
 1 

Toward the design of a Future Internet 
David D. Clark 

Version 5.0 of May 5, 2009 
 

 
Version notes: 
Version 1.0 : More or less a complete draft up through section 7. Section 8 is fragments 

that will be incorporated into next version.  Whole document should be viewed as very rough and 
potentially very incomplete.  

Version 2.0: First initial draft of sections on naming and addressing.  

Version 2.1: Small fixes to tunnels and anycast discussion. 

Version 3.0: section on application design patterns added.  

Version 4.0: Preface and restructure of architectural design principles 

Version 4.1, 4.2, 4.3: slight revisions. Section 8 still incomplete. 

Version 5.0: Added section on longevity. 

 

Notes for revision: 
Acknowledgement:  
The research reported here and the preparation of this document was supported by the 

Office of Naval Research under contract N00014-08-1-0898, and by the National Science 
Foundation under agreement 0836555. The opinions contained are those of the author, and do not 
reflect the opinions of the supporting agencies.  



 2 

Preface 
 

The origin of this document and where it is going.  

This document is a very preliminary proposal for the design of a Future Internet—an 
outline of requirements and architecture.  This document should only be seen as a first step in 
such a proposal; there are many parts that remain to be considered and elaborated. But it does try 
to offer a rationale for making key design systems.  

Intellectual roots 

This document draws on a number of sources for its insights. First, it draws on our 
collective experience with the current Internet—what works, what has survived, and what has 
eroded or broken down under the pressures of evolving requirements. Second, it draws on the 
reasoning to be found in many of the projects in the NSF FIND program, and the overall 
philosophy of that program.  The FIND program encourages research that is not afraid to propose 
new ideas when they are justified, but which does not ignore the lessons of history.  FIND 
researchers are expected to justify their ideas based on requirements, theories of design, and 
experience—ideas that will prove right in the long term, whether or not the idea fits well into the 
current Internet.  This document tries to follow that design philosophy. Third, and more broadly, 
the document draws on the wide range of architectural research that has been done in the 
networking community, including some prior project with long-range architectural objectives, 
such as the DARPA NewArch project.  I acknowledge the wide range of argued reasoning on 
which I have drawn.  

Putting requirements first 

The various sections of this document are organized around recognized clusters of 
requirements, such as security and management. They start with a discussion of what is known 
about how to deconstruct the requirement into component parts, and then a summary of what is 
generally accepted as the right way to address the requirement. The sections then lists some 
Points of View (POVs), perhaps conflicting, about paths to the future. Each section then tries to 
argue in favor of particular architectural preferences in order to meet these requirements.  

This document represents a serious attempt to work from requirements to mechanism. In 
cases where requirements do not seem to imply any need for architectural consistency, the 
document tries to recognize that fact and “de-architect” the issue. In other words, this document 
tries to derive architecture from requirements, rather than from examination of mechanism.  

The discussion covers the range of traditional layers from technology to application. The 
traditional view of Internet architecture has a focus on the packet layer and addressing. Perhaps 
more interesting is the section at the end on application design—a topic that received relatively 
little consideration in the design of the original Internet. It is my claim that proper application 
design is at least as important to a successful Future Internet as the mechanisms at the packet 
level. There is some discussion of the traditional packet or “pipe” level, but in many cases the 
discussion is not to put forward an architectural proposal, but to argue that architecture at this 
level is not as important as we might have thought. For example, I assert that some of the 
traditional arguments about addressing, such as whether there should be a global address space, is 
the wrong question.  Based on the requirements and the design principles I put forward, I argue 
that a discussion about the scope of addressing is important, but the question of global addressing 
is misplaced.  

Next steps 



 3 

 

There are several ways to go forward from this document, all appropriate. One, there are 
many places in the document where the reasoning and conclusions are incomplete. Additions and 
amendments are welcome. Second, there are many forks in the road—points where there are 
diverging points of view, where designers could have taken a different path.  In the context of the 
FIND program, NSF and the FIND leadership have always hoped that multiple ideas might 
emerge for the design of a Future Internet. Perhaps the initial discussion here will inspire 
alternative proposals. Finally, researchers may find herein suggestions for specific research 
project they might want to undertake. All of these paths forward are welcome.  



 4 

 

Table of contents 
 
1. Introduction ...................................................................................................................... 6 

1.1. The important requirements. .................................................................................... 6 
1.2. The different perspectives: ....................................................................................... 7 
1.3. The format of this report .......................................................................................... 7 

2. The fundamentals: external constraints. ......................................................................... 9 
2.1. Infrastructure ............................................................................................................. 9 
2.2. Industry structure ...................................................................................................... 9 
2.3. Computing technology ........................................................................................... 10 
2.4. Edge networking characteristics ............................................................................ 10 
2.5. Social considerations ..............................................................................................10 

3. A starting point: some initial design considerations .................................................... 11 
3.1. Basic connectivity................................................................................................... 11 
3.2. Semantics of the basic connectivity service.......................................................... 12 
3.3. Multiplexing............................................................................................................ 12 
3.4. Interconnection ....................................................................................................... 13 
3.5. Performance ............................................................................................................ 13 
3.6. Congestion and its control...................................................................................... 14 
3.7. Quality of Service ................................................................................................... 14 

4. A framework for security...............................................................................................15 
4.1. Background and points of view ............................................................................. 15 
4.2. Proposal for a more secure FI ................................................................................ 15 

5. Availability ..................................................................................................................... 26 
5.1. Background ............................................................................................................. 26 
5.2. Management ............................................................................................................ 26 
5.3. Application-level availability................................................................................. 26 

6. Economics ...................................................................................................................... 27 
6.1. Fundamentals .......................................................................................................... 27 
6.2. Interconnection ....................................................................................................... 28 
6.3. Congestion............................................................................................................... 29 
6.4. Competition............................................................................................................. 29 
6.5. Regulation ............................................................................................................... 30 



 5 

7. Management ................................................................................................................... 31 
7.1. Background ............................................................................................................. 31 
7.2. Fault diagnosis and correction. .............................................................................. 32 
7.3. System planning and configuration. ...................................................................... 34 
7.4. Management of applications .................................................................................. 34 

8. Architecture design principles....................................................................................... 37 
8.1. A history lesson—packet addressing..................................................................... 37 
8.2. Design by constraint ...............................................................................................37 
8.3. Carrots and sticks.................................................................................................... 39 
8.4. Incentive alignment and regions ............................................................................ 39 
8.5. The minimality principle ........................................................................................ 39 
8.6. The architecture of security.................................................................................... 39 
8.7. Formal theories of architecture derivation. ........................................................... 40 

9. Naming............................................................................................................................ 41 
9.1. Background ............................................................................................................. 41 
9.2. Naming of services ................................................................................................. 41 
9.3. Naming information objects................................................................................... 43 
9.4. Naming people ........................................................................................................ 44 
9.5. Naming and deception............................................................................................ 45 

10. Addressing and forwarding ......................................................................................... 46 
10.1. Scope ..................................................................................................................... 46 
10.2. What is addressed? ...............................................................................................47 
10.3. Multi-homing ........................................................................................................ 49 
10.4. Ports ....................................................................................................................... 50 

11. Routing ......................................................................................................................... 51 
12. Transport protocols ...................................................................................................... 53 

12.1. DTNs ..................................................................................................................... 53 
13. Packet header design.................................................................................................... 55 
14. Application design patterns ......................................................................................... 56 

14.1. Variation in behavior ............................................................................................ 56 
15. Summary of architecture components. ....................................................................... 61 

 

 



 6 

1. Introduction 
This document is a proposal for a Future Internet (FI). It offers a motivation as to why it  

is worth contemplating a Future Internet that is different from the Internet of today, and it makes 
some specific recommendations about overall design, or architecture for a FI. 

The Internet of today is an amazing success. The issues that motivate a fresh look at the 
architecture of a FI are not any inability of the current Internet to support applications, or provide 
the basic service of forwarding packets, but rather a set of requirements that are contextual and 
future-looking. This section tries to set the state by reviewing some critical requirement for a FI. 

1.1. The important requirements. 
Security: The Internet of today is marked by a number of serious security issues, 

including weak defenses against attacks on hosts, attacks that attempt to disrupt communications, 
attacks on availability (Denial of Service or DoS attacks), and attacks on the proper operation of 
applications. A FI must have a coherent security architecture, which makes clear what role the 
network, the application, the end node, etc. each has in improving security. The goal of security 
will have a primary role in shaping the architecture of a successful FI. 

Availability and resilience: These goals are sometimes lumped into security, but have 
been be identified separately because of their importance, and because they are issues that arise 
independent of security issues. Improving availability requires attention to security, to good 
network management and preventing errors by operators, and to good fault detection and 
recovery. Again, what is needed is an architecture for availability. While the Internet of today 
deals with specific sorts of failures (lost packets, links and routers that fail), it does not have an 
overall architecture. 

Better management: Management has been a weak aspect of the current Internet from 
the beginning, to a considerable extent because the shape and nature of the manaement problem 
was not clear in the early days of the design.  

Economic viability: A fundamental fact of the current Internet is that the physical assets 
out of which it built, the links, routers, wireless towers, etc.) are expensive. These assets, often 
collectively called facilities, only come into existence if some actor chooses to invest in them. As 
I will argue, there is a tension between a core value of the current Internet, its open platform 
quality, and the desire of investors to capture the benefits of their investment. Any proposal for a 
FI must of necessity take a stance in this space, which I will call the fundamental tussle. One tilts 
the fundamental tussle toward vertical integration and a more closed architecture if additional 
functions are bundled with (or to any extent replace) the basic forwarding function.  

Suited to the needs of society: The Internet is not just a technical artifact connecting 
computers, but a social artifact connecting people, deeply embedded in society. The success of a 
FI will depend on how it deals with important social issues (for example identity), some of which 
will come to the front as we address issues above such as security.  

Long-lived: The proposed design must remain useful over time. One view is that a 
long=lived network must be evolvable; it must have the adaptablity and flexibility to deal with 
changing requirements, while remaining architecturally coherent. The goal of evolution over time 
is closely linked to the goal of operating in different ways in different regions, in response to 
regional requirements such as security.  

Support for tomorrow’s computing: The Internet arose as a technology to hook 
computers together, so as the shape of computing evolves, so should the Internet. In 10 years, the 



 7 

dominant form of computing will not be the PC, nor even the PDA, but most probably the small, 
embedded processor acting as a sensor or actuator. At the same time, high-end computing will 
continue to grow, with huge server farms, cloud computing and the like. Any FI must somehow 
take this wide spectrum of computation into account.  

Exploit tomorrow’s networking: At least two technologies will be basic to tomorrow’s 
networks, wireless and optical. Wireless (and mobility) imply new sorts of routing, the need for 
intermittent connectivity, and dealing with losses. Advanced optical networks can offer rapid 
reconfiguration of the network connectivity graph, which again has large implications for routing 
and traffic engineering.  

Support tomorrow’s applications: Today’s Internet has proved versatile and flexible in 
supporting a range of applications. There is not some killer application that is blocked from 
emerging because of the current Internet. None the less, applications of today and tomorrow 
present requirements that a FI should take into account. These include a range of security 
requirements, support for highly available applications, new sorts of naming, and the like.  

 

1.2. The different perspectives: 
The traditional view of the Internet is that it is a platform for data carriage. In this respect, 

it would seem that it addresses the needs of the user, or perhaps the needs of the application 
designer. However, these are not the only actors in the Internet, and design choices should 
recognize the full range of these actors:  

The network manager:  As noted above, network management is not a well-developed 
part of the current Internet architecture. This adds cost and detracts from availability.  

The investor: As noted above, the Internet cannot exist unless someone invests to deploy 
it. As a now-forgotten economist put it: “The Internet is about routing money; routing packets is a 
side-effect.” Like it or not, a designer cannot simply ignore this point of view.  

The attacker: While we do not need to be sympathetic to the goals of the attacker, we 
cannot pretend he does not exist. There will always be “bad guys” in the network, and we should 
catalog the range of motivations that drive them.  

The user: If we think of the user as simply the actor who invokes applications, then we 
might conclude that the user is well-served. However, if we think about the user as the target of 
attacks, as an amateur network manager, or as an amateur investor (think about the developing 
world) the user is not well served at all. We should recognize all of the issues with which users 
must cope, if we want a FI to be as widely accepted as possible.  

1.3. The format of this report 
The first chapters of this report deal with external constraints that limit the design of a 

Future Internet. These chapters have roughly the same organization. They introduce a 
requirement such as security, and then discuss the implications of this requirement. The chapters 
begin with a summary of what might be taken as common wisdom—what most of us might agree 
about. It then lists some points of view (POVs) about how to deal with the issue, sometime 
conflicting. Following this background each chapter will put forward a proposal for the design of 
a FI. Since most mechanisms (such as addressing, for example) will be driven by many 
requirements, this discussion of a specific approach may have to contain some “forward 
references”, but as much as possible the documents tries to offer concrete alternatives for the 



 8 

architecture of a FI.  Considerations and implications of these design proposals will be flagged as 
appropriate.  

After the chapters on security, availability, economics and management, there is a chapter 
that provides a (very partial) discussion of design principles for architecture.  

The final collection of chapters deal with mechanism design: naming, addressing, 
routing, transport protocols, packet headers and application design.  



 9 

2. The fundamentals: external constraints. 
This section discusses “givens”: external considerations that will shape our work, but 

over which we do not have control. Certain points of view (POV) are cataloged with respect to 
these givens. 

2.1. Infrastructure 
Some of the facilities that make up the network (e.g. long distance fibers, towers, etc.) 

will be expensive to construct. The economics of networking (e.g. capital investment) cannot be 
ignored. (This fact raises the fundamental tussle mentioned above and elaborated below.) 

Network technology will be heterogeneous, with different features and implications. A FI 
will have to include a solution for integrating these.  (The present Internet had as a core goal 
interoperation among heterogeneous technologies. This goal must continue.) 

• POV: Since Internet (and by extension a successful FI) will define the shape of 
the desired technology, technology can be expected to follow the architecture, 
rather than the architecture having to accept technology designed for other 
purposes. The architecture need not bend itself to try to incorporate technology 
built for different purposes. Additionally, careful design of the architecture can 
either facilitate or hinder the emergence of useful sorts of technology 
heterogeneity.  

2.2. Industry structure 
Different actors (providers) will run different parts of the FI. As today, some of these will 

be commercial, some enterprise and organizational, some governmental, etc.  

•  POV: It may not be possible for the private sector to recover the costs of 
building expensive infrastructure, if our goal is an open network. In the long run, 
we may need to think about networks the way we think about roads--as a public 
sector undertaking.  

These providers will need to interconnect, but may not have interests that are perfectly 
aligned.  

• POV: The attention paid to the issues of interconnection will have a profound 
influence on the shape that emerges for the industry that supports an FI. In the 
original Internet, the designers downplayed the importance of this interface 
(sometimes called the network-network interface). That decision was perhaps 
unjustified.   

We will continue to see the trend toward specialization in market sector and technology 
base, e.g. broadband consumer service provider vs. enterprise backbone provider vs. 
content/hosting provider. And, as discussed later, there will be an expanding range of higher-level 
services and distributed applications in the FI. This implies a richer mix of service providers.  

• POV: By the principle of "Tussle Isolation", and taking into account the 
fundamental tussle, these mid- and higher-level services should not be designed 
so that facilities-based infrastructure providers have a privileged role in providing 
them. 

• POV: If we do not accept the POV that facilities investment will require public 
sector involvement, then the above position may restrict the opportunities to reap 



 10 

returns on facilities investment to the point that facilities buildout does not occur 
at a suitable rate. Some degree of vertical integration may be the price of a 
healthy infrastructure. Any FI design must think carefully about the extent to 
which it attempts to take an ex anti position on this point.  

2.3. Computing technology 
The FI we are considering is intended to connect to computing devices at its edges. So its 

nature will be shaped by the future trajectory of computing. We are moving to an era of more 
diversity in edge-devices, from high-performance servers and computing platforms to very small, 
inexpensive ubiquitous devices such as sensors and embedded computers. 

There will always be general purpose computing devices, so the FI must be designed, as 
the Internet was designed, to support a wide range of applications, not just a fixed and known set. 

• POV: This wide range of requirements for performance and for low-cost 
ubiquitous connectivity cannot be met by one set of standards for transport and 
interconnection. We will see the emergence of (at least) two sorts of FI, targeted 
toward each of these domains and only interconnected at higher levels. 

• POV: Wrong. One set of standards will span this range of requirements just fine. 

• POV: The requirement for generality does not mean that the FI has to be based 
on the same design everywhere. Interoperation and generality are distinct 
problems.  

2.4. Edge networking characteristics 
The diversity of network technology at the edge will continue to increase. Different 

modes of wireless will proliferate. A FI must deal with a much broader range of edge diversity 
than the model today where almost everything looks like an ethernet. 

Mobility of edge devices and edge networks, both physically and in terms of changing 
points of attachment, will be a dominant pattern.  

2.5. Social considerations 
 The network is not just a technology that hooks computers together, but is deeply 

embedded in the larger social, political and cultural context. Assuming that we aspire to build a 
global network, we must accept that different parts of the world will present a very different 
context into which the network must fit. We must balance this consideration with the fact that 
technology, especially as embedded in standards, tends to work the same everywhere. It will be 
necessary, as part of the design process, to think about how to avoid "baking in" un-necessary 
cultural norms. The network will be expected to work differently in different contexts.  

There are always "bad guys", and they cannot be excluded from the network. 



 11 

3. A starting point: some initial design 
considerations  

This section lays our some assumptions about the design of a FI, and some initial 
proposals for architecture. This initial section should be seen as stage-setting, since many design 
proposals cannot be fully justified until all of the requirements have been considered.   

3.1. Basic connectivity 
Universal connectivity by mutual agreement: By default, any set of nodes that want to 

communicate should be able to do so. The above does not mean that all edges of the network 
should be able to send traffic to any other at will. Some action by the receiver to declare its 
willingness to receive traffic may be appropriate in order to reduce the range of possible 
malicious attacks. "Off by default" need not preclude willing end-points from communicating. 

• POV: Any tools put in to the network to limit the ability to communicate will 
ease the difficulty that third parties, including unwelcome ones, have in blocking 
communication that the end points consider legitimate. The balance of control 
over which parties have control over the possible patterns of communication will 
be a key point of tussle, and must be designed with great care.  

The core of the FI will continue to be built out of high-speed trunks (mostly optical). It 
should provide interactive connectivity (analogous to the service provided by the Internet today) 
between its edges. In other words, continuous connectivity should be assumed as the definition of 
“available” in the core of the network. (I will argue below that packet carriage between endpoints 
is the right design point for a FI, but this assertion is intended to be more general than that.) 

However, at the edge of the network, both edge networks and edge devices will display a 
wide range of connection models, from continuous connectivity to very intermittent connectivity. 
In particular, sensor devices and networks and portable wireless devices will encounter 
intermittent connectivity, due to limits in network coverage and to conservation of power. Mobile 
networks (e.g. in cars, planes, etc.) will be common.  

• POV:  To deal with end-nodes and edge networks that are intermittently 
connected, an important mode of connectivity in a FI will be a staged mode, in 
which bundles of content are relayed from source to destination. This mode is 
sometimes called Delay Tolerant Networking, or Disruption Tolerant 
Networking (DTN). 

DTN architecture: The DTN concept to support applications should be a core part of the 
architecture in a FI. 

This proposal raises an important design decision, which is whether the staged delivery 
model should be the fundamental transport model of a FI, or whether staged delivery should be 
“on top of” a more classic interactive packet delivery model. This choice is an aspect of the 
fundamental tussle: should the facilities providers that own the routers also have unique control of 
the staged delivery service, or should that service be a competitive one running on top of the basic 
forwarding service. My preferred outcome is that staged delivery should not “replace” transport 
of packets, but should sit “on top” of it. This structure is very important in order to support the 
open and general nature of the future edge platform, since it will permit the emergence of a 
number of competing delivery services, just as we have a number of competing CDNs and email 
delivery services today. Thus, while edge devices may sometimes be disconnected, when they are 



 12 

connected, the network should be able to provide them the same sort of interactive packet 
delivery that they would expect if they were always connected.  

Some applications will be designed to adapt to variation in connectivity, other 
applications will not work properly between every sort of edge node/edge network. Supporting a 
a general communication mode that is as close to the one found in the "core" of the network will 
allow the widest range of applications to "sometimes work" at the intermittently connected edge. 

Service management interface: Because there will be much more diversity in the 
connectivity service that applications will encounter in different circumstances, the application 
should be able to interrogate the network to ask what the nature of the available service is, as 
opposed to the "try it and see" model of today's Internet.  

3.2. Semantics of the basic connectivity service 
One of the advantages/implications of today's simple packet carriage is that since "what 

comes out is exactly what goes in", we do not need to define what aspects of the semantics are 
held invariant by the network. However, a more complex semantic model may have some 
compensating advantages. 

• POV: The ability to communicate does not imply the strict requirement that 
packets be able to flow directly from source to destination with only router-like 
devices in the path. An alternative mode might be that the data is passed through 
other sorts of devices that transform the packets in some way that is well-
understood, and transparent in the sense that it preserves key semantic properties.  

Continued weak semantics: A FI should preserve the basic simplicity of the current 
forwarding model of the Internet—no transforms at the forwarding layer that require the end-
nodes to have a complex model of which aspects of what is sent are preserved and which may be 
changed. Any transformations performed between the sender and the receiver should be invoked 
by the end-nodes, and should be consistent with the application being used.  

[This point may be obscure at this point. ALF was a great idea until we tried to sort out 
such issues as packet loss. Then it fell apart. If the node where the ADU was transformed knew 
something of the semantics required by the application, however, ALF could be made to work 
well. So the proposal is that transformations between the sender and receiver may make sense in 
some cases, but should be seen as “above” the basic forwarding layer, and in service to the 
specific application being used. ] 

3.3. Multiplexing 
Cost-effective operation will continue to depend, as it does today, on statistical sharing of 

capacity among the highly variable set of applications in use.  

Packets: At the "edges" of the network, where aggregation is low and traffic mix is 
unpredictable, packets seem like a proven and effective technology. 

• POV: The need to exploit statistical sharing in order to provide service at 
reasonable cost does not preclude features for QoS. 

• POV: The need for forwarding of packets does not imply the need for a 
traditional routing protocol, or indeed any sort of dynamic routing algorithm at 
all.  



 13 

Aggregates of packets: In (at least parts of) the "core" of the network, with large 
volumes of traffic with stable statistics, the network will deal with aggregates of packets, in a 
mode more like circuit switching. 

• POV: The management of these "aggregate" multiplexing schemes should be 
integrated into the architecture, along with the packet level scheme. The reasons 
for this include the integration of the control and management schemes. This 
POV is in contrast to the implementation of these schemes at "level 2" today, as 
in MPLS.  

We will continue to see a tension between the need for strict isolation (for reasons of 
security and predictability), and statistical sharing (for reasons of cost.)  We should expect to see 
a growing number of approaches for sharing physical facilities in order to build systems with 
various degrees of isolation and sharing, and various sorts of service diversity. Examples include 
division of a fiber into lambdas, and the construction of separate networks over separate lambdas, 
or the use of time-division schedulers to produce isolation of different traffic groups. 

• POV: An emerging view of how to share resources is virtualization. 
Virtualization implies that physical resources (such as links and packet 
forwarders) are virtualized, so that different higher-level networks can run at the 
same time on the same physical resources. Link virtualization is not a new idea--
there are lots of ways that a link can be divided up, both in the frequency (lambda 
or channel), time (MPLS cells, etc), or code division. Virtualization of the 
processing elements is a newer concept in the network context, especially if it is 
seen as allowing different service providers to co-exist on the same hardware 
platforms.  

3.4. Interconnection 
The core of the net will be constructed by many providers, so there must be an effective 

solution to interconnection, which meets the rich set of needs.  The problem of interconnection is 
much more than exchange of routing information and packet flows. There are issues of 
economics, security, and so on that must be considered as part of designing interconnection 
mechanisms. 

Interconnection of aggregates: If the core of the network is based on aggregates of 
packets, then the interconnection paradigm must address the issue of aggregates. This fact is 
another reason why the concept of aggregates must be a part of the FI architecture, and not 
“below” the architecture.  

3.5. Performance 
The range of infrastructure performance (throughput, reliability, dynamic variability) 

found at the edge will continue to expand. The fast technology will get faster, and there will be 
new sorts of slower devices and networks that will be supported. 

• POV: Absolute speed will continue to be an issue, and the design of a FI must 
balance complexity of packet processing with the desire to manufacture low-cost 
high-speed line cards. 

• POV: On the contrary, the ability to do deep packet inspection suggests that the 
limit in line-card performance is not packet-processing overhead. 

• POV: It is not clear what the relationship is between the design of a FI and the 
resulting implications for raw performance.  



 14 

[Conclusion?] 

3.6. Congestion and its control 
While today the core of the Internet is engineered with the goal that congestion not 

normally occur, there will always be some parts of the network (e.g. wireless regions with 
constrained bandwidth) where congestion will occur, and for any flow, unless the rate is limited 
by the sender or receiver, it will be limited by some sort of congestion signal from the network. 
So congestion will always be a part of the FI, and it must be managed.  

There has been a great deal of research on congestion control schemes, including 
schemes for explicit feedback of rates, and use of control theory to derive optimal schemes. 
While there has been little discussion of a preferred approach for an FI, there is a rich suite of 
research results to pick from.  

“Relayering” congestion control: The current layer model of the Internet has 
congestion in the wrong layers. Since congestion arises in the interior of the Internet, the layer 
that is visible to the routers (analogous to the IP layer in the current Internet) needs to be more 
involved in congestion management, and an interface between this layer and the layer above it 
(e.g. some sort of transport protocol) should be part of the specification of these layers.  

3.7. Quality of Service 
• POV: The simplicity of the single, homogeneous best-effort delivery service will 

not be adequate to deal with the needs of tomorrow. A FI must be prepared to 
offer a range of transport service qualities.  Evidence for this includes: 

• The widespread use of private intranets as a means to control service quality 
(among other reasons). 

• The popularity of current QoS tools in the enterprise context. 

• The emerging popularity of streaming media (but see below on the limited 
role of real-time delivery.) 

QoS: A FI should support a range of service commitments (QoS) rather than a single 
best-effort service.  

Whatever transport-level QoS features are provided in an FI, they should be provided for 
paths that cross multiple service providers. This objective has implications for economics and 
industry structure, discussed below.  

• POV: Since there will be a greater range of service options, an application should 
be able interrogate the network to ask what is available, as opposed to the "try it 
and see" mode of the current Internet. 

 



 15 

4. A framework for security 

4.1. Background and points of view 
While there is broad agreement that security is an important problem, and that there are 

many vulnerabilities in the Internet that should be mitigated, there seems to be little common 
agreement on the right approaches to take. This area is badly in need of some architectural 
framing, but even this POV may be disputed by some. 

4.1.1. Confidentiality and integrity 
In general, end-to-end encryption is seen as a success in dealing with confidentiality and 

integrity (for a simple definition of integrity) of data in transit. However, it is understood that the 
DNS names that are used in conjunction with a scheme such as SSL represent a path for 
deception and subversion of the encryption. 

4.1.2. DDoS 
Distributed denial of service attacks have received a lot of attention in the research 

community, but there is no obvious consensus on what the best approaches are to mitigate them, 
either in the network of today or tomorrow. 

4.1.3. Protecting the insecure end-node 
Again, there are a number of proposals in this area, including trusted hardware and virtual 

machines, and there seem to be wide differences in opinion as to which of these are worth 
pursuing. 

4.2. Proposal for a more secure FI 
My high-level assertion is that we can design a future Internet to be materially more 

secure.  

The existing Internet, conceived in the mid-1970’s, does not incorporate in its design any 
overall approach or framework to address issues of security.  This fact means that dealing with 
security threats on the present Internet can be no more than a series of point-solutions to specific 
threats. Our understanding of network design principles is much more mature now, and we could 
do much better.  

It is not realistic to imagine that a set of technical solutions will produce a network that is 
free of all vulnerabilities or attacks. The Internet is a technical artifact deeply embedded in a 
social, economic and human context. Attacks involve all those modalities. Our goal for the 
network technology should be to narrow the range of attacks, simplify the problem of detection 
and response, degrade certain forms of attack to the point that they are not useful to an attacker, 
and to allow the design of operational procedures for security to be positioned in the context of a 
clear model of what the network can and cannot do.  

In the following sections, I break the “security problem” into a set of sub-problems that 
seem to make analysis easer to carry out. The sub-problems are: 

• Building a more available network in the face of attacks. 

• Dealing with attacks on an ongoing communication session. 

• Providing a security framework for information objects. 



 16 

• Improving our defenses against infiltration attacks on insecure end-nodes.  

• Dealing with application-level vulnerabilities and attacks. 

• Reducing the impact of DDoS attacks.  

In each of these categories, I discuss specific improvements we can anticipate with 
respect to security. 

4.2.1. Designing a future Internet with greatly increased 
availability and resilience. 

In some respects, the Internet is very resilient in the face of component failures. 
Examples where the Internet does provide good availability in the face of failures include link 
failures and random packet loss. But these are point solutions to recognized specific failures. In 
general, it does not achieve the same reliability as the telephone system, and its design is not 
based on a systematic theory of availability, especially in the face of malicious attacks. Here is a 
proposal for a framework for availability. 

A framework for availability must contain two parts: a set of methods to continue 
operation despite failures and attacks, and a set of methods to detect, localize and fix these events.  

Continued operation in the face of failures 

1) To achieve high availability, a network design must identify the resources critical to 
continued operation, and must allow for the incorporation of a rich diversity of heterogeneous 
alternatives for these resources. Heterogeneous resources are called for because heterogenous 
resources are less likely to present the same vulnerability. The ability to exploit diversity in 
resources must be supported both by the architecture (e.g. dynamic routing protocols) and in the 
deployed nets (e.g. provisioning of multiple disjoint links).  (One of the advantages of the current 
Internet design, with respect to this approach, is that since the core function of the network is very 
simple, it is reasonable to identify and catalog all the critical resources.) 

2) The protocols must provide the ability to detect that a failure has occurred.  This 
requirement may sound obvious, but it is not. Many failures in the Internet today go undetected, 
unreported and unresolved.  As discussed below, the use of an identity framework can turn many 
problems that today go undetected or mis-interpreted into clean failures, so that they can be 
consistently detected and hopefully corrected within the framework of availability.  

3) The protocols must provide the ability for the actor at the point of detection to trigger 
reconfiguration so that different resources are brought into play. This is an application of the end-
to-end argument, in its original form, to address correct operation in the face of failure. The idea 
is well-understood in the abstract, but has not been consistently applied, and this should be a goal 
of a future Internet architecture.  

Failures manifest at the end-points: Many failures can only be detected at the end-
points, where the application code is positioned and the application can relate what should be 
happening with what is happening. For example, a Byzantine attack by a router on a packet flow 
in which selected packets are deleted cannot be detected reliably by other routers in the network.  
Only the end-nodes know what was sent and what was received. This means that the ability to 
detect failures must be incorporated into end-node protocols, and end-nodes thus must have the 
ability to trigger network repair and reconfiguration.  

Discriminating among failures: It is important for the network to contain tools to 
diagnose the class of failure, so that it is clear what sort of restoration of service should be 
undertaken. This requirement links the goals of availability to the goal of better network 
management. For example, if a connection cannot be initiated, it is important to discriminate 



 17 

between a failure of the DNS and a routing failure. One must appeal to different sorts of diversity 
to work around these different classes of failure.  

Thus, the minimal degree of discrimination required in the classification of failures is that 
degree necessary to allow the correct sort of restoration to be undertaken (e.g. routing recovery 
may not require that the end-node know exactly which node has failed—indeed it may represent a 
risk to allow that degree of visibility into the structure of the network.) 

Recovery from failures: It is not enough to keep operating in the face of failure or 
attack. The source of the problem must be detected and restored (or isolated, in the case of an 
attack). Without this second step, the actual degree of diversity in the network may be less than is 
anticipated, and the attempt to reconfigure around a failed component may fail because the 
diverse resources are not actually in place and operational. This requirement can be somewhat 
decoupled from restoration of service, but it cannot be ignored. The issue of fault recovery is 
discussed in the section on network management; this requirement suggests the strong link that 
must exist between security and management.  

4.2.2. Protecting the act of communication 
We can design a future network in which communication is resilient to attacks launched 

against the communication by the network (or by an agent that has corrupted some part of the 
network).  

As noted above, end-to-end encryption does a reasonable job today of protecting the 
confidentiality of data being communicated. Encryption also prevents packet modification and 
insertion. Other attacks on the communication itself can take the form of dropping attacks (in 
which selective packets are discarded), and redirection attacks (in which packets are sent to a 
point other then the intended end-point). Dropping attacks are at least to some extent managed 
through the retransmission mechanisms, and if they can be detected as a serious failure or attack 
(as opposed to an isolated drop) can be addressed within the availability framework above.  
Redirection attacks are more complex to deal with.  In today’s network, redirection attacks yield a 
wide range of consequences for which we have no methodical way to respond. Redirection 
attacks do occur today, e.g. DNS corruption or mis-direction of packets to the wrong IP address.  

Dealing with redirection attacks 

If the network (or more specifically the communicating end-nodes) can detect that a 
redirection attack has occurred, and that one of the end-nodes in the communication is not the 
intended communicant, then communication can be terminated, and the result can be dealt with as 
a availability failure, as discussed above. The problem today is that many redirection attacks are 
not detected as such. To detect them, what is needed is an end-to-end confirmation, as part of 
initiating a communication, to allow each end of a communication to confirm that the other ends 
are the ones that are expected.  

There are two consequences of mapping redirection attacks into availability failures. 
First, by reducing the range of failures (many indirection attacks today produce obscure results), 
it is easier for the application designer to build in means to respond to the failure. Second, the 
network can use the same set of tools to recover from dropping attacks and redirection attacks—
the tools described above to enhance availability.  

End-to-end identity checks: What is thus called for as part of protecting the act of 
communication is including a confirming check, such as a cryptographic exchange like SSL, as 
part of normal session initiation, in any situation where there are concerns about security. This 
should be done independent of the use of encryption to deal with confidentiality concerns.  



 18 

4.2.3. A more secure network architecture will include 
information security 

Today, the assurance we provide with respect to the integrity and authenticity of 
information is based on providing a secure connection to the source (e.g. Web protocols using 
SSL.) Once the information (e.g. a web page) is downloaded, there is no way later to confirm the 
validity of the information. If it is forwarded on, e.g. as an email attachment or using a P2P 
system, all evidence about validity is lost.  

Signed information: A FI should include pre-defined means for the creator of 
information to sign that information in a way that can be used to verify its integrity and 
authenticity. Once the assurance is attached to the information rather than the connection, we can 
partition the delivery problem from the integrity problem.  This approach will greatly enhance our 
approach to availability and dissemination.  

(To some extent, we have this capability with signed email, which is today a staged 
delivery. We do not have an equivalent capability for web pages and other sorts of information 
objects.) 

• POV: If we presume that information can be signed, there is a clean division 
between the problems of network security and information security/assurance 
(IA). The lack of a clean IA architecture makes it hard to delineate the boundary 
between the two areas. However, signed information (which is a small part of the 
IA problem), illustrates that we can separate the two problem areas by some 
simple steps such as this. The IA problem is a critical one, but I do not discuss it 
further here.  

One can view signed information as an analog, at the information layer, of turning 
redirection attacks into failures of availability.  The design approach is to wrap an end-to-end 
check around the information, so that the receiver (independent of how the information is 
received) can verify that the information is not fraudulent. An attempt to deceive can be detected, 
and results in a condition where the receiver has just failed to receive what was sought—an 
availability problem. We can then address this using the same means as above: a rich and diverse 
means to search for and retrieve information.  

4.2.4. A Framework for protecting insecure hosts 
This section concentrates on attacks that involve infiltration of the end-node. Denial of 

service attacks are discussed in the next section. 

Infiltration 
By looking at attacks on the communication separately from attacks on hosts, we end up 

with a parsing of the problem into parts that require distinct (and to some extent independent) 
responses.  

With respect to infiltration attacks, evidence from the present suggests that once a 
machine has been infiltrated, the attacker can turn that penetration to any purpose, including 
espionage (exfiltration), sabotage, or using the machine as a platform for further attacks. So there 
are two ways to address this class of attack: either prevent penetration in the first place, or limit 
particular sorts of damage (those that are deemed serious in the specific context) that can arise 
subsequent to infiltration, such as theft of information.  

• POV: When we consider the problem of attacks on hosts, we must accept that 
general-purpose end-node operating systems such as Windows or Unix will 
always have flaws that present vulnerabilities.  



 19 

• POV: There will not be any single silver bullet that will solve the problem of host 
infiltration. What will be required is a series of compatible actions that together 
raise the work factor to the point that adequate assurance has been achieved.  

As a starting point to analysis, it helps to catalog the different actors in the attack and its 
defense, and assess the tools that each actor in the system has to deal with attacks. This situation 
is asymmetric—different actors have different tools.  

• Applications, by their design, define the available patterns of communication, 
and what is revealed or concealed in the messages being communicated. For 
example, the design of email permits staged delivery, which in turn allows for the 
“out-sourcing” of virus checking and spam filtering. With respect to encryption, 
while encryption can occur at different levels in the system (link, end-to-end or 
application), only the application level can discriminate among different parts of 
the communicated information, encrypting some but revealing other parts.  

• Users and their end-node computers control the initiation of activity.  

• While the end-node software may always be insecure, tools such as trusted 
hardware, trusted peripherals, virtualization and a trusted computing base may 
allow us to depend on certain well-specified operations. 

• Networks control topology and completion of connections. (e.g. who talks to 
whom under what circumstances.) Examples include both physical topology 
(making sure traffic actually passes through a firewall) and logical (e.g. VPNs). 
Networks (less abstractly, the devices in them) can see what is not encrypted and 
change what is not signed. There is no monolithic network, but different parts 
that may be trusted (or not) to different extents.  

• While general purpose end-nodes will always be insecure, it should be possible 
to build fixed-function devices that are resistant to attack. 

Design of each part cannot thwart the powers of the others, but can blunt their 
instruments. For example, encryption of information prevents networks from doing packet 
inspection and discriminating among different sorts of traffic based on content. This blunts their 
tools of control. 

The research challenge: given the above, can we devise trusted components, application 
patterns of communication, and controls on connectivity, which together can protect an 
untrustworthy end-node and mitigate attacks (or their bad consequences)? 

While we cannot ignore direct attacks on the OS, and other sorts of tunneling attacks, 
flaws and vulnerabilities in applications will always be a serious issue. So we must involve the 
application designer in the process of building secure systems. In doing so, we must be mindful to 
make the requirements on the application designer as simple and clear as possible. Most 
application designers are not trained in security. 

Segregation of the problem space: Today, the research community tends to look at the 
insecurity of the end-node as a monolithic problem, since many hosts run the same (insecure) 
software. However, we should demand that operational steps be taken to separate machines into 
different classes based on their duties.  

• Machines (e.g. Web servers) that agree to serve content to “anyone” are 
particularly vulnerable to attack, since incoming messages cannot be filtered 
based on sender. So they should not be used for any task (such as hosting 
confidential information) that makes them valuable as a platform if they are 
infiltrated. 



 20 

• Machines that host valuable information should not also be used for any roles 
where they need to connect to unknown persons. Any machine used for this sort 
of task should be embedded in a strong identity/authentication/authorization 
architecture. 

This division allows us to focus on the most vulnerable machines: the general purpose 
PCs (e.g. laptops) that are used for a wide range of activities, sometimes move outside the 
perimeter of a protection zone, and so on. These machines will warrant much of our attention, but 
it is important to remember when we deal with them that we are not also dealing with Web 
servers.  

Guidance to application designers: A future network must include design patterns for 
secure applications as part of its design framework.  

Distributed security services architecture: Application-specific (or more generally 
application-aware) devices can be placed in the network. If these are simple fixed-purpose 
devices, it should be possible to make them secure. Provided that the application has been 
designed in such a way that these devices can be incorporated into the patterns of communication 
without extra effort on the part of the user, these devices can implement checks that are designed 
to mitigate undesirable actions performed by/to insecure end node. The network, by controlling 
patterns of communication, can insure that these devices are not bypassed.  

The objective of our research must be to develop and demonstrate patterns of 
communication (e.g. design patterns) that can be implemented easily by application designers to 
achieve these goals.  

Examples: 

This discussion of a distributed security services architecture may seem very abstract. 
Here are some examples from well-known protocols.  

Email: The ability to impose virus-checkers and spam strippers into the path of email 
depends on the fact that the email delivery protocols allow for staged or relayed delivery through 
mail transfer agents. While the motivation for staged email delivery was not primarily security, 
we should note the benefit that arose from the design and explicitly capture it in future application 
protocols. In the future, if email were embedded in an identity architecture, an email filtering 
service could do much more to protect the receiver from unwanted mail.  

Telnet: In contrast to email, the early version of Telnet did not allow any sort of 
intermediate node to be positioned in the path from one end to the other (there was no 
application-level addressing or naming that would allow the setup of a relayed path.) While it 
may be argued that there was no need for such a service, there is no option for including one.  

Web:  The original design of HTTP did not make it easy to deploy caches and CDNs. 
While they have been retrofitted, the design is somewhat of a kludge in places. There was 
originally no thought about which parts of the Web service might be implemented as a separate 
service. We now see the composition of higher-level services on top of the basic Web architecture 
in what is sometimes called Web 2.0. 

Security-related services 

As part of defining useful design patterns for application designers, we should catalog the 
range of security-related services that might be defined as separate elements that can be moved 
from the untrustworthy end-node to trusted service point.  

Identity and authorization: With respect to security, one obvious task to be moved to a 
secure service node is checking of identity and/or authorization to contact the node being 



 21 

protected. For public web servers that are willing to talk to “anyone”, the value of such protection 
may be minimal, but such nodes are in the small minority—most nodes on the Internet do not 
expect to be contacted by unknown senders, and a check of credentials can make sure that most 
unwelcome contacts never occur.  

Content-checking: Today email is checked for viruses and filtered to remove spam. 
Similar content-checking may be useful in other applications.  

Blocking of unexpected application flows: If an application has not been installed on 
the end-node, then packet flows associated with that application should not be permitted. This 
rule may seem simple, but raises complexity with respect to management. When a new 
application is intentionally installed, the blocking rules should be changed without user 
involvement. But if the user is not invoked to change the rules, then an attacker may be able to 
change the blocking rules as part of the attack, thus eliminating the benefit. Protection of nodes 
from infiltration will require attention to ease of management of the end-node.  

Perimeter defense and indirection 

Today, the firewall is used to prevent unwelcome traffic from reaching a network or host 
(and also, in reverse mode preventing unwanted traffic from leaving.). The firewall blocks many 
attacks, but not all of them, because the firewall lacks the visibility and the necessary information 
to do a fine discrimination.  Several current research projects have explored the concept of an 
indirection scheme of some sort, in which the sender does not send packets directly to the 
destination, but only to a relay node of some sort, that performs some security check and lets only 
selected packets through.   

There is a lot to be said about the use of this sort of protection, both in preventing 
infiltration attacks and denial of service attacks. These various ideas differ in details—the 
placement of the points of protection in the network, what sort of information they can see, and so 
on. For the moment, we should note that these devices may be application-aware or application-
independent. If they are application-aware, then they may become much more subtle tools, if the 
communication patterns of the application have been designed to reveal information that makes 
detecting acceptable flows easier and more precise.  

Balancing the needs of society 

Once we put such an architecture in place, we must recognize that such security services 
may be deployed both by trustworthy agents and by those who want to attack the communication. 
There is thus a balancing act between preventing attacks on hosts (or mitigating the consequences 
of attacks on hosts) and facilitating attacks on communication using the same tools. The 
application design patterns must be designed so that they sharpen to tools of control for nodes that 
are trusted, and blunt the same tools for nodes that are not trusted. One obvious example is to 
strip out of the information being sent security related information such as identity credentials so 
that other parts of the network do not have access to that meta-data. 

Exfiltration 
If the protections against infiltration fail, and a malicious attacker manages to penetrate 

and take over a machine, then the fallback position must be to limit consequential damage. One 
consequence is the use of the machine as part of a bot-net, discussed below. Another consequence 
is theft of information, often called exfiltration. Again, the tools of defense will include 
application design patterns, the use of trusted service nodes, and network-level controls on what 
connections are to be permitted.  

To control exfiltration, assuming that the end-node holding the information has been 
corrupted, what is needed is application designs that move to trusted nodes the key policy 



 22 

decisions that will determine whether the transfer is appropriate, and network controls to prevent 
the transfer from occurring without authorization from this element. The result is that some sort 
of an export permit from a trusted node is required before exporting information from a secure 
region of the network. This (presumably) would be based on a trustworthy set of identity 
credentials from all the parties to the transfer. 

If, in contrast, the (legitimate) goal is unfettered information dissemination, a very 
different application-level communication pattern must be employed, in which the information is 
pushed into p2p and pub-sub frameworks that explicitly do not demand authentication. (This use 
of heterogeneous dissemination mechanisms should be seen as an example of our availability 
principle.)  Application designs must be created that help to distinguish between these two sorts 
of use-cases, and “separate” them so that they can each be managed to the desired outcome. 
Design patterns must help the application designer understand how to achieve this goal.  

While these can be seen as “arbitrary” alternative, the key (as discussed below) is the 
architected management of identity—either demanding it in the first case a or explicitly not in the 
second case.  

The mobile machine: The above discussion depends on the embedding of the insecure 
machine in a secure context in which a trustworthy region of the network prevents unauthorized 
patterns of communication, and which requires (for example) export permits to move data out 
from that protected region. This picture is less clear for a machine such as a laptop, which can be 
physically moved by its owner outside the protected region. This case is perhaps the most 
challenging to reason about, because we can no longer depend on the context of trusted services 
and network-constrained patterns of communication.  

In general, the solution must be to provide some sort of “portable trusted context” from 
which such machines cannot escape. Whether this is done by some sort of inviolate trusted 
computing base or some simple hardware device (easier to imagine for a wired connection than a 
wireless one), the purpose of this TCB must be to prevent broad classes of actions when the 
machine is in an insecure context. This approach in turn will raise lots of usability issues that will 
have to be mitigated. However, in general, the idea that a machine that is “on the net” at all will 
have to carry out certain actions only via a VPN connection back to the secure region does not 
seem like a major barrier to usability.  

4.2.5. Mitigation of application-level vulnerabilities and 
attacks. 

The concept of application design patterns is central to helping application designers 
recognize potential vulnerabilities and design to mitigate them. The most pressing examples 
today include email and web vulnerabilities, but all applications will presumably bring with them 
their own set of security issues. The range of options here is huge, and will require the study of 
existing applications to detect common patterns that can be generalized, but the obvious security-
related tasks can be identified from the previous discussions: 

• Identity checking, user authorization and tools for accountability 

• Content checking and the filtering of  “bad stuff” from untrusted correspondents.  

• Logging of actions in support of audit and accountability. 

The open and transparent nature of the Internet is best suited to parties that want to 
communicate without any interference or intermediation. However, if parties that do not fully 
trust each other undertake to communicate, they may prefer a mode of communication that is 
constrained rather than open and transparent. Under these circumstances, the network should not 
be totally open, nor totally closed. We need to recognize this reality in the design.  



 23 

The tools above can be used to address this situation, using applications that have been 
designed to support communication patterns and appropriate revelation of what is being sent, 
trusted elements that can be interposed to perform such checks as can be designed as part of the 
application, and the network to ensure that this node is interposed in the path.  

4.2.6. Tools to mitigate and degrade the potential of denial 
of service (DoS) attacks. 

[This section will benefit from a comprehensive review of literature on DDoS attacks and 
defense.]  DoS attacks seem to fit into a distinct category. While they might be classified as an 
attack on a host, they do not require infiltration of the host. However, in order to build a botnet 
for DDoS attacks, the preliminary infiltration of otherwise innocent hosts is required. In contrast 
to availability attacks that manifest as “point failures” around which the network can route with 
suitable design, DoS attacks are characterized by a highly distributed nature.  

DoS attacks have a distinctive set of features. 

• They are visible by design. While infiltration attacks may be designed to be 
stealthy and undetected, there is no such thing as a successful DoS attack that 
nobody notices.  

• They are based on attack amplification.  A single attacker achieves the desired 
effect only through the recruitment (usually unwitting) of other machines.  

• The particular machines used for the attack do not matter, only the number of 
them. This shapes the nature of the recruitment phase. 

• Because DoS attacks involve attack amplification, mitigating them will be a 
game of statistics. 

In general, mitigating DoS attacks will require the combination of a number of steps, 
each of which shifts the balance from the attacker to the defender. These steps fall into 
two general categories: 

Degrade the botnets. 

Make it harder for the attacker to assemble and hold onto his collection of penetrated 
end-nodes. The tools described above to control infiltration are directly relevant here. What is 
distinct is the statistical nature of the game and the indiscriminate targeting. While an attacker 
intent on exfiltration will target a particular machine for infiltration, the creator of a bot-net does 
not care which machines he infiltrates, so long as he has the tools to exploit the particular system 
in question. This suggests techniques such as using random permutation of system and network 
state to disrupt the ability of a bot-master to infiltrate hosts in large quantity with one attack.  

Other approaches include helping the owner of a machine detect that the machine is 
infested, and providing incentives to clean the machine up. If the user can be given suitable 
incentives, then the process of cleanup can be monetized.  

Degrade the attacks. 

Reduce the utility of a bot-net of a given size by reducing its effectiveness as an attack 
tool.  

Detect and flag: Detect possibly infested attack machines and flag their traffic, so that it 
can be dropped if it is participating in an attack. Today, it is practical to detect that a machine is 
infested with malware and part of an bot-net. The question of what to do with such a machine is 
harder. If it is just disconnected, this will trigger a call to a service desk, which transfers cost to 
the ISP and does not seem to have the right incentives. What is needed is a response where “the 



 24 

punishment fits the crime”, where the crime is letting your machine get infested. The idea of 
tagging the traffic near the source (e.g. by the access ISP), but only dropping the traffic if the 
traffic seems to be doing “something bad” will have a less dramatic consequence for the owner, 
and could be structured to have the right incentives for cleanup.  

 Diffuse attacks: Another way to mitigate a DDoS attack is to diffuse it across a large 
attack surface. If the attack is somehow directed so that it impinges on a large set of nodes, rather 
than just one node, then the impact on each of these nodes may be manageable. One way to 
implement this would be to give the machine being protected some sort of anycast address (DNS 
nodes are sometimes protected in this way.) It would not always be necessary for the node itself 
to be replicated behind the anycast address, but just a set of machines that “front” for the host, 
performing such security-related tasks as identity-checking.   

Rate-limit or charge flows (linking to economics):  Rate-limiting is a specific example 
of thinking in economic terms about attack and defense. A DDoS attack is a deliberate attempt to 
cause congestion, either of a server or a region of the network. If our FI has a strong framework 
for dealing with congestion, then those mechanisms will be triggered by a DDoS attack. Perhaps 
the consequence is that the co-opted machines that launch the attack will get a bill, which would 
provide an incentive for them to clean up their machine. Alternatively, attacking machines may 
be rate-limited in ways that allow legitimate users to continue preferentially.  

Distinguish between public and private servers 

We must accept that for a machine that accepts connections from anyone, it is difficult in 
the limit to distinguish between benign and malicious overload. So long as the intended users are 
human (i.e. this is not a machine-to-machine web interaction), techniques such as CAPTCHAs 
can be used to detect bots.  

But for machines that do not need to communicate with “anyone”, we can draw on 
techniques such as indirection, VPNs, etc., to allow nodes to control who sends to them. If these 
services are replicated and addressed using anycast, then attacks will be substantially reduced in 
impact.  

4.2.7. Identity, authorization and accountability 
To support the above, a future network must contain mechanisms to allow the parties to a 

communication to verify with whom they are communicating. The previous sections have 
depended on this capability in a number of ways. 

• Detect misdirection attacks on communication. 

• Allow application/network to pick desired communication pattern, to insert the 
desired degree of checking into the path between communicating parties, 
depending on the degree of trust between the parties.  

• Detect invalid (unauthentic) pieces of information.  

• Validate identity/authority of incoming connections to prevent infiltration 
attacks.  

Such mechanisms are sometimes called “identity” mechanisms, but the word “identity” 
has many associations that trigger concerns.  While a future network must have mechanisms to 
confirm whom we are talking to, different mechanisms will be needed under different 
circumstances. Sometimes it will be helpful if each end can present to the other credentials 
certified by a trusted third party, sometimes the parties to the communication will have (and will 
prefer) a private means to verify their mutual identities.  (An example of the latter mode is the 
idea of continuity-based key exchange.) 



 25 

Sometimes it will be helpful to have the evidence of identity revealed in the packets, so 
that third parties can see it. Some times it will be valuable to have it hidden except to the end-
points themselves.  

This is an example of the principle that the application can, by controlling what is 
revealed and what is hidden, change the range of operating modalities and the balance between 
the end-nodes, and trusted and untrusted parts of the network.  

Whatever identity schemes are developed to meet this need, they will be the next target of 
attack. The design of these schemes gives us a change to engineer in good security from the start. 
Attacks will include availability attacks, identity theft and deception and redirection attacks. 
Deception will be attempted at all levels, from low-level attacks on technology to high-level 
deception attacks on humans and the tools they use (such as browsers). One way to make these 
identity schemes more robust in the face of attack is to see identity itself as a rich space of 
heterogeneous mechanisms and information. The approach we have proposed to deal with 
availability is a strategy we can use to enhance identity management.  

Identity architecture:  

Since different schemes will be needed in different contexts, and the context will to some 
extent be independent of application, the architecture of a future network should define a 
framework for management of identity information, but not constrain what form that information 
takes. Different schemes can then be used by applications as they tailor their overall 
communication patterns to the circumstances at hand.  

 



 26 

5. Availability 
The goal of availability is sometimes lumped into security, along with confidentiality and 

integrity. In the previous section on security, I did address availability issues. However, 
availability warrants a separate discussion, since it is so very important for the Internet today, and 
for any FI tomorrow. 

Overall, the Internet of today is not as available as the telephone system. To equal or 
exceed that level of availability seems like an important goal for any successful FI. 

5.1. Background 
There is no general theory of network availability. The articulation of such a theory (or an 

argument that such a theory is not relevant) seems like an important research goal. 

The early design of the Internet proceeded pragmatically.  It was recognized in the 
original design of the Internet that routers and links would fail. So dynamic routing was 
developed as a means to build a more available network. Since DNS servers might fail, 
replication and parallel search of DNS was developed to build a more available DNS. Since (to 
first order) the only components in the original Internet were links, routers and the DNS, the issue 
of availability was dealt with in a reasonable way by point-solutions to an enumerated set of 
potential failures. 

Similarly, since it was understood that packets would be lost, TCP was designed with a 
robust retransmission mechanism. The result is a highly resilient packet retransmission scheme. 

Given this, one of the limiting factors in the availability of today's Internet is the 
limitations of these schemes. Slow convergence in dynamic routing hinders quick response to link 
and router failures. Constraints imposed on inter-ISP interconnection due to business plans may 
limit the range of options in case of failures. While TCP will keep trying to retransmit "forever", 
a lossy link still degrades throughput and responsiveness. TCP has no way to "route around" a 
lossy link. 

5.2. Management 
Some studies [cite] have shown that perhaps 30% to 50% of all network outages are 

caused by operator error. This fact implies that to improve availability by an order of magnitude 
will require a major assault on the management tools in the Internet. There does not seem to be 
any general view as to how to go about this. 

5.3. Application-level availability 
Many user-perceived availability problems arise inside applications, not at the packet 

level. To the user, the layered model of the Internet is less visible and less clear than to a network 
expert. If email fails or Web pages are not available, this is seen as an Internet problem to the 
user. So to achieve a high, overall level of user-perceived availability, designers will have to pay 
more attention to the application layer; designing dynamic recovery schemes to deal with 
component failures, and adding management tools to allow effective fault isolation and recovery. 

 



 27 

6. Economics 

6.1. Fundamentals 
As stated in the earlier section on constraints, the following seem fundamental: some 

facilities are expensive (require significant up-front capital expenditure), and different parts of 
any FI will be built by different actors. 

Since facilities are expensive, a successful FI must be structured so as to motivate 
ongoing investment. In this context, there will be a persistent tension between the desire of 
investors to capture the benefits of their investments by building systems that are closed in some 
way, and the presumed desire of FI designers to deploy an open system that permits easy entry by 
unrelated innovators. The so-called open nature of the current Internet, serving as a platform for a 
wide range of experimentation and innovation in different applications and services, seems like a 
valuable attribute to preserve in a FI. The design of a FI must thus encourage investment without 
allowing the investors to have total control over the resulting network. 

6.1.1. The Fundamental tussle 
The fundamental tussle, mentioned earlier, is the result of this reality about investment 

and control. Broadly, the tussle about the overall control of the network includes a range of actors 
including governments and regulators, application designers, users, spammers, copyright holders 
and the like. But the “narrow form” of the fundamental tussle focuses on the special role of the 
investor in facilities, and the degree to which ownership of facilities privileges the owner in the 
control of the net.  

Various new features have been proposed for a FI, including mechanisms for naming and 
disseminating information, management of names and identity, management of aggregates of 
packets, and the like. Each of these can be designed in such a way that it is integrated and 
entangled with the basic connectivity and forwarding mechanisms that are implemented by the 
facilities owner, or (alternatively) can be designed in such a way that they are separable, so that 
they can be implemented by providers unrelated to the facilities owners. These sorts of decisions 
will influence both the motivation to invest and the extent of control by the facilities owners. 

Roughly speaking, we can look at the different options for privileging the facilities owner 
as alternative “cut points” in the layering of the design.  

• Perhaps the most extreme alternative being proposed for a FI is that of fully 
virtualized facilities, in which the facilities owner provides physical links and 
routers, which are then “virtualized” and sold to service providers at the next 
level, who then define the approaches to be taken for packetization, routing, 
security, and the like. This approach provides tremendous flexibility and options 
for competition among different architectures (as I have used the term here), but 
which seem to provide the facilities owners with the smallest resulting business 
opportunities. 

• A slightly higher cut point would give the facilities owner control over the basic 
architecture of packets, QoS, some aspects of security, but would allow 
competing routing and addressing schemes to exist, which would allow 
competition in service delivery, the use of addressing as a tool of security, and so 
on. Since (in this version) the facilities owner still has no control over routing, 
some framework would be required to provide the right signals and incentives so 



 28 

that the right circuits and routers are put in place to support the needs of the 
higher-level service provider. 

• Slightly above that would be the option where the facilities owner provides one 
“default” routing protocol but allows others to run at the same time. This version 
now gives the facilities owner some control over the use of paths, which makes it 
easier to justify investment decisions. However, if a open market for competitive 
routing does not emerge, some sort of structural separation might be required to 
protect those who seek to sell competitive routing schemes. 

• Moving the cut-point higher, one can imagine a FI in which the facilities provider 
implements services such as DTN forwarding and information dissemination. 

• Even higher up, one can imagine that the facilities owners have control over the 
name space for services and information objects, users and the like.   

For wireless networks, the analysis is more complex (and remains incomplete), because 
the right technical layering for wireless networks is unclear. One technical argument about 
wireless networks is that the abstraction of “links” is inappropriate. Rather, one must design 
forwarding and routing schemes that are much more directly linked to the physical aspects of the 
system. If this is so, then it is unclear how one would create a cut-point that allows competition in 
routing. Another design proposal for wireless networks is cross-layer design or cross-layer 
optimization. The idea behind this approach is that higher-level mechanisms such as 
retransmission should be integrated with lower level technology so as to deal with technology-
specific issues. Again, this cross-layer linkage would seem to make certain sorts of virtualization 
more difficult to contemplate.   

Competition in routing 

While the correct cut-point to privilege the facilities owner is not clear, I believe that 
competition in routing, forwarding and management of address spaces is the right general 
objective. This will raise both technical issues (e.g. wireless), and regulatory (e.g. “network 
neutrality” with respect to competing routing algorithms. However, this cut point allows 
competition in schemes that directly bear on security, availability and management.  

6.2. Interconnection  
Since different parts of the network will be built by different actors, these actors must 

agree to interconnect in order that a global network come into being. However, these actors may 
not have interests that are totally aligned--they may be competitors even as they need to 
cooperate. This means that the features of the FI that deal with interconnection must be designed 
to deal with economic and business issues, not just simple data forwarding. Points of 
interconnection will be important points of tussle, and the protocols designed to deal with 
interconnection will facilitate or limit the various interactions among these regions. 

In the Internet today, the most important example (and perhaps the only important 
example) of an interconnection protocol is BGP. It is generally considered that the functionality 
provided by BGP is not adequate to deal with today's range of technical, security and business 
issues.  However, routing (e.g. the objective addressed by BGP) is not the only set of issues that 
interconnected regions will want to deal with.  Better mechanisms and protocols might address a 
number of issues that arise at the inter-region interface: 

• Enhanced QoS and related transport services. 

• Routing, service provisioning, accounting and billing.  



 29 

• Security 

o Control of DDoS attacks 

o Detection of false routing assertions  

• Management 

o Diagnosis of faults  

It is worth noting that if higher-layer third parties are allowed to deploy their own routing 
protocols, then the points of interconnection among different facilities owners no longer define 
the points where regional and global routing protocols meet. There is no reason to believe that the 
EGP/IGP structure of today’s Internet is the right approach at all. (Consider, for example, the 
internal structure of a global CDN such as Akamai. Their system may have hierarchy, but the 
structure need have nothing to do with facilities boundaries.)  

6.2.1. Interconnection of higher-level services 
While BGP is the only protocol defined as "part of the Internet", lots of higher level 

services exchange data and control. In some cases, ISPs may be operating these services, but 
since they are not at the IP layer, and not directly tied to facilities, they are not normally thought 
of as "interconnection issues". These include: 

• Services with a signaling protocol, such as SIP 

• Services that monitor network operation, such as CDNs 

• Application-level systems such as email. 

As a part of the work on application design patterns, we must pay attention to the 
economic motivations that arise when different parts of these higher-level services are deployed 
by different operators.  

6.3. Congestion 
Congestion and its control is an economic problem, not a technical one. There is a large 

body of literature that develops this idea. Congestion, in economic terms, arises when the 
behavior of one user (or set of users) create cost (e.g. delay or lower throughput) to another set of 
users.  The issue with economic congestion is that the locus of congestion (perhaps a point of 
interconnection between two ISPs) may be far removed from the agents (e.g. the original senders) 
that are the cause of the congestion. This seems to imply the requirement for a network 
mechanism to convey information between the locus of congestion and the agents.  

• POV: The recent work by Briscoe on re-feedback provides the correct flow of 
information, because it allows a network forwarding a packet to determine the 
probability that the packet will cause congestion “downstream” toward the 
receiver. This knowledge allows that first network to limit or charge the source 
appropriately.  

Re-feedback: a scheme similar to re-feedback should be a part of the economic design of 
a FI, and should be integrated into its technical controls for congestion. 

6.4. Competition 
Competition imposes a discipline on service providers. Giving the consumer choice 

among service providers generates an incentive to offer superior service, and superior value for 



 30 

money. The early design of the Internet did not take this consideration into account, and tended to 
view the decision as to whether (or not) to provide user choice as a technical alternative.  

An example of a design choice that is debated today is giving the user some control over 
traffic routing, especially at the provider level. Right now, providers cannot compete to offer 
better services because the user has no ability to choose alternative routes (except by using 
overlay networks and other complex mechanisms.) Earlier, in the discussion of availability, I 
observed that to allow the user to route around failures, the user had to have some control over 
route selection. However, in that context, we could propose both explicit route selection and 
implicit route selection, where the user choice is limited to “give me a new route that is different 
from the old route”. Implicit route selection weakens the vigor of competition to market superior 
services, and from this economic perspective, explicit route selection would be preferred. 
However, as I will note later, explicit route selection may raise security concerns in certain 
circumstances. 

6.5. Regulation 
The original Internet was not much concerned with issues of regulation, and its design 

did not take into account the needs and requirement of various regulators and other “government-
like” actors. Any proposal for a FI will (in today's climate) receive scrutiny from those who wish 
to exercise various sorts of control over the network. It is not just investors who seek to control or 
regulate what is done using their facilities. 



 31 

7. Management 

7.1. Background 
The original design of the Internet was motivated by the challenge of getting the basic 

function of data (packet) transport to work across heterogeneous networks. At the time of the 
initial design, there was not a clear model of what the range of management problems would be, 
or how to design/integrate mechanisms into the architecture to deal with these problems. As a 
result, tools for management have been to some extent "glued on" to the original Internet. 

Effective management is a challenge today, both for large ISPs (who have high 
operations costs for network management and who must hire highly-skilled and trained 
employees just to manage day-to-day operations) and for individual users (for example, 
residential consumers, who have few tools and little recourse if their home networks fail). 

7.1.1. Theory and architecture 
The research community does not have a model for how to frame or modularize the 

problem of network management. There does not seem to be any theory for how to conceptualize 
the problem.  

• POV: there is no such thing as “management”, just a collection of essentially 
unrelated functions. The only important thing in common among these functions 
is that they will share some critical interfaces (see below) and involve people.  

7.1.2. Industry structure 
Since different parts of the Internet are deployed by different actors (who may not have 

aligned interests or the willingness to share internal information fully), management across 
interconnection boundaries is a significant issue. Today's Internet provides few tools to facilitate 
inter-provider management. Management (and operation in general) across the regions operated 
by different actors raise a number of issues, including: 

• We cannot assume all parts of the network are equally reliable, trusted, or stable. 

• A change in one place can trigger an apparent fault in another.  

7.1.3. How to decompose the management problem 
There are several ways to slice the management problem into parts, none proven right by 

any modularity principle. 

One is to look for critical interfaces, which seem to break the problem into modules that 
relate to some fundamentals of the network. There are two candidate approaches to modularity, 
both potentially useful: 

• Layering: recognizing the distinction between applications, network and 
technology. I have assumed that the FI will have to work with heterogeneous 
network technology. Each such technology, just as today, will have its own sorts 
of management requirements. And since the network is to support multiple 
applications, each of these will have management issues. A FI should pay more 
attention to the issues associated with managing applications.  

• Regions: recognizing that different parts of the network will be operated by 
different actors.  



 32 

Another way to break the problem into parts is functional: to look at broad classes of 
problem areas. At least two such areas are obvious: 

• Diagnosis and correction failures and problems. 

• Network planning and configuration. 

In the discussion that follows, I will use the functional decomposition to structure the 
section, and point out the importance of the critical interfaces as appropriate. 

7.2. Fault diagnosis and correction. 
What is a fault? We understand the idea of failure, but not precisely. Any change can 

disrupt some operation. A fault is an unintended change, but diagnosis will proceed identically 
whether the change is intentional or not.  

The concept of fault or change makes sense, in general, only in the concept of a pattern of 
use, e.g. an application. If a physical box fails (e.g. fail-stop) the situation is simple and (usually) 
clear, but if an application module fails on a box (so that it still responds to pings, for example), 
the only way to proceed involves testing at the level of application behavior.  

Application-level fault management: As part of application design patterns, we need to 
suggest models for diagnosis, reporting and correction that can be built into all applications.  

Applications today are usually designed to deal with component failures. For example, if 
a mail transfer agent is down, MX records provide a way to fail over to a different agent. If this 
does not work, the mail is just queued for later delivery. However, applications usually do not 
include tools to try to report or correct the fault. They presume some other means will serve to 
discover and correct the fault over time. If one mail transfer agent discovers that another agent is 
down, there is no protocol to report this fact.  

It is interesting (if inconclusive) to speculate on why this sort of reporting mechanism has 
not been implemented. One answer is that the protocol seems complex, and is not considered 
important. Another answer is that since applications, in general, span operational boundaries, this 
mechanism would be an example of an inter-region mechanisms—in that same ignored category 
as the network-network interface. Specifically, since the protocol would have to cross operational 
boundaries, there are issues of trust and security that would have to be worked out. In some cases, 
one region may not want to reveal to another region the information necessary for accurate fault 
analysis.  

An important aspect of application-level fault management is that applications run 
(among other places) on the end-nodes of users, and it is often only at those points where the 
intention of the user can be modeled, so that the presence of a failure can be detected. This 
implies that the process of detecting, isolating and reporting a fault will not only involve crossing 
region boundaries, but must involve the end-nodes.  

The above points notwithstanding, a FI must include techniques to identify and report 
failed or malicious components in a distributed system. This capability is central to the goal of 
increased availability. 

Diagnosis: In the Internet today, we see several patterns.  

• The “N-1” approach, where components are invoked in a linear chain, and each 
component is responsible for detecting that the next component has failed. (For 
example, each mail transfer agent can usually detect when the next agent is not 
operating properly, so long as the failure manifests as a non-standard outcome in 
the transfer request.)  



 33 

• End-initiated tests: The best example is at the packet level: traceroute. 
Traceroute gives the initial sender some clue as to which router along the path 
has failed. Because of the way addresses are assigned, and because traceroute is 
an afterthought, the evidence is sometimes misleading, but it about the best there 
is today. There are no obvious examples at higher layers—there is no mail-level 
equivalent to tracetoute, for example. Trace-route uses a “in-series” method, and 
is flawed in that a node being tested can detect that it is being tested. This will 
not matter for faults, but will not work in general for malice.  

• To avoid the risk that the failing node can detect (and react to) the fact that it is 
being tested, there are also “in-parallel” techniques, which are not much used (to 
my knowledge) in the Internet today. Imagine a hop-count with the semantics 
that when it counts down to zero, the node in question duplicates the message 
and sends it by a disjoint path. Then the recipient reports if it got one but not two 
copies.  

• Instrumentation of the data plane: Protocols, both at the packet and the 
application level, could be augmented with features that help to isolate a point of 
failure along a path. This approach also tries to avoid the problem of a malicious 
node disrupting the data but responding to the diagnosis messages.  

• There may be forms of collaborative tomography that can detect malicious nodes, 
but we must remember that a malicious node may be attacking just one 
connection.  

In the design of tools to diagnose failures, it may help to distinguish “normal” and 
“malicious” failures. Again, the two ideas may have a blurry boundary, but the distinction may 
prune off lots of obvious cases.  

To the extent that we cannot isolate the locus of failure, the degree of bypass or 
restoration must be larger in scope (as discussed in the section on availability), and the detecting 
node cannot take specific steps to describe or request correction of the error. Schemes such as 
tunnels mask the existence of physical elements and turn them into simpler virtual elements. That 
makes diagnosis at the physical layer impossible. Virtualization and other schemes that mask 
physical structure make diagnosis harder, and require that larger regions of the network be 
bypassed in response to failures.  

The methods proposed must not allow them to be subverted into attacks, or attack 
amplifiers. Any methods for diagnosis that expect a node in the network to respond are in 
principle a tool for a DoS attack.  

Reporting failures: If a failure can be isolated to a specific component, then there is the 
option of reporting that failure to the owner/operator of that component. By and large, the Internet 
has not included mechanisms of this sort, for a number of reasons. The design of such a 
mechanism requires us to consider a number of questions: 

• What needs to be standardized or “architected” to make this work? One obvious 
requirement is a clear means to name or identify components. Another is a means 
to establish a communications path to the operator of such a component. There 
must be some means to determine where to report the failure.  Finally, there must 
be some sort of language, representation or what you will to permit a dialog 
about the status of a component.  

• Failure-reporting messages need to be delivered in times of failure. What does 
this mean for packet forwarding? 



 34 

• This is a new set of mechanisms to attack. And can they be used for attack 
amplification?  

• If I make an intentional change, which breaks things in other parts of the 
network, to what extent am I forced by this scheme to reveal that I did so. Am I 
allowed to “change silently”? 

• As an alternative, to what extent can components self-test themselves? Can we 
build a system in which “wait” is the correct response to a perceived failure? If 
the change is intentional, then I would wait forever. How do we deal with this?  

 

In the limit, the availability of the system cannot depend on the reporting capability. If 
the component and its operator just vanish, a user of the service has to be able to cope. So 
allowing the node that detects the failure to just “route around it” and keep going must be the last 
recourse.  

Where are failures reported?  In a FI, part of the management architecture should be a 
view that all components have a “management” interface, as well as a service interface. The 
present Internet pays reasonable attention to the service interface: services can be named to some 
extent in the DNS, and so on.  But dealing with failures seems to imply that any service 
component sits in some larger management context, which will hopefully keep operating even if 
the component itself is failing. So an obvious extension to the “DNS replacement” in a FI is that 
when one looks up a service, not only the service interface but also the management interface is 
returned.  

Dealing with intentional change: Intentional change can come in all forms, but as a 
starting point to understand the issues, perhaps we can simplify change as “out of service”, or “in 
service”. A basic function would be to take a component out of service in an orderly way, so that 
it does not trigger diagnosis.  

One option would be to enhance the “DNS replacement” so that when it is queried about 
a service it can return some sort of “out of service” notice to the query. If an invocation of the 
service fails, the diagnosis protocols should require that the invoker retrace the steps that were 
used to find the service, so that such a notice can be detected. That is an easy form of notification 
(and also of declaring that no further diagnosis is required because the fault has been noted.) 

As a part of taking a component out of service, there needs to be an agreement about how 
much advanced notice is required. A protocol might allow existing actions to complete, but refuse 
new actions (on the grounds that they should have been sent elsewhere), if there is a limit on how 
long existing actions can persist.  

7.3. System planning and configuration. 
The other major functional category of management task is system planning and 

configuration. It is not clear (to me) to what extent this set of objectives is deeply tangled with the 
architecture of the network. This area requires further study and thought.  

 

7.4. Management of applications 
Since the Internet is a neutral platform for a range of applications, and does not have (at 

the packet level) any idea what these applications are, one cannot detect or debug failures of 
applications at the packet level. The Internet, lacking any model of what should be happening, 



 35 

cannot detect failures. This fact implies that the locus of fault detection and resolution must be the 
end-node--the platform where the application code runs. 

 

However, there has been as little attention to management tasks (e.g. fault detection and 
recovery, reconfiguration, etc.) at the application layer. There are no design patterns, nor any 
support tools, to make applications managed. This problem is perhaps even more challenging 
than management of the router-level Internet, because each application will have its own structure 
of servers and services, its own industry structure, and it own failure modes. 

As part of providing design patterns for application designers, we should provide advice 
on how to make highly distributed applications easy to deploy, diagnose and maintain.  



 36 

8. Longevity 
In comparison to many artifacts of computing, the Internet has lived to an old age—it is 

over 35 years old. Whether the network of 15 years from now is a minor evolution from today’s 
network, or a more radical alternative, it should be a first-order requirement that this future 
Internet be designed so that it also can survive the test of time. 

The objective of longevity is easy to understand, but the principles that one would use to 
achieve it are less well understood. In fact, there are a number of different theories about how to 
design a network (or other system) that survives for a long time. With some degree of over-
simplification, many of the theories of longevity can be classified into three subclasses, as 
follows: 

Theories of change: These theories presume that over time, requirements will change, so 
a long-lived network must of necessity change. Theories of this sort sometimes use the word 
“evolvability” rather than  “longevity” to describe the desired objective, since they assume that a 
network that cannot change to meet changing requirements will soon cease to be useful. The word 
“change” as used here, usually has the implication of uncertain change; if the future trajectory of 
the requirements on a system could be completely characterized, one could presumably fold these 
into the initial design process, if the cost were not prohibitive.  

Theories of stability: in contrast to theories of change, theories of stability presume that 
a system remains useful over time by providing a stable platform on which other services can 
depend.  

Theories of innovation:  These theories assume that change is beneficial, not just (or 
rather than) inevitable. These theories stress the importance of change and innovation as 
economic drivers. 

These classes of theories are not incompatible. Theories of innovation are often theories 
of stability, in that the stability of the network as a platform allows innovation on top of that 
platform by what innovation theory would call complementors. Taking an example from 
operating systems, it is the stability of the interfaces to the operating system that invites 
application designers to take the risk of developing and marketing new applications for that 
system.  

8.1. Architecture and longevity 
The term “architecture” is often used to describe the basic design concepts that underlie a 

system like a network: the top-level modularity, interfaces and dependencies, the assumptions 
that all parties must take as globally consistent, and so on. Again, with respect to architecture and 
change, there are two subclasses of theories: 

Stable architecture that supports change: in this view, the architecture embodies those 
aspects of the system that do not change. It is the stability of the architecture that permits the 
overall evolution of the system. 

Evolving architecture: in this view, the architecture itself can (and does) evolve to 
address changing needs. If the architecture cannot adequately evolve, this leads to violations of 
the architecture, which (according to these theories) leads to a gradual loss of function, and an 
increasing difficulty of further change, an ossification of the system that gradually erodes its 
utility.  



 37 

9. Architecture design principles 
The preceding discussions of various requirements provide one of the inputs to the 

architecture design process.  This design process should also take into account what we have 
learned about design, based on our experience with the Internet, emerging theory, and the like.  

9.1. A history lesson—packet addressing 
The initial idea for Internet addresses was that they would be drawn from a single, global 

address space. The Internet has diverged from that idea over time, with private address spaces, 
NAT devices and the like. The idea that addresses were drawn from a single global address space 
and mapped uniquely to physical ports on physical machines turned out not to be a necessary 
constraint, but just a simple model to get started.  Further, it has turned out that there is no way to 
enforce the idea of a global address space, had the architects attempted to do so 

What constrains the range of addressing that is available in the Internet is the expressive 
power of the packet header, which has more to do with its format than any semantics. The IP 
address field has had a most interesting history in which the only constants are that it is a 32 bit 
field, that whatever value it has at each end must remain constant for the life of a TCP connection 
(because of the pseudo-header) and that at any locale in the network, addresses must provide the 
basis for some router action. Addresses can be rewritten (as in NAT), turned into logical 
addresses (as in multicast or anycast), and they can be microcoded in a number of ways to capture 
address hierarchy (net/rest, A/B/C, CIDR). All that really matters is that they are 32 bits long, and 
that at any point, they must have at least local meaning to a forwarding process.  

.  We were initially fearful that if we deviated from the simple concept of global 
addressing, the coherence of the network would fall apart, and we would not be able to ensure 
that the Internet was correctly connected, or debug it when it was not. Indeed, these fears are 
somewhat real, and it is possible today to “mess with” addresses in such a way that things stop 
working. But mostly, the Internet continues to work, even with NAT boxes, VPNs and private 
address spaces, because the consequences of messing with addresses are restricted to regions 
within which there is agreement to assign a common meaning to those addresses.  Those self-
consistent regions need not be global. 

The recognition of regions is very important in the analysis of addressing because within 
a region, where an address has a consistent meaning, it will be easier to recover from an error that 
caused a packet to lose its way towards its destination. Without a meaningful address, there is 
probably no way to recover. So the size of regions, and the design of addresses within a region, 
will have an important influence over resilience, and other issues as well such as security and 
management.  

However, the more important lesson concerns the initial ideal of global addressing. While 
it was stated as a design principle, there was nothing in the architecture that constrained the use of 
addresses to be global in scope. Without such a constraint, it is not surprising that the way 
addresses were used evolved away from the initial design, based on emerging requirements. (It 
could be argued that we tried to constrain addresses to be global though the use of the TCP 
pseudo-header, but that the constraint failed in face of divergent incentives.) 

9.2. Design by constraint 
[This term and the ideas behind it are principally due to John Wroclawski.] 



 38 

The idea of “design by constraint” is that architecture should be seen as something that 
precludes certain behavior and permit other, rather than a catalog of objectives or goals. As a 
practical matter, it is the constraints of a system that determine what it can and cannot do. Thus, 
the format of the IP header has turned out to be a significant constraint. Since the initial design 
did not provide any means to reformat the syntax of the header between parts of the network, to 
change the header implies massive coordination (as we now see in the debates over IPv6). 
Nothing constrained the semantics of the address field, so it evolved and diverged from the initial 
concept over time.  An alternative approach would have been to define the semantics of the 
network, and define which aspects of the semantics must be preserved among the communicating 
end-points. If the architecture defined the semantics, then the design could have easily included 
“format converters”. Once these had taken root in the network, it would have proved as difficult 
to change the semantic definition as it is today to change the format definition.  

One can argue about this specific choice—would it be better to have fixed the semantics 
or the syntax? In fact, this alternative was argued in the early days of the Internet; the decision to 
fix the format and let the semantics float was based on the fear that fixing the semantics would be 
more likely to reduce the generality of the network, in the face of the great unknowns back then.  

But the more general question is what sorts of constraints can actually be brought into 
play to help shape an architecture. Unless a constraint is real, and “constraining”, it is not worth 
discussing.  

9.2.1. External and design constraints 
Section 2 lists some external, or fundamental constraints, such as the cost of facilities and 

the existence of bad guys. These are very real, and invite creative ways to invalidate them, since 
they can constrain in painful ways.  

More interesting are the design constraints: those ideas intentionally included in the 
architecture to shape the network and its evolution. In general, constraints seem to take the form 
of “fixed points” in the design that become hard to change over time. The packet header has this 
characteristic. At a higher level, DNS names and their embedding in URLs are hard to change. 
While the conversion of names to location/address can change, the syntax (again) is hard to 
evolve, since it is embedded in lots of systems.  

Different sort of addresses can be seen as offering both capabilities and constraints. The 
idea of anycast (discussed below), for example, is a constraint on the sender in that it prevents the 
sender from having a name for an instance of a service, but only a service name. This prevents the 
sender from using the address to attack an instance of a service. Constraints such as that, which 
can be added by one actor to limit the behavior of another actor, are interesting, in that while the 
architecture might call for them, it cannot make them happen.  

Another class of constraint is one that can be imposed by the end-node. If end-nodes are 
allowed to encrypt much of the packet, then the network is constrained from using that 
information as part of its operation. However, if the network had grown up differently, and the 
network had come to depend on access to that information, that outcome might (as a practical 
matter) prevent the introduction of end-to-end encryption. Again, this sort of constraint seems as 
much a race between two ideas to see which can become entrenched first, which is not really a 
fundamental design tool. 

9.2.2. Approaches to constraint  
The idea of “hard to change” seems like a fundamental aspect of a constraint. However, 

that concept is probably rich and nuanced once it is explored, and there may be specific 



 39 

techniques for introducing constraints into an architecture that should be illustrated and cataloged. 
A rich exploration of this space should be part of the foundational work in architecture design. 

9.3. Carrots and sticks 
Constraints seem like “design by sticks”, things that keep you from doing something. 

One can also “design with carrots”, by providing a means that is not mandatory, but is so 
convenient that it becomes the norm even though it is not mandatory. Examples include the 
widespread acceptance of TCP and the DNS. Indeed, one can find an ongoing low-level 
philosophy debate as to whether the DNS is “part of the Internet architecture”, since it is not 
technically mandatory. In fact, carrots turn into sticks (constraints) over time, and in this respect 
represent a “high-wire act” approach to architecture design, since if the carrot fails, the stick 
never emerges (to mangle an image in a horrible way.) 

The next section, for example, proposes a number of objectives for naming. These 
schemes should be seen as carrots trying to grow up into sticks, as the DNS did.  

9.4. Incentive alignment and regions 
Lacking (in many cases) the tools to “force” a constraint on designers, the most realistic 

approach is to find a set of actors with aligned interests, and use that alignment as a way to insert 
a constraint into the design. In this respect global constraints are the most difficult, since global 
alignment of interests will not often occur, except at the most basic of level (having the Internet is 
better than not having it…). As we saw in the example of addressing, and as we have argued with 
respect to security, availability, and economics, it is a very powerful idea that the Internet can 
work in different ways in different contexts. This idea in turn suggests that the idea of “regions of 
like-minded actors” is the idea that will best allow an architecture to grow, evolve and survive 
over time. Recognition of the idea that actors in the Internet do not always have aligned interests, 
and a resulting approach to design that allows “tussle” to be contained, and to have a different 
outcome in different contexts, is a critical idea.  

9.5. The minimality principle 
Given the above, part of our job in designing an FI is to discover all the places where we 

do not have to agree—places where our architecture need not propose a constraint. Where we can 
“de-architect” an idea, we will be better off so long as the network still works.  [Dan Geer, a 
noted security expert, stated the design goal for Internet security as being “as insecure as possible 
so long as it still works”.] We should resist the temptation to excesses of architecture design, and 
we should resist the temptation to proposed objectives for which we have no matching constraint 
to enforce the conformance to that objective.  

9.6. The architecture of security 
The requirements of security are an important case study here, because in the case of 

security, the objectives of the parties are not aligned. There is no way to exploit incentive 
alignment to enforce constraints. In this case, it is necessary to fall back on the limited set of 
constraints (including external ones) that are really fundamental. These sorts of constraints are 
discussed in section 4.2.4. Briefly, the approach is to recognize that the network is not 
homogeneous. The sender (attacker?) and receiver (defender?) are each positioned within a 
region of the network in which they can hopefully place some trust. Within each region, the 
interests are aligned. Between the two such regions is a middle region where both parties make 
minimal assumptions—basic forwarding and the ability to route around failures.  



 40 

Within each region, network has control over topology, routing, and which nodes can 
connect. Because the network can control patterns of connection, the network can enforce 
application-level patterns of communication (see section 14 below) to further the goals of that 
actor. Then, when each end point has configured their region to maximum advantage, they 
engage. If the application patterns are properly used, the balance of power comes out in favor of 
the desired party, and the result is at worst a simple failure of connectivity.  

9.7. Formal theories of architecture derivation. 
[Doyle stuff?] 

[What else?] 

 



 41 

10. Naming  

10.1. Background 
The current Internet has only one “architected” name space, the set of Domain Names. 

Domain Names were initially devised when it still seemed as if physical machines were the right 
entities to name. It has since been exploited to name services (e.g. the suffix in an email address), 
and information objects (e.g. URLs).  

• POV: While the domain name system has proved robust and scalable, domain 
names are not optimal for the naming of either services or information objects.  

The use of names cannot be separated from the process of converting from names to 
lower-level identifiers such as addresses. To the extent possible, I have discussed issues of 
addressing in the section to follow, but there is necessary entanglement.  

10.2. Naming of services 
The term “service” can be used to describe almost anything in networks, from application 

layers services (e.g. mail transfer agents) to the QoS that is (sometimes) provided by the network 
layer. What I am referring to here are those services that are explicitly (or intentionally) invoked 
by other service elements or end-points. Since they are explicitly invoked, there must be some 
explicit way to identify them.  

In this context, an important feature of services is that they can be implemented on more 
than one physical machine, and (to a degree that depends on the specific service), the party 
invoking the service will not care which instance of the service is selected.  The earliest example 
of using the DNS to name a service is the suffix in email addresses, which is used as the name of 
the mail server that should receive the mail. To “unbind” the name from a physical address, an 
application-specific feature was added to the DNS: MX records.  Email works fairly well, but 
MX records seem like an ad hoc addition with little generality. DNS SRV records are a more 
general option for allowing the DNS to name services, rather than hosts, and to identify more than 
one instance of the service, and is closer to what will be required in a FI. 

There are a number of reasons why the designer of a service may want to replicate it on 
multiple physical machines. One is to provide the service at locations distributed around the 
network, to offer low latency and higher performance when the service is invoked. Another is to 
spread the load over multiple machines to avoid overload on one physical machine. (If this were 
the only goal, the machines could be physically co-located). A third reason is replication for 
availability, and there are a set of reasons related to security, discussed below.  

Beyond the use of MX and SRV records, the DNS has been exploited to name multiple 
instances of a service by deploying a specialized DNS server responsible for the name of the 
service, which implements some sort of specialized computation to select the preferred physical 
address when presented with a service name. So long as the operator of the service also operates 
the relevant part of the DNS, this “trick” can be quite powerful.  

10.2.1. Service Naming System (SNS) 
I propose that the FI should be equipped with a system designed specifically for naming 

services, called the Service Naming System, or SNS. SNS could be seen as the DNS replacement, 
but there might also be other services used to name physical machines, people, information 
objects and the like.  



 42 

A primary task of the SNS is to take in a name for a service, and return some set of 
“addresses”, or “identifiers” that can be presented to the packet forwarding system. More on 
addressing below. In addition to this function (which is essentially all the DNS does), other parts 
of this document have identified other functions that the SNS should implement.  

Service authenticity: as part of mitigating “redirection attacks” and other sorts of 
attacks, the discussion on security proposed that any initiation of a connection should include 
some sort of authentication verification to confirm that the service that has been reached is the 
service that was intended. To do this, the user of the service will require some sort of certificate 
that binds the credentials of the service to a public key for that service.  Today, TLS transfers a 
certificate to the client once the connection has been invoked, but there may be (I would argue 
that there are) advantages in having the certificate in hand before initiating the connection. To 
implement this option, the certificate can be returned by the SNS along with the name. 

Service management information: in the discussion of management, I proposed that the 
SNS should return not only the “address” of the service, but the “address” of the management 
interface to the service. This would be a separate interface to which one could report failures, 
enquire about service status, and the like.  

Service invocation method: in the Internet of today, if there are any specific 
requirements for invoking the service, they are specified as part of the service itself. If the service 
uses UDP, or multiple TCP connections, or requires some sort of special authentication method, 
this is generally “hard-coded” into the specification of the application. However, in a number of 
places I have proposed that applications should be designed to allow different communication 
patterns to be used in different circumstances. In this scheme, some aspects of the invocation may 
not be static, but determined more dynamically at invocation time. For example, one mail service 
might require an encrypted connection and authentication, while another might accept clear-text 
connections from anyone. Part of what the SNS should return are the specific requirements that 
specify how this service should be invoked.  

10.2.2. Design of the SNS 
The hierarchical nature of the DNS, and its approaches to replication, have proved very 

robust. There seems no reason to move away from this approach. So I proposes that Service 
Names be hierarchical, just as they are today. There are two issues that may call for a modified 
design. 

Support for dynamic information: as described above, the SNS will return more 
information than the DNS, including bulky information (e.g. service certificates) and dynamic 
information (e.g. service status information). These capabilities do not seem consistent with a 
server that is dealing with millions of names, as the “.com” servers do.  The design of the names 
and the hierarchy should assume that the SNS server that provides information about a service 
will be operated by that service itself, or by a SNS provider that serves a small number of 
services. This is what happens today when the DNS is used by a service provider to implement 
“special” name to address binding to implement regionalization or load balancing. This structure 
will be the norm.  

Resistance to attack: Today, the DNS can be replicated, and is resilient to failures of 
physical nodes. But it is not very resilient to attack. Nodes can be corrupted, the cache 
information can be “poisoned”, and so on. This has led to the design of DNSSEC, which tries to 
assure that the sequence of hierarchical queries leads to the retrieval of the correct address. This 
security architecture will need to be rethought. If there is an end-to-end confirmation of identity at 
the time a connection is made, this will detect corruption of the SNS information. However, 
corruption of the SNS will still leave open attacks based on deception of the human-level user and 



 43 

to availability problems.  More work is required to sort out the range of attacks against which the 
SNS must be resistant.  

However, at a high level, my earlier discussion of availability suggests that one tool that 
will increase availability of the system is heterogeneous replication. In the DNS community there 
has been tremendous resistance to having naming information available that is not authoritative, 
because dependence on non-authoritative information may increase the chance of mis-direction 
and malicious manipulation. However, if the client has access to heterogeneous tools for name 
resolution, and the proper use of these tools is imbedded in the software (e.g. user training is not 
required), heterogeneity in the naming system may lead to increased availability. The benefit of 
widespread use of end-to-end verification of identity is that using a non-authoritative naming 
service cannot “make things worse”—a wrong answer is like no answer at all, an availability 
failure. But a right answer can be independently confirmed without having to “trust” the naming 
service.  

10.2.3. Dynamic address binding 
As discussed above, the DNS is used today to allow a dynamic binding from name to 

address, to meet a range of needs including distributed service replication and load balancing. 
These are important goals, and should be available in a FI. However, there seem to be two 
“levels” at which they can be implemented: as part of the name-to-address conversion, or within 
the addressing system itself, where one address is mapped to another address. The best example 
of such an idea is anycasting, which is an afterthought in the current Internet. I will propose that 
the widespread use of anycast addresses is a valuable feature in the FI, but this is discussed below 
in the section on addressing. (The preference for anycast over dynamic binding as part of the SNS 
lookup is better mitigation of DoS attacks.) 

10.3. Naming information objects 
Today, the most common form of name for information is the URL, and its more general 

variants the URI. There has been a great deal written about naming of information—a book might 
suffice to review the literature. Here I propose a few key issues for the naming and identification 
of information in a FI. 

10.3.1. Authentication 
I argued in the discussion of security that information objects should be signed by their 

creator, with credentials attached to the object itself, so that the validity of an information object 
can be confirmed independent of how it is retrieved. Today, we use assurance about the 
information channel (e.g. TLS) to provide assurance about the objects retrieved. This means that 
if objects are retrieved and then passed on, for example as email attachments or by being put into 
some P2P distribution system, the validity can no longer be confirmed. A better approach is to 
attach the validating credentials to the information.  

For email, we have mechanisms to allow the sender of email to sign (and to encrypt) the 
email. While these are little-used today, they suggest the correct way to go. 

10.3.2. Independence of name and location 
Just as we have learned that today’s IP addresses mingle two ideas: identity and location, 

we see the URLs of today mingle the idea of the location where the information can be found (the 
DNS name embedded in the URL) and the idea of some long-term identifier for the information. 
These concepts need to be separated.  



 44 

Information storage and dissemination:  In a FI, there should be many services for 
information storage and dissemination. By the principle of tussle isolation and the fundamental 
tussle, I believe that there should be the option for many, not just one.  The mechanisms for 
information retrieval should not be “built into” the routers, but should run “on top” of the packet 
forwarding system. There are other reasons for this division: there will be many sorts of 
information with different patterns of dissemination. A system for retrieving mail has very 
different characteristics than a system for retrieving popular web sites, which in turn will differ 
from systems for retrieving high-volume objects like movies. So the network may offer key 
architectural support for these services, but the architecture should not define the service.  

Hints: if the name (or identifier) of an object does not tell where to find it, how does one 
retrieve it? The answer is that there needs to be some linkage between an object (or more properly 
the name of the object) and the service by means of which it is to be found. For efficient 
operation in the normal case, the name of the retrieval service might be bound to the name, but 
this should be seen as a retrieval hint, not as a part of the name itself. The design of the names 
(and the hints) should allow for one to seek out an object in any retrieval service. Thus, one might 
search for a popular web page in a P2P system, in an online library or using one’s social network. 
If one part of the network is cut off from the rest of the Internet (e.g. as a result of some disaster) 
one might search for an object within the locally connected region.  

Unique vs. “wild-card” names: I believe that the architecture of the FI should not 
constrain the structure of information names (aside from suggesting some preferred features, such 
as how hints are attached to identifiers). However, it is useful to discuss a few features of names 
that will make this framework work. In some cases the user will be looking for a unique object 
with a unique name. In other cases the user will be looking for an object with some attribute, such 
as “todays’ version of the paper” or “any of my mail”. These sorts of retrieval requests imply 
names that have some sort of “wild-card” or indefinite component, which will be bound to 
specific objects by the retrieval service. Different retrieval services may support different sorts of 
indefinite naming, which implies that the conventions for how to utter requests of these sorts 
needs to be done using some common constraints.  

(This use of indefinite names is not the same as “search”, as is provided by service such 
as Google. Search of that sort is a layer above this set of names. Information names would be 
returned by that sort of search.)   

10.4. Naming people 
In various parts of this document, I have identified the need for one user to have some 

assurance as to who the other users are in an interaction. Reasons include assurance as to the 
sender of mail, assurance that your identity with your bank has not been stolen, assurance that 
you are allowed to invoke a service, and so on. For this reason, identity credentials will show up 
in lots of places in the FI. 

10.4.1. Not just one scheme, nor one identity 
The design of identity mechanisms raise many issues that have to be balanced against 

each other. 

• The convenience of using one identity everywhere, balanced against the potential 
loss of privacy from cross-linking all those uses.  

• The benefit of third-party assurance about identity, balanced against the 
additional overhead and revelation that results from using such names. Taking 
issues of privacy into account, there are many circumstances where a private 
means of identification and authentication will be preferred. 



 45 

• The benefit of facilitating policing and forensics by making some identifying 
information visible to third parties “in the network”, against the resulting loss of 
privacy. Too much policing will have a chilling effect on freedom of action.  

For these reasons, the FI should include mechanisms to transport identity information and 
incorporate this information into applications and supporting services, but should not propose one 
identity mechanism. The parties to an interaction should agree among themselves as to the 
approach they take (if any) to verification of identity. One of the bits of information that should 
be returned by the SNS is the range of identity credentials that are acceptable to use any particular 
service.  The format of the data fields used to transport identity information will become one of 
the constraints on the FI architecture. 

10.5. Naming and deception 
As the previous discussions make clear, names (and associated credentials) will be a 

central part of the security architecture of the FI. This means that identity mechanisms will 
themselves be the targets of attack. Attacks will be both technical (seeking out flaws in design 
and implementation) but also human (seeking to confuse and deceive the human users of the 
system). Part of the design of naming schemes should be mechanisms that will help prevent 
deception of the human users. The need to train the users with clear and consistent instincts about 
possible deceptions may require that we impose constraints on the design of naming schemes—if 
each scheme has its own different modes of presentation and validation, this will lead to usability 
issues. So the desired constraints on the design of identity schemes may arise as much from 
human factors and usability as technical preferences and performance.  



 46 

11. Addressing and forwarding 
In the original Internet, addresses were primarily thought of as a means to drive 

forwarding. In a FI, the design of an addressing scheme must take into account many issues, such 
as security, management, and service mapping, as well as simple forwarding. It may be the case 
that the design of an addressing (and routing) scheme is the last part of the design, after we have a 
framework for these other issues, rather than a starting point. 

Definition 

In this context, the term "address" is used to describe some indication in a packet (or 
other transmission unit) that can be used as part of forwarding to select the path that the packet 
takes. 

• POV: While there is much interest in flat name spaces and other innovations, the 
process of forwarding has to be efficient enough, and the issues of scale are 
difficult enough, that there needs to be some form of addressing that can provide 
a straight-forward mapping to the low-level forwarding decision. In other words, 
these addresses must map efficiently to network topology.  

• POV: We can afford to have address spaces large enough that addresses are not 
scarce, but plentiful. 

11.1. Scope 
As I discussed in the section on the expressive power of the packet header, I believe that 

debates over whether there should be one global address space or multiple address spaces is 
misplaced, since once the header has been defined, experience has taught us that people will use 
the header any way they please. However, I believe that the expectation of a global address space 
in which all machines are located, as envisioned for the original Internet, is neither practical nor 
necessary. Private address spaces will be used for a number of reasons, for example: 

• Ease of management--when networks with private addresses move their 
attachment point to the rest of the Internet, they do not need to be renumbered. 

• Security--it is harder to attack a machine that cannot be directly addressed.  

While the Internet today does not expect all the end-point to have an address in its global 
address space, there is still a common addressing region (CAR). The common addressing region 
has many advantages over a partitioned collection of regional address spaces, and has not caused 
many problems. Advantages of having a CAR: 

• Any service that wants to be easily reached can associate itself with an address 
within the CAR. It then becomes globally reachable. 

• CAR addresses (one or many) can be assigned to regions with private addresses, 
so that the regions as a whole become globally reachable.  

• POV: On the contrary, there may be value in looking at schemes that are even 
more general than this, in which there is no CAR, but instead regions with their 
own address spaces, and mapping occurs at the boundaries. Global names at a 
higher level can substitute for a CAR in a FI.  

As discussed in section 8 on architecture design principles, the size of addressing regions 
(regions within which addresses have a consistent agreed meeting) will have an influence over 
resilience and availability. If a packet somehow loses its way due to some routing transient, there 



 47 

is some hope of recovering if the packet carries a destination address that is still meaningful. If, 
somehow, the packet has strayed from the region in which its address is meaningful, there is 
probably no alternative but to discard it.  

The structure of the Internet has evolved from one global address space to a space of 
interconnected regions. One might speculate that the resulting structure is a pragmatic balance 
between the benefits of larger and smaller regions. One might also speculate on design options 
that would improve the balance and give a better mix of results.  

11.1.1. State establishment 
I have argued that we should not try to define the meaning or scope of addresses as part 

of the architecture. Instead we should focus on mechanisms that can be used to establish per-flow 
state (e.g. addressing state) in intermediate nodes, since these mechanisms will enrich the options 
for inter-region operation.  These mechanisms, because they are implemented in end-nodes, will 
be constraining: hard and slow to replace or modify. So if we believe that they are necessary, they 
should be specified as part of the design. These mechanisms, as much as the format of addresses, 
will limit the range of options for addressing.  

An obvious example from the current Internet is that the lack of a protocol by which an 
end-node in a private address space (e.g. behind a firewall) can establish a binding to an address 
in the CAR makes it hard and unreliable to establish a passive (i.e. “listening”) service behind a 
firewall.  

State establishment protocols: While per-flow state is should be avoided or minimized 
when possible (for well-understood reasons of simplicity and reliability), address binding and 
other sorts of per-flow state will be a necessary part of a FI, in particular because of private 
address spaces, delegation of protection to “front line” indirection machines, and so on.  
Mechanisms should include tools to establish state, detect that it is no longer in place, and re-
establish it. These mechanisms may include new sorts of control packets similar to what is found 
in ICMP today.  

11.2. What is addressed? 
In the original Internet, the design assumed that the element to be addressed was a 

physical machine--an end point of a network connection. While at the lowest level, this fact 
remains true, it may be that it is useful to address higher-level entities, and translate to a physical 
machine as late as possible--while the packet is in transit. Higher-level entities include clusters of 
machines, and services that may be implemented at many locations across the network. The 
proposed SNS would normally provide the address of a service, which would be mapped to a 
physical location as late in the forwarding process as possible, perhaps by using an anycast 
address. 

More specifically, as part of the security framework described above, a first layer of 
defense for a service could be “outsourced” to a set of “front-line” machines that validate 
credentials (for services that are only for authorized users), diffuse DoS attacks, rate limit 
different users and throttle attacks, and so on. If these front-line machines are the ones that diffuse 
DoS attacks, then using anycast addresses will help with that diffusion.  

(It is not strictly necessary to use anycast; if there are many such machines, even if the 
physical addresses of each instance becomes known, the attacker must choose between attacking 
all of them, which divides his attacking machines across all of them), or attacking only one or a 
few of them (which may overload those machines but not all of them.)) 



 48 

11.2.1. Anycast 
Anycast is an addressing mechanism that allows a packet to be sent to a service without 

knowing which physical machine supports the service. Anycasting has several implications. 

• Efficiency: a routing protocol internal to the addressing mechanisms can pick the 
copy of the service that is closest, by some metric. (Different providers may want 
to use different selection schemes, which would suggest a motivation for 
competitive alternatives for anycast resolution, not one architected alternative.) 

• Security: A DDoS attack cannot be directed at a physical machine, but only at the 
set of machines behind the anycast address, which will tend to diffuse the attack 
across a larger attack surface.  

• Availability: Under the reasoning offered earlier about availability, use of 
anycast can degrade availability. If a service is protected by an anycast address 
(so that the address/identity of the physical components is hidden from the 
client), this will make detecting and avoiding failures harder.  If a client is routed 
to a particular instantiation of a server by its anycast address, and it malfunctions, 
there is no way for the client to move to another one, since by intention the client 
does not have that level of control over server selection. Nor does the client have 
a way to name the failed component, unless we add to the protocol a new name 
(presumably not useful for routing and thus not useful for attack) that can be used 
to report a failure. In the context of reporting failures, the only option is for the 
client to report (by some means) that “some part” of the service has failed.  

• Scale:  In most cases, individual services will not want to use anycast addresses, 
because each anycast address adds an entry to the CAR routing table, unless 
some scheme is devised to prevent this. More likely is that blocks of anycast 
addresses would be allocated to services (indirection, authorization, load 
balancing or protection services) that serve a number of end-customers.  

• State: These intermediate nodes will often require some state in order to carry out 
their tasks. They might need data to perform authentication and authorization, for 
example.  They might require per-flow state to authenticate subsequent packets in 
that flow, which in turn raises the issue of how to maintain that state (is it soft 
state?), and what to do if it is lost, or the anycast routing computation changes so 
that subsequent packets arrive at a different physical service point.   

• Design features: a suitable anycast scheme might include: 
o A way to bundle the state and send it back to the sender so it can be 

“soft-instantiated” if it is lost (or the sender is redirected. 
o A “persistent anycast”, where the first interaction sends back a handle 

that the routing system can understand, but which does not form the basis 
for a DDoS attack. (RESEARCH PROBLEM.) 

o A service recovery scheme where the sender can signal  “give me 
another one different from the other one” to route around a failed server.  
This situation cannot exploit “explicit route selection”, because that 
would reveal too much about the anycast architecture.  

o Competitive (virtualized?) anycast routing computations. 

In today’s Internet, anycast addresses are syntactically identical to normal physical IP 
addresses. But this choice is due only to the expressive power of the current header. There is no 
reason why anycast addresses (or other sorts of “virtual” addresses) need to have the same format 



 49 

as physical addresses, and the packet header of a FI could allow a number of address formats to 
co-exist, as long as they can be efficiently distinguished.  

Options for service naming and dynamic binding: in the discussion of naming, I listed 
reasons why the binding from service name to address of that service is one-to-many and 
dynamic, including selection of a instance that is “close to” the user, and load-balancing. This 
dynamics can be implemented in two different parts of the system, within the SNS, or within the 
addressing system. In turn, dynamics can be implemented in different parts of the addressing 
system. As discussed above, I propose a “two-stage” protection framework, in which there are 
“front-line” machines that perform some security checks, and then pass the communication on to 
the servers that perform the actual service function. In this framework, there is actually need for 
two different sorts of dynamics, binding the anycast address to a suitable “front-line” machine, 
and then passing the connection from that machine to the best instance of the actual service (more 
like load balancing). This framework suggests that doing load-balancing as part of SNS is not 
useful—it gets load-balancing “in front of” security, and reveals the physical addresses of the 
actual service instances to the potential attacker. In fact, different “front-line protection services” 
may distinguish themselves based on their ability to offer related services such as load-balancing, 
tracking of which server instances are up or down, and so on.  

11.3. Multi-homing 
Multi-homing--the attaching of a machine (or set of machines) to the network by multiple 

paths, should be a critical part of a FI. In general, there seem to be only a few ways to manage 
multi-homing. 

• Do delivery based on location-independent or flat addresses. This idea is of 
interest today, but scales poorly. 

• Do delivery based on names that are flat within some region (e.g. a geographic 
region), so that flat routing tables need not be global. (This is the way the 
telephone system covers number portability). This approach may limit some 
forms of multi-homing, but may have promise. 

• Assign multiple addresses to the multi-homed entity, and design the FI to deal 
with multiple addresses as a basic capability.  

The drawback of the first two schemes is that they deprive the multi-homed machine with 
any control over which path is used is used for access. This interferes with the economics of the 
relationship between provider and subscriber, and prevents the explicit selection of paths as a part 
of enhancing availability. For this reason, I prefer the approach of assigning multiple addresses 
and adding tools to manage these addresses automatically.  

Multi-homing will occur not just for single machines, but for networks of machines. So 
the choice among techniques (see the above list) must take into account that a whole network 
rather than a single machine is multi-homed. 

There is a strong connection between the approach to deal with multi-homing and 
management. If a machine (or network) can deal with multiple addresses, and addresses that 
change over time, then the problem of manually renumbering machines with new addresses can 
be avoided. 

Multiple addresses:  A FI should be designed so that all machines (and regions) have 
multiple addresses, and can manage the use of multiple addresses at the local and remote ends of 
connections as a normal part of operation.  The lack of tools to manage multiple addresses on an 
end-node is a significant and unnecessary limiting constraint on today’s Internet. 



 50 

11.4. Ports 
In the current Internet, port numbers are used to distinguish among different services 

running on the same physical machine, and to allow the efficient dispatching of an incoming 
packet to the correct process/service. In this respect, ports are a logical extension of the physical 
address. In the current Internet, ports are not returned as part of the DNS request (except in the 
SRV record), but are statically assigned to services—“well-known” ports. Well-known ports are 
not a fundamental requirement, but just a shortcut that make certain probing attacks easier, and 
which make it harder to implement services that “listen” in a private address space (e.g. behind a 
NAT device.  

No well-known ports: in a FI, port numbers should be returned as part of the SNS 
lookup, and not assigned using a static table of well-known port numbers. This decision will 
cause a number of small shifts in the landscape of tussles. Network monitors will no longer be 
able to determine what application is being used by looking at well-known port numbers. 
Firewalls will no longer be able to block or open up ports as a way to block or permit specific 
applications to be used by all machines behind them (although there are ways to mitigate this 
management issue). On the other hand, port scanning will be much more difficult (and can be 
made much more obvious if the ports space is larger, say 32 bits.)  



 51 

12. Routing 
[This section incomplete in this version.] 

Routing describes those computations that are done in the background so that forwarding 
can be efficiently done when packets are sent. (In the case of virtual circuit networks that set up 
paths before sending, routing may be the tool that allows efficient setup of VCs. ) 

As with addressing, in a FI routing is not just about efficient forwarding, but will be an 
essential part of the architecture for security, management, cross-region interconnection and so 
on. 

Background 

Today's routing schemes are not adequate for the needs of the current Internet 

Within an ISP, routes today are picked based on a connectivity graph by assigning 
"costs" to the links in the graphs. This allows for route construction based on some sort of single-
dimensional optimization, but does not allow for additional considerations such as load balancing. 
So routing today is combined with a second tool called traffic engineering, which starts with the 
real connectivity graph and produces virtual links with costs, on top of which the routing 
algorithm runs. 

Across ISPs, BGP finds routes based on bilateral parameters and AS pathlength. This is 
not adequate to express or implement the desired range of business relationships. There is no way 
to express these relationships directly, so they expressed indirectly, using these bilateral 
parameters and (again) link weights on the routing algorithm internal to the connected ISPs.  

The present Internet uses a very simple routing framework, that is based on single-path 
routes and no load-based dynamics. There are wide-ranging opinions about how to design routing 
for a FI, which bring into question essentially all of the design decisions of the present Internet. 

• POV: One view is that we should compute multiple routes and let the user select 
among them, or let the user compose preferred routes using a lower-level 
connectivity graph. Reasons for this POV include creating a competitive market 
for forwarding, and constructing routes with special QoS. 

• POV: Another view is that routing should be in some degree random. Random 
dispersion of traffic across a large number of feasible paths can eliminate the 
need for traffic engineering (mentioned above) and eliminate certain sorts of DoS 
attacks on a link. 

• POV: Another view is that by defining a new cost metric, we can find single-path 
routes that deal with some of the issues discussed here, including security attacks 
and dynamic congestion.  

While the Internet today computes a single set of routes that are intended to provide 
reasonable support for a range of services, the work on overlay networks suggests that it may be 
useful to have different routing algorithms for different needs. 

• POV: One view is that what we today call routers should just do forwarding, and 
there should be multiple route computation services that compete to offer the best 
routes for particular needs. The Internet should not support a single routing 
algorithm as part of its architecture (except perhaps for a low-level "boot" routing 
to deal with system initialization and fault recovery).  



 52 

• POV: To facilitate this point of view, and for a variety of other reasons, there is 
interest in moving the route computation algorithm out of the routers, and off the 
data path, and into a somewhat centralized route computation service. This 
approach raises a number of very interesting challenges having to do with 
resilience, response to failures, boot-strapping, etc. 



 53 

13. Transport protocols 
[This section incomplete in this version.] 

The default transport protocol in the Internet today is TCP. While in many respects, TCP 
works very well, the previous discussions have indicated a number of ways in which a FI will 
require a different set of features in its transport protocol.  

Initial setup: The proposed design calls for the ability to authenticate and authorize a 
communication as early in the interaction as possible. A FI transport should be able to do 
a “one-packet” verification so that no multi-packet state need be maintained. This will 
imply some limitations, so that credentials are defined to fit into one packet and no multi-
packet challenge-response is required, at least for the first tier of validation. 

Intermediate state re-establishment: The set of considerations proposed here suggest 
more dependence on intermediate nodes, which perform functions such as per-packet 
authorization. If these nodes contain soft state that can be lost during the course of a 
communication, the transport protocol will have to be able to transition out of an 
“established” state and back into some sort of “authorization” or “state establishment” 
state, which was not a design consideration for TCP. 

Connection handoff: If security services such as authorization are performed by an 
intermediate node, then once the action is completed, the connection will have to be 
handed off from the intermediate node to the final node. The transport protocol should be 
designed so that one end of the connection can be handed off during a communication 
session without disruption.  

Network service query: Previous discussions have suggested that a application layer 
should be able to query the network to determine the sort of transport features that will be 
available, as opposed to the current “try it and see” model of the Internet. 

Explicit API:  The network today does not standardize the API to the transport layer, but 
the socket interface is the default standard. This API mimics the semantics of TCP, with 
interactive exchange of byte streams. Since I have proposed that many applications may 
want to use a higher-level and more general service model that includes staged delivery, 
the FI should include a specific proposal for the preferred service API to be used by 
applications to obtain network (transport) services. The linkage between the service 
provided by the interactive transport protocol and the application service invocation 
model should be decoupled.  

13.1. DTNs 
The previous discussion focused on an interactive protocol perhaps similar in many ways 

to TCP. However, I have proposed that a DTN service may be a preferred mode of operation for 
many applications, since it will cover a wider range of network conditions. All of the 
considerations in this document (e.g. security, economics, management and the like) must be 
applied to the design of a DTN service, in the same way as to an interactive service that is TCP-
like.  

Division of responsibility: It is possible that if a DTN service is built “on top of” an 
interactive transport service, that some of the issues can be localized to the transport. This point 
of view, however, seems speculative to me at this point.  



 54 

Variation of service: As discussed below in the section on application design patterns, 
many applications will want to vary their patterns of communication in response to the context in 
which they find themselves operating. The intersection of that objective and the use of a DTN 
delivery mode seems poorly explored at this point. The DTN service itself may well need to offer 
a range of operating modes, either by incorporating them internally or through the deployment of 
competing DTN services that offer different feature sets.  



 55 

14. Packet header design 
[This section very incomplete.] 

The discussion on architecture design principles pointed out that the design of the packet 
header plays a strong role in the overall expressive power of the architecture. In general, this is so 
because the information in the packet defines the range of “input data” that can be provided to the 
devices that can be found in the network along the path from the sender to the receiver. These 
devices are not just “forwarders”; they can execute a wide range of Per Hop Behaviors (PHBs) 
that are devised and deployed in the network. As well, the format of information in the packet 
will define the range of addressing options that can be included in the header (e.g. by the source) 
to arrange PHBs in a particular order.  

The discussion of state establishment within the network also suggested that it may be 
worth having more than one sort of packet header—one an efficient format that presumes pre-
established state, and the other a more expansive and expressive format used to establish state.  

Intentional delivery: IP header options are a failed attempt to increase the expressive 
power of the packet header. They seem to have failed because they cannot be processed 
efficiently by the forwarding engine in the router, and because each such forwarding engine must 
parse them to see whether anything is relevant. Based on that observation, any such mechanism 
should be designed to be part of what I called intentional delivery: that is, if some additional 
information is included in a packet as input to some PHB, the destination address in the packet 
should be the address of the machine hosting the PHB. The design of the additional information 
should not require the inspection of that information “in passing” by all the forwarders along the 
path.  

14.1.1. DTNs 
As noted in the previous discussion about transport protocols, all the analysis at the 

packet level should be repeated at the level of any DTN service. The expressive power of the 
delivery unit (bundle or the like) will be an important consideration in the design of the DTN 
service. 

 



 56 

15. Application design patterns 
In various parts of this document, I have suggested that the description of a FI must 

include guidance to application designer—application design patterns.  Many applications will 
not be designed assuming end-to-end transport connectivity, but will instead expect to 
communicate via intermediate relay points that provide services, either application-specific or 
intended to support some class of applications. 

Evidence for this assertion can be seen in the trend of application design today, and even 
in the past (email). Some applications, such as SIP-based services, are mixed in design, with a 
relayed signal channel but sometimes direct data paths. Some, like IM, most multi-player games, 
or Web-based interaction, are always intermediated by a server. 

• POV: It is possible that all applications may work in this way in the future, and 
the need for universal end-to-end transport connectivity will vanish. 

• POV: Given that a preferred service platform could be located anywhere in the 
FI, the fact that applications depend on intermediate services does not reduce the 
need for "universal connectivity". The ability of an end-node to establish a 
connection to any other willing point of its choosing is central to the balance of 
power in the multi-stakeholder tussle space. 

• POV: If relaying is the norm, then extreme care must be taken to be sure that it is 
trivial to deploy a new service platform in support of any new experimental 
application, or we will materially harm the utility of the FI as a platform for 
innovation. 

• POV: Given that point, it is critical that we conform to the principle of Tussle 
Isolation, and make sure that the industry that provides application-level service 
platforms is highly competitive, and not restrictive.  An example of this point 
today is the rich space of Web hosting services. It is no longer necessary to run 
your own Web server to offer Web services. The rich space of providers makes it 
easier to host casual Web content on third-party service than to "do it yourself". 
The presence of this set of providers facilitates innovation in Web content, rather 
than inhibiting it.  

• POV: The goal of application-independent universal connectivity, if we pursue it, 
is at odds with the possibility that different parts of the network (e.g. a region 
tailored to low-cost devices such as sensors) might have a different sort of native 
scheme for multiplexing and transport.  It will be highly desirable, if such 
differences exist, that there is at least some way to create a connection between 
nodes in different such regions without the assistance and consent of the 
facilities-based providers. 

15.1. Variation in behavior 
Many of the examples proposed earlier concerning application design patterns reflect the 

proposition that applications will not always “work the same way” but will operate using different 
patterns of communication among assembled parts depending on the circumstances in which they 
are used. An important justification for the development of design patterns is to help the 
application designer recognize the range of drivers that might cause the application to modify its 
behavior based on context, and to built into the applications suitable responses to these drivers. 



 57 

In the following sections, I collect together the various discussions of contextual drivers, 
and how variation in behavior properly responds to these drivers.  

15.1.1. Security 
Using trusted components in the network: While the general purpose end-node will 

almost certainly be complex enough and general enough that it will have residual security 
vulnerabilities, it should be possible to build more simple, fixed function devices that are more 
secure. These can be used to protect the insecure end-node by “outsourcing” or delegating 
secutity-critical tasks to these machines. Today, the firewall illustrates this approach. In the 
future, a wider range of such devices, some perhaps application-specific, can be used to enhance 
security. The use of these devices, and the pattern of such usage, may vary depending on the 
specifics of the particular context, including the degree of trust among the parties.  

Use of encryption:  If communicating parties trust each other, they may prefer to encrypt 
their communication to enhance confidentiality and integrity. If communicating parties do not 
trust each other, one or the other may insist on communication in the clear to facilitate inspection 
and cleansing of the data by a trusted third party. (One could imagine still encrypting the 
information as it crosses the public Internet, but if the third party is to decrypt it to inspect it, it 
may not be desirable for the encryption to be based on the private key of the recipient, because 
that key would then have to be delegated to the trusted third party, which seems like more trust 
than necessary.) 

Determination of identity: In order to reason about trust, the communicating end-nodes 
need to have sufficient ability to identify the other parties to the communication. It does not make 
sense to reason about the degree of trust one should place in an unknown party. So if an 
application is being used in a context where there is a high degree of variation in the degree of 
trustworthy-ness of the other parties, some sort of scheme for identity and authentication will be 
required. This step may be delegated to a trusted component. I also argued that there should be an 
identity confirmation among the communicating parties to detect redirection attacks launched by 
the network.  

Protection from infiltration: Means for protecting an insecure node from infiltration 
include determining the identity and degree of trust that should be placed in communicating 
parties, checking (or not) incoming data, blocking (or not) communication from unknown 
parties), blocking attempts to invoke non-existent services and the like.  

Recognizing the intention of preferred actors: In a situation where the interests of the 
various actors are not aligned, it will be helpful if the application can be configured in a secure 
way to reflect the interests of the actors whose interests should dominate. For example, consider 
the situation where information is being transferred out of a machine. In one case, this may be 
exfiltration, or theft. The machine hosting the content may have been infiltrated, so it is no longer 
to be trusted as correctly representing the interests of the owner of the information. In this case, 
the larger context might be configured so that an “export permit” of some sort is required from a 
separate authorization service before the network will permit the transfer. In another case, the 
owner of the information may have the goal of widespread free dissemination of the information 
despite the attempts of censors. In this case, the larger context might be the use of signed 
information (to allow recipients to confirm its authenticity), and the posting of the information 
into p2p delivery systems and the like. The simple act of “transferring information” will call for a 
wide range of communication patterns, and it is important both that the designers contemplate 
this range of patterns, and that they arrange for the correct party (in this case presumably the 
owner of the information) to pick the pattern.  



 58 

15.1.2. Availability 
As I argued earlier, a general theory of availability requires at least these three parts: all 

critical components must be replicated, preferably in a heterogeneous way, it must be possible to 
detect when a component has failed, and it must be possible to “fail-over” to a different instance 
of the service. In addition, I argued that because certain (though not all) failures can be detected 
only by the end-nodes invoking the service, that detection and failover must be performed by the 
end-node as well as other components of the service. These various objectives will impose 
requirements on the communication patterns of applications. In particular, for applications in low-
criticality circumstances, the deployment may not include replication, even though the structure 
supports it, so the components are in a implicit fate-sharing relationship. In high-criticality 
contexts, heterogeneous replication and robust failover will be essential.  

Detection of failure: It may seem as if detection of failure is obvious. For simple “fail-
stop” events, this is indeed so. But for more complex failures (e.g. partial or malicious), detection 
is complex. And if the “failure” is intentional (one node blocking a malicious action by a second 
node), the goal of the defending node is to prevent any sort of diagnosis or repair, since that 
would just facilitate the attacker. Finally, if the application does not run in interactive time but in 
a staged mode, even a “fail-stop” event may not be detected. Email provides a good illustration of 
these considerations. If one mail transfer agent (MTA) attempts to connect to another and finds 
that it does not respond, there are responses designed into the mail architecture, including 
queueing mail for later delivery, and using MX records to failover to a different MTA. But if an 
MTA receives a piece of mail, acknowledges that it received it, and then drops it, this sort of 
failure is not detected. There is no end-to-end or multi-hop error check that can detect such a 
failure. If the drop is because the mail is deemed to be spam, it is the intention of the node doing 
the dropping that the event occur “silently”. There is no signal back to the sender. So the design 
of mechanisms for detecting failures must take into account a number of issues, including the 
adverse interests of the various components that make up the service.  

Failover: Failover requires at a minimum that the node detecting the failure know about 
alternative instances of the service. This information could be obtained from a Service Naming 
System, just as they can be obtained today from MX or SRV DNS records. Again, there is a 
security issue, as discussed in the section on addressing. If the service being invoked, to protect 
itself from attack, positions itself behind an anycast address so that the instances cannot be 
distinguished, then a different sort of failover must be designed. Some sort of implicit “give me 
another one different from the other one” is all that will work, since the invoker has been blocked, 
by intention, from having explicit names for the different instances. So there may be more than 
one failover pattern within an application.  

15.1.3. Performance 
We see in the Internet of today may examples of variation in communication patterns as a 

way to enhance performance, mostly related to replication or caching of content near the 
consumer. 

Measurement of network service parameters: The original vision of Internet 
applications was a two-party end-to-end communication. In this context (where the location of the 
end-points is more or less fixed), the application was expected to deal with variation in end-to-
end performance by adapting to what was encountered at the moment. However, if the application 
has replicated service components that are "in the application", the application may wish to pick 
among the replicas based on observed performance. (For example, a CDN may wish to pick 
among possible content servers based on throughput to the intended end node.) Under these 
circumstances, it is necessary for the application to have some pre-computed estimates of network 
performance to allow efficient selection. Today, this is done by having the application itself 



 59 

gather this information in the background.  In a FI, it may be desirable to have the network itself 
gather and make available some baseline performance metrics to relieve each application from 
the burden of measuring these separately.  This objective will require the definition of these 
baseline metrics, and a new API to retrieve them. 

15.1.4. Management 
There are very few applications today that are built out of parts operated by distinct, 

independent actors. Email is a notable exception, with MTAs operated by most ISPs. Peer-to-peer 
systems are another exception, with their extreme degree of decentralization to end-nodes. The 
email system operates with a very low level of cross-domain coordination and management. Most 
mail agents are independently and statically deployed by the various operators, and there are few 
mechanisms (aside from MX records, as discussed above) to deal with failures, application-level 
dynamics and the like. Modern P2P systems, in contrast, integrate into their design highly 
complex schemes to deal with nodes that come and go, malicious nodes, dynamics of network 
and node performance, and the like. Most of this is automated, so that the application, taken as a 
whole, runs without much human intervention. Interestingly, at the present time, we do not see 
important examples of more “managed” applications (e.g. ones that might be deployed by 
commercial operators) that take advantage of this sort of automated management and control. If 
the goal of an application is to facilitate the easy deployment of parts by different actors, we 
should look for management patterns that perhaps resemble what modern P2P systems do, where 
there is perhaps as much attention to the processes of configuration and availability as to the 
actual data transfer.  

Just as the early Internet designers gave perhaps insufficient attention to the “network-
network interface”, where ISPs and other transport providers interconnect, modern application 
designers may want to think about the “provider-provider interface”, where the service elements 
provided by different actors interact.  

15.1.5. Economics 
The internal structure of applications—their way of deploying and using service 

components—is often a reflection of the economic motivation of the designer/operator. Many 
commercial applications often have a critical component that is conceptually centralized (while it 
may be physically replicated and distributed, the operator maintains exclusive control over it and 
access to it). This component allows the operator to maintain control over the application, and 
often to reap financial benefit from it. Many multi-player computer games and virtual worlds, 
web applications such as Facebook or eBay, and many instant message systems and the like look 
like this. (Of course, this “central” component plays other roles, such as imposing the desired 
behavior on participants with adverse interests, such as cheaters in multi-player games.) On the 
other hand, services are sometimes highly distributed (for example Content Delivery Networks), 
both for performance reasons and to attempt to dominate a market. For any given application, the 
designer must ask whether one of these patterns or both of them should be an option within the 
design.  

15.1.6. Social and regulatory considerations 
Application designers must take account of a very significant tension as they consider 

social and regulatory issues. On the one hand, application designers may be motivated to 
encourage the global uptake of their application by allowing variation of how it operates in 
different cultures and regimes. They may choose to avoid “baking in” specific norms such as a 
particular preference for privacy or open access. On the other hand, the designers may choose to 
do the opposite, and identify behaviors that are deemed inappropriate in most contexts (perhaps 
“spam-like” behavior) and design them out to the best of their ability. The balance between a 



 60 

sensitivity to variation in local norms (in which case the application will work differently in 
different contexts) and a desire to impose fixed behaviors is a critical set of decisions.  

15.1.7. Network service model 
The network service model on which most applications depends today is the packet-level 

interactive exchange of bytes provided by TCP. However, in the future a staged or DTN model 
may prove more general and equally applicable. Application designers will have to decide 
whether to design applications that can adapt to a high degree of variation in end-to-end latency 
(ms. to minutes) or to only operate in part of this range.   

API for application transport 

The design of the Internet today does not formally standardize the API to its default 
transport service (TCP). In fact, the socket interface is almost universally seen as the application 
API, but this fact is not anywhere in the Internet standards. Since this informal interface directly 
mimics the semantics of TCP, this leads the application designer to assume that the application 
should be designed to expect this service. In fact, many applications could work over a much 
more general interface, which could be mapped both to a interactive stream and to a relayed 
message service. If the architecture of a FI explicitly included the specification of a general 
higher-level service interface, this would guide application designers to think about how to design 
applications that are more tolerant of service diversity than they are today. 

15.1.8. Summary 
These patterns transcend specific application objectives. They apply to broad classes of 
applications.  Many of these considerations are complex,and most application designers will 
benefit from guidance as to how to think about and implement them.  This guidance is what I 
have been calling design patterns. 

In many cases, the factor that will determine which pattern is preferred is assessment of which 
actors are most trustworthy. So management of trust, and by extension identity, must be native 
facilities. In many cases, it will be beneficial if trust assumptions can span applications. So tools 
for management of identity and trust should not be designed to be “inside” individual 
applications, but should be designed as a common service. On the other hand, there should not be 
just one scheme for identity and one scheme for developing and tracking trust. There should be 
many schemes, and the selection among time will be part of the variation that the application 
design must encompass.  

 



 61 

16. Summary of architecture components. 


