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Outline

• Problem Context
– Performance gap exists for graph algorithms that

enable knowledge extraction in decision support
systems

• Problem Definition
– Performance optimization of sparse algebra matrix

computations (for graph algorithms)
– Sparse Mapping and Routing Toolbox

• Solution Methodology
– multi-objective genetic algorithm to optimize
– Second objective complements first: find ideal balance

of operations for nodes in architecture.
 Discernable from dependency graph

• Preliminary Results
• Future Work and Summary
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Emerging Decision Support Trends
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• Enormous growth in data size coupled with multi-
modalities

• Increasing relevance in relationships between
data/objects/entities

• Increasing algorithm & environment complexities
• Asymmetric & fast-evolving warfare
• Increasing need for knowledge processing

 Focus on Top of the Pyramid:
Knowledge Extraction and

Intelligence

FOCUS
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2D/3D Fused
Imagery

Knowledge Extraction Applications

• Higher dimension graph
analysis to determine sensor
net coverage

NETWORK DETECTION DATA FUSION TOPOLOGICAL DATA
ANALYSIS

• Bayesian networks for fusing
imagery and ladar for better
on board tracking

Many knowledge extraction algorithms are based on graph algorithms

*A. Tahbaz Salehi and A. Jadbabaie, Distributed coverage
verification in sensor networks without location information

KEY ALGORITHMAPPLICATION
• Edge Betweenness Centrality
• Bayesian belief propagation
• Minimal Spanning Trees
• Single source shortest path

• Network detection
• Feature aided 2D/3D fusion
•  Dimensionality reduction
• Finding cycles on complexes

MATRIX MULT: A +.* B
MATRIX MULT: A +.* B
MATRIX MULT: X +.* A +.* XT

D min.+ A

KEY KERNEL

*email network from http://www.mailchimp.com/blog/tag/social-networks/

• Graph analysis for identifying
interesting sub-networks
within large noisy graphs*
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Fundamental Observation
-Graph-Sparse Matrix Duality-

Many graph algorithms can be expressed as sparse array computations

Graph preliminaries
A graph G = (V,E) where
• V =  set of vertices
• E = set of edges

1 2

3

4 7

6

5

Graph G:

AT x (AT)2xATx

Adjacency matrix representation:
• Non-zeros entry A(i,j) where there exists an edge

between vertices i and j

Example operation:
• Vertices reachable from vertex v in N or less steps

can be computed by taking A to the Nth power and
multiplying by a vector representing v
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ALGORTHM PERFORMANCE

The Graph Processing
Performance Gap

103 efficiency
degradation

• Current technologies do not provide
performance or power efficiency for
knowledge extraction applications

• Emerging application trends require
closing the performance gap

KERNEL PERFORMANCE

* Desired performance

PERFORMANCE GAP

• Gap arises due to sparse and irregular
graph data

• Mapping can be computed ahead of
algorithm deployment

Efficient data mapping will help close gap
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Outline

• Problem Context
• Problem Definition
• Solution Methodology
• Preliminary Results
• Future Work and Summary
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SMaRT
Sparse Mapping and Routing Toolbox

HARDWARE ABSTRACTION

PROGRAM ANALYSIS

MAPPING ALGORITHM

OUTPUT MAPS

Detailed, topology-
true hardware model

Fine-grained
dependency analysis

Stochastic search for
mapping and routing

Support for irregular
data distributions
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A map for an array is an
assignment of blocks of
data to processing nodes

P1
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The Mapping Optimization Problem
Given

! 

T

! 

HALGORITHM CODE ,

PROGRAM
ANALYSIS

Find Such that: a performance objective is optimized

HARDWARE MODEL,PARSE TREE,

Sample objectives,
• Execution latency or FLOPS
• Power (maximize operations/Watt)
• Efficiency, etc

! 

f

 Evaluation of the objective function requires performance prediction
! 

MSET OF MAPS,
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Mapping Optimization Challenges

Mapping is NP-complete
Network Coding ≤P Mapping

with Muriel Médard, MIT EECS
K-Clique ≤P Mapping
with Ben Miller, LL Gr 102

The search space of maps is extremely large:
Size of the mapping search space:

! 

N
P

=

B =

number of processing nodes
number of blocks

! 

B = B
i

i=1

N
A

"

number of
arrays in

number of
blocks in array! 

T

! 

i

The objective function  is a simulation: values are discrete and 
Presumably non-convex 

A global search technique (such as a genetic algorithm) is well-suited to mapping
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Genetic Algorithm Concepts

Neo-darwinian evolution
•Population adaptation to an environment
•Through biased  selection based upon fitness of organism
•through genetic inheritance, random recombination and variation

Evolution is a search-based optimization process
•organism is a candidate solution to the environment
•fitness of organism expresses performance on objective
•adaptation is a search process  that exploits and explores
• the search proceeds in parallel via the population

15 16 17 18

11 13 12 14

9 10

7 8
4 6

1 2 3 5
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Genetic Algorithm for Map Optimization
Mapping Optimization Algorithm

Performance =
Operations or Execution Latency

Mapping space: arbitrary maps with fixed
minimum block size

Routing space: all-pairs all-paths

GENETIC ALGORITHM

genes

…

Variation

Before

After   

Recombination

P1

P2

Child 1

Child 2
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Dependency Graph

DG is input to simulator  and expresses
where the data is mapped
how the data is routed between processors
what computations execute on each processor

Topological sort of DG indicates what operations can proceed in parallel
DG is complete specification of computation on the studied architecture

Dependency graph is tightly coupled with performance

Dependency graph (DG)
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 Analysis of Dependency Graph Characteristics

Predicted performance

B
al

an
ce

Performance is strongly related to DG

A multi-objective genetic algorithm can co-optimize map performance and balance

Knowledge of parallelization
 suggests a knee in the curve

at certain degree of
complexity

Ways to Define Balance
•Balance of CPU operations on nodes
•Balance of memory operations on nodes
•Average degree of concurrency
•Distribution of degree of concurrency

Best map
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Co-optimization: Pareto Dominance

“A dominates B”
A’s map and balance
are both better than B’s

Better: A > B
Map A performs faster
imbalance of A is lower

Non Dominated
A’s map is better but
B’s balance is better

Or B’s map is better but
A’s balance is better

No solution is better on
both map and balance

Non-dominated front

Map performance
im

ba
la

nc
e

Comparison of each population member
Complexity O(mN^2)
Using comparison info to sort the fronts 
Complexity O(N^2)
N=population size, m = number of objectives

, ( )

A1

B

A2

A3

Co-optimization front also known
as estimated pareto front

    dominated
    non-dominated
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Experimental Setup

Anti-Diagonal
Block Cyclic

Scrambled
Powerlaw

4x4x4 Torus Topology

X

Hybrid Inner-Outer Product

Scrambled
Powerlaw

Algorithm Architecture
Network Latency 50e-9 seconds

Network Bandwidth 5e9 bytes/sec

Memory Latency 50e-9 seconds

Memory Bandwidth 12e9 bytes/sec

CPU Rate 5e9 ops/sec

Mappers
Baseline Multi-Objective Genetic Algorithm

Parameters:
Population: 100
Generations: 30

Selection: 1/5 Pop.

Objectives:
Performance

Memory BalanceXO/Mutation Rate Operation Balance

Random Sample

Varied Grids
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Optimization Algorithm
Comparison

Baseline ADBC mapping is outperformed by Multi-Objective Genetic Algorithm

3.41x
better
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Co-optimization (MOGA) Results

Best solution is rightmost on performance (x-
axis)

Over the run, the non-dominated front
migrates toward solutions with better memory
balance and performance

Non-dominated front never becomes singular
indicating co-optimization is beneficial

Mean memory imbalance decreases
over time under co-optimization
objectives (while performance
improves)

Complexity of best map fluctuates

---- Mean Individual
---- Best Individual
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Hardware Model Parametric Study

Network bandwidth parameters:
• Bandwidth*[10-1 100 101]
• Hardware model affects the
characteristics of the objective function

Hardware Model FLOPS Improvement

10-1 Network Model 34.1%

100 Network Model 26.4%

101 Network Model 13.0%
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Future Work

• Co-optimization objective should reflect
relation between algorithm and structure
of architecture

– Knowledge-based analysis: Consider metrics
of parallelism of program or graph

– Statistical Analysis: Regress relationship
between properties and performance from a
sample of maps on the architecture

• Power co-optimization (in conflict with
FLOPS) via the multi-objective, pareto-
based Genetic Algorithm
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Summary

• Graph algorithms expressed in linear
algebra expose a map optimization
problem

– Map optimization can be improved by co-
optimizing the performance and algorithm
complexity with a multi-objective GA

• Better maps close the performance gap of
graph algorithms

• Improved performance of graph
algorithms addresses challenges of rapid
knowledge extraction

• Rapid knowledge extraction enables
effective decision support
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END


