

Multi-objective Optimization of Sparse Array Computations

Una-May O'Reilly
MIT Computer Science and Artificial Intelligence Laboratory

Nadya Bliss, Sanjeev Mohindra, Julie Mullen, Eric Robinson
MIT Lincoln Laboratory

September 22nd, 2009

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

Outline

Problem Context

 Performance gap exists for graph algorithms that enable knowledge extraction in decision support systems

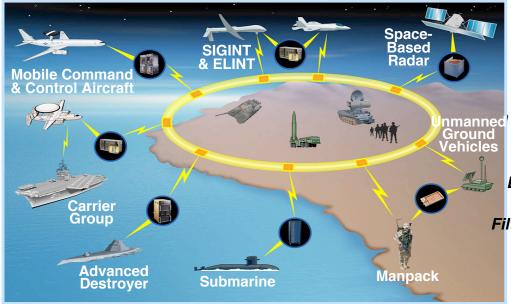
Problem Definition

- Performance optimization of sparse algebra matrix computations (for graph algorithms)
- Sparse Mapping and Routing Toolbox
- Solution Methodology
 - multi-objective genetic algorithm to optimize
 - Second objective complements first: find ideal balance of operations for nodes in architecture.

Discernable from dependency graph

- Preliminary Results
- Future Work and Summary

Emerging Decision Support Trends



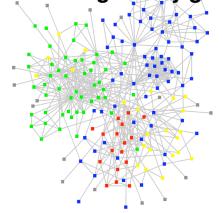
- Threat Assessment Intelligence Situation **FOCUS Assessment Object** Knowledge Inference Exploitation Tracking Information Multi-Senamic Detect **Filter** Signal/Data Data Comm/Storage
- Enormous growth in data size coupled with multimodalities
- Increasing relevance in relationships between data/objects/entities
- Increasing algorithm & environment complexities
- Asymmetric & fast-evolving warfare
- Increasing need for knowledge processing

Focus on Top of the Pyramid: Knowledge Extraction and Intelligence

Knowledge Extraction Applications

NETWORK DETECTION

 Graph analysis for identifying interesting sub-networks within large noisy graphs*



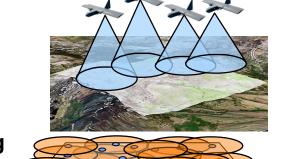
DATA FUSION



 Bayesian networks for fusing imagery and ladar for better on board tracking

TOPOLOGICAL DATA ANALYSIS

 Higher dimension graph analysis to determine sensor net coverage



*A. Tahbaz Salehi and A. Jadbabaie, Distributed coverage verification in sensor networks without location information

APPLICATION

- Network detection
- Feature aided 2D/3D fusion
- Dimensionality reduction
- Finding cycles on complexes

KEY ALGORITHM

- Edge Betweenness Centrality
- Bayesian belief propagation
- Minimal Spanning Trees
- Single source shortest path

KEY KERNEL

MATRIX MULT: A +.* B

MATRIX MULT: A +.* B

MATRIX MULT: X +.* A +.* X^T

D min.+ A

Many knowledge extraction algorithms are based on graph algorithms

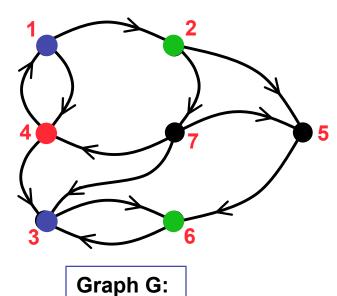
Fundamental Observation

-Graph-Sparse Matrix Duality-

Many graph algorithms can be expressed as sparse array computations

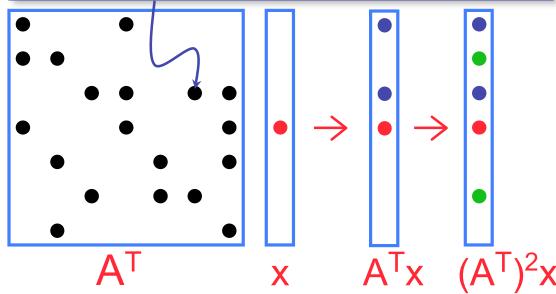
Graph preliminaries A graph G = (V,E) where

- V = set of vertices
- E = set of edges



Adjacency matrix representation:

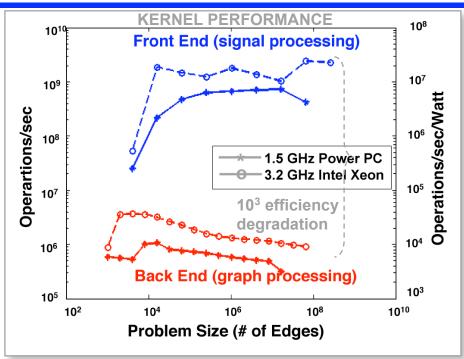
 Non-zeros entry A(i,j) where there exists an edge between vertices i and j

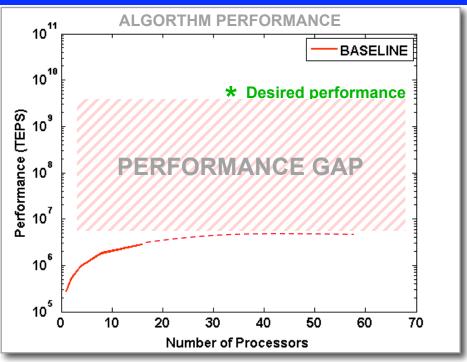


Example operation:

 Vertices reachable from vertex v in N or less steps can be computed by taking A to the Nth power and multiplying by a vector representing v

The Graph Processing Performance Gap





- Current technologies do not provide performance or power efficiency for knowledge extraction applications
- Emerging application trends require closing the performance gap

- Gap arises due to sparse and irregular graph data
- Mapping can be computed ahead of algorithm deployment

Efficient data mapping will help close gap

Outline

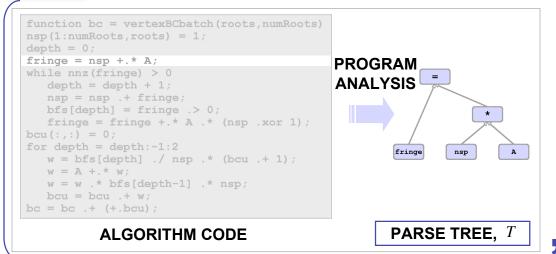
- Problem Context
- Problem Definition
- Solution Methodology
- Preliminary Results
- Future Work and Summary

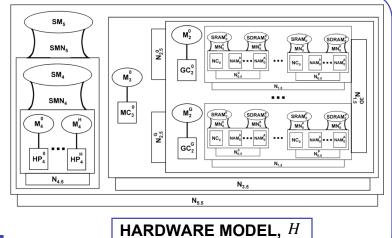
SMaRT Sparse Mapping and Routing Toolbox



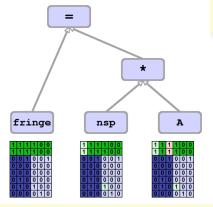
The Mapping Optimization Problem

Given





Find



Such that: a performance objective is optimized

 $argmin_M f(T, H, M)$

Sample objectives, f

- Execution latency or FLOPS
- Power (maximize operations/Watt)
- · Efficiency, etc

Evaluation of the objective function requires performance prediction

SET OF MAPS, M

Mapping Optimization Challenges

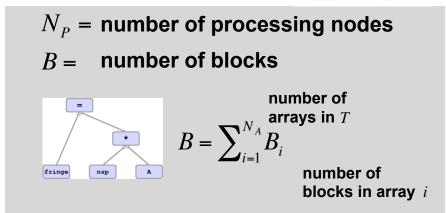
Mapping is NP-complete

Network Coding ≤_P Mapping with Muriel Médard, MIT EECS

K-Clique ≤_P Mapping with Ben Miller, LL Gr 102

The search space of maps is extremely large:

Size of the mapping search space: $S_M = N_P^{(B)}$



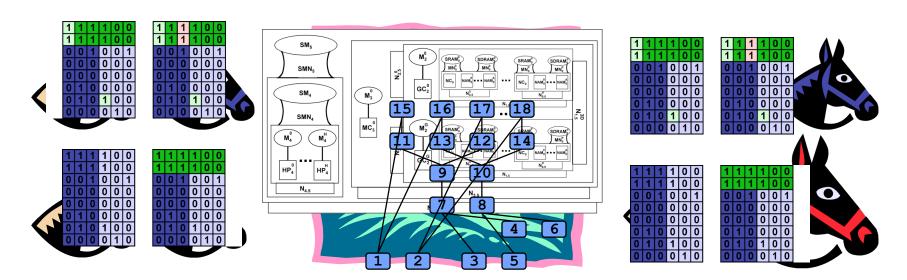
The objective function is a simulation: values are discrete and Presumably non-convex

A global search technique (such as a genetic algorithm) is well-suited to mapping

Outline

- Problem Context
- Problem Definition
- Solution Methodology
- Preliminary Results
- Future Work and Summary

Genetic Algorithm Concepts



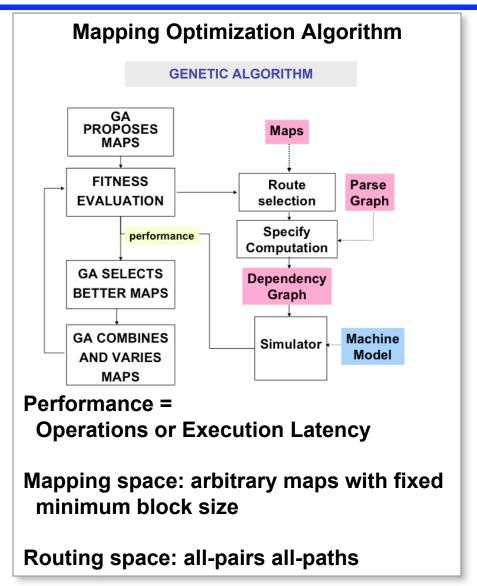
Neo-darwinian evolution

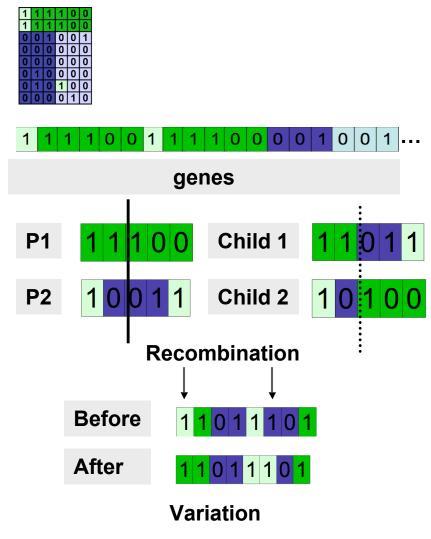
- Population adaptation to an environment
- Through biased selection based upon fitness of organism
- •through genetic inheritance, random recombination and variation

Evolution is a search-based optimization process

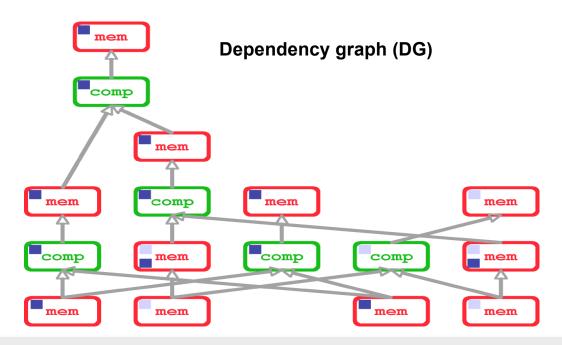
- organism is a candidate solution to the environment
- •fitness of organism expresses performance on objective
- adaptation is a search process that exploits and explores
- the search proceeds in parallel via the population

Genetic Algorithm for Map Optimization





Dependency Graph



DG is input to simulator and expresses

where the data is mapped

how the data is routed between processors

what computations execute on each processor

Topological sort of DG indicates what operations can proceed in parallel DG is complete specification of computation on the studied architecture

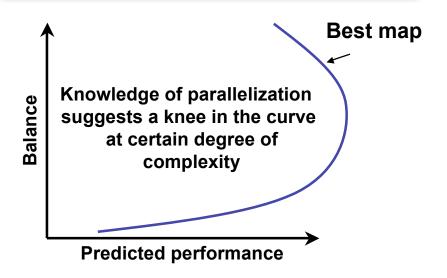
Dependency graph is tightly coupled with performance

Outline

- Problem Context
- Problem Definition
- Solution Methodology
- Preliminary Results
- Future Work and Summary

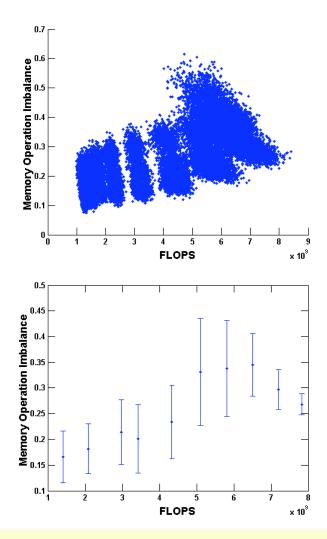
Analysis of Dependency Graph Characteristics

Performance is strongly related to DG



Ways to Define Balance

- Balance of CPU operations on nodes
- Balance of memory operations on nodes
- Average degree of concurrency
- Distribution of degree of concurrency



A multi-objective genetic algorithm can co-optimize map performance and balance

Co-optimization: Pareto Dominance

Better: A > B

Map A performs faster imbalance of A is lower

"A dominates B"
A's map and balance
are both better than B's

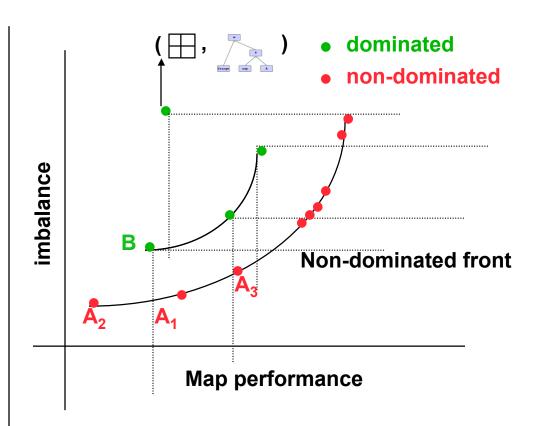
Non Dominated

A's map is better but B's balance is better

Or B's map is better but A's balance is better

No solution is better on both map and balance

Co-optimization front also known as estimated pareto front



Comparison of each population member Complexity O(mN^2)
Using comparison info to sort the fronts
Complexity O(N^2)

N=population size, m = number of objectives

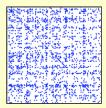
Experimental Setup

Algorithm

Scrambled Powerlaw



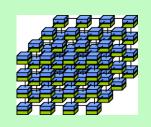
Scrambled Powerlaw



Hybrid Inner-Outer Product

X

Architecture

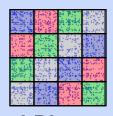


Network Latency	50e-9 seconds
Network Bandwidth	5e9 bytes/sec
Memory Latency	50e-9 seconds
Memory Bandwidth	12e9 bytes/sec
CPU Rate	5e9 ops/sec

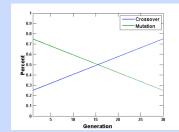
4x4x4 Torus Topology

Mappers

Baseline



Anti-Diagonal Block Cyclic



XO/Mutation Rate

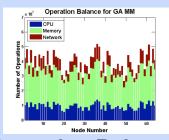
Multi-Objective Genetic Algorithm

Parameters: Population: 100

Generations: 30 Selection: 1/5 Pop.

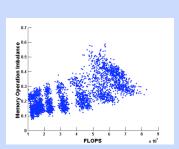
Objectives: Performance

Memory Balance



Operation Balance

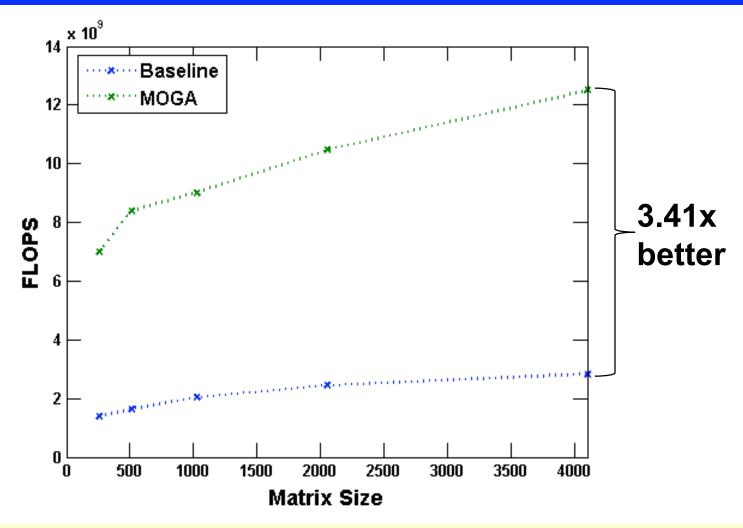
Random Sample



Varied Grids

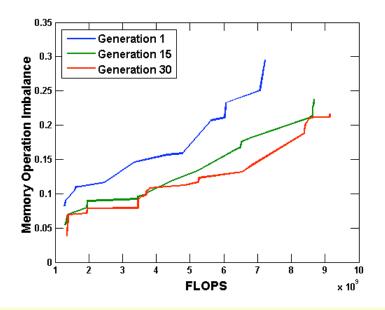
MIT Lincoln Laboratory

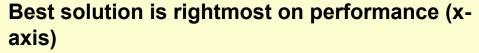
Optimization Algorithm Comparison



Baseline ADBC mapping is outperformed by Multi-Objective Genetic Algorithm

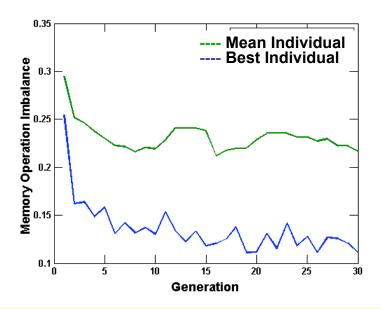
Co-optimization (MOGA) Results





Over the run, the non-dominated front migrates toward solutions with better memory balance and performance

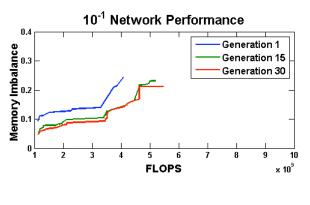
Non-dominated front never becomes singular indicating co-optimization is beneficial

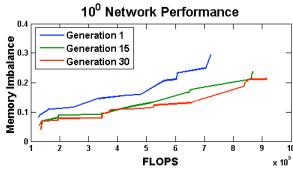


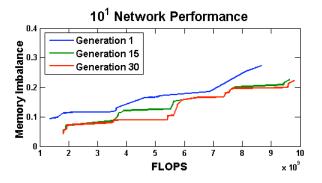
Mean memory imbalance decreases over time under co-optimization objectives (while performance improves)

Complexity of best map fluctuates

Hardware Model Parametric Study

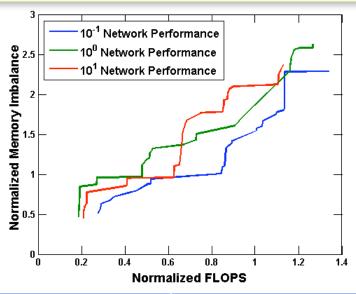






Network bandwidth parameters:

- Bandwidth*[10⁻¹ 10⁰ 10¹]
- Hardware model affects the characteristics of the objective function



Hardware Model	FLOPS Improvement
10 ⁻¹ Network Model	34.1%
10 ⁰ Network Model	26.4%
10 ¹ Network Model	13.0%

Future Work

- Co-optimization objective should reflect relation between algorithm and structure of architecture
 - Knowledge-based analysis: Consider metrics of parallelism of program or graph
 - Statistical Analysis: Regress relationship between properties and performance from a sample of maps on the architecture
- Power co-optimization (in conflict with FLOPS) via the multi-objective, paretobased Genetic Algorithm

Summary

- Graph algorithms expressed in linear algebra expose a map optimization problem
 - Map optimization can be improved by cooptimizing the performance and algorithm complexity with a multi-objective GA
- Better maps close the performance gap of graph algorithms
- Improved performance of graph algorithms addresses challenges of rapid knowledge extraction
- Rapid knowledge extraction enables effective decision support

END