
Feature Extraction from Optimization Data via
DataModeler’s Ensemble Symbolic Regression

Kalyan Veeramachaneni1, Katya Vladislavleva2, and Una-May O’Reilly1

1 CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 CentER, University of Antwerp, Belgium

katya@vanillamodeling.com kalyan@csail.mit.edu unamay@csail.mit.edu

Abstract. We demonstrate a means of knowledge discovery through
feature extraction that exploits the search history of an optimization
run. We regress a symbolic model ensemble from optimization run search
points and their objective scores. The frequency of a variable in the mod-
els of the ensemble indicates to what the extent it is an influential feature.
Our demonstration uses a genetic programming symbolic regression soft-
ware package that is designed to be ”off-the-shelf”. By default, the only
parameter needed in order to evolve a suite of models is how long the
user is willing to wait. Then the user can easily specify which models
should go forward in terms of sufficient accuracy and complexity. For
illustration purposes, we consider a common design heuristic in serial
sensor sequencing: “place the most reliable sensor last”. The heuristic is
derived based on the mathematical form of the objective function that
lays emphasis on the decision variable pertaining to the last sensor’s deci-
sion variable. Feature extraction on optimized sensor sequences indicates
that the heuristic is usually effective though it is not always trustworthy.
This is consistent with knowledge in sensor processing.

1 Introduction

We are interested in ”knowledge mining from optimization data”. Our strategy
is to use genetic programming symbolic regression to model optimization search
points and their objective scores. The models are alternate explanations of the
relationship between the optimization’s decision variables and the objective func-
tion. In this paper, through modeling and model analysis, we propose a means
of learning about the key players among the decision variables involved in an
objective function. This mined information can be exploited in systems design.

The capability of symbolic regression via genetic programming has been con-
tinuously strengthened since genetic programming’s inception. Much progress
has been achieved in making it more accurate and reliable [1,2]. The technology
has matured to the point that, for our knowledge mining, we use an ”off-the
shelf” and virtually parameterless software package called DataModeler .

We illustrate our approach via a problem in distributed sensor networks:
sensors must be chained serially to minimize the error in network prediction. The
sensor network must detect the presence (or absence) of a binary phenomenon

(“smoke”, “no smoke”). The solution requires two coordinated determinations:
the best sequence to chain the sensors, and, the internal decision thresholds
of each sensor in the chain. Because sensor optimization is costly in terms of
the objective function, and because the coordinated determination requires bi-
level search, practice sidesteps optimizing. Instead, mathematical analysis, made
with assumptions of very simplified sensor behavior (i.e. independent sensor
observations), yields a heuristic: “place the most reliable sensor last” [3].

We examine this heuristic first by learning from the optimization data. We
ask: Is it the case that the last sensor’s threshold is the key driver in the objective
function and hence the best sensor is placed there?, Can we identify the position
in the sensor sequence whose corresponding decision variable is the key driver
of the error?, and What happens when the sensors’ observations are correlated?.
Next, we match up what we have learned from the data with sensor network
design practice. When the situation is simple: the sensors are independently
distributed, a simple analytic expression of the error can be mathematically
derived. It is straight forward to identify the key variable driving this expression.
Our methodology should indicate the importance of this same variable. Once
we demonstrate the efficacy of our approach on simple sensor network, we set
up the cases of correlated sensors. Theoretically, the heuristic is not applicable
when sensor observations are correlated. However, it may frequently do quite
well depending on the precise sensor error characteristics and correlations.

The paper is organized as follows: The details of sensor fusion, sensor perfor-
mance modeling and sensor network decision error are fairly complicated. Thus
we first frame how we proceed with our illustrative problem in Section ??. Our
intent is that this framing provides the reader with our motivation in describing
the essential details of the serial sensor network problem as provided in Section 2.
Section 3 gives the details of the ParetoGP based ensemble design methodology
followed by description of the design framework of the learning from optimiza-
tion data methodology. Section 4 presents the results on specifically designed test
problems in serial sensor networks. Conclusions and future work are presented
in Section 5.

2 The Serial Sensor Network Problem for Binary
Phenomena

Consider the example of smoke detectors placed in a room. In such an environ-
ment with a binary phenomena, sensors collect measurements from their spatial
observation region. The measurement is information to the network decision of
whether the phenomena (smoke or no smoke) is present or absent in the room.
The decision must be reached collectively because each sensor is noisy: some
measurement values will be sensed in both the absence or presence of the phe-
nomena.

All sensors can transmit a measurement to a central decision point or they
can pass a measurement onward in a chain that allows all measurements to
eventually reach the decision point. This latter case is termed “serial” and is the

H0/H1

x

uh (, x)

Fig. 1. Decision making process at the sensor

case we consider. However, the bandwidth required to transmit measurements
usually prohibits sending them. Alternatively, serial sensors transmit their de-
cision about the absence or presence of the phenomena. This requires only one
transmission bit. Each sensor uses a threshold λ to arrive at a decision ui using

h(λ, x) =

{
1 if x ≥ λ
0 if x < λ

(1)

Figure 1 shows the decision making process at the sensor. When arranged in
serial network, each sensor reaches chooses a threshold for the h(λ, x) function
based on the decision from its neighbor, and arrives at its decision by consulting
its measurement. This process is illustrated in Figure 2.

While this saves bandwidth, it can degrade the accuracy of the system due
to loss of information at each sensor. In the serial case, the accuracy can be
regained by careful design in two ways: 1) setting up the sequence of the sensors
in terms of ”who reports to whom” and 2) designating the thresholds each sensor
uses to make a decision.

u
i-1

H0/H1

Xi-1

h (, x)H

H0/H1

Xi

h (, x)

11iu

i

01iu

i

ui
{0,1}

H0/H1

Xi+1

ui+1
h (, x){0,1}

0

1

iu

i

1

1

iu

i

Fig. 2. Illustration of a decentralized serial sensor network

Figure 2 shows a decentralized sensor network model. All sensors observe a
phenomena H and arrive at a measurement regarding the phenomena denoted
by xi. The decision module Di applies a threshold to its observation and arrives
at a decision ui. Under these conditions sensors are said to be performing a
binary hypothesis testing problem. The sensor makes a decision ui based on its
own observation xi and the decision transmitted to it from the previous sensor
denoted as ui − 1.

Each sensor, except the first, has two thresholds λi = [λui−1=0, λui−1=1] that
it uses to apply to its measurement and arrive at a decision. λui−1=0 is applied if
the incoming decision from the previous sensor is ’0’, i.e., ui−1 = 0, otherwise the
threshold λui−1=1 is applied. Hence inherently each sensor fuses its information
with the information from the previous sensor.

The sensor network can make a (system-wide) erroneous decision in two
ways: It can issue a false alarm (smoke when no smoke present) or it can miss
raising the alarm (no smoke when smoke present). These errors can be quantified
probabilistically as PFA and PM respectively:

PFA = P (H0)P (un = 1|H0), (2)

and
PM = P (H1)P (un = 0|H1) (3)

Above P (Hh) is a priori of occurrence of Hh, and P (u0 = d|Hh) is the probabil-
ity of final decision being d when hypothesis Hh is present. Notice the mismatch
between the h and d in the two equations. These define the errors. The goal of
sensor network design is to minimize these two errors. Both the objectives are
conflicting and are usually tied into a single objective function called Bayesian
risk given by

R = CFAPFA + CMPM (4)

where CFA is the cost of false alarms and CM is the cost of misses. Their sum,
CFA + CM is set to a constant value c. Each sensor’s thresholds play a role in
this objective function. We will derive the error expressions for 3 sensor problems
with different sensor error models in Section 2.2. [4] provides additional details
and information.

The next section proceeds to describe different sensor models in terms of
sensor error. We use this quantity when we refer to the sensor’s reliability. It
allows us to state that one sensor is more reliable than the others. We measure
reliability by the area under a sensor’s ROC curve. Another ROC curve property
- concavity is a way of further differentiating kinds of sensor reliability and
captures sensor error interactions. Our test problems are further differentiated
by this property.

2.1 Sensor Error Models

Using available data sets, it is possible to model a sensor’s measurements under
the phenomena’s absence or presence. These models are generated and used by

the system designer. A measurement x, is a random variable in the model and
variations in x are transformed into a probability density function. For example,
one can assume the random variable follows a Gaussian distribution under both
H0 and H1. Figure 3 shows the distribution of x given H0, i.e. p(x|H0) and
x given H1, i.e., p(x|H1). The threshold is shown by a vertical line and can be
varied affecting the two errors known as probability of false alarm and probability
of miss. The two errors for given threshold λ of a sensor i are given by

pfa
i =

∞∫
λ

p(x|H0), (5)

and

pm
i =

λ∫
−∞

p(x|H1). (6)

A sensor’s decision performance is characterized using a Receiver Operating
Characteristic (ROC) curve which is a plot with pifa on the x-axis and 1 − pim
(labeled as probability of detect) on the y-axis. The higher the curve, the lower
the errors the sensor makes. A sensor’s reliability hence can be quantified using
the area under this curve.

For our illustration, we further differentiate sensor reliability based on the
concavity of an ROC curve. We form sensor suites for our test problems that
either contain strictly concave ROC curves or have non-concave ROC curves. We
assume sensors observations to be normally distributed (Gaussian). This implies
that a sensor can be characterized by four parameters µ0, µ1,σ0, σ1, where µh is
the mean for the normal distribution under hypothesis h and σh is the standard
deviation under hypothesis h.

False alarms
Missed
detections

pfapm

x

p
d

f

Fig. 3. A Sensor Model (left) and its Receiver Operating Characteristic (ROC) per-
formance curve (right).

Using ROC curve area to characterize the magnitude of sensor reliability
and ROC curve concavity to further characterize relative sensor reliability, it is

possible to identify a “most reliable” sensor in each of our test problems and
place the most reliable sensor first or last in the sequence. The thresholds of
this sequence are now ready for optimization where the optimization objective
is minimum decision error. In the next section we provide the decision error
(which is a function of sensor reliability models) calculation.

2.2 Threshold Optimization

There are 2N − 1 thresholds for an N sensor problem. For the 3 sensor problem
there are 5 thresholds. Let pi represent the false alarm probability corresponding
to a threshold. Table 1 shows false alarm probabilities and their corresponding
order in the 3 sensor sequence.

Table 1. Notation for Thresholds and False Alarm Probabilities for 3 Sequenced Sen-
sors

Threshold PFA Sequence Order

λ1 p1 1

λ2 p2 2

λ3 p3 2

λ4 p4 3

λ5 p5 3

We derive these errors for a simple three sensor problem under different com-
binations of assumptions with respect to independence and correlation. When
we optimize a sequence of sensors, we use the appropriate error calculation.

Sensors with Independent Observations When sensors are assumed to re-
port independent observations, the estimate for system wide probability of false
alarm is

PFA = p5(p3(1− p1) + p2p1) + p4((1− p3)(1− p1) + (1− p2)p1) (7)

Note that all the values pi are probabilities and hence are less than 1. We can see
from the above equation that p5 and p4 are multiplied on the outermost bracket.
Hence, the lower the values of p5 and p4, the better is the performance of the
system. Also, p4 and p5 are associated with the last sensor in the sequence, hence
it is fair to assume that the last sensor plays an important role in the objective
function. One should note that the threshold corresponding to p4 is typically
lower than the one corresponding to p5. This implies that p5 <<p4.

The expression uses false alarm probabilities that depend on the sensor error
properties and where the thresholds are placed. Thus, when we need to analyze
its behavior in terms of variable influence, we must do so under the different
sensor error properties we described in Section 2.1:

– Independent: Strictly Concave ROC Curves This case implies that
for any pair of sensors, their ROC curves do not intersect. For the simple
Gaussian case this is true when σ0 = σ1 and this condition holds true for all
the sensors. Under this case, the better sensor of the three will have pairs
of (piFA, p

i
M) that are lower than the other two and placing it as the final

sensor in the sequence achieves lower error.
– Independent: Non-Concave ROC Curves For a simple Gaussian case,

non-Concave ROC curves exist when the standard deviation under H0 and
H1 is not the same. Under such conditions the decision as to which sensor
should be placed at the end is not straight forward and depends on several
factors including the degree of concavity in the ROC curve.

Sensors with Correlated Observations For sensors with correlated observa-
tions the error expression changes and gets much more complicated. It involves
evaluation of multiple multivariate integrals. For the three sensor problem the
PFA is summation of six multivariate integrals and is calculated as follows. Let
{t1, t2, t3, t4, t5} be the five thresholds for 3 sensors. The system wide probability
of false alarm is given by

PFA =

∞∫
t5

∞∫
t3

t1∫
−∞

f(x1, x2, x3|H0) +

∞∫
t5

∞∫
t2

∞∫
t1

f(x1, x2, x3|H0)

+

∞∫
t4

t3∫
−∞

t1∫
−∞

f(x1, x2, x3|H0) +

∞∫
t4

t2∫
−∞

∞∫
t1

f(x1, x2, x3|H0), (8)

where f(x1, x2, x3|H0) is the joint density function under hypothesis H0.
This complexity is precisely why the heuristic is used. It is difficult to sepa-

rate the multivariate integral into a multiplicative term of three separate terms
of probability to determine where to place the most reliable sensor before opti-
mizing the thresholds.

However, when following a heuristic, one should be careful about when it
might fail. Our knowledge mining of threshold drivers of error for a sequence
should aid the heuristic when the objective function is not transparent. We can
model the optimization data archived for a small set of iterations. Using our ap-
proach we can identify the key variable, i.e. λ. We can then identify the position
in the sequence and place the most reliable sensor there. However, decision as to
which sensor to place at this position is dependent on individual sensors relia-
bility, reliability differential between the sensors in the network, and correlation
between the sensors.

3 Modeling Optimization Data and Feature Extraction

At this point we have described the serial sensor problem as that of optimally
sequencing sensors and setting their thresholds to minimize network decision

error. We have described sensor error models which allow us to set up test
problems where we know the most reliable sensor and can place it in the first or
last position. We have stated the decision error function for each test problem
in terms of independent error or correlated observations. Let us now proceed to
consider how post-run optimization data is modeling and analyzed.

Figure 4 shows how we model with optimization data. A particle swarm
optimization [5] stores the points it generates into an archive and the modeler
accesses the archive.

Optimizer
Ensemble Based

Symbolic Regression Archive for
Modeling

Extract
Features

DataModeler

Knowledge

Fig. 4. Knowledge Mining Integrated with Optimization

Symbolic regression by GP learns both model structure and model parame-
ters via an integrative process that adaptively searches for a model of minimum
error. In pareto-GP [1, 6–13], the conventional GP algorithm is extended to
optimize two objectives simultaneously. The primary objective is high model ac-
curacy and the secondary objective is low model complexity. High complexity is
synonymous with lack of generality because highly complex models over-fit the
data. The multi-objective algorithm derives a suite of models that trade off pre-
dictive accuracy with generality. From the resulting suite of models, an ensemble
that meets some combination of accuracy and complexity thresholds is selected.
Feature selection proceeds by examining each model and accumulating the fre-
quency of a decision variable appearing within the model set. Figure 5 shows the
extraction of the key variables via the variable presence table in DataModeler .
This form of “ensemble-based” symbolic regression supports the principle that
no plausible model structure should be eliminated from explaining the input
data.

DataModeler is an “off the shelf” add-on for Mathematica [14, 15] for en-
semble based symbolic regression with genetic programming. It has a general
purpose design. It generates a model ensemble for a user supplied set of data
points presented in table form via a file name. To the user it outputs a suite
of models that differ in their accuracy and complexity. To obtain the model
suite, the user only has to tell DataModeler , first, in seconds, how long she is
willing to wait and how many independent runs should be evolved. After that
time interval, the user accesses two DataModeler built-in functions that allow a
subset of models to be 1) down-selected by accuracy and complexity thresholds
and 2) examined for variable presence frequency. Variable presence frequency
provides the measure of the significance of the variable that we use. Complexity
is by default defined as the quantify of subtrees nodes belonging to each node of
the expression but can be specialized by the user. The software also embodies a

concept of robustness for modeling - if you can’t find accurate models quickly,
it is unlikely you will find them with more effort - you can only expect a slight
fine tuning of accuracy. Many option defaults are set “under the hood” but they
are accessible to the user.

Particle Swarm
Optimization

Archive

{
1
, p

fa
, , P

FA
}

{
2
, p

fa
, , P

FA
}

{
1000

, p
fa
, , P

FA
}

{
OPT

, p
fa
, , P

FA
}

Pareto-GP

DataModeler

Model
Ensemble

g
1
(p

fa)
) P

FA

g
2
(p

fa)
) P

FA

g
k
(p

fa)
) P

FA

Variable
Presence Count

Variable Presence Table

p
fa
(i) g

1
g
2

g
k %

1 0 1 21p
fa
(1)

p
fa
(2)

p
fa
(n)

…

…

99.5

…

82.3

1 1 1

Fig. 5. Knowledge mining from optimization data and feature extraction for the sensor
network problem

4 Threshold Drivers in Serial Sensor Network Design

Having (finally) set up our problem domain, described the means by which op-
timization data can be modeled with ensemble based Pareto-GP and described
how features can be extracted from the models to indicate variable drivers, we
now experiment with our test problems and discuss our findings. Recall that
our goal is to examine the match between the heuristic and the knowledge we
learn from the optimization data. The heuristic refers to the “most reliable”
sensor. Experimentally we design a number of test problems involving 3 sensors,
the minimum quantity sufficient for illustrative purposes. Test problems differ in
terms of how the sensor are modeled with respect to sensor-to-sensor correlation
and whether individual sensor error performance is independent.

In each test problem, two sensors, named A and B will have equal reliability
and one sensor, named C, will be either more or less reliable than both of them.
We name our test problems “Independent-Concave”, “Independent-Convex” (re-
ferring to the ROC curve) and “Correlated”. Gaussian models are assumed under
both H0 and H1. Each sensor under this assumption is characterized by µ, σh,
where h = {0, 1} corresponding to hypothesis ’0’ or ’1’ and µ is the mean and σ

is the standard deviation. We optimized all sequences’ thresholds and determine
for which sequence the decision error is minimal.

For each threshold optimization problem we execute a particle swarm opti-
mization (PSO) for 50 iterations and collect as model decision variables the 5
probabilities of false alarms corresponding to the thresholds and, as the response
variable, the corresponding system wide probability of false alarm. We used a
swarm size of 20, hence there were 1000 points after 50 iterations. The points
were then passed to the DataModeler. We specified only a compute budget of
300 seconds and 5 runs to generate the models. The model set generated in
each run is then down-sized under an accuracy threshold. We then ask Data-
Modeler to compute the variable presence analysis on the resulting models. This
methodology is illustrated in Figure 5.

4.1 Test Problem 1: Independent-Concave

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
A
=0.76025

False Alarm Probability

D
et

ec
tio

n
Pr

ob
ab

ili
ty

Receiver Operating Characteristic Curve

S
B
=0.76025

S
C
=0.80193

3 Sensors ’H
1
STD= 2.5

Sensor A
Sensor B
Sensor C

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
A
=0.76025

False Alarm Probability

D
et

ec
tio

n
Pr

ob
ab

ili
ty

Receiver Operating Characteristic Curve

S
B
=0.76025

S
C
=0.63816

3 Sensors ’H
1
STD= 6

Sensor A
Sensor B
Sensor C

(b)

Fig. 6. Test Problem 1: Sensor suite comprised of sensors with concave ROC curves.
Sensors A and B perform identically well and the area under their ROC curves is 0.76.
We generate two cases by controlling C’s standard deviation under both H1 and H0.
Problem 1(a)’s ROC curves are shown on the left hand side. C’s area = 0.80. All 3
sensors’ H1 and H0 have a standard deviation of 2.5. For Problem 1(b), ROC curves
are shown on right hand side, C’s area = 0.63 and sensor C’s standard deviation under
both H1 and H0 is increased to 6. In 1(b) C is not as reliable as A or B.

We use two different characterizations, 1(a) and 1(b), of sensor C’s perfor-
mance relative to A and B by increasing the standard deviation of all 3 sensors
under both H0 and H1 while holding the means constant. This keeps the ROC
curves concave. Figure 6 shows the ROC curves and areas. In both these charac-
terizations, we observed that placing sensor C last (rather than first or middle)
in the sequence results in minimal decision error. In the case where C is less
reliable, the error differentials between placing C last, middle or first are almost
inconsequential.

After optimization, in both test problems 1(a) and 1(b) we discover PFA = p4
as the of the most important threshold with a frequency in the model set of 99.7%
or 98.4%. See Tables 2 and 3 for details. Recall, C is the most reliable sensor in
case 1(a), but in case 1(b), C is actually less reliable that A and B. So the most
important variables belong to the sensor placed last – regardless of whether it is
more reliable or not. This is actually consistent with the mathematical analysis
but shows how the heuristic be overly general. In this circumstance it is more
accurate to design with the knowledge that “the last sensor’s first threshold is
the most important“. However, because the decision error differential is so small
between placing the most reliable sensor first or last, “place the best sensor last”
practically speaking does no harm.

Variable Sensor Frequency (%)

p5 C 96.9

p4 C 99.7

p3 B 99.3

p2 B 93.6

p1 A 97.3

Table 2. Test Problem 1(a) Threshold
Frequency. Cross-reference to Figure 6(a)

Variable Sensor Frequency (%)

p5 C 97.9

p4 C 98.4

p3 B 69.9

p2 B 95.3

p1 A 74.6

Table 3. Test Problem 1(b) Threshold
Frequency. Cross-reference to Figure 6(b)

4.2 Case 2: Independent-Non-Concave

Variable Sensor Frequency (%)

p5 C 93.2

p4 C 99.7

p3 B 98.4

p2 B 90.6

p1 A 96.5

Table 4. Test Problem 2(a) Threshold
Frequency. Cross-reference to Figure 7(a)

Variable Sensor Frequency (%)

p5 A 88.2

p4 A 98.6

p3 C 95.1

p2 C 75.0

p1 B 88.2

Table 5. Test Problem 2(b) Threshold
Frequency. Cross-reference to Figure 7(b)

We now proceed to consider sensor errors which affect the relationship be-
tween the two ROC curves to make them intersect. This belies a complicated
outcome in terms of network design. See Figure 7 for the two cases we set up.
As in Test Problem 2(a), C is more reliable, though only by a slim margin (0.76
vs 0.77). While C is overall more reliable, there is a range: PFA > 0.4 where the
ROC curve of C is below A and B, and thus C is less reliable. Elsewhere (to the
left and down), C is more reliable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
A
=0.76025

False Alarm Probability

D
et

ec
tio

n
P

ro
ba

bi
lit

y

Receiver Operating Characteristic Curve

S
B
=0.76025

S
C
=0.76657

3 Sensors ’H
1
STD= 4

Sensor A
Sensor B
Sensor C

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
A
=0.91227

False Alarm Probability

D
et

ec
tio

n
P

ro
ba

bi
lit

y

Receiver Operating Characteristic Curve

S
B
=0.93337

S
C
=0.94448

Sensor A
Sensor B
Sensor C

(b)

Fig. 7. Test Problem 2: Sensor suite composed of sensors with non-concave ROC curves.
In (a) Sensors A and B perform identically and the area under their ROC curves =
0.76. The standard deviation under H1 for sensor C = 4. Its ROC area = 0.77. For
the range of PFA and 1 − PM where the ROC curve of C is above A and B, C is
more reliable. Elsewhere (to the right and up), C is less reliable. (b) presents a more
complex relationship between A, B and C. They have ROC areas 0.91, 0.93 and 0.94
respectively and intersect each other in different points of the PFAand1 − PM axes.

We first experimentally observe that C in the last position in both cases
(its reliability being better, (a), or worse, (b)) is the optimal sequence of the
sensors. Using data from the two optimizations with C in the last position, we
then regress models and extract features. See Tables 4 and 5 for details. Here
we observe that threshold p4 of C is again the strongest driver in the models
at 99.7% and 99.5% frequency in the respective cases. This is consistent with a
mathematical analysis. It also makes sense that C can be placed last, even if is
not the most reliable: to the left and downward of where ROC curves intersect is
where decision error is minimized and in this interval C actually performs more
reliably than A and B.

In Test Problem 2(b), all 3 sensor’s ROC curve areas differ: they have ROC
areas 0.910, 0.93 and 0.94 respectively (so C is the most reliable). However, they
intersect each other in different points of the PFAand1−PM axes implying that
C is not always the most reliable. When we optimized the thresholds with C
as first, middle and last in the sequences, we discover that the decision error
is minimal when C is in the middle. p4 now the first threshold of sensor A is
the most influential. This is consistent with the mathematical analysis for the
independence of sensors assumption. The only time another variable other than
p4 will be most influential is when one sensor is far and away better than the
other two and it was not placed at the end. In addition, notice that when the
best sensor was placed in the most important position and the variance in the
variable frequency was very low, the sequence indeed had the minimum error.
For example. for cases 1(a) and 2(a), the best sensor C was placed the last,
and this sequence was in fact the best performing sequence, the variance in the

frequency is 6.1% and 9.1%, whereas for 1(b) and 2(b) the variance was higher
at 28.5% and 23.6%.

4.3 Test Problem 3: Correlated

For Test Problem 3(a) we ran the same sensor suite (non-convex, C most reliable)
as in Figure 7(a) but this time additionally modeled a symmetric correlation of
0.5 between each pair of sensors. To get sufficiently accurate models, we collected
data from 100 iterations which evaluated 10 particles/iteration and sent the data
to DataModeler .

In this case, like the two previous test problems, C is more reliable and placing
it last was observed to minimize decision error in both cases. However, in contrast
to the previous test problems, the variable frequency is remarkably different. See
Table 6 for details. First, p1, associated with the threshold of the first sensor, is
most influential. Its frequency is only 90% - quite lower most frequencies seen
in Problem Sets 1 and 2. Secondly, the frequency of the other pi’s spans a large
spread and there are clear distinctions among them. The ranking is p5, p4, p2
and p3 with frequencies of 79.9%, 65.7%, 39.7% and 20.5%. This can partially
be explained by the presence of variable p1 in every integral in the multivariate
integral.

So, in this case “place the best sensor last” is valid but it is the thresh-
old of the first sensor that influences the error minimization. This is slightly
counter to design intuition when engineers are permuting the sensor sequence
with knowledge of the error characteristics.

For Test Problem 3(b), we ran the same sensor suite (non-convex, C most
reliable, A and B different) as in Figure 7(b) and additionally modeled a sym-
metric correlation of 0.5 between each pair of sensors. When we optimized the
thresholds with C as first, middle and last in the sequences, we discover that
the decision error is minimal when C is first. In this case, even knowing the the-
ory ourselves, we could still not predict what the most influential threshold or pi
would be. Variable frequency analysis (see Table 7) reveals it to be the p4=94.2%
again. Next are p2 = 82.5%, p5 = 70.4%, p1 = 62.1% and p3 = 1.0%. We were
confident in advance that a correlated sensor error configuration would invali-
date the heuristic. Our observation confirms this confidence. In fact, correlated
sensor design will more frequently not follow the heuristic.

Variable Sensor Frequency (%)

p5 C 79.9

p4 C 65.7

p3 B 20.5

p2 B 39.7

p1 A 90.8

Table 6. Test Problem 3(a) Threshold
Frequency. Cross-reference to Figure 7(a)

Variable Sensor Frequency (%)

p5 A 70.4

p4 A 94.2

p3 B 1.0

p2 B 82.5

p1 C 62.1

Table 7. Test Problem 3(b) Threshold
Frequency. Cross-reference to Figure 7(b)

5 Conclusions and Future Work

We have demonstrated a means of knowledge discovery through genetic pro-
gramming symbolic regression and feature extraction that exploits the sample
history of an optimization run. Our results confirm approximate knowledge in
serial sensor sequencing: the most influential thresholds in the sensor sequence
are those of the final sensor when sensors are independently distributed. In sen-
sor sequence design, the rule of thumb is to ”place the *most reliable* sensor
last”. Our knowledge discovery shows how this design heuristic is usually effec-
tive though it is not trustworthy when the sensor observations are correlated.

We have worked with known error structure but when the underlying struc-
ture of the error is unknown (and the sensors are independent or not) or the
network structure is more complicated (e.g. a tree) modeling the optimization
data may provide more detailed insights into determining how to sequence the
sensors. An infrequently occurring variable can likely be eliminated from the
optimization. Or, if two thresholds of the same sensor fall a lot lower than the
others, this sensor also is a candidate to be ignored. Sometimes it is helpful to
know, at a system design level above network design, that no sensor can be ig-
nored without a loss of information. This information is not apparent from the
error objective but is indicated by variable presence table.

The evolutionary software we have used is within an “off-the-shelf” , mostly
parameterless toolkit named ”DataModeler”. It requires a lot of background
knowledge to understand the principles of symbolic regression and ensemble
modeling but one does not have to refer at all to their implementation but it is
flexible enough to let a EA expert control these if desired.

In terms of future work, we plan to purse whether we can integrate the mod-
eling with our optimizer. We are aware this something similar been done in
evolutionary algorithm parameter self-tuning. In this case, it is control parame-
ters of the algorithm that are tuned. We would like to consider if the model can
provide optimum predictions and queries of search points for which it has low
confidence.

References

1. Vladislavleva, E.: Model-based Problem Solving through Symbolic Regression via
Pareto Genetic Programming. PhD thesis, Tilburg University, Tilburg, the Nether-
lands (2008)

2. Keijzer, M.: Scientific Discovery Using Genetic Programming. PhD thesis, Danish
Technical University, Danish Technical University (2002)

3. Papastavrou, J., Athans, M.: Distributed detection by a large team of sensors in
tandem. Aerospace and Electronic Systems, IEEE Transactions on 28(3) (1992)
639 –653

4. Veeramachaneni, K., Osadciw, L.: Swarm intelligence based optimization and con-
trol of decentralized serial sensor networks. (2008) 1 –8

5. Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE Conference on
Neural Networks 4 (1995) 1942–1948

6. Smits, G., Vladislavleva, E.: Ordinal pareto genetic programming. In Yen, G.G.,
Lucas, S.M., Fogel, G., Kendall, G., Salomon, R., Zhang, B.T., Coello, C.A.C.,
Runarsson, T.P., eds.: Proceedings of the 2006 IEEE Congress on Evolutionary
Computation, Vancouver, BC, Canada, IEEE Press (2006) 3114–3120

7. Kotanchek, M., Smits, G., Vladislavleva, E.: Pursuing the pareto paradigm tour-
naments, algorithm variations & ordinal optimization. In Riolo, R.L., Soule, T.,
Worzel, B., eds.: Genetic Programming Theory and Practice IV. Volume 5 of Ge-
netic and Evolutionary Computation. Springer, Ann Arbor (2006) 167–186

8. Kotanchek, M., Smits, G., Vladislavleva, E.: Trustable symoblic regression mod-
els. In Riolo, R.L., Soule, T., Worzel, B., eds.: Genetic Programming Theory and
Practice V. Genetic and Evolutionary Computation. Springer, Ann Arbor (2007)
203–222

9. Kotanchek, M., Smits, G., Vladislavleva, E.: Exploiting trustable models via pareto
GP for targeted data collection. In Riolo, R.L., Soule, T., Worzel, B., eds.: Genetic
Programming Theory and Practice VI. Genetic and Evolutionary Computation.
Springer, Ann Arbor (2008) 145–163

10. Kotanchek, M.E., Vladislavleva, E.Y., Smits, G.F.: Symbolic regression via GP as
a discovery engine: Insights on outliers and prototypes. In Riolo, R.L., O’Reilly,
U.M., McConaghy, T., eds.: Genetic Programming Theory and Practice VII. Ge-
netic and Evolutionary Computation. Springer, Ann Arbor (2009) 55–72

11. Vladislavleva, E., Smits, G., Kotanchek, M.: Soft evolution of robust regression
models. In Riolo, R.L., Soule, T., Worzel, B., eds.: Genetic Programming Theory
and Practice V. Genetic and Evolutionary Computation. Springer, Ann Arbor
(2007) 13–32

12. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via pareto genetic
programming. IEEE Transactions on Evolutionary Computation 13(2) (2009)
333–349

13. Smits, G., Kordon, A., Vladislavleva, K., Jordaan, E., Kotanchek, M.: Variable
selection in industrial datasets using pareto genetic programming. In Yu, T., Riolo,
R.L., Worzel, B., eds.: Genetic Programming Theory and Practice III. Volume 9
of Genetic Programming. Springer, Ann Arbor (2005) 79–92

14. Research, W.: Wolfram mathematica overview: Compute and visualize key capabil-
ities. (2009) www. wolfram.com/products/mathematica/overview/compute.html

15. Wikipedia: Mathematica entry in wikipedia. (2009)
http://en.wikipedia.org/wiki/Mathematica

Acknowledgements

We would like to thank Guido Smits and Mark Kotanchek for their assistance
and helpful discussions.

