resolves itself when we look at time-constants of

130 178

David D. Clark Designs for an Internet

the human intervention. I suspect many designers (and operators) would be skeptical about a network that so
thoroughly ran itself that it put purchase orders in for new circuits and routers when it saw itself ge�ing near
capacity. Business issues would seem to call for human judgment.1 On the other hand, a network that requires
teams of humans to sit in front of monitors 24 hours a day looking for faults would seem to bene�t from some
further automation.

Breaking network management into parts
As a starting point to study the sub-structure of network management, it is useful to see what others have already
done. �e ISO has in fact come up with a standard [CCITT, 1992] that both de�nes network management and
breaks it into parts. �eir de�nition of network management lists the following objectives:

• activities which enable managers to plan, organize, supervise, control and account for the use of intercon-
nection services;

• the ability to respond to changing requirements;

• facilities to ensure predictable communications behaviour; and

• facilities which provide for information protection and for the authentication of sources of, and destinations
for, transmi�ed data.

�ey then divide the set of management issues into the following categories:

• fault management;

• con�guration management;

• accounting management;

• performance management;

• security management.

�is set of categories is called the FCAPS framework for management, based on the �rst le�ers of the categories.
What is in common among these �ve categories, as de�ned by the ISO, is that all of them are based on the

reporting of data and events from managed devices in the network to a management system. �e information so
reported can be fed into a simple display or a complex management system that gives the user a higher-level view
of the network. A management system also allows the user to send con�guration/control messages to a managed
device–again either from a simple interface or a high-level management application.

�e ITU speci�cation is based on the assumption that while the di�erent sorts of management categories have
di�erent objectives and requirements, the protocols for reporting and control can be the same. �is assumption
super�cially seems to match what we see in the Internet, where a common protocol for reading and writing
management variables (Simple Network Management Protocol or SNMP) is used with a variety of Management
Information Bases or MIBs for a variety of purposes. (�e Internet de�nes a Management Information Base or MIB
to specify the variables associated with each class of managed device.) However, this assumption of a common
protocol should be carefully inspected for �aws. In the early days of work on Internet management, there was a

1 However, when management decisions become embedded in regulatory orders, the results become almost algorithmic. In the merger between
Time Warner and Charter, the new entity, as part of its agreement to provide revenue neutral interconnection to qualifying peers, included the
following term: “Either New Charter or the interconnection party can require that the capacity at any interconnection point: (i) be upgraded if
aggregate port utilization in either direction at the interconnection point exceeds 70% of the available capacity at the interconnection point for 3
or more consecutive hours per day for 3 or more consecutive days during the preceding 30 day period”

131 178

David D. Clark Designs for an Internet

lot of a�ention devoted to the problem of communicating with a managed device when the network was failing
and communication was impaired. �ere was a concern that using a protocol like TCP, which insists on reliable,
ordered delivery, would not be workable for communication in a situation of failing communications. �is fear
led to the idea that the communication method used for fault management should be designed for the special
case of operation in impaired conditions. �is situation is quite di�erent from (say) the protocol to con�gure a
complex router, which may involve the installation of thousands of rules, and would seem to call for a reliable,
sequenced update.

However, se�ing this speci�c issue aside, the above discussion suggests a possible modularity to the problem of
network management. At the bo�om layer, at the managed device, there are parameters that can be read and set,
and these are speci�c to the problem at hand. Above this is a (perhaps common) protocol for communication
between the managed device and any higher-layer management system. �e management system in turn provides
an interface to the people responsible for management. �e management system provides the human operator
with what the military calls “situational awareness”: the understanding of what is happening in the network.

Management and control
Both in the Internet and in the ISO framework, the concept of exposing parameters in a device for reading (and
perhaps writing) is typically associated with management functions, not the control plane. In the Internet, we have
SNMP, the Simple Network Management Protocol. �e Internet design community has not focused on whether
the control plane should have similar interfaces (and perhaps, by analogy to MIBs, should have Control Interface
Bases, or CIBs). I believe that this way of thinking has been shaped by the particular approach to the design of the
control plane in the early Internet, which is that control protocols run on the devices being controlled, and each
device reads and sets its own control variables as a part of executing that protocol. �e most obvious example of
this is routing protocols, where devices exchange connectivity data, but each device computes and populates its
own forwarding table. �ere is no control interface on a router where it can expose the results of its low-level
link measurements, nor an interface to set the forwarding table (except for low-level human interface (CLI) tools
to �ll in manual entries.)

We now see a trend in the Internet toward a new generation of control algorithm that moves the control
computation out of the distributed devices into a more centralized controller. �e most obvious example of this is
So�ware De�ned Networking (SDN), where network connectivity data is collected in a central controller that
computes and downloads forwarding data for the di�erent routers in the network. (I mention another example
below of a move to a more explicit control algorithm in the discussion of performance management.) As a part
of the development of SDN, it was necessary to de�ne an interface between the router or switch and the route
computation function, which both speci�ed the set of variable that could be read and manipulated using this
interface and the protocols used to implement this function.

Given this trend, when we consider the relationship between management and network architecture, I will
generalize the consideration to include both management and control functions. While the distinction between
management (involving people) and control (automated functions) may be helpful in some contexts, it is not
material in other respects. If a device exports certain variable for reading and manipulation, it is not material to
the role those variables play whether they are manipulated by a person, by an algorithm, or by an algorithm that
may sometimes have a person in the loop.

�e addition of control to this analysis will add new categories to the �ve I listed above. Routing and congestion
control are the most obvious.

Active probing
�e conception of management (and control) as a process driven by data gathered from managed entities is a
somewhat limited view. Other methods can be used to assess the state of the network, for example active probing
and observation of end-to-end behavior. �e most critical control algorithm in the Internet, congestion control, is
not driven by data explicitly gathered from each of the routers along the path, but from observing end-to-end

132 178

David D. Clark Designs for an Internet

behavior. �ere have been any number of papers wri�en on how congestion control might be done be�er than it
is now is, given our improved understanding, but while most of these depend on carrying more information in
the packet, none that I can think of exploit localizing where congestion is happening to a speci�c element along
the path.

�e most basic tools of active probing in today’s Internet are ping and traceroute. �ey surely qualify as
management tools, since they are used by people, o�en ordinary users frustrated with the state of the network.
As well, these tools are regularly used by professional network managers. �is sort of probing serves a number
of purposes. �e two most obvious are understanding performance (o�en when performance is poor) and fault
localization. �e original purpose of traceroute was con�guration–determining the path a packet was taking
on its way to the destination. Ping (or more precisely the ICMP Echo option) was designed for the purpose for
which it is used, but traceroute is a kludge, a hack that uses a packet cra�ed with a TTL that expires at a point
along the path to solicit a response from that element. �is tool is indeed used to learn something about the
di�erent elements along the path, but implicitly. �e ICMP response was never intended for this purpose, and the
measurement community has struggled to make sense of the responses, dealing with issues such as de-aliasing
the IP address on the return packets, variable processing delay in the control processor of the probed router, and
so on. Had the tool been designed for purpose, it might provide information that is easier to analyze, for example
a unique ID associated with a router, independent of which port is probed.2

Of course, one problem with tools like ping and traceroute is that the probed element sometimes does not
answer. Routers are sometimes con�gured not to answer, for both performance and security reasons. �e Internet
is composed of regions (ASes) operated by di�erent entities, sometimes not interested in having their insides
probed by outsiders. Most operators have come to understand that having their routers respond to a traceroute is
a useful mutual agreement, but not all operators buy into the agreement at all times. It is important to remember
that measurement, especially measurement that reaches beyond the scope of the region that owns the elements in
question, is sometimes a adversarial activity, and o�en an action with political motives.

Very few of the architectures I have discussed in this book give much a�ention to the question of whether
there should be tools in the architecture (�elds in packets or additional probing functions) to facilitate active
measurement of the network, whether to deal with issue of con�guration, performance or fault localization. But
the design of any such mechanism would bring into focus an important aspect of tussle, which is that many
operators would prefer to keep the details of these issues to themselves. Active probing can be seen as a case
of trying to discover from the outside something that is probably already known on the inside, but is not being
reported.

If operators are (understandably) sometimes reticent about the status of their region of the network, perhaps a
way to balance the interests of all parties would be to de�ne, as part of a management architecture, an abstract
view of a region of a network, which hides some details (perhaps the exact topologies of routers, for example) but
gives a abstracted view of the current state of the region.3 If there were a uniform agreement on a set of useful
abstract parameters to report, this outcome might represent a resolution of the tussle issues around the desire of
all parties to probe their neighbors.

Packet sampling
Another important tool for network management is packet sampling. Tools such as Internet Protocol Flow
Information eXport (IPFIX) and its kin sample the packets passing through a router to identify the �ow, reporting
data such as source and destination IP addresses, number of packets, and so on. �e necessity to sample does add

2 �e IETF, in an a�empt to deal with the issue of variable latency in the reply to a probe, has developed the Two Way Active Measurement
Protocol or TWAMP mechanism (see RFC 5357). A probing mechanism that combines the features of TWAMP with traceroute might be of great
bene�t to the measurement community, so long as it cannot be abused.

3 Some operators do provide this sort of abstract view of their network: for example AT&T has a web site where they list the current latency
between all their city pairs: see h�ps://ipnetwork.bgtmo.ip.a�.net/pws/network delay.html. It is not clear if this exact abstraction of latency is
the most useful, nor is there a uniform agreement among all ISPs to measure and report this parameter, but it illustrates the point.

133 178

David D. Clark Designs for an Internet

uncertainty to the data being reported, but �ow data is a rich source of information that can inform performance
and con�guration management, and in some cases security. It is a good example of an entirely new sort of data
reporting in support of management, going beyond the simple counters normally reported using SNMP. It is also
an example of a tool that was developed without any support from the architecture. Again, one could ask if some
additional information in the packet header could enrich what can be learned from sampling the packets going
through a router.

Management of the management system
Management (and control) systems themselves have to be con�gured and monitored for correct operation. �is
sounds painfully recursive, and in some cases may be, but the speci�c cases are usually dealt with in pragmatic
ways.

Speci�cally, how does a management system discover the set of entities that are to be managed? If a managed
element can generate alerts (active noti�cation of a change in status of one of its management variables), to
which element should alerts be sent? �ese questions will come up as I look at the categories of management
and control. Further, there is a signi�cant security aspect to these questions. What entity should be allowed to
manage another entity? Reading of management variables may seem less harmful than malicious modi�cation,
but could lead to undesirable revelation of system status, and �ooding of a management interface with queries
can potentially lead to overload of a managed system (a form of DoS a�ack). Obviously, malicious modi�cation of
management/control variables can lead to a wide range of disruptive outcomes.

�e design of any management mechanism must be accompanied by an analysis of how that system is managed
and controlled, and the security implications of that system.

10.3 The role of network architecture
�e previous discussion suggests that the ISO model of management (the export of management parameters from
a device) is not the only aspect of management to consider. However, in that context, are there any components
of the system that might rise to the level of architecture? One component might be the bo�om layer, where the
variables that can be read (and wri�en) to monitor and control the network are de�ned. �ese parameters are the
foundation for building situational awareness and control of the network–di�erent management systems can
be built on top of them, but if the basic data is not available, management will be di�cult and �awed. What we
should expect to �nd in the �ve di�erent sub-classes of management listed above are very di�erent management
variables related to the speci�c tasks. In this respect, the di�erent categories of management may be di�erentiated.
By looking at the previous chapters, we can try to extract insights about how the data and control planes should
be designed to provide the most useful information to management. �en we can ask to what extent these
considerations relate to architecture, as we have de�ned it.

In the current Internet, there are no management parameters that come anywhere close to being considered
“architecture” by the Internet designers. But if some of those parameters achieve the status of “something on
which we all need to agree”, then they should properly be considered part of the architecture, even if they earn
that status a�er the fact. In chapter 1, I claimed that a key aspect of architecture is the de�nition of interfaces.
Interfaces modularize the system, and specify what is shared among the entities on the di�erent sides of the
interface. �e set of parameters exported by a managed device de�ne its management interface, and if there
are classes of devices which bene�t from an interface that is globally agreed and stable over time, that interface
takes on the character of architecture. �e exact protocol used to implement the interface may change, but the
expectations that the two entities make of each other, de�ned by the parameters that can be read and wri�en, is a
more basic and enduring characteristic.

Instrumenting the data plane
�e previous discussion of packet sampling provides a particular illustration of a more general issue: should the
data plane of an architecture contain elements that are designed to assist in some aspect of network management?

134 178

David D. Clark Designs for an Internet

Are there values that might be put into a packet header (e.g., a �ow identi�er) that would help with performance
analysis? Could the data plane be re-engineered to help with fault isolation?

In the early days of the design of the Internet, colleagues from the telephone company (when they were
not telling us that packet switching would not work) strongly advised us that the data plane had to include
tools for fault diagnosis. �e digital version of the telephone system, which had been engineered only a�er the
telephone system itself was very mature, included features (such as management �elds in the data frames that
were forwarded in their TDM scheme) that were intended for fault diagnosis. �ey argued that the ability of
a network to diagnose its faults was just as important as its ability to forward its data, and that our failure to
appreciate this was just another signal of our inexperience.

If the data plane could somehow be enhanced so that it supported management issues as a part of its normal
function (for example supported fault localization or detection of performance impairments) this would shi�
tussle in a fundamental way. Operators can try to distort what is discovered using active probing (giving ping
packets priority or refusing to respond to them), but it is harder to distort what is observed by the data plane
without distorting how it performs. Of course, if there are �elds in the data packet that the router is expected
to �ll in that only play a role in management (such as the traceback schemes for localizing DDoS a�acks) the
operator of the distant router can just choose not to implement this function. �e ideal tool for instrumenting the
data plane will be a feature designed so that it is an inherent part of the forwarding process. �is goal, in the
presence of tussle, is a signi�cant design challenge that calls for cra�y thinking.

State and the dynamics of the control plane
Dynamic control requires some ability to sense the environment–feedback. And for feedback to be e�ective, it has
to act on some state in the system. �ere is some parameter being controlled, and feedback adjusts that parameter.
�is is a very general statement of dynamic control, but the essential point is that a stateless element cannot be a
controlled element, because it has no state to be controlled. �e original design of the Internet strove to minimize
the state in the routers, in pursuit of simplicity. Routers keep no track of the packets they forward, other than to
count the total number of bytes and packets forwarded in some interval. �ere is no “per �ow” state in routers,
which simpli�ed the steps of forwarding of packets. 4 Since packet forwarding must be highly e�cient (routers
today are required to forward hundreds of millions of packets per second out each port), if the Internet could be
made to work without keeping state in routers, so much the be�er.

What we have learned over the years (but perhaps learned in a fragmentary way) is that even if state in the
router is not required for actual forwarding, it may be necessary for control. And adequate control of the network
and its resources is a prerequisite for the prime requirement of forwarding.

Congestion control Congestion control makes an excellent case study of di�erent approaches that require
di�erent sorts of state in di�erent elements, and di�erent dynamic control mechanisms. When, in the late 1980’s,
Van Jacobson proposed the congestion control algorithm that is still in use in the Internet today [Jacobson, 1988],
one of his central challenges was to �nd a useful control variable. �e so�ware that implements the IP layer (not
only in the router but in the sending host) does not have any useful state variables. However, the Transmission
Control Protocol (TCP) which many applications use and which runs in the end-points “above” the IP layer, has a
control variable (the so-called “window”) that is the number of packets that the sender is allowed to have in �ight
across the Internet at any instant. When an acknowledgement is received at the sender telling it that one of its
packets has been received at the destination, then it is allowed to send another packet into the system. 5 �is

4 In the early days of router design, engineers explored the idea of keeping a lookup table of destination address to which packets had recently
been forwarded, so as to potentially reduce the cost of looking up the destination address from each packet in the full forwarding table. �e idea
seems to have been more complexity than it was worth.

5 To over-simplify how “window-based” �ow control works, assume that the round-trip time from sender to receiver is constant. A sender should
receive an acknowledgement of a packet one round trip later, so the resulting sending rate is the window size divided by the round trip time. If
the window size is 10 packets, and the round trip is .1 seconds, then the sending rate is 10 packets every .1 seconds, or 100 packets/second.

135 178

David D. Clark Designs for an Internet

simple feedback loop was initially designed to keep a sender of packets from overwhelming a receiver, but what
Jacobson realized was that it could be modi�ed to deal with overload in the network as well as overload at the
receiver.

�e scheme that Jacobson devised made minimal assumptions about the functionality in the routers. It worked
as follows. When o�ered tra�c at a router exceeds the outgoing capacity, a queue of packets forms, which are
stored in the router. When storage is exhausted, the router must discard an incoming packet. TCP keeps track
of lost packets and retransmits them, but as part of the congestion control scheme Jacobson proposed, it cuts
its sending window (the number of packets it can have in �ight) in half, thus reducing it sending rate and the
resulting congestion. It then slowly increases its sending window until it again triggers a queue over�ow and loss
of another packet, when the pa�ern repeats. �is algorithm is a very simple control loop: the sender continuously
hunts for the acceptable speed at which to send, slowly increasing it sending rate until it triggers a signal that
tells it to slow down.

When Jacobson proposed this scheme, several of us asked why he used the actual dropping of a packet as a
congestion signal rather than some explicit control message. His answer was insightful. He said that if he proposed
some complex scheme that the router should implement in order to determine when to send a “congestion detected”
signal, coders would almost certainly mis-code it. But there is no coding error that can allow a router to avoid
dropping a packet if it has actually run out of memory. None the less, the research community set about trying to
design a mechanism called explicit congestion noti�cation, or ECN, to allow the router to signal to a sender that it
should slow down even before it had to drop a packet. �e design of ECN was complicated by the fact that the
packet lacked a �eld in which to carry the ECN indication (a lack of what I have called expressive power), so most
of the design e�ort went into �guring out how to repurpose an existing �eld in the packet so it could be used for
this purpose. Even today, ECN has not gained wide use in the Internet, and the signal to a sender to slow down is
still a dropped packet.

While Jacobson’s scheme has worked very well, and has been critical to the success of the Internet, it raises
several issues. First, not all applications use TCP as a transport protocol. Other protocols might not react to a
dropped packet in the same way. Protocols that stream real-time tra�c (audio and video) normally send at a
constant rate (the encoding rate of the content) and are designed to mask the consequence of a dropped packet.
�e idea that they should slow down in response to a lost packet is not consistent with the need to send the
encoded content (e.g., the speech) at the rate it is encoded. Further, the TCP congestion adaptation algorithm (the
cu�ing of the window size by two on a lost packet) is implemented in the end-node. �ere is no way the network
can detect if it has actually done so. What if a malicious user just patches his code so it omits this step? He will
continue sending faster and faster, other (more obedient) senders will keep slowing down, and the result will be a
very unfair allocation of capacity to the di�erent senders.

More generally, this scheme, since it acts on individual TCP �ows, makes a single TCP �ow the unit of capacity
allocation. What if a sender just opens two TCP �ows in parallel? He will then be able to go twice as fast.
Today we see web servers o�en opening many TCP �ows in parallel, although the goal is not usually to thwart
congestion control but to deal with other limits to throughput. �e more philosophical (or architectural) question
is how should capacity (when it is scarce) be allocated. Per TCP �ow? Per sender, independent of how many
TCP �ows that sender has? Per sender to a given destination? And so on. Early (and persistent) debates around
these questions yielded the following understanding of the situation. First, there is a tussle between the user and
multiple ISP over control. An ISP might assert that since it owns the resources, and has a service agreement with
the user, it should be allowed to determine how resources are allocated among users. But perhaps the congestion
is occurring at a distant point in the Internet, where the ISP actually dealing with the congestion has no service
agreement with any of the users contributing to the congestion. Users might assert that they should have some
control over which of their �ows they choose to slow in response to congestion. �ese debates suggested that the
answer as to how scarce capacity is allocated (to �ows, to users, to destinations, and so on) might be di�erent
in di�erent contexts, and should thus not be speci�ed by the architecture. �ese debates suggested as well that
we as designers did not understand (or at least did not agree on) how to build a more general mechanism, and

136 178

David D. Clark Designs for an Internet

TCP-base per-�ow congestion feedback is still the practice today.
�ere have been a number of proposals either to improve the Jacobson algorithm (some of which have seen

limited deployment) or to replace it (all of which resulted in an academic publication but no transformation of
the existing Internet). �ese schemes are usually defended by evidence that they increase performance, but it is
interesting to look at them through the lens of the control state they require, as well as expressive power in the
packet.

Jacobson’s scheme uses the queue of packets as a crude state variable–when the queue over�ows, the dropped
packet is the control signal. Several schemes have been proposed to use the length of the queue (the number of
packets held there at the moment) as a more sophisticated basis to generate a congestion indication. �e scheme
called RED (which stands for Random Early Detection or Random Early Drop) [Floyd and Jacobson, 1993], picked
packets from the queue to drop even before the queue was full, selecting them at random as they arrived, with
increasing probability as the queue grew. With proper se�ing of the parameters that controlled the probability of
dropping, this scheme had many bene�ts compared to waiting until the queue was actually full, but it proved
di�cult to set those parameters correctly in an automatic manner depending on the operating conditions, and the
need for manual con�guration (e.g, congestion management) somewhat limited the deployment of RED.

Later schemes have tried to improve this approach, and eliminate the need for any manual con�guration. �ese
include CoDel [Nichols and Jacobson, 2012] and Pi (proportional-integral controller) schemes. �ere is a vast
literature (and I use that term without exaggeration) on congestion and its control, which I do not a�empt to
even start to review here. From the perspective of architecture, what is interesting is the assumptions that these
schemes make about state and expressive power. When CoDel was being developed and evaluated, it became
clear that for best operation, it was useful to have per-�ow state in the routers–in fact to keep a per-�ow queue of
packets that is serviced according to some proportional scheme. �is idea was put forward as a minor extension
to CoDel, but it might instead have been seen as a fundamental change in our architectural assumptions about
state. One could ask, looking generally at mechanism and function, what might all the bene�ts of per-�ow state
be, in the various control functions of the Internet, if one were to accept the cost and complexity of implementing
it.6 For example, once routers support per-�ow state, could this be used as part of a mitigation scheme for DDoS
a�acks, as I discuss in Chapter 7?

As I hinted above, there have been more “academic” proposals to improve congestion control–“academic” in
the sense that they require more modi�cation to the architecture (more expressive power in the header) and thus
were not intended as schemes to be deployed as described in the current Internet. �e eXplicit Control Protocol
(XCP) [Katabi et al., 2002] puts per-�ow congestion state in the packet, to avoid having this state in the router. To
over-simplify (as I have done in many places) the sender puts its send window value in the packet, so that the
routers, using a suitable algorithm), can directly modify that window. �e Rate Control Protocol [Dukkipati, 2008]
takes a similar approach, pu�ing a rate variable into each packet so that there is no per-�ow control state in the
router. Schemes like these require that a router estimate the round trip of tra�c �owing out over each of its
links–for a control loop to be stable there needs to be some measure of the delay in the control loop. As well,
these schemes do not de�ne what a �ow is–they operate on individual packets based on the assumption that a
�ow is that set of packets that share a common sending window parameter.

Another framework to consider congestion control is re-feedback or re-ecn, proposed by Briscoe. 7 Re-ecn is a
scheme that tries to take into account the incentives of the di�erent actors (both senders and ISPs) to deal with
congestion, and allows for the inclusion in the scheme of a policer that the ISP can use to detect if the user is
responding correctly to the congestion signals received from the network. Using the framing of this book, re-ecn
adds a new sort of PHB to the architecture to control congestion in ways that re�ect the potential tussle between

6 In fact, routers today support this sort of function–it has crept into the implementations without being considered from a more fundamental or
architectural perspective.

7 For the reader interested in the re-ecn work, which is not just a protocol but a proposal to reframe the point of view used to think about
congestion, a good place to start is the web page maintained by Briscoe at h�p://www.bobbriscoe.net/projects/refb/.

137 178

David D. Clark Designs for an Internet

sender and ISP.

State and network management It is interesting to note that essentially none of the architectural proposals
that I reviewed in Chapter 5 discuss congestion control, or more speci�cally what expressive power in the header
might be useful for this purpose. �ey do not discuss the balance of what needs to be architected as opposed to
what needs to be changed in di�erent contexts. NDN is an interesting alternative in this respect. NDN is based on
an architectural decision to have in each router not just per-�ow state but per-packet state. Whenever an interest
packet is forwarded by a router, it makes a record of that event. If and when a data packet returns, it is matched to
that state. It logs the time the interest packet arrives, so that it can measure the time between the interest and data
packet, thus providing a potential control loop with an estimate of the delay time in the loop. �is mechanism,
once in place, can be used for a variety of control functions, giving NDN a very powerful capability that other
architectures with less state in the router cannot implement. NDN can implement per-hop forms of congestion
control by limiting the number of pending interest packets. It can perform routing experiments by learning which
paths over which an interest is forwarded actually triggers a data packet in return. While NDN is o�en described
in terms of its forwarding function, its ability to implement a range of novel control algorithms is an equally
important aspect of its architectural fundamentals.

Some of the Active Network proposals discussed in Section 5.3 allow the active packets (packets with code
that is executed as the packet arrives at a node) to create transient state that can be used for more sophisticated
network control. �e PLANet scheme [Hicks et al., 1999] discusses the use of active code to create what they call
scout packets that fan out to seek good routes to a destination, creating transient per-packet state to keep track of
the scouting function, somewhat reminiscent of the transient state created by interest packets in NDN. �ere is an
interesting contrast between NDN and PLAN. NDN is most emphatically not an Active Network approach–any
algorithm that implements (for example) exploration of good routes would be a part of the so�ware installed in
the router. In PLAN, the source node implements the scouting code, and sends it to be evaluated by nodes along
the path. �e la�er scheme does raise the question of what happens if di�erent scouting programs from di�erent
source nodes are simultaneously exploring the network and taking perhaps independent decisions that end up
having common consequences. But the approach illustrates a form of “end-to-end” thinking–in principle only the
source knows what sort of service it is seeking, and thus what sort of scouting algorithm will best meet its needs.

Layering and control
In the earlier chapters, I have described the Internet as having a layered structure. �e most simple layered model
is a network technology layer at the bo�om, the application layer at the top, and the Internet Protocol layer in the
middle providing the service speci�cation that links the technology to the application. �is layering emerged in
the context of the data forwarding function, and it is described in that way by most network designers. �ere is
less consideration of what this layering means for critical control functions. In particular, there is seldom any
discussion of what interfaces (de�nitions of how information is to be exchanged between the layers) is needed in
the context of control. Fault control (or management) provides a good illustration of the issue. When a physical
component fails, the consequence manifests at every layer. If there is no interface to allow coordination among
the layers, every layer may independently initiate some sort of corrective action, which may conceivably con�ict
with each other. In today’s Internet, we see complex technology layers below the IP layer. We see multi-hop
sub-networks hooking routers together, where those networks themselves have forwarding elements in them,
which are usually called switches to distinguish them from routers. �ese switches will have their own routing
protocols, and when a fault occurs, both the technology layer protocols and the Internet routing protocols may
undertake a re-routing e�ort, while the application might a�empt to initiate a connection to a di�erent end-point.
I know of li�le discussion in the research community of how information exchange between the layers might
improve this sort of situation. One possible answer might be a speci�cation of the time within which any layer
will undertake to �x a problem. A technology layer might be speci�ed (or indicate through an interface to the

138 178

David D. Clark Designs for an Internet

layer above) that if it can repair a problem it will do so within 100 ms, so the layer above should not undertake
any recon�guration until this period has elapsed.

Congestion control provides another example of the complexity that can arise in control mechanisms from a
layered architecture. Consider again a complex technology layer with multiple switches routing packets among
routers. What happens when congestion occurs at a switch rather than a router? How does the switch participate
in the congestion control algorithm? In Jacobson’s original and very insightful design, the switch just drops a
packet. As he said, any element knows how to drop a packet. But if the scheme involves some use of the expressive
power in the packet, then the switch has to have knowledge of that packet format, which means it has to be
designed knowing how the Internet is speci�ed–it has to function at the IP layer, not just a lower technology layer.
�is sort of example suggests that from the point of view of control, the idea of modularity based on layering
may be less useful than a modularity based on the scope of a mechanism –is the mechanism operating within a
region of the network or globally. We designed Internet routing this way–the Internet allows alternative routing
protocols inside individual regions of the Internet, and uses the global BGP to hook these routing protocols
together. �e designers do not think of these as running at di�erent layers, but at di�erent scopes. While there can
be alternative routing protocols used within di�erent regions, the relationship (the interfaces, speaking abstractly)
between these two protocols are well-understood if implicitly speci�ed. �e routing mechanisms we now �nd
below this level (inside speci�c network technologies) are less-well linked to what happens at the Internet level. I
think we will begin to see (and in places are starting to see) that these lower-layer mechanisms are becoming
more explicitly “Internet aware”–they will be distinguished by the scope over which they function, not by being
at a lower layer that is independent of the speci�cation of the Internet.

I think the design of layer interfaces (and modularity generally) in support of control functions is a much
understudied aspect of Internet architecture, and in the FIA projects it continued to receive less a�ention than the
data forwarding functions.

10.4 Categories of management and control
In this section, I look at categories of management, starting with the ISO FCAPS list, and seek to identify
architectural issues, and further explore what aspects of the management interface might rise to the level of
architecture.

Fault management
�e challenge of fault management has come up in various places earlier in this book, most directly in the
discussion of security and availability.

In my discussion of availability, I proposed a high-level framework for understanding availability:

• It must be possible to detect the failure.

• it must be possible to localize the failed parts of the system.

• It must be possible to recon�gure the system to avoid depending on these parts.

• It must be possible to signal to some responsible party that a failure has occurred.

I noted at the time that pu�ing these steps into the passive voice papered over huge issues: which entity was to
carry out each of these tasks. Resolving these issues falls within the scope of fault management.

�ere are a variety of ways that a failure can be detected, involving di�erent actors. In some cases, an element
may be able to tell that it is failing and raise an alert. In this case, the question is where that alert should be
directed. Some u�erly feeble mechanisms have been devised for an element to indicate that it is failing, such as

139 178

David D. Clark Designs for an Internet

turning on a small red light in the hope that a person will notice it (a wonderful example of a horrible management
interface).8

Sometimes machines interacting on the network can detect that one of their number has failed. Most Internet
routing protocols embed some assessment of correct function into the protocol itself (perhaps a simple “keep-alive”
or “handshake” probe). �e failure of this sort of handshake can be taken as a signal of failure, but then the
question is whether one machine can be trusted to tell another machine that it is failing. In fact, the �rst machine
may be failing, not the second machine, or the �rst machine may just be malicious.9 Any machine that is told by
another machine that it is failing must take that input with considerable caution. �is is a case where it may make
sense to have a person in the loop, but if rapid recovery is required, there is a tension between a quick response
and a considered response. One of the bene�t of a system with redundancy is that service can be restored quickly
using redundant elements, while the failed element can be recovered more slowly.

�e protocol for forwarding Internet email has a built-in redundancy/resilience mechanism. �e DNS can list
more than one IP address for a Mail Transfer Agent, so that if the �rst one is unresponsive the sender can try
another one. However, there is no means for the sender detecting that the �rst receiving agent has failed to report
that problem. �e underlying problem might be repaired more quickly if the failure could be reported when it is
detected, but again, there are a number of issues to be resolved for such a scheme to work. �e �rst is to provide
the address of the location where an error report should be sent. �e second issue is to prevent this mechanism
from being abused. �e third issue is to deal with a possible �ood of legitimate error reports when lots of senders
detect at the same time that a receiver has failed.

A network could be equipped with several mechanisms to deal with these issues, which (since they seem to be
global in scope) might rise to the level of architecture. One would be to include in the DNS a new kind of record
that gives the name of the machine to which a failure of the intended service can be reported. �e second would
be some sort of “incast” mechanism to aggregate multiple error reports together as they �ow across the network
toward that reporting point. An incast scheme also limits the range of DoS a�acks on the error reporting service.

In the most simple cases (consider a home network), I would propose that a standard method of logging errors
within that context be a part of the basic con�guration process. For example, Dynamic Host Con�guration
Protocol (see below) could be extended so that when a machine �rst connects to the network, it is given the
address of a place to send fault reports. �e home router could be the aggregation point for these messages, and
such a framework could be part of a new service that allows for diagnosis of problems in the home network.

In the case of email, the two-party nature of the forwarding steps makes localization somewhat straightforward.
However, in other cases (most obviously the failure of a packet to reach its destination in a timely manner),
localization is much harder. Without the ability to localize the problem, it is much harder to resolve the problem
by avoiding the failing component (one is reduced to trying other options more or less at random) and there is no
possibility of reporting the fault. �e tools the Internet has today to localize faults along the forwarding path
are minimal: usually the only option is traceroute, with its many limitations. But as I noted above, it may not be
in the best interest of a particular region of the network to let outsiders successfully localize faults within that
region, and when the “fault” is due to the successful blocking of an a�ack, it is absolutely not in the best interest
of the target of the a�ack that the a�acker be able to diagnose the reason the a�ack has failed. I believe that fault
localization is a much understudied and poorly understood but critical aspect of network design, which may have
implications for architecture were it be�er understood.

8 In the era of early time-sharing, when I was coding the Multics system, the I/O controller had a management alerting channel, but if this
failed, it reported the failure of its management interface by ringing a loud alarm bell. One’s programming errors took on a somewhat public
character. �e management of the management system implies a sort of recursion that has to be resolved somehow.

9 �ere is a famous rolling outage of the AT&T phone system which is similar in character to this pa�ern. One machine self-detected a fault and
reset itself, and in recovering from this reset sent a sequence to its neighbor machines which (due to a bug) then reset themselves, and so on. It
went on for nine hours [Neumann, 1990].

140 178

David D. Clark Designs for an Internet

Configuration management
Con�guration is the process of se�ing up the elements of a system so that they can interwork properly. As a
simple example, the Dynamic Host Con�guration Protocol (DHCP) allows for the automatic con�guration of
a host when it is �rst a�ached to the Internet. DHCP changed initial host con�guration from a manual and
somewhat mysterious management task to an invisible control function hidden from the user. DHCP provides
three critical pieces of information: an IP address for the new machine to use, the address of a router that can
provide a path to the Internet, and the address of a DNS server that provides access to Domain Name resolution.

More complicated devices, such as production routers, have much more complex con�guration requirements.
To a variable degree, con�guration of complex devices like routers is automated, but in some cases people end up
doing device con�guration from a command line.

It is not too hard to conceive a con�guration interface that allows a managed device to be con�gured over
the network. But there is a bootstrapping problem: how does the new device know what existing device on the
network is allowed to con�gure it? �ere may be some necessary �rst step taken by a person, such as typing
some validation information into the new machine. In simple cases, the process by which a new machine �nds a
service to con�gure it is itself automated. For example, in DHCP, the new machine broadcasts to �nd a DHCP
server. But lurking inside these automatic discovery schemes that are part of many con�guration protocols is a
potential security problem. With DHCP, for example, the newly a�ached host requests con�guration information
by broadcasting its request and believing whatever machine answers. �is mechanism is usually not a major
vulnerability, but should serve as a reminder that the initial phase of con�guration is a moment of vulnerability in
system setup, whether the mechanism is DHCP, bluetooth peering or con�guring devices in a smart home.

Accounting management
In Chapter 9 I discussed a range of schemes for “money-routing”, which depended on new �elds in packets, and
presumably depended as well on new sorts of tools in routers to track and report usage of di�erent sorts.

Operators today use fairly simple tools to gather data to inform accounting functions: packet and byte counts,
data from samples of the packet stream (such as IPFIX) and so on. In 1991, as the �rst commercial ISPs were
happening, the IETF looked at accounting, and published an RFC [Mills et al., 1991] that frames the problem. It
discusses methods of reporting based on packet capture, and in many respects the state of the art does not seem
to have advanced all that much. �e RFC is cautionary with respect to inventing complex tools for accounting,
lest they be used.

Performance management
Performance, as it relates to architecture, is not a simple ma�er of throughput between two end-points. Various
of the proposals I have discussed in this book have implications for performance, but in very di�erent ways
that illustrate that performance is a multi-dimensional issue that will have di�erent manifestations in di�erent
architectures. ALF was intended to improve host processing performance. NDN uses caching to improve the
delivery performance of popular content. MobilityFirst improves the performance of mobile devices as they move
from network to network.

For each of these proposals, part of the analysis must be whether the mechanisms related to performance need
management, need a control protocol, or function as a natural consequence of the design of the data plane.

NDN In NDN, the performance is a function of how the routing protocol �nds the closest copy and the cache
replacement algorithm in the various routers in the system. It is possible that the cache replacement algorithm
needs to be tuned based on the dominant class of content being retrieved, and this tuning may be a management
function. If so, what parameters should a router report about its cache to facilitate management? If the cache uses
an LRU scheme, it might make available some measure of the time that is elapsing between last use and removal.

141 178

David D. Clark Designs for an Internet

MobilityFirst Does the Global Name Resolution Service in MobiliyFirst require management? Should the
latency of the GNRS be tracked and reported?

[[[Add others?]]]
With the advent of massive content delivery over the Internet, and the use of Content Delivery Networks with

complex caching schemes to improve the delivery of content, new issues related to performance have arisen
that seem to call for new interfaces for the management (or control) of these schemes. CDN providers may
have many copies of the same content cached at di�erent locations around the Internet, and can select a speci�c
source for any transfer in order to optimize the delivery. By careful management, CDN providers can operate
their interconnection links essentially fully loaded without triggering actual congestion and its consequences.
However, to do this they have to detect what the actual instantaneous load on the link is. Today, there is no way
to extract that information through a management/control interface; they must estimate whether the link is fully
loaded by looking for transient evidence of congestion. In this case, there is no business barrier to revealing the
information–with directly interconnected caches the router and the CDN belong to the same �rm. But the desired
parameter is not de�ned or exported.

Like SDN, where the transition from a decentralized route computation to a centralized one triggers the need
for new interfaces between the router and its control/management function, the transition from a end-to-end
congestion scheme based on indirect feedback to an explicit scheme running on the CDN infrastructure will
bene�t from the development of new performance parameters on routers.

Security management
In Chapter 7, I broke the problem of security into four sub-objectives. Each of them will raise its own requirements
for management, some of which I discussed in that chapter.

Attacks on communication With the exception of availability, I argued that this requirement should be
addressed using end-to-end encryption. �e major issue here is key management, which is not strictly an issue for
the network but for the a�ached service nodes. However, systems such as the Certi�cate Authority system, while
not a part of “the network”, have risen to a level of importance that they are (perhaps like the DNS) trending
toward being architecture. �e CA system has massive issues of management, with organizations such as the
CA/Browser Forum10 meeting to discuss which root authorities are trustworthy, and so on. �is situation, on the
one hand, may serve to support the view that a system that requires this much management is a mis-designed
system. On the other hand, key management is a known, tricky problem. However, while the problems are critical
to the overall security of the Internet, they seem out of scope for network architecture as I have been de�ning it.

With respect to availability, the issue here are those I discussed in the context of fault management.
�e process of con�guring a web server to support TLS has been a manual and complex management task,

which has prevented many web site operators from implementing the security protocols. A recent e�ort, the
Let’s Encrypt initiative,11 has a�empted to change to process of con�guring TLS from a manual management
process to an essentially automated task, requiring only a minimum of user intervention. While again, this e�ort
seems a bit removed from network architecture, it illustrates that for many problems there are a range of solutions,
ranging from the more manual (management) to more automatic (control) solutions.

Attacks on the host When a host is a�acked by the network or by another host, the mitigation of this problem
(as I conceive it) requires both end-node and network action. Proper design of applications is critical.

Some architectures, such as I3 and DOA, allow end-nodes to use the expressive power of the packet header to
invoke in-network services to provide services such as protection from a�ack. �e management issues in such a

10 See h�ps://cabforum.org/
11 See h�ps://letsencrypt.org/.

142 178

David D. Clark Designs for an Internet

scheme remain to be �eshed out, but the complexity of having services distributed across several nodes in the
network seem to suggest the potential of complex management requirements.

Attacks on the network itself �e most obvious a�acks on the network today (aside from DDoS, discussed
below) are a�acks on the interdomain routing system. Other architectures with di�erent feature sets will, of
course, manifest di�erent opportunities for a�ack. �e security of BGP, as it is being done today, requires a great
deal of manual con�guration (installation of public-private key pairs, registration of address blocks, and so on). As
with the Let’s Encrypt e�ort, there is a open question as to how automatic the con�guration of secure BGP might
be. However, a general point is that much of security management is thecon�guration of security parameters such
as keys.

Denial of Service attacks As I discussed in Chapter 7, DoS a�acks (and DDoS a�acks in particular) are a
problem that arises at the network level and must be managed at least to some extent at the network level. I
described a range of approaches, each of which has its own requirements for new management and control
interfaces. Routers that participate in traceback logging must make available that function through some interface,
and the resulting security issues must be analyzed. �e approach in FII involving the Shut Up Message (SUM)
requires that every sending host be associated with a trusted third party that vouches for its identity, which seems
to imply a signi�cant management task. Again, di�erent design approaches may result in schemes with very
di�erent degrees of manual intervention.

Routing
�e routing protocols in the current Internet are in some respects self-con�guring. When two routers each
discover that there is an active node on the other end of a connected link, they begin to exchange information with
the goal of discovering what is reachable through that other router. �e ports on each router have to be assigned
an IP address (manual con�guration management), and a name (for reverse lookup) is sometimes assigned to that
address, but li�le more is needed in general.

�e emergence of new, centralized route computation schemes such as SDN require new management/control
interfaces on routers and switches, as I noted above.

�ality of Experience
�ality of Experience, or QoE, is the subjective measure of the degree to which a user is satis�ed with the
application being used. Many factors can in�uence how QoE is perceived by the user: the expectation against
which the experience is being assessed, whether the user paid for the application, the overall mood of the user,
and so on. However, in this context, I want to focus on those aspects of QoE that are related to the character
of the network being used to implement the application. In this context, QoE might �t into performance, or
perhaps fault isolation. As well, it has aspects of security, if I include availability in that category. When the
user encounters an impairment to QoE that is due to some phenomenon in the network, the steps to resolve the
problem very much resemble those I identi�ed to deal with issues of availability:

• It must be possible to determine that the impairment is arising in the network.

• it must be possible to localize the failed parts of the system.

• It must be possible to recon�gure the system to avoid depending on these parts.

• It must be possible to signal to some responsible party that a failure has occurred.

�e issue of localization is thus central of allowing impairments to QoE to be remedied. Lacking localization,
the user is reduced to waiting until some other person (presumably the person who manages the relevant entity)

143 178

David D. Clark Designs for an Internet

notices that something is wrong and �xes it. And, as I noted above, localization of a problem to a distant region of
the network may be seen as an adversarial act.

I believe that in the future, there will be an increasing focus on measurement of QoE and diagnosis of QoE
impairments, which will create a generalized requirement for localization that is not restricted to “faults”, but
as well to performance issues, �aws in higher-level services in the network, and so on. As such, if there is a
generalized approach to localization of issues in a “dumb network”, the invention of such a scheme would be a
major advance in network design.

10.5 Conclusions
�is chapter is more speculative than some of the earlier chapters. Research on network architecture and design
has provided many fewer examples of candidate mechanisms to consider, and our operational experience with the
current Internet is based on a set of ad hoc mechanisms that are o�en based on using features in ways for which
they were not intended. While I believe that I have identi�ed a few potential network features that rise to the level
of architecture, and have posed some important research challenges, it is not clear how the research community
should proceed to learn more about this area. What we need is operational experience with networks at scale, but
we cannot easily use the production Internet for this purpose. I fear that this area may remain underdeveloped
and feeble.

144 178

Chapter 11

Meeting the needs of society

by David Clark and kc cla�y

11.1 What do we want our future Internet to be?
�e goal of this chapter is to identify some desirable properties of a future Internet, looking through the lens of
societal concerns, and consider what (if anything) network architecture has to do with these goals.

Several years ago, my co-author kc cla�y and I were moved to try to collect in one paper a list of all the societal as-
pirations for the future of the Internet that we could �nd, and organize them into categories[Clark and cla�y, 2015].
For example, we collected statements from governments and public interest groups. �e resulting list of aspirations
was not original to us, nor did we agree with all of them. We cataloged these aspirations in order to subject them
to critical analysis, and motivate a debate over which of them are desirable, well-speci�ed, realistic and achievable.

�is exercise led us to three high-level conclusions, perhaps obvious but o�en neglected. First, not only are
many of the aspirations hard to achieve, but some are incompatible with others. Second, many are under-speci�ed
and resist operational de�nition; it is unclear how to translate the aspiration to concrete goals against which to
measure progress. �ird, most of the current tools society has to shape the future of the Internet seem unequal to
the task.

�ese conclusions, while potentially pessimistic, raise the question of whether a di�erent Internet might be a
be�er vehicle for the pursuit of these goals. For this reason, we have taken our list from that paper as a starting
point through which to look at this �nal architectural requirement: a future Internet should be designed to meet
the needs of society.

In the pursuit of these goals, we encounter again what I called the fundamental tussle. Governments or advocacy
groups express many aspirations on this list as societal goals – desirable outcomes for the citizenry, thus “in the
public interest”. And yet the Internet’s architecture and infrastructure are now primarily under the stewardship
of the private sector, driven by pro�tability and commercial viability, constrained by technological and economic
circumstances, and sustained by interconnecting and interoperating with competitors in a multistakeholder
ecosystem. Navigating the inherent tension between private sector objectives and societal aspirations is essential
to shaping the future of the Internet.

11.2 Catalog of aspirations
Here is our catalog of aspirations for the future of the Internet:

1. �e Internet should reach to every person by some means. (Reach)

2. �e Internet should be available to us everywhere. (Ubiquity)

3. �e Internet should continue to evolve to match the pace and direction of the larger IT sector. (Evolution)

4. �e Internet should be used by more of the population. (Uptake)
145 178

David D. Clark Designs for an Internet

5. Cost should not be a barrier to the use of the Internet. (A�ordable)

6. �e Internet should provide experiences that are su�ciently free of frustration, fears and unpleasant
experiences that people are not deterred from using it. (Trustworthy)

7. �e Internet should not be an e�ective space for law-breakers. (Lawful)

8. �e Internet should not raise concerns about national security (National security)

9. �e Internet should be a platform for vigorous innovation, and thus a driver of the economy. (Innovation)

10. �e Internet should support a wide range of services and applications. (Generality)

11. Internet content should be accessible to all without blocking or censorship. (Unblocked)

12. �e consumer should have choices in their Internet experience. (Choice)

13. �e Internet should serve as a mechanism for the distribution of wealth among di�erent sectors and
countries (Redistribution)

14. �e Internet (and Internet technology, whether in the public net or not) should become a united technology
platform for communication. (Uni�cation)

15. For any region of the globe, the behavior of the Internet should be consistent with and re�ect its core
cultural/political values. (Local values)

16. �e Internet should be a tool to promote social, cultural, and political values, especially universal ones.
(Universal values)

17. �e Internet should be a means of communication between citizens of the world. (Global)

As we organized these aspirations, we found that many of them could be clustered into four more general
categories:

• Utility

• Economics

• Security

• Openness

11.3 The utility cluster
�e Internet should support a wide range of services and applications. (Generality) �e original Inter-
net architecture embedded this aspiration, since it was designed to support a cooperative network of time-shared
general-purpose computers. Bene�ts that follow from this aspiration include Innovation and Uptake, since the
more value the Internet can deliver, the more users it will a�ract.

Although there is no obvious way to quantify progress toward Generality, the range of Internet applications
demonstrates its success at this aspiration. But not all applications work well on the public Internet today – most
problematic are those that require very high reliability and availability, e.g., remote surgery, remote control of
autonomous vehicles. Does Generality imply the need to evolve to support such ambitious services, or should
they be segregated to more controlled private networks?

146 178

David D. Clark Designs for an Internet

�e Internet should be used by more of the population. (Uptake) Uptake is about ge�ing more people to
use the Internet services available to them. As more essential social services migrate to the Internet to increase
the e�ciency of delivering them, non-users may be increasingly disadvantaged.

�is goal seems generally laudable, but invites the question as to whether policy intervention is appropriate to
convert the non-users. �ere is less consensus on Uptake as a societal aspiration, compared to others, e.g., Reach.
Respondents to Pew’s 2010 survey on U.S. home broadband usage [Smith, 2010] split on the question of whether
non-users were disadvantaged; the most signi�cant concern for non-users related to �nding job opportunities.

�e consumer should have choices in their Internet experience. (Choice) �ere are many possible sorts
of Choice in the Internet ecosystem, e.g., of broadband access providers, or of so�ware in an app store.

Freedom of choice seems central to U.S. policy thinking, but the word “choice” is ill-de�ned; it is o�en used as a
proxy for some other aspiration, for which choice is either a means or a consequence. Choice is described as a
positive consequence of a competitive market. �e logic is that competition leads to choice, and consumers will
choose wisely, so competition disciplines providers toward o�ering products and services that consumers prefer.

But choice presents tension with other aspirations. Given choice, consumers might pick a network that was
more regulated, curated, and/or more stable than today’s Internet (e.g., Apple’s app ecosystem), an outcome
aligned with the Trustworthy aspiration, but less aligned with Innovation and Generality. Or a consumer might
prefer a network that is totally free of accountability and thus rampant with piracy, which governments and
rights-holders would �nd unacceptable and constrain by other means. Or a consumer might prefer a network
that is zero cost but limits the selection of applications, e.g., Facebook Zero.

Overall, we found that this aspiration was ambiguous and subject to multiple interpretations as we a�empted
to reduce it to operational terms.

Architectural relevance It would seem that any architecture that de�nes a general-purpose platform for the
creation of services would support this basket of aspirations. �e more detailed questions have to do with the
degree of generality (e.g., QoS features) and the range of applications. Choice at the ISP level (as opposed to the
higher-level service and application layer) seems to relate to the next cluster: economics.

11.4 The economics cluster
�e Internet should reach every person by some means. (Reach) �e Reach aspiration is generally
uncontentious; almost every country has some form of it. �e di�erences relate to granularity (household or
kiosk?), bandwidth (how much?), and methods to achieve it. Developed countries focus on reaching the yet
unserved population, usually rural areas. In developing countries, where most of the population may not have
access, the focus may be on the wireless form of Reach, (next on the list) i.e., Ubiquity. To achieve Reach in rural
areas that lack su�cient revenue to justify private investment in infrastructure deployment, some nations have
provided subsidy or tax incentives to build or maintain networks. In some cases the public sector has directly
funded construction. In the United States, direct public investment has happened at multiple levels, from federal
stimulus money to municipal construction of residential broadband networks.

�e Internet should be available to us everywhere. (Ubiquity) �e Reach aspiration has a corollary in
the age of mobile communications – every person should have access to the Internet approximately everywhere
they go, implying the integration of high-performance wireless technology into the Internet.

Cost should not be a barrier to the use of the Internet. (A�ordable) �is goal is a component of Uptake,
since cost is a major barrier cited by non-users today. �e phrase “cost should not be a barrier…” could be mapped
to the simpler phrase “the Internet should be low-cost”. However, we don’t expect wine to cost as li�le as tap

147 178

David D. Clark Designs for an Internet

water. Low cost might map to lower value, which might be counter-productive. Perhaps an emphasis on value
would be more productive as a means to uptake.

�e Internet should evolve to match the pace and direction of the larger IT sector. (Evolution) �e
Internet was designed to connect computers together, and this aspiration captures the idea that as computing
evolves, so should the Internet. In particular, as computing gets faster and cheaper (e.g., sensors), the net should get
faster, and access to it cheaper. For decades Moore’s law has characterized how (IT-based) demands on broadband
infrastructure change much more rapidly than other sorts of infrastructure, such as the power grid. In 2013, the
forecast growth of U.S. power consumption was .9% per year [U.S. Energy Information Administration, 2013],
while the forecast of Internet tra�c growth was 23% per year [Cisco Systems, 2013].

National Policy statements have o�en had a dual character [Yochai Benkler, et al., 2012]: ge�ing some level
of broadband to everyone (Reach) and pushing for deployment of a next generation or broadband (Evolution).
�e U.S. FCC National Broadband Plan published in 2010 aspired to a 10-year milestone for Reach and Evolution:
“100 million U.S. homes should have a�ordable access to actual download speeds of at least 100 Mbps and actual
upload speeds of at least 50 Mbps by 2020.” [Federal Communications Commission, 2010b, p. 9] (which admi�edly
now looks less impressive compared to Google Fiber’s gigabit-to-the-home deployments around the country since
2011).

Architectural relevance �is set of aspirations relate directly to the discussion in Chapter 9 on the incentives
of the private sector to invest. Investment can improve Reach and Ubiquity and Evolution, but perhaps not in the
proportion that society might want. All are capital-intensive activities, and thus would seem to drive up cost,
which would put them in con�ict with the aspiration that the Internet be a�ordable. �e possible in�uence of
architecture over these factors was discussed in Chapter 9.

�e Internet should be a platform for innovation, and thus a driver of the economy. (Innovation) As
a key component of the IT space, the Internet has contributed to economic growth by promoting innovation
and creativity, technology development, revolutionizing logistics and service industries, among other ecosystem
disruptions. One interpretation of the Innovation goal is that the Internet must be “open”, a term used to capture
many other aspirations. We believe this word is a red �ag for muddy (or at least un�nished) thinking. Open is a
word with strong positive connotations, useful as a rallying cry, but dangerously vague. We prefer to refer to more
speci�c objectives in the ill-de�ned basket called “open”: stability, speci�cation (open standards), freedom from
discrimination or from intellectual property restrictions. But even these aspirations are not absolute. For example,
some forms of discrimination among uses of a platform can promote innovation, assuming clear and consistent
rules [David Clark and kc cla�y, 2014]. In fact, many tra�c discrimination scenarios may bene�t users, the most
obvious being protecting latency-sensitive tra�c from the consequences of co-mingling with other tra�c.

�e deeper and more vexing policy question that is poorly informed by theory or fact relates to causality: what
underlying properties (e.g., Generality, Uptake, Ubiquity, Evolution, Unblocked or access to capital) are key drivers
of Innovation?

�e Internet should serve as a mechanism for the distribution of wealth among sectors and countries.
(Redistribution) �ousands of independent �rms combine to provide the Internet ecosystem, each typically
striving to be pro�table and competitive, and the �ow of money is integral to its structure. Contentious arguments
about redistribution of capital, either to cross-subsidize from more pro�table to less pro�table sectors of the
ecosystem (e.g., commercial to residential, urban to rural), or from more developed to less developed countries,
have long characterized telecommunication policy debates and legislation.

A recent vivid example is the ongoing tension as to whether high-volume (video) content providers (and transit
providers who serve them) should contribute to the costs of the infrastructure. �is tension has led to debates on

148 178

David D. Clark Designs for an Internet

whether access providers should be able to charge content and/or transit providers for access to their customers,
and more generally whether interconnection arrangements should be le� to industry or regulated to more fairly
allocate money �ows according to who induces versus carries load on the infrastructure [Rob Frieden, 2011].

In addition to cross-subsidizing across industry sectors within one country, governments also aspire to tap
into international revenue �ows in the Internet ecosystem. �e developing world used to bring in substantial
hard-currency payments from se�lement fees associated with telephone calls into their countries, a revenue
source that is diminishing as communication moves onto the Internet. �e global controversy about the role of
the ITU in regulating international Internet interconnection re�ects a motivation by many parties, including
governments, to change the current norms for payment for the global �ow of Internet tra�c to be closer to
historical telephony-based norms [Hamadoun I. Toure, 2012, Geo� Huston, 2012].

Architectural relevance: �ese two aspirations relate directly to the discussion in Chapter 9 on “money-
routing” across the Internet. �e Innovation aspiration is almost directly an expression of hope that the infrastruc-
ture providers will spend money so that the innovators on top of that platform can make some. Put thusly, it is not
obvious why such a hope would come true. �e aspiration of Redistribution is in some direct sense a response to
the pursuit of Innovation; it is a call for the innovators to give some of their pro�ts to the infrastructure providers.
It is interesting that one can �nd this aspiration expressed in pre�y direct terms by some of the actors.

Again, to the extent there are architectural implications of this set of aspirations, I have tried to address them
in Chapter 9. �ey seem to relate to architectural modularity and what interactions among the di�erent actors are
facilitated by the expressive power of the module interfaces.

�e Internet (and Internet technology) should become a uni�ed technology platform for communica-
tion. (Uni�cation) �is aspiration is not directly relevant to society; IP network operators tend to share this
aspiration as a source of cost savings, or more generally to maximize return on capital investment. As such, it
may facilitate the pursuit of other aspirations discussed here. �e Uni�cation aspiration di�ers from Generality;
the la�er is about supporting a wide range of services, while Uni�cation re�ects the economic e�ciency of
discontinuing other platforms and associated investments.

Historically, telephone calls, cable television, and industrial control networks each used independent specialized
legacy communications infrastructure. Today, Internet technology can provide a uni�ed platform for any important
communications application. Many ISPs today run a “fully converged” IP backbone for economic e�ciency, and
would resist any regulatory intervention that would cause them to separate infrastructures they have uni�ed or
plan to unify.

Note that although Uni�cation reduces overall costs in some areas, it also may increase costs in others, since the
uni�ed platform must support the performance of the most demanding application in each quality of service. For
example, a uni�ed IP-based platform must be reliable enough to support critical phone service, have the capacity
to carry large bundles of television channels, etc. Uni�cation may also increase risks to National Security, since a
less diverse infrastructure has higher potential for systemic failure [Schneier, 2010, Geer, 2007], although this fear
is debated [Felton, 2004].

Architectural relevance Today, we see a two-level IP platform emerging in practice, in which ISPs build an IP
platform and then run their part of the IP-based global Internet on top of this platform. Most of the architectural
proposals I have discussed in this book related to the creation of a new global Internet, not the creation of a new
form of uni�ed platform. Given the current trends in industry, it would seem bene�cial to have an architectural
exploration of this two-level structure.

�e argument above about diversity vs. monoculture in the context of systemic failure (and national security)
seems a valid issue to explore from an architectural perspective.

149 178

David D. Clark Designs for an Internet

11.5 The security cluster
Just as in my chapter on security (Chapter 7), the overarching concept of security (or an aspiration for “be�er
security”) proved too general as a starting point. �e aspirations grouped here all do relate to aspects of security,
but they break the problem up in slightly di�erent ways than Chapter 7 since (in the language of that chapter),
they focus on harms and not system components. �is focus on harms seems to make sense in the context of
aspirations.

�e Internet should provide experiences that are su�ciently free of frustration, fears and unpleasant
experiences that people are not deterred fromusing it. (Trustworthy) Most users hope, expect, or assume
that their use of the Internet does not lead to their behavior and data being used against them. Users also need to be
able to (but o�en cannot) assess the safety of a given aspect of their Internet. Today, users fear side e�ects of Internet
use, i.e., their activities being monitored, personal information used in unwelcome ways, e.g. behavioral pro�ling.
Users fear identity the�, loss of passwords and credentials, malware corrupting their computer, losing digital
or �nancial assets through compromised accounts. �e threats are real [Madden et al., 2012, Ehrenstein, 2012,
Sullivan, 2013], and include not just crimes but violations of norms of behavior, e.g., spam or o�ensive postings.

�e Internet should not be an e�ective space for law-breakers. (Lawful) An Internet ecosystem that
cannot regulate illegal activities will make it less Trustworthy and hinder Innovation, impeding the role of the
Internet as a General and Uni�ed platform. Generally, crime is a drag on the economy, and a symptom of erosion
of civic character. But much of today’s cybercrime is international, and there is signi�cant variation in what
di�erent countries consider illegal, as well as inconsistent and in some jurisdictions poor tools to pursue lawless
behavior internationally.

�e Internet should not raise concerns about national security (National security) While small-scale
intrusions, crimes and a�acks may alarm and deter users, a large scale a�ack might disable large portions of the
Internet, or critical systems that run over it. �ere are legitimate fears that the Internet could be a vector for an
a�ack on other critical infrastructure, such as our power or water supply.

�e Center for Strategic and International Studies maintains a public list of “cyber” events with national security
implications [Lewis, 2014]. A few a�acks have risen to the level of national security concerns, but they are hard
to categorize.

Finally, of course, speci�c approaches to improving security may be in con�ict, such as the tension with
surveillance and privacy.

Architectural relevance: I refer the reader to Chapter 7 for a discussion of the issues relating architecture
and security.

�e user-centered framing of the trustworthy aspiration brings into focus the issue of privacy, which relates to
the con�dentiality component of the CIA triad in communications security, but is not emphasized in Chapter
7. Privacy can either be consistent with or at odds with security, depending on the aspect of security under
consideration. It is consistent with the prevention of a�acks on communication, makes dealing with a�acks by
one host on another harder, and may be at odds with some aspects of national security. Decisions as to whether
(and to what extent) an architecture should favor privacy over accountability are potentially architectural, and
certainly not value free. �ere are proposals to re-engineer the Internet in a more Trustworthy direction, e.g., to
ensure that every user’s identity is robustly known at all times [Landwehr, 2009, Mike McConnell, 2010]; these
are highly controversial [Clark and Landau, 2011].

150 178

David D. Clark Designs for an Internet

11.6 The openness cluster
Internet content should be accessible to all without blocking or censorship. (Unblocked) �is aspira-
tion implies that ISPs and other network operators must not block access to content. It also implies that those
with power to compel the blocking or removal of content (e.g. governments) should refrain from doing so. Of
course, many blocking and censorship actions taken by governments and private sector actors are legally justi�ed.

�is aspiration is not equivalent to the ideal that all information be free – some commercial content may require
payment for access, and some content may be illegal to transmit. Rather than describing the relationship between
content producers and users, this aspiration describes the role of the Internet in connecting them.

For any region of the globe, the behavior of the Internet should be consistent with and re�ect region’s
core cultural/political values. (Local values) Because values di�er so much across the global, this aspiration
arguably implies some partitioning of the global Internet, at least in terms of user experience. In the U.S.,
the relevant values would include First Amendment freedoms (speech, association/ assembly, religion, press,
petition), but with limitations on certain types of speech and expression. Other regions prefer an Internet that
safeguards social structure or regime stability. Debate about the desirability of this aspiration is a critical aspect
of international policy development.

�e Internet should promote universal social and political values. (Universal values) �is aspiration
implies the existence of universal values, such as those articulated in the United Nations’ charter or the Universal
Declaration of Human Rights (UDHR) [United Nations, 1948], namely peace, freedom, social progress, equal rights
and human dignity [Annan, 2013]. Although such values are by no means universally accepted, we can imagine
translating these values into the Internet (as Barlow passionately did back in 1996 [John Perry Barlow, 1996]) to
yield aspirations such as:

• Governments should not restrict their citizens’ ability to interact with people outside their borders, as
long as there is no harm to others. �e physical world analogue is universal human right of freedom
of movement, either within the state, or outside the state with right of return, or to leave permanently
[United Nations, 1948].

• People should be allowed to communicate directly with citizens of other states and they should be able to
hear our message without interference from their government; this is a functional implementation of the
global right to free (virtual) assembly and speech.

• �e Internet should enable and enhance global interactions (as long as they are not criminal) to foster the
exchange of ideas. (But since “criminal” has nation-speci�c de�nitions, this aspiration would require a
liberal interpretation of acceptable interaction across the globe.)

• �e Internet should serve as a forum for an international “marketplace of ideas”.

Perhaps as a cyber-manifestation of American exceptionalism, the U.S. has expressed the view that the technol-
ogy of cyberspace can be a means to export rather U.S.-centric values we hold as universal, i.e., to change other
societies to be more like us. 1 Other nations take a more inward-facing view of what they want the Internet to do
for them.

1 Two billion people are now online, nearly a third of humankind. We hail from every corner of the world, live under every form of
government, and subscribe to every system of beliefs. And increasingly, we are turning to the Internet to conduct important aspects of our
lives… the freedoms of expression, assembly, and association online comprise what I’ve called the freedom to connect. �e United States
supports this freedom for people everywhere, and we have called on other nations to do the same. Because we want people to have the
chance to exercise this freedom.” – [Hillary Clinton, 2011]

151 178

David D. Clark Designs for an Internet

Architectural relevance: �e aspiration that citizens be able to communicate globally does not imply that all
of the Internet experience be globally available in a consistent form, only that there is an e�ective basis for global
communication among people, i.e., some tools for discourse and exchange. �is aspiration would seem to bene�t
from Generality. �e alignment of the Internet with local values has a positive and a negative aspect. �e positive
is the development of applications that are localized to the language and expectations of di�erent parts of the
world. Even if the Internet is potentially a platform for global communication, we should realistically expect that
for most users, most of their experience will be domestic. �e negative side of shaping the Internet to local values
is censorship. In technical terms, censorship is an a�ack on a communication between willing parties, but those
who carry out censorship do not describe what they do as a security violation, since they claim the right of law.
However, the tools we design to protect communication from a�ack will blunt the tools of the censor, whether or
not we have sympathy with the motives of a censor.

In the current Internet, this tussle over censorship has played out in a particular way. Rather than try to
examine packet �ows and block content in �ight, countries have been going to the major content providers and
pressuring them to block delivery at the source based on the jurisdiction of the recipient. Large providers have in
many cases yielded to this pressure and are providing country-speci�c �ltering of content and search results.

�e desire for jurisdiction-speci�c blocking is not restricted to governments. Providers of commercial content
such as music and video usually license such content for consumption on a country-speci�c basis. �ey are as
anxious as any government to regulate access based on the country of the recipient.

�is current state of a�airs raises a speci�c value-laden decision for an Internet–should the design make it easy
or hard to determine the country (legal jurisdiction) of a particular recipient? �e Internet today supports this
capability in an approximate way, since most IP addresses are assigned in a way that maps to a country. In this
context, IP addresses cannot be forged, since the sender needs to get packets back.2 Most of the actors concerned
with access control have accepted this approximation as adequate. But if a new Internet were proposed, one
option would be that addresses are always assigned on a per-country basis, which would make this approach
more robust.

An alternative would be to require that some sort of “credential of citizenship” be included in requests for
content. �is approach seems highly problematic for a number of reasons, including the obvious evasion, which
would be to borrow a credential from a person in a di�erent country. Additionally, a country could revoke the
right of a citizen to retrieve content by revoking his credential (sort of like revoking a passport, perhaps). �is
seems like a risky allocation of power to the state. However, architectures such as Nebula, with the requirement
for a distributed control plane negotiation before initiating a data transfer, might be able to embed a certi�cate of
jurisdiction into the Proof of Consent in a non-forgeable way.

Another alternative would be to design an architecture that escalates the tussle by making it harder to determine
the jurisdiction of origin for a query, and see how the adversaries respond. �is is what NDN does, where the
interest packet carries the name of the content being sought, but not the address of the requester, thus making it
impossible for the content source to determine the jurisdiction of the sender from the received interest packet.

To this date, countries have been willing to take rather drastic action, including the blocking of a whole web
site as a consequence of one unacceptable piece of content hosted there. �is is a space where any architectural
decision will be heavily value-driven. I argued above, in the context of individual accountability, that identity at
the individual level should not be a part of the architecture. I am less clear about an architectural binding of an
internet end-point to a jurisdiction. One consideration is that there will be other sorts of credential that service
providers will want from clients (such as their age group) and there is no enforceable way this can be embedded
into the architecture.

Political scientists will note that avoidance of escalation is an important topic of study for those concerned
with international relations. �e sort of arms races we see today (with encryption, blocking of VPNs, tunnels

2 Of course, informed clients today are defeating this jurisdictional binding by using VPNs and other sorts of tunnels, which is causing censors to
block those tools.

152 178

David D. Clark Designs for an Internet

and whole sites) signals that designers today are in an escalatory frame of mind when they design mechanism.
Perhaps, in meeting the needs of society, we need to think about political compromise and not confrontation and
escalation when we make value-laden architectural decisions.

153 178

Bibliography

[Alexander et al., 1997] Alexander, D. S., Shaw, M., Ne�les, S. M., and Smith, J. M. (1997). Active bridging. In
Proceedings of the ACM SIGCOMM ’97 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’97, pages 101–111, New York, NY, USA. ACM. 5.3

[Andersen, 2003] Andersen, D. G. (2003). Mayday: Distributed �ltering for internet services. In Proceedings of the
4th Conference on USENIX Symposium on Internet Technologies and Systems - Volume 4, USITS’03, pages 3–3,
Berkeley, CA, USA. USENIX Association. 7.9, 7.9

[Anderson and Needham, 2004] Anderson, R. and Needham, R. (2004). Programming satan’s computer. In
Computer Science Today, pages 426–440. Springer Verlag. 4

[Anderson et al., 2005] Anderson, T., Peterson, L., Shenker, S., and Turner, J. (2005). Overcoming the internet
impasse through virtualization. Computer, 38(4):34–41. 5.3

[Anderson et al., 2004] Anderson, T., Roscoe, T., and Wetherall, D. (2004). Preventing internet denial-of-service
with capabilities. SIGCOMM Comput. Commun. Rev., 34(1):39–44. 7.9

[Annan, 2013] Annan, K. (2013). Universal values - peace, freedom, social progress, equal rights, human dignity
�� acutely needed, Secretary-General says at Tubingen University, Germany. http://www.un.org/
press/en/2003/sgsm9076.doc.htm. 11.6

[Argyraki and Cheriton, 2004] Argyraki, K. and Cheriton, D. R. (2004). Loose source routing as a mechanism for
tra�c policies. In Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture,
FDNA ’04, pages 57–64, New York, NY, USA. ACM. 11.6

[Balakrishnan et al., 2004] Balakrishnan, H., Lakshminarayanan, K., Ratnasamy, S., Shenker, S., Stoica, I., and
Wal�sh, M. (2004). A layered naming architecture for the internet. SIGCOMM Comput. Commun. Rev.,
34(4):343–352. 5.5

[Belady and Lehman, 1976] Belady, L. A. and Lehman, M. M. (1976). A model of large program development. IBM
Systems Journal, 15(3):225–252. 6.3

[Braden et al., 2003] Braden, R., Faber, T., and Handley, M. (2003). From protocol stack to protocol heap: Role-
based architecture. SIGCOMM Comput. Commun. Rev., 33(1):17–22. 4.8

[Caesar et al., 2006] Caesar, M., Condie, T., Kannan, J., Lakshminarayanan, K., and Stoica, I. (2006). Ro�: routing
on �at labels. SIGCOMM Comput. Commun. Rev., 36(4):363–374. 1, 5.5

[CCITT, 1992] CCITT (1992). Management framework for Open Systems Interconnection (OSI) for CCITT appli-
cations: X.700. International Telecommunications Union. h�ps://www.itu.int/rec/T-REC-X.700-199209-I/en.
10.2

154 178

http://www.un.org/press/en/2003/sgsm9076.doc.htm
http://www.un.org/press/en/2003/sgsm9076.doc.htm

David D. Clark Designs for an Internet

[Cerf and Kahn, 1974] Cerf, V. and Kahn, R. (1974). A protocol for packet network intercommunication. IEEE
Transactions on Communications, 22(5):637–648. 11.6

[Chen et al., 2010] Chen, S., Wang, R., Wang, X., and Zhang, K. (2010). Side-channel leaks in web applications: A
reality today, a challenge tomorrow. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10,
pages 191–206, Washington, DC, USA. IEEE Computer Society. 7.5

[Cheriton, 2000] Cheriton, D. (2000). Triad. SIGOPS Oper. Syst. Rev., 34(2):34–. 5.1

[Cheriton, 1989] Cheriton, D. R. (1989). Sirpent: A high-performance internetworking approach. SIGCOMM
Comput. Commun. Rev., 19(4):158–169. 11.6

[Cheriton and Deering, 1985] Cheriton, D. R. and Deering, S. E. (1985). Host groups: A multicast extension for
datagram internetworks. In Proceedings of the Ninth Symposium on Data Communications, SIGCOMM ’85,
pages 172–179, New York, NY, USA. ACM. 11.6

[Chirgwin, 2015] Chirgwin, R. (2015). Spud ? the ietf’s anti-snooping protocol that will never be used. �e
Register. 7

[Cisco Systems, 2013] Cisco Systems, I. (2013). Cisco visual networking index: Forecast and methodology,
2012-2017. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/
ns537/ns705/ns827/white paper c11-481360.pdf. 11.4

[Cla�y and Clark, 2014] Cla�y, k. and Clark, D. (2014). Platform Models for Sustainable Internet Regulation.
Journal of Information Policy, 4:463–488. 6.7, 9.2

[Clark et al., 2003] Clark, D., Braden, R., Falk, A., and Pingali, V. (2003). Fara: Reorganizing the addressing
architecture. SIGCOMM Comput. Commun. Rev., 33(4):313–321. 11.6

[Clark and cla�y, 2015] Clark, D. and cla�y, k. (2015). An Inventory of Aspirations for the Internet’s future.
Technical report, Center for Applied Internet Data Analysis (CAIDA). 11.1

[Clark and Landau, 2011] Clark, D. and Landau, S. (2011). Untangling a�ribution. Harvard National Security
Journal, 2. 7.6, 11.5

[Clark et al., 2004] Clark, D., Sollins, K., and Wroclawski, J. (2004). New arch: Future generation internet ar-
chitecture. Available at http://www.isi.edu/newarch/iDOCS/final.finalreport.pdf.
5.1

[Clark, 1997] Clark, D. D. (1997). Internet economics. In McKnight, L. and Bailey, J., editors, Internet Economics,
chapter Internet Cost Allocation and Pricing. MIT Press, Cambridge, MA. 9.3

[Clark and Blumenthal, 2011] Clark, D. D. and Blumenthal, M. S. (2011). �e end-to-end argument and application
design: �e role of trust. Federal Communications Law Review, 32(2). 7.3

[Clark and Tennenhouse, 1990] Clark, D. D. and Tennenhouse, D. L. (1990). Architectural considerations for a
new generation of protocols. In Proceedings of the ACM Symposium on Communications Architectures &Amp;
Protocols, SIGCOMM ’90, pages 200–208, New York, NY, USA. ACM. 5.1

[Clark and Wilson, 1987] Clark, D. D. and Wilson, D. R. (1987). A comparison of commercial and military
computer security policies. In Proceedings of the 1987 IEEE Symposium on Research in Security and Privacy
(SP’87), page 184?193. IEEE Press. 5

155 178

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.isi.edu/newarch/iDOCS/final.finalreport.pdf

David D. Clark Designs for an Internet

[Clark et al., 2005a] Clark, D. D., Wroclawski, J., Sollins, K. R., and Braden, R. (2005a). Tussle in cyberspace:
De�ning tomorrow’s internet. IEEE/ACM Trans. Netw., 13(3):462–475. 4.3

[Clark et al., 2005b] Clark, D. D., Wroclawski, J., Sollins, K. R., and Braden, R. (2005b). Tussle in cyberspace:
de�ning tomorrow’s internet. IEEE/ACM Trans. Netw., 13(3):462–475. 1074049. 6.5

[Computer Systems Policy Project, 1994] Computer Systems Policy Project (1994). Perspectives on the national
information infrastructure: Ensuring interoperability. 5.1

[Courcoubetis et al., 2016] Courcoubetis, C., Gyarmati, L., Laoutaris, N., Rodriguez, P., and Sdrolias, K. (2016).
Negotiating premium peering prices: A quantitative model with applications. ACM Trans. Internet Technol.,
16(2):14:1–14:22. 9.3

[Cross-Industry Working Team, 1994] Cross-Industry Working Team (1994). An architectural framework
for the national information infrastructure. Available at http://www.xiwt.org/documents/
ArchFrame.pdf. 5.1, 9.2

[Crowcro� et al., 2003] Crowcro�, J., Hand, S., Mortier, R., Roscoe, T., and War�eld, A. (2003). Plutarch: An
argument for network pluralism. SIGCOMM Comput. Commun. Rev., 33(4):258–266. 5.1

[Dannewitz et al., 2013] Dannewitz, C., Kutscher, D., Ohlman, B., Farrell, S., Ahlgren, B., and Karl, H. (2013).
Network of information (netinf) - an information-centric networking architecture. Comput. Commun., 36(7):721–
735. 5.1

[David Clark and kc cla�y, 2014] David Clark and kc cla�y (2014). Approaches to transparency aimed at min-
imizing harm and maximizing investment. http://www.caida.org/publications/papers/
2014/approaches to transparency aimed/. 11.4

[Decasper et al., 1998] Decasper, D., Di�ia, Z., Parulkar, G., and Pla�ner, B. (1998). Router plugins: A so�ware
architecture for next generation routers. In Proceedings of the ACM SIGCOMM ’98 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’98, pages 229–240, New
York, NY, USA. ACM. 5.3

[Deering, 1992] Deering, S. E. (1992). Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford
University, Stanford, CA, USA. UMI Order No. GAX92-21608. 11.6

[Deering, 1993] Deering, S. E. (1993). Sip: Simple internet protocol. IEEE Network, 7(3):16–28. 11.6

[Deering and Cheriton, 1990] Deering, S. E. and Cheriton, D. R. (1990). Multicast routing in datagram internet-
works and extended lans. ACM Trans. Comput. Syst., 8(2):85–110. 11.6

[Dukkipati, 2008] Dukkipati, N. (2008). Rate Control Protocol (RCP): Congestion Control to Make Flows Com-
plete �ickly. PhD thesis, Stanford University, Stanford, CA, USA. http://yuba.stanford.edu/
∼nanditad/thesis-NanditaD.pdf. 3, 10.3

[Ehrenstein, 2012] Ehrenstein, C. (2012). New study in germany �nds fears of the internet
are much higher than expected. http://www.worldcrunch.com/tech-science/
new-study-in-germany-finds-fears-of-the-internet-are-much-higher-than-expected/
c4s4780/, visited July 1, 2013. 11.5

[Fall, 2003] Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In Proceedings of
the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications,
SIGCOMM ’03, pages 27–34, New York, NY, USA. ACM. 5.1, 5.2

156 178

http://www.xiwt.org/documents/ArchFrame.pdf
http://www.xiwt.org/documents/ArchFrame.pdf
http://www.caida.org/publications/papers/2014/approaches_to_transparency_aimed/
http://www.caida.org/publications/papers/2014/approaches_to_transparency_aimed/
http://yuba.stanford.edu/~nanditad/thesis-NanditaD.pdf
http://yuba.stanford.edu/~nanditad/thesis-NanditaD.pdf
http://www.worldcrunch.com/tech-science/new-study-in-germany-finds-fears-of-the-internet-are-much-higher-than-expected/c4s4780/
http://www.worldcrunch.com/tech-science/new-study-in-germany-finds-fears-of-the-internet-are-much-higher-than-expected/c4s4780/
http://www.worldcrunch.com/tech-science/new-study-in-germany-finds-fears-of-the-internet-are-much-higher-than-expected/c4s4780/

David D. Clark Designs for an Internet

[Farber and Vi�al, 1973] Farber, D. and Vi�al, J. J. (1973). Extendability considerations in the design of the
distributed computer system (dcs). In Proc. Nat. Telecomm. Conf., Atlanta, Georgia. 11.6

[Feamster, 2006] Feamster, N. G. (2006). Proactive Techniques for Correct and Predictable Internet Routing. PhD
thesis, MIT, Cambridge, MA, USA. 9.2

[Federal Communications Commission, 2010a] Federal Communications Commission (2010a). Connecting amer-
ica: the national broadband plan. h�ps://www.fcc.gov/general/national-broadband-plan. 9.1

[Federal Communications Commission, 2010b] Federal Communications Commission (2010b). �e National
Broadband Plan: Connecting America. h�p://download.broadband.gov/plan/national-broadband-plan.pdf. 11.4

[Felton, 2004] Felton, E. (2004). Monoculture debate: Geer vs. charney. h�ps://freedom-to-
tinker.com/blog/felten/monoculture-debate-geer-vs-charney/. 11.4

[Floyd and Jacobson, 1993] Floyd, S. and Jacobson, V. (1993). Random early detection gateways for congestion
avoidance. IEEE/ACM Trans. Netw., 1(4):397–413. 10.3

[Ford, 2004] Ford, B. (2004). Unmanaged internet protocol: Taming the edge network management crisis. SIG-
COMM Comput. Commun. Rev., 34(1):93–98. 11.6

[Forgie, 1979] Forgie, J. (1979). St - a proposed internet stream protocol: Ien 119. https://www.
rfc-editor.org/ien/ien119.txt. 11.6, 11.6

[Fortz and �orup, 2000] Fortz, B. and �orup, M. (2000). Internet tra�c engineering by optimizing ospf weights.
In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 2, pages 519–528 vol.2. 11.6

[Francis, 1994a] Francis, P. (1994a). Addressing in Internet Protocols. PhD thesis, University College London.
http://www.cs.cornell.edu/people/francis/thesis.pdf. 11.6, 11.6, 11.6, 11.6, 11.6

[Francis, 1994b] Francis, P. (1994b). Pip near-term architecture: Rfc 1621. https://tools.ietf.org/
html/rfc1621. 11.6, 11.6

[Fraser, 1980] Fraser, A. G. (1980). Datakit - a modular network for synchronous and asynchronous tra�c. In
Proceedings of the International Conference on Communications, Boston, MA. 11.6

[Geer, 2007] Geer, D. E. (2007). �e evolution of security. �eue, 5(3):30–35. 11.4

[Geo� Huston, 2012] Geo� Huston (2012). It’s just not Cricket: Number Misuse, WCIT and
ITRs. http://www.circleid.com/posts/number misuse telecommunications
regulations and wcit/. 11.4

[Godfrey et al., 2009] Godfrey, P. B., Ganichev, I., Shenker, S., and Stoica, I. (2009). Pathlet routing. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication, SIGCOMM ’09, pages 111–122, New York, NY,
USA. ACM. 5.2, 7.9

[Gold et al., 2004] Gold, R., Gunningberg, P., and Tschudin, C. (2004). A virtualized link layer with support for
indirection. In Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture, FDNA
’04, pages 28–34, New York, NY, USA. ACM. 11.6

[Guha et al., 2004] Guha, S., Takeda, Y., and Francis, P. (2004). Nutss: A sip-based approach to udp and tcp network
connectivity. In Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture,
FDNA ’04, pages 43–48, New York, NY, USA. ACM. 11.6

157 178

https://www.rfc-editor.org/ien/ien119.txt
https://www.rfc-editor.org/ien/ien119.txt
http://www.cs.cornell.edu/people/francis/thesis.pdf
https://tools.ietf.org/html/rfc1621
https://tools.ietf.org/html/rfc1621
http://www.circleid.com/posts/number_misuse_telecommunications_regulations_and_wcit/
http://www.circleid.com/posts/number_misuse_telecommunications_regulations_and_wcit/

David D. Clark Designs for an Internet

[Hamadoun I. Toure, 2012] Hamadoun I. Toure (2012). Remarks to ITU Sta� on World Conference on Inter-
national Telecommunications (WCIT-12). http://www.itu.int/en/osg/speeches/Pages/
2012-06-06-2.aspx. 11.4

[Hicks et al., 1999] Hicks, M., Moore, J. T., Alexander, D. S., Gunter, C. A., and Ne�les, S. M. (1999). Planet:
an active internetwork. In INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages 1124–1133 vol.3. 5.2, 5.3, 10.3

[Hillary Clinton, 2011] Hillary Clinton, S. o. S. (2011). Remarks: Internet Rights and Wrongs: Choices & Chal-
lenges in a Networked World. http://www.state.gov/secretary/rm/2011/02/156619.
htm. 1

[Hinden, 1994] Hinden, R. (1994). Rfc 1710: Simple internet protocol plus white paper. https://tools.
ietf.org/html/rfc1710. 11.6, 11.6

[j. Wang and l. Xiao, 2009] j. Wang, X. and l. Xiao, Y. (2009). Ip traceback based on deterministic packet marking
and logging. In Scalable Computing and Communications; Eighth International Conference on Embedded
Computing, 2009. SCALCOM-EMBEDDEDCOM’09. International Conference on, pages 178–182. 7.9

[Jacobson, 1988] Jacobson, V. (1988). Congestion avoidance and control. In Symposium Proceedings on Communi-
cations Architectures and Protocols, SIGCOMM ’88, pages 314–329, New York, NY, USA. ACM. 4.9, 10.3

[John Perry Barlow, 1996] John Perry Barlow (1996). A Declaration of the Independence of Cyberspace. https:
//projects.eff.org/∼barlow/Declaration-Final.html. 11.6

[Jon Postel, 1981] Jon Postel (1981). Service Mappings. http://www.ietf.org/rfc/rfc795.txt”. 3

[Jonsson et al., 2003] Jonsson, A., Folke, M., and Ahlgren, B. (2003). �e split naming/forwarding network
architecture. In First Swedish National Computer Networking Workshop (SNCNW 2003), Arlandastad, Sweden.
11.6

[Katabi et al., 2002] Katabi, D., Handley, M., and Rohrs, C. (2002). Congestion control for high bandwidth-delay
product networks. In Proceedings of the 2002 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’02, pages 89–102, New York, NY, USA. ACM. 3, 10.3

[Kaur et al., 2003] Kaur, H. T., Kalyanaraman, S., Weiss, A., Kanwar, S., and Gandhi, A. (2003). Bananas: An
evolutionary framework for explicit and multipath routing in the internet. In Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture, FDNA ’03, pages 277–288, New York, NY, USA. ACM.
11.6

[Keromytis et al., 2002] Keromytis, A. D., Misra, V., and Rubenstein, D. (2002). Sos: Secure overlay services.
In Proceedings of the 2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’02, pages 61–72, New York, NY, USA. ACM. 7.9, 11.6

[Kim et al., 2008] Kim, C., Caesar, M., and Rexford, J. (2008). Floodless in sea�le: A scalable ethernet architecture
for large enterprises. In Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, SIGCOMM
’08, pages 3–14, New York, NY, USA. ACM. 5.5

[Kirschner and Gerhart, 1998] Kirschner, M. and Gerhart, J. (1998). Evolvability. Proceedings of the National
Academy of Science, 95:8420–8427. 1.2

158 178

http://www.itu.int/en/osg/speeches/Pages/2012-06-06-2.aspx
http://www.itu.int/en/osg/speeches/Pages/2012-06-06-2.aspx
http://www.state.gov/secretary/rm/2011/02/156619.htm
http://www.state.gov/secretary/rm/2011/02/156619.htm
https://tools.ietf.org/html/rfc1710
https://tools.ietf.org/html/rfc1710
https://projects.eff.org/~barlow/Declaration-Final.html
https://projects.eff.org/~barlow/Declaration-Final.html
http://www.ietf.org/rfc/rfc795.txt

David D. Clark Designs for an Internet

[Koponen et al., 2007] Koponen, T., Chawla, M., Chun, B.-G., Ermolinskiy, A., Kim, K. H., Shenker, S., and Stoica, I.
(2007). A data-oriented (and beyond) network architecture. In Proceedings of the 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’07, pages 181–192, New
York, NY, USA. ACM. 5.1

[Koponen et al., 2011] Koponen, T., Shenker, S., Balakrishnan, H., Feamster, N., Ganichev, I., Ghodsi, A., Godfrey,
P. B., McKeown, N., Parulkar, G., Raghavan, B., Rexford, J., Arianfar, S., and Kuptsov, D. (2011). Architecting
for innovation. SIGCOMM Comput. Commun. Rev., 41(3):24–36. 5.1

[Kushman et al., 2007] Kushman, N., Kandula, S., and Katabi, D. (2007). Can you hear me now�: It must be bgp.
SIGCOMM Comput. Commun. Rev., 37(2):75–84. 8.1

[Lampson, 1973] Lampson, B. W. (1973). A note on the con�nement problem. Commun. ACM, 16(10):613–615. 7.6

[Landwehr, 2009] Landwehr, C. E. (2009). A national goal for cyberspace: Create an open, accountable inter-
net. Security Privacy, IEEE, 7(3):3 –4. http://owens.mit.edu:8888/sfx local? char set=
utf8&id=doi:10.1109/MSP.2009.58%7D,&sid=libx%3Amit&genre=article. 11.5

[Lewis, 2014] Lewis, J. (2014). Signi�cant cyber events. http://csis.org/program/
significant-cyber-events. 11.5

[Luderer et al., 1981] Luderer, G. W., Che, H., and Marshall, W. T. (1981). A virtual circuit switch as the basis for
distributed systems. In Proceedings of the Seventh Symposium on Data Communications, SIGCOMM ’81, pages
164–179, New York, NY, USA. ACM. 11.6

[MacKie-Mason and Varian, 1996] MacKie-Mason, J. K. and Varian, H. R. (1996). Some economics of the internet.
Networks, Infrastructure and the New Task for Regulation. Available at http://deepblue.lib.umich.
edu/handle/2027.42/50461. 9.3

[Madden et al., 2012] Madden, M., Cortesi, S., Gasser, U., Lenhart, A., and Duggan, M. (2012). Parents, teens and
online privacy. http://www.pewinternet.org/Reports/2012/Teens-and-Privacy.
aspx. 11.5

[Mike McConnell, 2010] Mike McConnell (2010). Mike McConnell on how to win the cyber-war we’re losing.
�e Washington Post. 11.5

[Mills et al., 1991] Mills, C., Hirsh, D., and Ruth, G. (1991). Internet accounting: Background. 10.4

[Monge and Contractor, 2003] Monge, P. R. and Contractor, N. S. (2003). �eories of Communication Networks.
Oxford University Press. 6.1

[Naous et al., 2011] Naous, J., Wal�sh, M., Nicolosi, A., Mazières, D., Miller, M., and Seehra, A. (2011). Verifying
and enforcing network paths with icing. In Proceedings of the Seventh COnference on Emerging Networking
EXperiments and Technologies, CoNEXT ’11, pages 30:1–30:12, New York, NY, USA. ACM. 5.4, 11.6

[National Telecommunications and Information Administration, 1993] National Telecommunications and
Information Administration (1993). �e national information infrastructure: Agenda for action.
h�p://clinton6.nara.gov/1993/09/1993-09-15-the-national-information-infrastructure-agenda-for-action.html.
5.1

[Needham, 1979] Needham, R. M. (1979). Systems aspects of the cambridge ring. In Proceedings of the Seventh
ACM Symposium on Operating Systems Principles, SOSP ’79, pages 82–85, New York, NY, USA. ACM. 11.6

159 178

http://owens.mit.edu:8888/sfx_local?__char_set=utf8&id=doi:10.1109/MSP.2009.58%7D,&sid=libx%3Amit&genre=article
http://owens.mit.edu:8888/sfx_local?__char_set=utf8&id=doi:10.1109/MSP.2009.58%7D,&sid=libx%3Amit&genre=article
http://csis.org/program/significant-cyber-events
http://csis.org/program/significant-cyber-events
http://deepblue.lib.umich.edu/handle/2027.42/50461
http://deepblue.lib.umich.edu/handle/2027.42/50461
http://www.pewinternet.org/Reports/2012/Teens-and-Privacy.aspx
http://www.pewinternet.org/Reports/2012/Teens-and-Privacy.aspx

David D. Clark Designs for an Internet

[Neumann, 1990] Neumann, P. G. (1990). Cause of at&t network failure. RISKS-FORUM Digest, 9(62). 9

[Nguyen et al., 2011] Nguyen, G. T., Agarwal, R., Liu, J., Caesar, M., Godfrey, P. B., and Shenker, S. (2011). Slick
packets. In Proceedings of the ACM SIGMETRICS Joint International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’11, pages 245–256, New York, NY, USA. ACM. 11.6

[Nichols and Carpenter, 1998] Nichols, K. and Carpenter, B. (1998). De�nition of di�erentiated services per
domain behaviors and rules for their speci�cation. 2

[Nichols and Jacobson, 2012] Nichols, K. and Jacobson, V. (2012). Controlling queue delay. ACM �eue,
10(5). http://dl.acm.org.libproxy.mit.edu/citation.cfm?id=1368746&CFID=
673468559&CFTOKEN=90975803. 10.3

[Nygren et al., 1999] Nygren, E. L., Garland, S. J., and Kaashoek, M. F. (1999). Pan: a high-performance active
network node supporting multiple mobile code systems. In Open Architectures and Network Programming
Proceedings, 1999. OPENARCH ’99. 1999 IEEE Second Conference on, pages 78–89. 5.2

[Open Interconnect Consortium, 2010] Open Interconnect Consortium (2010). Internet gateway device (igd) v
2.0. 5

[Parno et al., 2007] Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs, B., and Hu, Y.-C. (2007). Portcullis:
Protecting connection setup from denial-of-capability a�acks. SIGCOMM Comput. Commun. Rev., 37(4):289–
300. 7.9, 11.6

[Postel, 1981] Postel, J. (1981). Internet protocol, network working group request for comments 791. http:
//www.ietf.org/rfc/rfc791.txt. 3

[Pujol et al., 2005] Pujol, J., Schmid, S., Eggert, L., Brunner, M., and �i�ek, J. (2005). Scalability analysis of the
turfnet naming and routing architecture. In Proceedings of the 1st ACM Workshop on Dynamic Interconnection
of Networks, DIN ’05, pages 28–32, New York, NY, USA. ACM. 11.6

[Raghavan et al., 2009] Raghavan, B., Verkaik, P., and Snoeren, A. C. (2009). Secure and policy-compliant source
routing. IEEE/ACM Transactions on Networking, 17(3):764–777. 11.6

[Rob Frieden, 2011] Rob Frieden (2011). Rationales For and Against FCC Involvement in Resolving Internet
Service Provider Interconnection Disputes. Telecommunications Policy Research Conference, http://
papers.ssrn.com/sol3/papers.cfm?abstract id=1838655. 11.4

[Rosen, 1982] Rosen, E. (1982). Exterior gateway protocol (egp). 4

[Saltzer, 1982] Saltzer, J. (1982). On the naming and binding of network destinations. In et al., P. R., editor, Local
Computer Networks, pages 311–317. North-Holland Publishing Company. Reprinted as RFC 1498. 11.6

[Saltzer et al., 1980] Saltzer, J. H., Reed, D. P., and Clark, D. D. (1980). Source routing for campus-wide internet
transport. In West, A. and Janson, P., editors, Local Networks for Computer Communications. http://
groups.csail.mit.edu/ana/Publications/PubPDFs/SourceRouting.html. 11.6

[Saltzer et al., 1984] Saltzer, J. H., Reed, D. P., and Clark, D. D. (1984). End-to-end arguments in system design.
ACM Trans. Comput. Syst., 2(4):277–288. 357402. 6.8

[Savage et al., 2000] Savage, S., Wetherall, D., Karlin, A., and Anderson, T. (2000). Practical network support for
ip traceback. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’00, pages 295–306, New York, NY, USA. ACM. 7.9

160 178

http://dl.acm.org.libproxy.mit.edu/citation.cfm?id=1368746&CFID=673468559&CFTOKEN=90975803
http://dl.acm.org.libproxy.mit.edu/citation.cfm?id=1368746&CFID=673468559&CFTOKEN=90975803
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1838655
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1838655
http://groups.csail.mit.edu/ana/Publications/PubPDFs/SourceRouting.html
http://groups.csail.mit.edu/ana/Publications/PubPDFs/SourceRouting.html

David D. Clark Designs for an Internet

[Schneier, 2010] Schneier, B. (2010). �e dangers of a so�ware monoculture. https://www.schneier.
com/essays/archives/2010/11/the dangers of a sof.html. 11.4

[Schwartz et al., 1999] Schwartz, B., Jackson, A. W., Strayer, W. T., Zhou, W., Rockwell, R. D., and Partridge, C.
(1999). Smart packets for active networks. In Open Architectures and Network Programming Proceedings, 1999.
OPENARCH ’99. 1999 IEEE Second Conference on, pages 90–97. 5.3

[Shoch, 1978] Shoch, J. F. (1978). Inter-network naming, addressing, and routing. In IEEE Proc. COMPCON Fall
1978. Also in �urber, K. (ed.), Tutorial: Distributed Processor Communication Architecture, IEEE Publ. EHO
152-9, 1979, pp. 280-287. 11.6

[Smith, 2010] Smith, A. (2010). Home Broadband 2010. http://www.pewinternet.org/Reports/
2010/Home-Broadband-2010.aspx. 11.3

[Snoeren et al., 2002] Snoeren, A. C., Partridge, C., Sanchez, L. A., Jones, C. E., Tchakountio, F., Schwartz, B., Kent,
S. T., and Strayer, W. T. (2002). Single-packet ip traceback. IEEE/ACM Transactions on Networking, 10(6):721–734.
7.9

[Song and Perrig, 2001] Song, D. X. and Perrig, A. (2001). Advanced and authenticated marking schemes for ip
traceback. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, volume 2, pages 878–886 vol.2. 7.9

[Stoica et al., 2004] Stoica, I., Adkins, D., Zhuang, S., Shenker, S., and Surana, S. (2004). Internet indirection
infrastructure. IEEE/ACM Trans. Netw., 12(2):205–218. 5.1, 11.6

[Sullivan, 2013] Sullivan, B. (2013). Online privacy fears are real. http://www.nbcnews.com/id/
3078835/t/online-privacy-fears-are-real, visited July 1, 2013. 11.5

[Sunshine, 1977] Sunshine, C. A. (1977). Source routing in computer networks. SIGCOMM Comput. Commun.
Rev., 7(1):29–33. 11.6

[Tennenhouse and Wetherall, 1996] Tennenhouse, D. L. and Wetherall, D. J. (1996). Towards an active network
architecture. SIGCOMM Comput. Commun. Rev., 26(2):5–17. 4.8, 5.2, 5.3

[Trossen and Parisis, 2012] Trossen, D. and Parisis, G. (2012). Designing and realizing an information-centric
internet. IEEE Communications Magazine, 50(7):60–67. 5.1

[Trossen et al., 2008] Trossen, D., Tuononen, J., Xylomenos, G., Sarela, M., Zahemszky, A., Nikander, P., and
Rinta-aho, T. (2008). From design for tussle to tussle networking: Psirp vision and use cases. http://www.
psirp.org/files/Deliverables/PSIRP-TR08-0001 Vision.pdf. 5.1

[Turányi et al., 2003] Turányi, Z., Valkó, A., and Campbell, A. T. (2003). 4+4: An architecture for evolving the
internet address space back toward transparency. SIGCOMM Comput. Commun. Rev., 33(5):43–54. 11.6

[United Nations, 1948] United Nations (1948). �e Universal Declaration of Human Rights. http://www.un.
org/en/documents/udhr/index.shtml. 11.6

[U.S. Energy Information Administration, 2013] U.S. Energy Information Administration (2013). Annual energy
outlook 2013. http://www.eia.gov/forecasts/aeo/MT electric.cfm. 11.4

[van der Merwe et al., 1998] van der Merwe, J. E., Rooney, S., Leslie, L., and Crosby, S. (1998). �e tempest-a
practical framework for network programmability. IEEE Network, 12(3):20–28. 5.3

161 178

https://www.schneier.com/essays/archives/2010/11/the_dangers_of_a_sof.html
https://www.schneier.com/essays/archives/2010/11/the_dangers_of_a_sof.html
http://www.pewinternet.org/Reports/2010/Home-Broadband-2010.aspx
http://www.pewinternet.org/Reports/2010/Home-Broadband-2010.aspx
http://www.nbcnews.com/id/3078835/t/online-privacy-fears-are-real
http://www.nbcnews.com/id/3078835/t/online-privacy-fears-are-real
http://www.psirp.org/files/Deliverables/PSIRP-TR08-0001_Vision.pdf
http://www.psirp.org/files/Deliverables/PSIRP-TR08-0001_Vision.pdf
http://www.un.org/en/documents/udhr/index.shtml
http://www.un.org/en/documents/udhr/index.shtml
http://www.eia.gov/forecasts/aeo/MT_electric.cfm

David D. Clark Designs for an Internet

[Wal�sh et al., 2004] Wal�sh, M., Stribling, J., Krohn, M., Balakrishnan, H., Morris, R., and Shenker, S. (2004).
Middleboxes no longer considered harmful. In Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation - Volume 6, OSDI’04, pages 15–15, Berkeley, CA, USA. USENIX Association.
5.1

[Wetherall, 1999] Wetherall, D. (1999). Active network vision and reality: Lessons from a capsule-based system.
In Proceedings of the Seventeenth ACM Symposium on Operating Systems Principles, SOSP ’99, pages 64–79, New
York, NY, USA. ACM. 5.1

[Wilkes and Wheeler, 1979] Wilkes, M. V. and Wheeler, D. J. (1979). �e cambridge digital communication ring.
In Local area communication networks symposium, Boston, MA. Mitre Corporation and the National Bureau of
Standards. 11.6

[Wing et al., 2013] Wing, D., Cheshire, S., Boucadair, M., Penno, R., and Selkirk, P. (2013). Port control protocol
(pcp), rfc 6887. 5

[Wright et al., 2008] Wright, C. V., Ballard, L., Coull, S. E., Monrose, F., and Masson, G. M. (2008). Spot me if you
can: Uncovering spoken phrases in encrypted voip conversations. In Proceedings of the 2008 IEEE Symposium
on Security and Privacy, SP ’08, pages 35–49, Washington, DC, USA. IEEE Computer Society. 7.5

[Wroclawski, 1997] Wroclawski, J. (1997). �e Metanet. In Workshop on Research Directions for the Next Generation
Internet, Vienna, VA, US. Computing Research Association, Computing Research Association. 5.1

[Yaar et al., 2003] Yaar, A., Perrig, A., and Song, D. (2003). Pi: a path identi�cation mechanism to defend against
ddos a�acks. In Security and Privacy, 2003. Proceedings. 2003 Symposium on, pages 93–107. 7.9

[Yaar et al., 2004] Yaar, A., Perrig, A., and Song, D. (2004). Si�: a stateless internet �ow �lter to mitigate ddos
�ooding a�acks. In Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on, pages 130–143. 7.9, 11.6

[Yang, 2003] Yang, X. (2003). Nira: A new internet routing architecture. In Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture, FDNA ’03, pages 301–312, New York, NY, USA. ACM.
8.3, 11.6

[Yang et al., 2005] Yang, X., Wetherall, D., and Anderson, T. (2005). A dos-limiting network architecture. In
Proceedings of the 2005 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’05, pages 241–252, New York, NY, USA. ACM. 7.9, 7.9, 11.6

[Yemini and da Silva, 1996] Yemini, Y. and da Silva, S. (1996). Towards programmablenetworks. 5.3

[Yochai Benkler, et al., 2012] Yochai Benkler, et al. (2012). Next Generation Connectivity: A review of broad-
band Internet transitions and policy from around the world. http://www.fcc.gov/stage/pdf/
Berkman Center Broadband Study 13Oct09.pdf. 11.4

162 178

http://www.fcc.gov/stage/pdf/Berkman_Center_Broadband_Study_13Oct09.pdf
http://www.fcc.gov/stage/pdf/Berkman_Center_Broadband_Study_13Oct09.pdf

A history of Internet addressing

Introduction
In Chapter 5 I discussed a number of alternative proposals for an Internet architecture. However, that chapter by
no means discussed all the alternative schemes that have been published. Since the Internet was �rst designed,
there have been any number of proposals to improve or redesign it, and one of the most popular topics of study
has been addressing. Since the core function of a network is to forward tra�c, and the forwarding is driven by
addressing (something that is in the packet), most proposals for an alternative architecture center on addressing.
(I did note a few proposals in Chapter 5, including FII and Plutarch, which le� addressing as a regional problem
with conversion at the region boundary.) �is appendix o�ers a review of the literature on alternative addressing
schemes, and a�empts to put these proposals into an organizing framework.

Defining some terms–mechanisms for forwarding
�e �rst question is: what is an address? A operational starting point is that an address is that piece of data in the
packet that allows the packet to be delivered. Packets �ow across the network from source to destination, passing
through a series of routers. �e address is the part of the packet that the router takes as input to the forwarding
decision.

�is very operational de�nition masks a history of philosophical discussion on the di�erence between a name,
which provides some form of identity, an address, which provides some sort of guidance to location, and a route
or path, which describes the series of routers through which the packet should pass to reach that location. �e
interested reader is referred to the classic papers in this area: [Shoch, 1978, Saltzer, 1982], and a slightly later
discussion by[Francis, 1994a]. In this appendix, I will continue with an operational de�nition of address.

�is appendix discusses addressing and forwarding, and only peripherally routing. While most architectural
proposals de�ne an addressing and forwarding scheme, most leave the development of a routing scheme to a later
stage where the architecture is �eshed out to become a complete system. Routing (as opposed to forwarding) is
the process of computing the path to destinations. �e routing computation produces forwarding information,
which is then used to direct each packet on its way to the destination. In the case of the Internet, the routing
computation runs in each of the routers and produces a forwarding table; when the packet arrives, the destination
address from the packet is looked up in the forwarding table to determine what the proper action is.

With this information as background, here is a quick review of some general classes of addressing and forwarding
schemes.

Destination-based forwarding: In the basic Internet architecture, there is a (sort of) global, (usually) dis-
tributed routing algorithm that runs in the background and computes, for each router, the correct next hop for
every set of destination addresses. When a packet arrives at a router, the forwarding algorithm searches in the
forwarding table for an entry that matches that destination address, and extracts from that entry the stored
information about the next hop the packet must take. Within this general framework, di�erent addressing schemes
may lead to more or less e�cient routing and forwarding algorithms. By way of example, a “�at” address space,

163 178

David D. Clark Designs for an Internet

as in DONA, requires that the routing algorithm keep separate track of every address, while an address scheme
where the structure of the address matches the topology of the network (provider-based addressing), routing need
only keep track of groups of addresses that map to di�erent parts of the network. For a very detailed analysis of
di�erent forms of address, including �at, hierarchical, and many others, see citefrancis.

Source routing: �is alternative has the forwarding information in the packet, rather than in the router. In
general terms, the packet lists the desired sequence of routers through which the packet should �ow. Each router in
turn removes its address from the list and then sends the packet onward to the router at the next address. Of course,
this over-simpli�ed description begs many questions, such as how the sender gets the source route in the �rst
place. Source routing was proposed and discussed by [Farber and Vi�al, 1973, Sunshine, 1977, Saltzer et al., 1980],
and the de�nition of IP includes source route options, but the idea did not survive as an operational capability.
None the less, variants on source routing form the basis of many alternative proposals for forwarding. In Chapter 5
I mentioned Nebula and Scion as using source addresses, and I will discuss more in this appendix. �e reasons
for the practical failure of source routing (so far) make an interesting case study of the set of requirements that
addressing must meet.

Label switching: Destination-based forwarding, as I described it above, has a potentially costly step: the search
of the forwarding table to �nd the entry that matches the destination address in the packet. An alternative that
avoids the searching is to con�gure each router along the path to a destination so that the forwarding table
contains an indication of the outgoing link on which the packet should be sent, and the index (usually called
the label) into the forwarding table in the next switch. At each switch, the incoming label is used to look up
the correct forwarding entry, and is then rewri�en with the correct outgoing label. �is process repeats at each
switch along the pre-established path. �is is the concept of label rewriting or label switching or label swapping.

Given that the data in the packet is sometimes a destination address, sometimes a sequence of addresses, and
sometimes a label (and sometimes other things), the term “address” may not be the best term for that information.
�e term locator has been used as an alternative, to capture a somewhat more general idea–that thing that is in
the packet. NewArch used the term forwarding directive in this way.

The organization of this chapter
�is appendix starts with a quick review of addressing in the Internet, since this is a system that many people
understand. It then looks at an alternative tradition, which is addressing in virtual circuit networks. With this
background, it then catalogs a list of objectives that an addressing and forwarding scheme should meet, and then
describes a number of alternative proposals using this set of objectives.

A history of Internet addressing
Before the Internet, there was the ARPAnet, of course. �e ARPAnet was the �rst packet technology deployed
by DARPA, and the �rst technology used to carry Internet packets when they were invented. �e address-
ing/forwarding mechanism was a very simple form of destination-based address. In the �rst version each packet
carried an 8 bit switch number (the so-called Interface Message Processor, or IMP number) and a 2 bit host number
(so there could be 4 hosts per IMP). �is was seen as too limiting and was changed to 16 bits to select the IMP, and
8 bits to select the host. Near the end of life for the ARPAnet, it was augmented with logical addressing (see RFC
878),3 a �at, 16 bit �eld (two of which are �ags), so 2**14 hosts could be addressed, without the sender having to
know where the receiving host is. (When a host a�ached to the ARPAnet, it noti�ed the IMP about what logical
names it was going to use, and this information was propagated around the net, an early form of forwarding on a
�at address space.)

3 In this appendix, I refer to a rather large number of Internet RFCs. I have not bothered to list them all in the citations. It is easy enough to look
them up for those readers that want to learn more.

164 178

David D. Clark Designs for an Internet

�e Internet’s current 32 bit address was not the �rst option considered in the early design. �e initial paper
on TCP [Cerf and Kahn, 1974] proposed an 8 bit network �eld and a 16 bit host �eld (called the TCP �eld), with
the comment: “�e choice for network identi�cation (8 bits) allows up to 256 distinct networks. �is size seems
su�cient for the foreseeable future. Similarly, the TCP identi�er �eld permits up to 65 536 distinct TCP’s to be
addressed, which seems more than su�cient for any given network.” However, in the early design discussions,
the option of a variable length address �eld was considered, in order to allow for growth. Regre�ably, this idea
was rejected because of the overhead of processing variable length header �elds, and the initial design se�led
on a 32 bit �xed �eld. Paul Francis, in an Epilogue to his PhD thesis [Francis, 1994a] provided a very thoughtful
review of the early Internet design literature, and points out that we almost had a source-routing scheme and
variable length addresses.

During the 1980’s, there were a series of proposals to deal with growth. �e simple model of “8 bits for the
network number, and 24 bits for the rest” [RFC 760, in 1980], was replaced by the class structure, with class A
addresses having 8 bits for the network, class B having 16 bits and Class c having 24 bits [RFC 791, in 1981] . Even
this was seen as inadequate, and in January, 1991, the Internet Activities Board (the IAB) held a retreat, the results
of which are documented in RFC 1287, which contains the following statements:

�is [addressing and routing] is the most urgent architectural problem, as it is directly involved in the ability of the
Internet to continue to grow successfully.

�e Internet architecture needs to be able to scale to 10**9 networks.

We should not plan a series of “small” changes to the architecture. We should embark now on a plan that will take
us past the exhaustion of the address space. �is is a more long-range act of planning than the Internet community
has undertaken recently, but the problems of migration will require a long lead time, and it is hard to see an e�ective
way of dealing with some of the more immediate problems, such as class B exhaustion, in a way that does not
by itself take a long time. So, once we embark on a plan of change, it should take us all the way to replacing the
current 32-bit global address space.

�ere will be a need for more than one route from a source to a destination, to permit variation in TOS and policy
conformance. �is need will be driven both by new applications and by diverse transit services. �e source, or an
agent acting for the source, must control the selection of the route options.

�e workshop that produced this report might be seen as the starting point for the search for IPng, which
eventually led to IPv6.

Two short-term ideas emerged at that time to “bridge the gap” to IPng . One was CIDR, or classless addressing,
which is described in a series of RFCs published around 1993. �e other approach to preservation of IP addresses
was to let large enterprises with many “private” hosts use private address spaces to address these machines, rather
than globally routed addresses. �e IESG commissioned a subgroup, called the ROAD group, whose deliberations
are documented in RFC 1380. In November 1992. �ey wrote:

�e following general approaches have been suggested for dealing with the possible exhaustion of the IP address
space:

…

Addresses which are not globally unique. Several proposed schemes have emerged whereby a host’s domain name is
globally unique, but its IP address would be unique only within it’s local routing domain. �ese schemes usually
involve address translating.

�is idea is the starting point for the idea of Network Address Translation (NAT) devices, introduced by Paul
Francis in 1993 . Private address spaces are further documented in RFC 1597, in March 1994.

165 178

David D. Clark Designs for an Internet

Multicast
�e major intellectual advance in addressing during the 1980’s was the speci�cation of IP multicast by Steve
Deering. Deering’s PhD thesis did not appear until 1991 [Deering, 1992], but the initial proposal emerged earlier,
in [Cheriton and Deering, 1985, Deering and Cheriton, 1990]. In multicast, the destination address is not the
location of the destination, but a handle or pointer, called the multicast ID. At each router, this handle is used to
look up a list of next hops that the packet should take, as it fans out to all the destinations. �is means that every
router on the path from the source to (all of) the destinations must have the proper state information to map the
handle to the destinations. �is led to a large research agenda in the design of multicast routing protocols.

Multicast is important for two reasons. First, of course, it is a proposal for a new class of delivery semantics.
But it also demonstrated three more general points: the locator need not be a literal address of a destination
but an arbitrary bit-sequence, di�erent regions of an address space can be associated with di�erent forwarding
mechanisms, and a router can run more than one routing algorithm at the same time. All of these generalizations
are important.

While Deering is generally given credit for establishing the concept of multicast in the Internet architecture,
there are much earlier mentions of the idea. As a part of the Stream protocol ST [Forgie, 1979], the concepts
of conference connections, multi-addressing and special forwarders called “replicators” are introduced. So the
idea of delivery to multiple destinations has been present in the Internet research community even before the
standardization of IP.

So in the early part of the 1990’s, there is one signi�cant proposal (multicast) to enhance the delivery semantics
of the original Internet, there is the launch of a long term e�ort to replace IP with a new protocol with a larger
address �eld, there is the quick deployment of CIDR as a stopgap, and there is a major deviation being proposed
to the original addressing architecture, address translation, which is also put forward as a short-term �x, but
which has profound long-term implications.

The quest for IPng
�e call for proposals to replace IPv4 produced two initial contributions. One was PIP [Francis, 1994b], which
represented a signi�cant shi� from IP in that it used source routing as its basic forwarding mechanism. �e
names for the nodes that were the intermediate points in the source route were not globally known and routed
addresses, but more compact locators that were only unique within a region of the network. To realize this
scheme, the nodes of the Internet were organized into a hierarchy, and node names were positioned within a
place in the hierarchy. �e other was SIP [Deering, 1993],4 a more conservative design that included the concept
of source routes, but used globally routed names for the intermediate nodes. A�er some discussion within the
IPng community, a compromise was devised called SIPP (SIP plus), which used the syntax of SIP but incorporated
some of the advanced semantics of PIP. SIPP is described in [Hinden, 1994], and a very detailed comparison of
these alternatives can be found in [Francis, 1994a].

�e size of the address �eld was, of course, a major motivation for the replacement of IPv4. SIP and SIPP used
an address �eld of 64 bits, twice IPv4. �e �nal version of IPv6 further increased this to 128 bits, not because 2*64
was too small to address all the nodes we might someday see, but to facilitate address space management.

A parallel universe–virtual circuit networks
One of the key design principles of the ARPAnet was that it was “connection oriented”: the ARPAnet established
preset paths between all pairs of hosts, so that every IMP had per-connection state for every possible path
from source host to destination host. �is state was uses to manage resource allocation and congestion. �is
connection-oriented design philosophy contrasted with the connectionless,or “datagram” approach of the Internet.
�is split in approach de�ned two di�erent lines of evolution for packet switched data networks.

X.25 is a connection-oriented outgrowth of a number of early projects, including ARPAnet and the early work
4 �is acronym has nothing to do with Session Initiation Protocol, which came along later and reused the TLA.

166 178

David D. Clark Designs for an Internet

in England on packet networks. �e design of X.25 included the concept of virtual circuits between sender and
receiver. Before sending data, a user of an X.25 network used a signaling protocol to request a circuit, and received
back (if the setup was successful) a short identi�er for this circuit that could be used to tag each packet. �e
full address used in an X.25 packet thus only showed up in the setup protocol. �e full X.25 address somewhat
resembled a phone number: it was a sequence of ASCII digits: 3 for country, 1 for network within the country,
and 10 for the end-point within the country. �e country-based assignment re�ects the telephony roots of
X.25. It is also important that X.25 is an interface protocol that describes how a host (a piece of Data Terminal
Equipment or DTE) talked to its a�achment point in the network (the Data Communication Equipment, or DCE).
�e X.25 speci�cation did not describe how the switches inside the network talked to each other. �ere were
some interesting demonstrations, such as the use of X.25 as an interface to a datagram network, but there was
also a need for vendor standards to design interoperable switches. In most X.25 networks, the representation of
an address inside the network was the same as the representation across the interface–a short identi�er for the
circuit.

X.25 contained some very rich mechanisms for error detection and recovery. Much of the state established
inside the switches had to do with the detection and retransmission of corrupted packets. �is function seemed
important in the beginning when circuits were very noisy. However, as reliability and performance improved,
there was a movement toward a design that traded the occasional loss for a simpli�cation of the switch, and this
produced Frame Relay. Frame Relay forwarding and addressing was similar in design to X.25. Virtual circuits in
Frame Relay networks were identi�ed by a ten bit Data Link Connection Identi�er (DLCI). �is very compact
coding of the virtual circuit cannot work if DLCIs had global meeting–there are not enough values. �e DLCI had
only local meaning, between each switch and the next. So the DLCI functions as a label, and Frame Relay is an
example of label-switching as the forwarding mechanism.

Label switching and cells
�e Internet uses the packet as the unit of statistical multiplexing, which is a much �ner-grained unit of sharing
than the phone system, where the statistical nature of the sharing shows up at call-setup time. But it is important
to remember that the digital telephone system can make a separate forwarding action for each byte, which is a
much �ner-grained unit than the packet. �is is a �xed, time-domain sharing, not a statistical sharing, and there
is no “header processing” at this level–there is no header. Bytes from a given call are always in the same location
in the same frame, and the forwarding action consists of reading the byte from a known position in a receive
frame and writing it into a known location in a transmit frame. One of the major motivations for this design is
reduction of latency and ji�er, since the quality of a phone call is known to deteriorate as the end-to-end latency
goes up. Given this history and this requirement for minimizing total latency, multiplexing at the packet level
was thought to introduce an unacceptable level of statistical uncertainty about ji�er, because of the variable size
of packets that have to be interleaved. So as the designers of the telephone system considered replacing their
circuit-switched architecture with a scheme more like packet switching, an alternative multiplexing model was
put forth, in which the unit of multiplexing was not a variable size packet but a small, �xed size cell.

�ere is no fundamental reason why a cell could not carry a globally routed destination address, but consider-
ations of header size and resulting overhead on the link suggest that the header has to be very compact if the
cell size is small. �is leads to the preference for pre-establishment of virtual circuit state in the switch and the
“address” in each cell becomes a simple index into a table rather than requiring a search for a matching destination
address.

Perhaps the most extreme form of cell switching is found the Cambridge Ring, developed at the Computer
Laboratory at the University of Cambridge in the late 1970’�s, about the same time that Ethernet was being
developed at Xerox Parc. �e unit of transfer across the Cambridge Ring (which they initially called a packet
in [Wilkes and Wheeler, 1979], but then more suggestively call a mini-packet in[Needham, 1979]), has a two byte
payload, and a source and destination address of one byte each. Needless to say, the forwarding decision was of
necessity rather simple, but it is also clear that one could not contemplate the overhead of pu�ing an IP header on

167 178

David D. Clark Designs for an Internet

a two byte payload. �is system did not have label rewriting, however, since the number of hosts was so small
that it was acceptable to have a global id for each.

A less extreme and more relevant example of cell switching is the Datakit architecture, developed at ATT Bell
Labs [Fraser, 1980, Luderer et al., 1981]. �e Datakit cell had a 16 byte payload, and a two byte header, with one
byte to identify the link on the switch and one byte to identify the virtual circuit on the link. �ese bytes were
rewri�en at each switch.

�e most mature form of cell switching, which to a considerable extent descends from Datakit, is the idea of
Asynchronous Transfer Mode, or ATM. �ere is an extensive literature on ATM, which I do not even a�empt to
catalog here. But the core idea is similar to Datakit. �e ATM cell contains a 48 byte payload, and a somewhat
complex Virtual Circuit Identi�er (VCI) in the header. �e scheme depends on virtual circuit setup, and the VCI is
a label that is rewri�en at each hop.

�ere are actually two motivations tangled up in the design of cell switching (just as there are multiple
motivations behind the design of the Internet packet). One is the switching e�ciency and ji�er control of �xed
size cells. �e other is a preference for virtual circuit setup and per-�ow state in the switch. �e Internet design
took an extreme view that there was never any per-�ow setup, and no per-�ow state in the packet. �is was seen
as reducing the overhead and complexity of sending data–there is no required setup phase; to send a packet you
“just send it”. But this meant that the network was making no service commitment to the sender. �ere is no idea
of a “call”, no commitment of resources to the call, and no e�ort to provide di�erent quality of service to di�erent
�ows. Indeed, the Internet community spent much of the 1990s �guring out how to add QoS to the Internet, while
this was always a central tenet of the virtual circuit community. So the per-�ow state in the router should not just
be seen as a necessary consequence of the small cell size and the need for a small header, but as a virtue in its
own right. In this respect, the Internet and the “cell switching/virtual circuit” worlds are distinguished as much
by their views on circuit setup and per-�ow state as they are about �xed vs. variable size multiplexing units.

Label switching meets Internet 1: the Stream protocol ST
From essentially the beginning of the Internet, there was an e�ort to de�ne an alternate forwarding scheme that
set up a �ow and had per-�ow forwarding state in the router, resulting in the Stream protocol ST, �rst documented
in IEN 119 [Forgie, 1979]. ST is concerned with providing explicit QoS for speech packets, and discusses in some
detail the concept of a Flow Spec, and the need to set up state in the routers using an explicit setup protocol.
ST is also concerned with multicast. ST takes advantage of the state to use a small packet header, in which the
destination address has been replaced by a connection identi�er, or CID, which is only locally meaningful between
routers and is rewri�en on each hop. �is mechanism is thus an example of label switching, perhaps the �rst in
the Internet. �e ST protocol evolved over the next decade, and a new protocol called ST-2 was described in RFC
1190 in 1990. �is version of ST was still based on a local label, now called the hop identi�er, or HID, a 16 bit �eld.
�e speci�cation in RFC 1190 contains details on the process of se�ing up a sequence of HIDs that are unique
across each link. Interestingly, in the �nal speci�cation of ST-2, in RFC 1819 in 1996, the HID is replaced with
a stream ID, or SID, which is globally unique (a 16 bit nonce combined with the 32 bit source address), which
implies a slightly more complex lookup process. RFC 1819 says: “HIDs added much complexity to the protocol
and was found to be a major impediment to interoperability”. So the �nal version of ST abandons the idea of label
switching, but still depends on a full, per-�ow connection setup and state in the packet.

Label switching meets Internet 2: remove the cells
As the previous discussion suggested, there are actually a bundle of motivations behind the label switching
approach–the need for low-overhead headers on cells, and the desire for �ow setup. �ere were both packet-based
(Frame Relay) and cell-based (ATM) connection-oriented networks, using label switching as the basis of forwarding.
In the early networks, the idea of �ow setup was that a virtual circuit was equivalent to an end-to-end �ow, but
it became clear that another use for a virtual circuit was to set up state (and perhaps to allocate resources) to a
path that carries aggregated tra�c from a set of sources to a set of destinations, for example city-pairs in a large

168 178

David D. Clark Designs for an Internet

national network. �is sort of undertaking is o�en called tra�c engineering: the allocation of tra�c aggregates
to physical circuits in such a way that the overall link loads are balanced, there is spare capacity for outages, and
so on. �e goal of tra�c engineering, together with the goal of simplifying the forwarding process, led to the
proposal to use label switching on variable size packets, rather than cells. Cisco Systems put forward a proposal
called Tag Switching, building to some extent both on the ideas of Frame Relay and on ATM. �is proposal was
turned over to the IETF for standardization, where it was �rst called Label Switching, and then, in its full glory,
Multi-Protocol Label Switching. Again, there is a wealth of literature on MPLS, including complete books. Since
MPLS is a recent innovation of great current interest to the community, a brief tutorial can be found in that new
compendium of all knowledge, Wikipedia.

MPLS, like many mature ideas, has come down with complexity. It supports the idea of nested �ows–that is, a
set of virtual circuits carried inside another. So the header of a packet can have a series of labels, not just one.
When a packet reaches the beginning of a MPLS path, a label is added, when it passes along the path, the label
is rewri�en at each node, and then it reaches the end of the path, the label is “popped”, which may reveal yet
another label, or may leave no further labels to process, in which case the packet is processed using the native
packet header, for example the traditional IP header.

A MPLS header is 32 bits, which is a very e�cient representation of forwarding state. It consists of a 20 bit
label along with some other control information.

Label switching meets Internet 3: the loss of the global address space
�e essence of the original Internet forwarding scheme was the existence of global addresses, which could be used
as a basis of a search in a forwarding table of any router anywhere in the Internet. But in the early 1990’s, the idea
of Network Address Translation boxes was introduced, which was on the one hand a very clever way to conserve
scarce Internet addresses, and on the other hand, a total violation of the global addressing assumption. �e “trick”
that makes NAT boxes work is label switching, except that in this case the “labels” that are being rewri�en are
the IP addresses themselves. �e IP address �eld in the header, which was previously a static and immutable �eld
in the packet, is now rewri�en inside the NAT box using “state in the router”. �is begs the question of where
that state comes from, and what limitations this scheme implies. �ere has been a great deal of work to try to
patch up the ri� in the Internet architecture created by NAT, and the necessity of establishing and maintaining
the right state in the NAT box, given that the Internet lacks any sort of signaling protocol. (Of course, as we will
see, many of the solutions somewhat resemble a signaling protocol, though most would not be so bold as to call
them “circuit setup protocols”.)

�e �rst idea for NAT was simple. When a host behind a NAT box sends a packet out, the NAT box rewrites
the source address of the packet with its own source address, and remembers the internal IP address and port
number of the packet. If an incoming packet arrives for that port number, it uses that remembered state to rewrite
the destination address of this incoming packet with the correct local address. (Some NAT boxes also do port
remapping.) In other words, the outgoing packet triggers the setup of state for the subsequent incoming packet.

�is idea is �ne as far as it goes, but what about an incoming packet without a prior outgoing packet–what
about a server behind a NAT box? �e current solution for most “consumer grade” NAT boxes is primitive. �e
user manually con�gures static state in the NAT box to allow the remapping of the incoming packet. But there
are a variety of more complex solutions to set this state up dynamically.

One approach is to set the state up using a message from the machine behind the NAT box–the machine that is
acting as the server. �ere has been a lot of work in the IETF on this: for example see RFC 3303 and the related
work on middleboxes.

A more complex scheme is found in IPNL (Francis and Gummadi 2001), which provide a discussion of the
pros and cons of multiple address spaces, and (in Internet terms) NAT. �ey list expansion of the address space,
changing providers without renumbering, and multi-homing, �ey propose an architecture that a�empts to
reproduce the existing Internet functionality: all hosts have long-lived globally routed addresses if they choose,
routers (including the elements that link the address spaces) are as stateless as today, and only a router on the

169 178

David D. Clark Designs for an Internet

path of the packet can disrupt the forwarding process. Further, the scheme allows a region with a private address
space to have its public address reassigned at will without disrupting the �ow.

�eir approach involves a source-routing shim header, a new layer put between IP and the transport protocol.
�e scheme uses fully-quali�ed Internet Domain name (FQDN) in the �rst packet of a �ow as a way of deriving
addressing information at various points along the path to the destination. �is addressing information is gathered
in the packet (not the router–this is a stateless source-routing scheme). On subsequent packets, these lower level
“IP-style” addresses are used in the packet, in a tailored three-stage source route. �e scheme supports failure and
rerouting to alternative entry points into the private address spaces.

In IPNL, the FQDN is managed so that it is globally meaningful. �e scheme does depend on having some
global space of names, even if those names do not directly express location and required interaction with servers
to resolve. �e extreme point in this space would be a system in which there are no shared names of any
sort, either locators or higher-level names. Examples of such a systems include Sirpent, discussed below, and
Plutarch,discussed in Chapter‘5.

A more recent scheme for dealing with NAT is NUTSS [Guha et al., 2004], which uses Session Initiation Protocol
(SIP) to set up rewriting state (in NAT boxes), so the setup is associated with a per-�ow/per application signaling
phase. So this scheme uses a application-level signaling protocol (SIP) to set up forwarding state in NAT routers.
It is stateful, as opposed to the stateless character of IPNL.

A simpler form of source routing to deal with NAT is 4+4 [Turányi et al., 2003], a scheme that uses a two-stage
source route again made up of traditional IP addresses. �e 4+4 scheme uses the DNS in a di�erent manner than
IPNL. In IPNL di�erent parts of the address are obtained as the packet crosses di�erent addressing regions (that it,
the DNS returns di�erent values in di�erent regions), whereas in 4+4, the DNS stores the whole two-part address.
�e sender looks it up and puts it on the packet at the source. �is has implications for what information is visible
where, and what information can change dynamically. (In IPNL, public addresses have no meaning in private
address regions, in 4+4, they are meaningful and routed.)

Comparing mechanisms
Earlier, forwarding schemes were divided into two broad camps: state in the router, where the packet carries
a simple globally meaningful locator and the router has the forwarding information, and state in the packet,
where the packet carries a series of forwarding instructions that are carried out at each node, using forwarding
information that may be very simple and locally de�ned. �is la�er scheme, as I have discussed, is called source
routing. As we have seen, there are two relevant forms of state in the router : forwarding based on globally known
locators and label rewriting. �ere are two relevant forms of state in the packet, source routing and encapsulation,
which is discussed below.

A di�erent way to divide up the schemes has to do with the relative power of expression in the various schemes.
Traditional IP forwarding based on a globally known destination address allows the sender to name a destination.
Source routing and label switching have in common that they allow the naming of a path to a destination. Naming
a path is equivalent to naming a destination if there is only one path to the destination; this is the way Internet
routing works. But if there is a need to deal with more than one path to a destination, then the ability to name paths
is more expressive. �is is one of the motivations behind most “Internet-centric” source routing proposals, so there
is recognition in the Internet community that this expressive power is of some value. Naming a path, rather than a
destination, allows for more control over multi-path routing, support quality of service routing, and other actions.

So to oversimplify, there is a two-by-two matrix.
Destination-based Path-based

State in packet Encapsulation(sort of…) Source route
State in router “Classic” Internet Label switching

170 178

David D. Clark Designs for an Internet

Source routing
�ere are two high-level motivations for source routing. One is to simplify what the router does, both by removing
the routing computation from the router, and by simplifying the forwarding process. �e other motivation is to
give the end-point control over the path of the packet, perhaps to allow the end-points to pick their providers, or
to implement more general sorts of policy routing. Di�erent schemes can be positioned in di�erent parts of this
landscape.

In SIP and SIPP, source routes do not o�er any simpli�cation to the routing or the forwarding. If a source
address is included in a SIPP packet, each such address is a globally routed address. So the lookup in each router
requires a search of a forwarding table of the same complexity as in the case of a simple locator. PIP had a slightly
more compact representation of a source route, in which the intermediate elements in the source route (called
Route Sequence Elements) are not full global addresses, but are only unique and meaningful within a hierarchically
organized region of the network.

An even simpler version of source routing makes the individual elements of the source route only locally
meaningful to each router. For example, a router could label its ports using a local index (1,2,3,…) and a source
route could just be a sequence of the small numbers. �is idea leads to very compact source routes (though they
are still variable length), but means that the sender has to have a lot of router-speci�c information to construct
the source route. So this idea is most o�en proposed in sub-nets, where the issues of scale are not so daunting.
Examples of this idea include Paris, an early network designed at IBM (Cidon and Gopal 1988), and the link-id
option in the Bananas scheme (Kaur, Kalyanaraman et al. 2003), which is otherwise a label-rewriting scheme (see
below).

�e other use of source routing is to give the sender control over the path the packet takes. In terms of policy
and end-node control, SIPP contains a special form of an anycast address, called a cluster address, which can be
used to identify a region (e.g. an AS or provider), which allows a source address to select a sequence of providers
without picking the speci�c entry point into that router. �is feature was called source selection policies, and
while the use of source routing in SIPP was not restricted to this purpose, this was the only special form of locator
provided to be used in the source route. [Hinden, 1994], describing SIPP, lists these other examples of the use of a
source route: host mobility (route to current location), auto-readdressing (route to new address), and extended
addressing (route to ”sub-cloud”).

An example of an early proposal to exploit the advantages of source routing is Sirpent [Cheriton, 1989], a scheme
that the authors claim will support accounting, congestion control, user-controlled policy based routing and be�er
security. source routing scheme to hook together disjoint addressing regions. In 1989, it was not clear that Internet
would establish the ubiquity that it has, and there was a real concern that end-to-end connectivity would require
bridging di�erent architectures, such as OSI, or X.25. Sirpent was a source routing scheme to allow packets to
traverse multiple heterogeneous addressing architectures. �e paper notes that source routing can also address
issues such as access control (the Sirpent source route contains an authorization token), congestion avoidance,
and multicasting. In order for the sender to obtain a source route to the recipient, the Sirpent architecture assumes
that there is a global name space (somewhat like the DNS) that can generate and return the source route from the
sender to the receiver.

[Argyraki and Cheriton, 2004] propose WRAP, a loose source routing scheme that di�ers in detail from the
IP option. �e source route is carried in a shim layer between the IP and next layer, so it does not cause the IP
processing to deal with a non-standard (slow path) header. �ey note that this scheme has some detail advantages–
the source address in the actual packet is the from address of the last relay point, so a router can �lter on this if it
wants. But this seems a detail. �e scheme is claimed to be useful in DoS �ltering and QoS routing. �e rewriting
is done by a “non-router” element, so it could conceivably have functions beyond rewriting, but the authors do
not discuss this.

171 178

David D. Clark Designs for an Internet

Source routing and fault tolerance One of the issues with source routing is that if an element along the
speci�ed path has failed, there is no way for the network to remedy this problem and send the packet by an
alternate path–the path has been speci�ed by the user. In time, the user may be able to detect that the path has
failed, and construct a new source route, but the process of discovery, localization and constructing a new source
route may take much longer than the recomputation of routes done inside the network. A scheme called Slick
Packets [Nguyen et al., 2011] proposes a solution to this–the source route is actually a directed acyclic graph,
which gives each router along the speci�ed source route a set of options for forwarding the packet. �is scheme
faces a number of challenges, of course, including constructing the graph and encoding it in the packet header
is a su�ciently e�cient manner. Compensating for these issues, the option of alternative routes to deal with
failures means that information about short-term failures need not be propagated across the network to sources
constructing source routes, since the alternative routes in the header will deal with these failures.

Label switching
As the previous discussion suggests, there are also a number of motivations for label switching, and divided
schools of thought about di�erent mechanisms and their merits. �e debate between connection-oriented and
connectionless (datagram) networks is as old as the Internet. Two important distinctions in the design philosophies
are the unit of multiplexing and the value (and cost) of per-�ow state. �e mechanism of label switching is o�en a
consequence of these other considerations, but it takes on a life of its own.

An argument used in favor of label switching over destination-based forwarding is that label switching (such
as MPLS) can provide a more precise allocation of aggregates to circuits (for tra�c engineering purposes) than
using link weights in OSPF. But [Fortz and �orup, 2000] argue that a global computation of OSPF weights can
reproduce any desired pa�ern of tra�c allocation. So it is claimed that destination-based forwarding and label
switching are equally e�ective in this case (again, so long as there is one path).

One of the objections to label switching is that it seems to imply the overhead of circuit state setup. If the
paths are in the “middle” of the net and used for carrying stable aggregates of tra�c (as is the usual case with
MPLS), then the overhead of path setup is not serious, since the paths are set up fairly statically as part of network
management. But if label switching were used end-to-end per source-destination �ow, it seems as if the use of
label switching would imply a connection-oriented design with per-�ow setup.

�ese two ideas can be separated. It is possible to use label switching with “Internet-style” route computation,
datagram forwarding and no per-�ow state in the routers. Bananas [Kaur et al., 2003] provides a clever solution
to this problem: how to use label-switching and a constant size packet without doing per-�ow state setup in the
network.. �e described purpose of Bananas is to allow multi-path routing , but it could be used in any context in
which a set of global, or well-known routes can be computed. Assume that every node has some sort of global
address. Conceptually, traverse each path backwards from the destination toward the source, computing at each
stage a hash that represents the path (the sequence of addresses) to the destination. �ese paths and the associated
hashes can be precomputed. For multi-path, use any well-known multi-path computation algorithm. At the
source, compute the hash for the �rst node of the desired path. Put that and the destination into the packet. At
each router, look up the destination, using some sort of pre�x match together with an exact match with the hash.
Rewrite the hash with the value (stored locally) of the hash of the sub-path starting at the next router. In this
way, the hash values are a specialized form of label, the label rewriting is done based on the stored information in
the forwarding table, and no �ow setup is required. All that is required is that all parties agree on what subset
of valid paths have been encoded. Some scheme is required for this (they suggest one), but this depends on the
goal of the paths being computed. �e paper discusses the operation of Bananas in a number of contexts, such as
BGP. One might ask why this scheme is useful. �e answer is that label switching might be more e�cient, and
di�erent path setup schemes might be used at the same time; the source could select among them by selecting
which label to put on the packet when it is launched.

Since both label switching and source routing can be used to specify a path, and both can be used with virtual
circuit or datagram networks, one might ask whether they are fundamentally di�erent in some way. �e distinction

172 178

David D. Clark Designs for an Internet

here is not one of expressivity but of control (and packet size). When source routes are used, it is the source that
determines the path. When label switching is used, di�erent parties can install the path, and the source only
has the choice of selecting which path to use. In some cases, the source may not know the details of the path,
but only the starting label. So label switching gives more options for which parties can con�gure paths. On the
other hand, source routing allows a path to be established without any sort of distributed path setup. In a label
switching network, every path must either be set up on demand or pre-computed. With source routing, a path
can be speci�ed by the source at the time it is needed.

New requirements
�e previous discussion cataloged schemes based on a set of criteria, which include expressivity, e�ciency (both
forwarding and header size), and control over path determination. In the early days of the Internet, these were the
primary considerations. [Francis, 1994a] o�ered the following criteria for selecting among candidates for IPng:

• Cost: hardware processing cost, address assignment complexity, control protocol (routing) complexity,
header size.

• Functional capability–necessary: big enough hierarchical unicast address, multicast/shared-tree group
address, multicast/source-tree groups address, scoped multicast group address, well-known multicast
group address, mobility, multicast two-phase group address, domain-level policy route, host auto-address
assignment.

• Functional capability–useful: ToS �eld, embedded link-layer address, node-level source route, anycast group
addressing, anycast/two-phase group addresses.

All of these have to do with the expressive power of the forwarding scheme and its cost. But in more recent times,
there has been a recognition that addressing and forwarding must be responsive to a broader set of requirements.

Addressing and security
�e relationship between addressing and security is rather complex. It is hard to a�ack a machine if the a�acker
cannot �nd the machine’s address, so some addressing schemes allow machines to hide their addresses to some
extent. NAT is viewed as a useful, if incomplete, tool in securing a host, since it is hard to a�ack a machine one
cannot address. If addressing is not a complete solution, it can be part of a solution that requires that an a�ack
totally mimic normal behavior.

�e i3 scheme [Stoica et al., 2004], described in Section 5.2, is a tool to protect a node from a�ack by keeping
its address secret. In this scheme, a receiver controls who can send to it by installing a trigger, which is a form of
a label, into a forwarding overlay. �e sender is given the trigger, but not the actual destination. When the packet
reaches the right forwarding point, the trigger is rewri�en with the �nal overlay, and then destination-based
addressing is used for the remainder of the path. However, hiding addresses and similar tactics cannot fully
protect a “public” site from a�ack, since a machine must reveal itself to some way to be used. Once it reveals itself,
a DDoS a�ack using zombies can mimic normal behavior in all respects and still a�empt to overrun a server.

One of the design challenges in designing an indirection scheme such as i3 is whether the source and destination
are equally trying to protect themselves from a�ack. Schemes such as i3 a�empt to hide or protect the destination.
If the destination is truly hidden, then when a packet goes in the reverse direction, the source of that packet must
be hidden. �is implies that the original destination (perhaps a server) has some measure of anonymity in the
distant region. If i3 is used in a symmetric way to protect both ends from each other, then the identity of each end
is not easily known by the other. �is raises question of when a machine can hide its address (to protect itself)
and when it must reveal its address (for reasons of accountability.)

�e TVA scheme, described in [Yang et al., 2005], is an alternative way of protecting the destination from a�ack.
Instead of hiding the destination address, packets must carry a speci�c authorization, a capability, to be allowed

173 178

David D. Clark Designs for an Internet

to pass through the network. �e forwarding scheme is the basic destination-based Internet mechanism, but the
router (in particular the router at trust boundaries between ISPs) is responsible for checking the capabilities.(�is
design approach is what I called intentional delivery in Chapter 4.) �e scheme actually uses a rather complex
mix of mechanisms to implement its function. �e packet carries a variable-length set of capabilities (which
as something in common with a source address, in that it does not require state in the router to validate), but
also uses so� state in the router and a nonce in the packet to avoid the variable length packet in most cases.
It computes a incremental hash of the source path to assist in tracking sources and allocating capacity among
di�erent sources. It uses fair queueing to limit the congestion that one �ow can cause to another.

Yet another indirection scheme is SOS [Keromytis et al., 2002], which is again designed to protect servers from
being a�acked. In this case, they restrict the problem to protecting servers that have a known and pre-determined
set of clients–they do not o�er SOS as a means to protect public servers. �ey use a three-tier system of defense.
�e server is protected by a �lter that is topologically placed so that all packets to the server must go through
it. �ey assume the �lter can run at line speed, and cannot be �ooded except as part of a general link �ooding
scheme. �is means that the �ltering must be simple, so they only �lter on source address. To allow for more
complex �ltering, they require that all legitimate tra�c to the �lter �rst pass through an overlay mesh, where
one of the overlay nodes has the knowledge of the location of the �lter. �e address of this node is secret, and
the overlay uses DHT routing to get the packet to the right overlay node. To protect this layer, they have a set
of secure access overlay access points (SOAPs), which perform the �rst line of checking and perform a hash on
the destination address to get the identi�er which is used to drive the DHT. �e paper contains a discussion of
the justi�cation for this rather complex set of mechanisms, and an analysis of the various a�acks that can be
mounted against it.

SIFF [Yaar et al., 2004] allows a receiver to give a capability (permit to send) to a sender; the routers check these
capabilities and reject them if forged, but otherwise give them priority over unmarked tra�c. In this way tra�c
without a permit to send (including malicious tra�c) is disadvantaged relative to favored tra�c and presumably
preferentially dropped as the network becomes fully loaded with a�ack tra�c. Portcullis [Parno et al., 2007] is
concerned with preventing a�acks on the blocking system itself. Systems using capabilities to provide preferential
service to selected �ows o�er strong protection for established network �ows, the Denial-of-Capability (DoC)
a�ack, which prevents new capability-setup packets from reaching the destination, limits the value of these
systems. Portcullis mitigates DoC a�acks by allocating scarce link bandwidth for connection establishment, and
they argue that their approach is optimal, in that no algorithm of this sort can improve on their assurance.

All of these schemes, and both TVA and SOS in particular, have rather complex and rich sets of mechanisms,
which arise when the full range of a�acks are contemplated, defenses are selected for these a�acks, and then
these defenses in turn must be defended. �is does beg the question of whether there is a di�erent way, perhaps
more simple, of factoring the security problem.

Tussle and economics:
the simple model of the Internet was that the network computed the routing, and everyone used the result. But
both senders and receivers may want to have some control over where the tra�c goes. Senders and receivers may
want to pick a path through the network as part of picking a service provider, obtaining a speci�c QoS, avoiding a
particular part of the network, and so on. Di�erent third parties may also want to have some control over routing,
which may cause them to invent a separate address space. �is set of considerations have also been understood
for some time. [Francis, 1994a] says:

�ere are several advantages to using a source routing approach for policy routing. First, every source may have its
own policy constraints (for instance, certain acceptable use or billing policies). It is most e�cient to limit distribution
of this policy information to the sources themselves. Second, it may not be feasible to globally distribute policy
information about transit networks. Further, some sources may have less need for detailed transit policy information

174 178

David D. Clark Designs for an Internet

than others. With a source routing approach, it is possible for sources to cache only the information they need, and
from that information calculate the appropriate routes.

NIRA [Yang, 2003] (Yang 2003) is primarily about routing, and providing the ability for users to select routes.
�is objective is proposed in order to create a competitive market for routing, and impose the discipline of
competition on ISPs. As a part of this, it proposes an e�cient scheme to encode explicit routes in a packet. �e
method is to use addresses extravagantly, and to assign a separate address to each valid route in a region of the
network. To control the cross-product explosion of sources and destinations, NIRA breaks the routes into three
parts, a source part, a middle part, and a destination part. A packet carries (as usual) a source address and the
destination address. For the �rst part of the path, the source address guides the packet. Across the middle (large
global ISPs) traditional routing is used. For the �nal part, the destination address is used. So any node only has a
separate address for each path to/from it and the middle part of the network, not all the way to the destination.

It is interesting to contrast NIRA and Bananas in this context. Bananas computes routes all the way from the
source and the destination. As a result, there are a huge number of routes, and there is no plausible way to assign
a distinct global id to each such route. Instead, it uses a clever trick to rewrite the pathID at each node. NIRA
computes IDs for “route halves”, and asserts that each one of these can have a unique id (an address) valid within
that region of the net. So no rewriting is needed. In exchange for this simplicity, paths that do not follow a simple
“up, across, and down” pa�ern require explicit source routing. Bananas can use, with equal e�ciency, any route
that has been precomputed.

Relation of addressing to identity and naming
�ere has been a long-standing set of arguments in favor of separating the notion of location (address) and
identity. �e Internet uses the IP address for both, which hinders mobility. But using the IP address for identity in
the packet provides a weak form of security, and separating the two requires an analysis of the resulting issues.
�ere is a hypothesis that if identity is separated from location, there is no form of identity weaker than strong
encryption that is of any real value.

Proposals for separating identity from addressing include FARA [Clark et al., 2003], SNF [Jonsson et al., 2003]
and PIP [Francis, 1994b].

[Jonsson et al., 2003] propose a split between names and locators, called SNF, for Split Naming Forwarding.
�ey suggest that locators need not be global, and that source routing or state in translation gateways can be used
to bridge addressing regimes. �ey o�er li�le detail. �ey propose that naming is a least common denominator,
so naming schemes must be well-speci�ed and global. But there can be more than one, and this is good, in that
di�erent schemes can compete. Names map to things at locations, so it appears that they name machines, not
higher level entities. �ey describe naming as an overlay that can route, but at low performance, somewhat like
IPNL. �ey also propose an ephemeral correspondent identi�er (ECI) that is used by the transport layer. �is is
visible in the packet, and becomes a short-term identi�er that does not change if the locator changes.

PIP proposed a separate identi�er (called the Endpoint identi�er, or EID), 64 bits in size. �e EID is used by the
router at the last forwarding step to forward the packet to the end node, so it is used both for forwarding and
identity. But it is not globally known or the basis for global routing. �ere is no structure in the EID that is useful
for routing, and it is not known globally.

Fara explores the implications of separating the locator from the route, and in particular the implications of
removing any EID from the “IP level” header all together and moving it to a header that is visible only to the
endpoint entity. �e question explored by FARA is whether there is any need to agree on the EID scheme, and
whether it is necessary to be able to look up a location using the EID. �e hypothesis in FARA is that the EID
scheme can be private among the end-nodes, that higher level naming schemes like a DNS can be used to �nd
the location of entities, and entities can manage their locations (e.g. they can move) without having to provide a
means to “look them up” using the EID.

175 178

David D. Clark Designs for an Internet

Most schemes that separate identities from location do use the identity as a way to “look up” the location. IPNL
uses the DNS to look up the addresses to deal with NAT, as does 4+4. �e Unmanaged Network Protocol [Ford, 2004]
used “�at” identi�ers that are public keys. �at is, any node can make its own identi�er, and later can prove that
it is the entity with which this identi�er goes by using the private key associated with the identi�er. �e scheme
uses a DHT to allow nodes to incrementally �nd each other an establish paths across the DHT overlay among
all the nodes. Turfnet [Pujol et al., 2005] , another scheme for tying independent addressing regions together by
using a common naming scheme, uses [names of a kind I don�t understand.] �ese �at identi�ers are �ooded up
the routing tree, which raises interesting performance issues with �nding an entity.

Label switching–again
[Gold et al., 2004] propose a scheme called SelNet, a Virtualized Link Layer. It is a label-based forwarding scheme
(somewhat like MPLS), with the feature that each label includes a next-hop destination and a selector, which is a
generalization of a label that can trigger not just a re-writing but a range of services and actions. Actions might
include forwarding, local delivery, multicast, etc. Further, actions can include removing a label, replacing a label,
and so on. So a packet can be sent with a series of labels, which produces a variant of source-routing, or the labels
can trigger rewriting, which is more stateful and more resembles MPLS. In this respect, SelNet is an interesting
generalization.

�e SelNet design does not constrain how actions (the things that selectors refer to) are established. �ey can be
static and long-lasting, or they can be set up. SelNet includes a protocol somewhat like ARP, called XRP, extensible
resolution protocol, which allows a sender to broadcast to �nd a receiver, and get back a address/selector pair in
a reply. �ey observe that validation or veri�cation can/should be done before returning this information, (in
contrast to ARP, which always answers), which gives a measure of protection somewhat like a dynamic NAT. �is
idea of a security check before answering is a clever idea that allows for a range of checks, including application
level checks. But it begs the question of what info should be in the request packet, which they do not elaborate.

�e form this would take in a new architecture is not clear. �ey describe it as a link layer, or layer 2.5 scheme,
but this seems to derive from the desire to interwork with IP. In a new scheme, this might be the way that IP
worked. �e novelty seems to be the idea of a selector with generalized and unspeci�ed semantics, the separation
of the forwarding from the (multiple) ways that selector state is set up, and the idea of a security check at label
setup time. I believe that by de�ning a few selectors with global meeting (well known selectorsneeds a security
analysis) this system can emulate several prior indirection schemes, such as MPLS.

Completely independent regions
Some of the schemes above try to deal with independent addressing regions (in particular NAT schemes, but
more generally) by using a global identity scheme. �ese include IPNG, 4+4, SNF, FARA, Sirpent and Unmanaged
Network Protocol. A more extreme challenge is to hook together regions that do not share any common naming,
as well as no common addressing.

(Crowcro�, Hand et al. 2003) describes Plutarch. Plutarch is not just an indirection scheme, but is designed to
cross-connect heterogeneous contexts, within which we �nd homogeneous addressing, etc. At the edges, there are
interstitial functions (IF) that deal with addressing, naming, routing and transport. �e core argument is that the
context-crossing points should be explicit in the architecture. �e paper concentrates on naming and addressing.

�eir scheme is an example of a class of network where all contexts are equals (there is no distinct global
context in which rendezvous can be facilitated. I propose the word concatinets to describe this class of world. �e
hard problems are well known: how to �nd a context, (and a route to it), and how to set up the necessary state.
One approach is to have a central registry of contexts. In contrast to schemes such as Sirpent, Plutarch avoids
any shared naming context, and proposes instead a gossip scheme that allows one context to search for another
by name. Because of name con�ict, multiple replies might show up. Each reply is a list of chained contexts, and
Plutarch assumes that enough info comes back to disambiguate the di�erent contexts that reply. �e returned
information is sort of like a source route across the series of contexts, and is su�cient to allow a setup of IF state

176 178

David D. Clark Designs for an Internet

at the crossing points.
�is particular architecture is de�ned by the extreme reluctance to have any layer of naming that is global. It

does not emphasize any sort of precomputed routes, which raises many issues of scale. (In contrast, schemes
like SelNet allow for and assume that some bits of forwarding state will be long-lasting, which implies some
higher-level name space in which they can be described.

Mobility
Work on mobility seems to be particularly constrained by the current architecture, in particular the overloading
of address with identity information. I do not a�empt to discuss the large number of schemes for mobility, since
this is as much about routing as addressing.

In general, schemes can be divided into end-to-end and network aware. In the end to end schemes, a host that
moves gets a new address that re�ects its new locationpart of an address block that is already routed across the
network. So the routers see nothing special about a mobile host. In the network-aware, there is some sort of
indirection, either in the routers or in a special node (e.g. a home server), so that the sending host does not have
to be told about the move. �ere are issues of complexity, scale, speed of response.

(Mysore and Bharghavan 1997) make the point that multicast and mobility have many similarities. �ey explore
the option of using current multicast as a way to track a mobile host. �ey note the major problemshow does
the mobile host �nd the multicast tree to join, since �ooding will be very expensive. �ey summarize the other
problems, all of which arise from current details. �is paper might be a nice input to a fresh study of mobility in a
new architecture.

Lilith (Untz, Heusse et al. 2004) is an addressing/routing scheme for ad hoc nets of limited scope, where
broadcast and �ooding can be used. �ey use �ooding to set up �ows, and MPLS to utilize the �ows. �ey note
the interesting point that if you discover topology and routes at the same time, e.g. by using �ooding, then you
need a lower level set of addresses that scope the �ooding. So they don�t use IP addresses for the labels, because
IP broadcast only works within a subnet, and they are trying to build a subnet at the IP level. Because of the state
in the routers, they call this a connection oriented approach, but this is a particular use of the term. �ey say
that they prefer connections to allowing each forwarder to decide what to do, but it is not clear exactly what the
dynamics of their route setup scheme is. It is not clear how this scheme would di�er if the path setup message
from the destination back toward the source set up an IP forwarding entry, rather than an MPLS label rewrite
entry. (It would eliminate their ability to do multipath setup, and to have di�erent paths to the same destination
from di�erent sources. But is there more?)

Relation of addressing to forwarding and routing Once we step back from the constraints of a particular
architecture (such as the Internet), there are not that many fundamentals of address representation. �ere are
global addresses, encapsulated addresses and rewri�en addresses. Global is a special simple case where the address
survives intact. Encapsulation represents “state in the packet”, rewriting represents “state in the router”. And, of
course, there are hybrids.

More revealing and perhaps more interesting is where the state comes from. SelNet is a rewriting scheme
where one way of se�ing up the rewriting state is by broadcast across the lower layer. So this feels like a link
level mechanism, and is describes as such. Lilith has the same feel–it uses MPLS as the rewriting scheme but sets
up state using a �ooding protocol across an ad hoc network.

Making source routing robust
As I discuss above, there are a number of problems raised by source routing. One is that source routing seems to
take control of resources away from the network operator and give it to the user. �ere is no reason to believe
that an ISP will want to carry a packet for a user unless the ISP is going to be compensated, or at least is party to
an agreement to carry that class of tra�c. As well, perhaps giving control of the routing to the user creates a new
and massive a�ack mechanisms, where the routes can be used to implement a Denial of Service a�ack against
some part of the network. Another problem is that in a simple source routing scheme, there is no guarantee that

177 178

David D. Clark Designs for an Internet

the packet will actually follow the speci�ed path. Schemes have been proposed to try to address some of these
issues.

Platypus [Raghavan et al., 2009] is an authenticated source routing system built around the concept of network
capabilities. Platypus de�nes source routes at the level of the ISP–it de�nes a route as a series of “waypoints”
that link ISPs. Inside an ISP default routing is used. A Platypus header is thus a sequence of capabilities, each
specifying a waypoint. �e process of obtaining a capability allows an ISP to maintain control over which tra�c
it agrees to carry.

Another scheme for creating robust and policy-compliant source routes is ICING [Naous et al., 2011]. ICING
is described in Chapter 5; it is essentially the forwarding scheme for the Nebula proposal. And we have now
followed the history of addressing and forwarding up to the era of the NSF Future Internet Architecture Program.

178 178

	Contents
	Preface
	A primer on the Internet
	Introduction
	The basic communication model of the Internet
	The role of the router
	Application support services in the end-node
	Routing and forwarding
	The Domain Name System
	The design of applications
	Onward

	Introduction
	What is ``architecture''
	The role of interfaces
	Summary–Thinking about architecture

	Requirements
	Fitness for purpose–What is a network for?
	Generality
	Longevity
	Security
	Availability and resilience
	Management
	Economic viability
	Meeting needs of society
	Moving beyond requirements

	The architecture of the Internet–A historical perspective
	The relation of architecture to function

	Architecture and function
	Introduction
	Per-hop behaviors
	Tussle
	Reasoning about expressive power
	Pruning the space of options
	Tussle and regions
	Generality
	Architectural alternatives for expressive power
	PHBs and control of network resources
	Expressive power and evolvability
	What is new

	Alternative network architectures
	Introduction
	Different requirements–different approaches
	Active Networks and virtualization
	The Future Internet Architecture project
	Different requirements–similar mechanisms

	Longevity
	Introduction–the goal of longevity
	Classes of theories
	Architecture and longevity
	The theory of utility
	The theory of tussle and points of control
	The theory of building blocks and composable elements.
	The theory of the stable platform
	The theory of semantics-free service
	The theories of global agreement
	The theory of technology independence
	The theory of the hourglass
	The theory of cross-layer optimization
	The theory of downloadable code
	Change: hard or easy?
	The theory of hegemony
	The present Internet
	The future

	Security
	Introduction
	Defining security
	A historical perspective
	Attack and defense of the network itself
	Attacks on network communication
	Attacks on the attached hosts
	Denial of Service attacks
	Balancing the aspects of security
	The role of architecture
	Conclusions
	Acknowledgement

	Availability
	Characterizing availability
	A theory of availability
	Availability and security
	Architecture
	Conclusion

	Economics
	Introduction
	What shapes industry structure?
	Money flows
	Bad outcomes in the future
	Summary–architecture and economics

	Network Management and Control
	Introduction
	What is management?
	The role of network architecture
	Categories of management and control
	Conclusions

	Meeting the needs of society
	What do we want our future Internet to be?
	Catalog of aspirations
	The utility cluster
	The economics cluster
	The security cluster
	The openness cluster

	Bibliography
	A history of Internet addressing
	Introduction
	Defining some terms–mechanisms for forwarding
	A history of Internet addressing
	A parallel universe–virtual circuit networks
	Comparing mechanisms
	New requirements
	Making source routing robust

