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Abstract 
Many knowledge extraction and decision support 
applications contain graph or graphical model algorithms at 
the core of their computation. Due to data dependency and 
irregularity of access, these algorithms are not well suited 
to parallelization and, if parallelized, do not perform well 
using standard data distribution techniques. Traditionally, 
these applications would run off-line following a data 
collect. With recent increases in number of sensor 
modalities and size of data collections, it is desirable to 
both develop algorithmic and computational techniques in 
order to provide front-end levels of performance for this 
application domain. Here, we present a multi-objective 
performance optimization algorithm that exploits the fact 
that graph algorithms can be cast as a collection of sparse 
linear algebra operations. The optimization is performed 
using a multi-objective genetic algorithm. The algorithm is 
developed within the Lincoln Laboratory code analysis and 
optimization framework, pMapper. Preliminary findings 
indicate that the multi-objective genetic algorithm conducts 
a localized search with a high fraction of well performing 
maps and thus yields better performance results. 
 
Introduction 
Graphs and graphical models are key computational drivers 
in many decision support applications. As the amount of 
collected sensor data grows, a need arises to achieve front-
end levels of performance for traditionally back-end 
applications. A key challenge in achieving the performance 
goals is exposing opportunities for parallelism within the 
algorithm.  
 
This challenge can be addressed by recasting graph 
algorithm as linear algebra operations on an adjacency 
matrix. An adjacency matrix A is a representation of a 
graph with A(i,j) = 1 if there is an edge between vertex i 
and node j and A(i,j) = 0 otherwise. A common operation 
performed on a graph involves selecting a vertex or set of 
vertices (representing an entity or a location) and finding 
paths through the graph. The linear algebraic equivalent of 
this operation is a matrix-vector (for a single vertex case) or 
a matrix-matrix (for a set of vertices) multiplication on a 
commonly very sparse matrix. Access to a linear algebraic 
representation has a number of benefits:  frequently 
significantly shorter algorithms, parallel implementations 
can leverage the decades of experience with parallel linear 
algebra, and performance issues on COTS parallel 
processors with standard data distribution techniques 
become readily apparent [1].  
  
While the linear algebraic algorithm formulation exposes 

opportunities for parallelism, achieving high-performance 
for sparse array computations requires sophisticated code 
optimization. Traditional levels of performance on sparse 
computations on COTS platform yield <1% efficiency.  
 
To address the performance challenge, we developed a 
multi-objective optimization algorithm that minimizes the 
complexity of the code while maximizing computational 
performance. The complexity of the parallel code is 
measured in terms of the size of dependency graph. The 
dependency graph is generated with the pMapper 
framework that includes a parametric model of the 
hardware, lazy evaluation code analysis, and automatic 
generation of low-level instructions (computation and 
communication). Figure 1 presents an example of a parse 
graph for a simple addition statement (1a), a notional set of 
data mappings (1b), a set of low level instructions 
generated from the parse graph and the maps (1c), and 
finally, a corresponding dependency graph (1d). The rest of 
the abstract presents the details of the multi-objection 
optimization algorithm and preliminary results. 
 
 

 
 
Figure 1: The coarse-grained signal flow graph (CGSFG) (a) 
and maps (b) determine individual operations (c) and the 
dependency graph (d).  
 
Mapping and Routing 
A previously implemented nested genetic algorithm 
(Nested-GA) [2,3] has handled the routing and mapping of 



sparse arrays for a matrix multiplication kernel. GAs were 
chosen due to their suitability to the discrete and 
combinatorial nature of the problem (the mapping problem 
in this context is NP-complete). Despite the very large 
search space of the problem, the Nested-GA has 
demonstrated finding irregular mappings that are 10-100 
times better than 2D block-cyclic maps. 
 
The objective of the Nested-GA is to find <map, route> 
pairs that minimize the execution latency of the algebraic 
kernel. The fitness function directly uses pMapper’s 
execution latency estimation based upon the dependency 
graph.  Because the mapping determines the dependency 
graph, the execution latency is a (non-linear) function of the 
dependency graph. This implies that some intrinsic, likely 
complex, properties of the dependency graph are causal 
predictors of execution latency. For example, for the same 
matrix operation, a small dependency graph can be 
frequently expected (but not guaranteed) to demonstrate a 
shorter latency than a bigger one.  These observations 
suggest that, if a reasonably well corelated property can be 
identified, a subspace of the mapping search space defined 
by the better values of the property will have a higher 
frequency of better maps than average.  
 
We have implemented a multi-objective GA (MOGA) that 
has the central concepts of NSGA2 [4] to test this 
hypothesis. The MOGA extends the Nested-GA by adding 
a second objective (a dependency graph property that 
corelates with execution latency) and selectively favoring 
candidate mappings that form the ‘non-dominated front’ of 
the current population for each generation. A mapping is 
non-dominated if there are no mappings that are better than 
it on both objectives. For each successive front, the 
mappings are sorted on each objective, and tagged with a 
‘crowding distance’. This metric expresses how close a 
mapping is to its neighbours on the front. The selection of 
parents for the next generation proceeds by a k-competitor 
tournament. Instead of the single objective determining the 
winner, the tournament winner is the mapping with the 
lowest ranked front. If more than one mapping is on the 
best front, the one with the largest crowding distance is the 
winner. This ensures a well-spaced front. Mappings at the 
end points of the best front are also propogated into the 
next generation to ensure a non-shrinking range. 
 
Figure 2 and 3 present preliminary results for MOGA using 
the size of the dependency graph as the second objective. 
Figure 2 shows the mean dependency graph size in the 
population and the size of the dependency graph of the best 
mapping, in terms of execution latency, each generation of 
a run.  Figure 3 shows the non-dominated front of the 
initial population, middle-of-run population and final 
generation of a MOGA run.  The plot illustrates that while 
the smallest dependency graph does not have the shortest 
execution latency, the second objective influences the 
search to focus on better performing mappings. 
 
Summary and Future Work 
We have presented a multi-objective genetic algorithm that 
minimizes complexity of parallel computation (encoded by 
the size of the dependency graph) along with execution 
latency. This new multi-objective GA exploits the 

observation that the dependency graph is a function of the 
map, and, the execution latency is a function of the 
dependency graph. Thus, biasing the stochastic search to 
localized subspaces defined by a dependency graph 
property that is causally related to execution latency favors 
finding better maps. In the future we intend to investigate 
whether there are other, more rational, though still 
relatively simple, dependency graph properties that are 
similarly helpful.  We plan to use regression analysis to 
further explore the dependency between properties and 
execution latency. While it is not likely that a generally 
predictive model of execution latency, based on 
dependency graph properties, can be learned, 
understanding the limits on the generality may indicate 
problem subclasses for which specific properties can be 
exploited. 
 

 
Figure 2: Dependency graph size for population mean and  
best individual of a MOGA run indicates a trend to smaller 
graphs. This is correlated with fitness improvement (see 
Figure 3). 
 

 
 
Figure 3: Non-dominated fronts of a MOGA run in 
generations 1, 25 and 50 demonstrate trend to smaller 
dependency graphs with  faster maps. 
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