
*This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Multi-objective Optimization of Sparse Array Computations
Una-May O’Reilly, Nadya Travinin Bliss, Sanjeev Mohindra

Julie Mullen, Eric Robinson,
unamay@csail.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139
{nt, smohindra, jsm, erobinson}@ll.mit.edu

MIT Lincoln Laboratory, Lexington, MA 02420

Abstract
Many knowledge extraction and decision support
applications contain graph or graphical model algorithms at
the core of their computation. Due to data dependency and
irregularity of access, these algorithms are not well suited
to parallelization and, if parallelized, do not perform well
using standard data distribution techniques. Traditionally,
these applications would run off-line following a data
collect. With recent increases in number of sensor
modalities and size of data collections, it is desirable to
both develop algorithmic and computational techniques in
order to provide front-end levels of performance for this
application domain. Here, we present a multi-objective
performance optimization algorithm that exploits the fact
that graph algorithms can be cast as a collection of sparse
linear algebra operations. The optimization is performed
using a multi-objective genetic algorithm. The algorithm is
developed within the Lincoln Laboratory code analysis and
optimization framework, pMapper. Preliminary findings
indicate that the multi-objective genetic algorithm conducts
a localized search with a high fraction of well performing
maps and thus yields better performance results.

Introduction
Graphs and graphical models are key computational drivers
in many decision support applications. As the amount of
collected sensor data grows, a need arises to achieve front-
end levels of performance for traditionally back-end
applications. A key challenge in achieving the performance
goals is exposing opportunities for parallelism within the
algorithm.

This challenge can be addressed by recasting graph
algorithm as linear algebra operations on an adjacency
matrix. An adjacency matrix A is a representation of a
graph with A(i,j) = 1 if there is an edge between vertex i
and node j and A(i,j) = 0 otherwise. A common operation
performed on a graph involves selecting a vertex or set of
vertices (representing an entity or a location) and finding
paths through the graph. The linear algebraic equivalent of
this operation is a matrix-vector (for a single vertex case) or
a matrix-matrix (for a set of vertices) multiplication on a
commonly very sparse matrix. Access to a linear algebraic
representation has a number of benefits: frequently
significantly shorter algorithms, parallel implementations
can leverage the decades of experience with parallel linear
algebra, and performance issues on COTS parallel
processors with standard data distribution techniques
become readily apparent [1].

While the linear algebraic algorithm formulation exposes

opportunities for parallelism, achieving high-performance
for sparse array computations requires sophisticated code
optimization. Traditional levels of performance on sparse
computations on COTS platform yield <1% efficiency.

To address the performance challenge, we developed a
multi-objective optimization algorithm that minimizes the
complexity of the code while maximizing computational
performance. The complexity of the parallel code is
measured in terms of the size of dependency graph. The
dependency graph is generated with the pMapper
framework that includes a parametric model of the
hardware, lazy evaluation code analysis, and automatic
generation of low-level instructions (computation and
communication). Figure 1 presents an example of a parse
graph for a simple addition statement (1a), a notional set of
data mappings (1b), a set of low level instructions
generated from the parse graph and the maps (1c), and
finally, a corresponding dependency graph (1d). The rest of
the abstract presents the details of the multi-objection
optimization algorithm and preliminary results.

Figure 1: The coarse-grained signal flow graph (CGSFG) (a)
and maps (b) determine individual operations (c) and the
dependency graph (d).

Mapping and Routing
A previously implemented nested genetic algorithm
(Nested-GA) [2,3] has handled the routing and mapping of

sparse arrays for a matrix multiplication kernel. GAs were
chosen due to their suitability to the discrete and
combinatorial nature of the problem (the mapping problem
in this context is NP-complete). Despite the very large
search space of the problem, the Nested-GA has
demonstrated finding irregular mappings that are 10-100
times better than 2D block-cyclic maps.

The objective of the Nested-GA is to find <map, route>
pairs that minimize the execution latency of the algebraic
kernel. The fitness function directly uses pMapper’s
execution latency estimation based upon the dependency
graph. Because the mapping determines the dependency
graph, the execution latency is a (non-linear) function of the
dependency graph. This implies that some intrinsic, likely
complex, properties of the dependency graph are causal
predictors of execution latency. For example, for the same
matrix operation, a small dependency graph can be
frequently expected (but not guaranteed) to demonstrate a
shorter latency than a bigger one. These observations
suggest that, if a reasonably well corelated property can be
identified, a subspace of the mapping search space defined
by the better values of the property will have a higher
frequency of better maps than average.

We have implemented a multi-objective GA (MOGA) that
has the central concepts of NSGA2 [4] to test this
hypothesis. The MOGA extends the Nested-GA by adding
a second objective (a dependency graph property that
corelates with execution latency) and selectively favoring
candidate mappings that form the ‘non-dominated front’ of
the current population for each generation. A mapping is
non-dominated if there are no mappings that are better than
it on both objectives. For each successive front, the
mappings are sorted on each objective, and tagged with a
‘crowding distance’. This metric expresses how close a
mapping is to its neighbours on the front. The selection of
parents for the next generation proceeds by a k-competitor
tournament. Instead of the single objective determining the
winner, the tournament winner is the mapping with the
lowest ranked front. If more than one mapping is on the
best front, the one with the largest crowding distance is the
winner. This ensures a well-spaced front. Mappings at the
end points of the best front are also propogated into the
next generation to ensure a non-shrinking range.

Figure 2 and 3 present preliminary results for MOGA using
the size of the dependency graph as the second objective.
Figure 2 shows the mean dependency graph size in the
population and the size of the dependency graph of the best
mapping, in terms of execution latency, each generation of
a run. Figure 3 shows the non-dominated front of the
initial population, middle-of-run population and final
generation of a MOGA run. The plot illustrates that while
the smallest dependency graph does not have the shortest
execution latency, the second objective influences the
search to focus on better performing mappings.

Summary and Future Work
We have presented a multi-objective genetic algorithm that
minimizes complexity of parallel computation (encoded by
the size of the dependency graph) along with execution
latency. This new multi-objective GA exploits the

observation that the dependency graph is a function of the
map, and, the execution latency is a function of the
dependency graph. Thus, biasing the stochastic search to
localized subspaces defined by a dependency graph
property that is causally related to execution latency favors
finding better maps. In the future we intend to investigate
whether there are other, more rational, though still
relatively simple, dependency graph properties that are
similarly helpful. We plan to use regression analysis to
further explore the dependency between properties and
execution latency. While it is not likely that a generally
predictive model of execution latency, based on
dependency graph properties, can be learned,
understanding the limits on the generality may indicate
problem subclasses for which specific properties can be
exploited.

Figure 2: Dependency graph size for population mean and
best individual of a MOGA run indicates a trend to smaller
graphs. This is correlated with fitness improvement (see
Figure 3).

Figure 3: Non-dominated fronts of a MOGA run in
generations 1, 25 and 50 demonstrate trend to smaller
dependency graphs with faster maps.

References
[1] J. Kepner, N.T. Bliss, E. Robinson, “Linear Algebraic Graph
Algorithms for Back End Processing”, HPEC 2008 Workshop,
Lexington, MA, September 2008.
[2] N. T. Bliss, S. Mohindra, V. Aggarwal, U.M. O’Reilly,
“Analysis and Mapping of Sparse Matrix Computations” HPEC
2007 Workshop, Lexington, MA, September 2007.
[3] N. T. Bliss, S. Mohindra, U.M. O’Reilly, “Performance
Modeling and Mapping of Sparse Computations”. 2008 DoD
HMCMP Users Group Conference, pp. 448-456, ISBN: 978-0-
7695-3515-9, July 14-17, 2008.
[4] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A Fast Elitist
Non-Dominated Sorting Genetic Algorithm for Multi-Objective
Optimization: NSGA-II” , Proceedings of the Parallel Problem
Solving from Nature VI Conference, 2000.

