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Abstract W
e describe a system, ECStar, that outstrips many scaling aspects of extant ge-

netic programming systems. One instance in the domain of financial strategies has
executed for extended durations (months to years) on nodes distributed around the
globe. ECStar system instances are almost never stopped andrestarted, though they
are resource elastic. Instead they are interactively redirected to different parts of
the problem space and updated with up-to-date learning. Their non-reproducibility
(i.e. single "play of the tape" process) due to their complexity makes them simi-
lar to real biological systems. In this contribution we focus upon how ECStar and
introduces a provocative, important, new paradigm for GP byits the sheer size and
complexity. ECStar’s scale, volunteer compute nodes and distributed hub-and-spoke
design have implications on how a multi-node instance is managed. We describe the
set up, deployment, operation and update of an instance of such a large, distributed
and long running system. Moreover, we outline how ECStar is designed to allow
manual guidance and re-alignment of its evolutionary search trajectory.

Key words: genetic programming, learning classifier system, cloud scale, dis-
tributed, big data

1.1 Introduction

Despite executing a variant of island-based evolution withmigration, ECStar, pre-
viously described in O’Reilly et al (2012); Hemberg et al (2013b); Hodjat and
Shahrzad (2012), is a genetic programming (GP) system whichis remarkably dif-
ferent from other distributed evolutionary algorithms (EA). First, it demonstrates a
number of aspects of scaling which outstrip those of extant GP or EA systems. For
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example, one ECStar system instance learning financial trading strategies executes
on nodes which are spatially distributed across the globe and another instance of
ECStar is learning forecasting rules in the medical domain.Further, a widely de-
ployed ECStar system instance is very seldom stopped and restarted. This avoids
incurring the overhead of deploying and retracting its manycompute nodes. It is
designed to be able to simultaneously work on different sub-parts of a problem and
over time it synthetically integrates partial solutions. Simultaneously, it is able to
shift to new aspects of the problem by accepting, without interruption, new learning
data or parameter settings.

Another way of contextualizing ECStar is to compare it to artificial life (ALIFE)
systems Bedau (2003). Both share an aspect of longevity in that they are run without
a goal of termination. Both share the nature that a snapshot of current state, at any
time in the extended duration of their execution, is insightful. ALIFE systems are
studied for their life-like behavior in a digital setting (i.e. they offer explanations of
a biological process or system). In contrast, ECStar is executing toward solving a
problem. It can be polled at anytime, at its Evolutionary Coordinator, to provide its
latest best evolved solution. In some commonality with ALIFE systems, there is a
continuous interactive relationship between ECStar and its developers. A developer
is able to "tinker" with the evolutionary direction of the system. The interactions are
indirect (e.g. changes to resources, modifications in parameters) and intentionally
light handed: they nudge rather than interfere. This guidance is motivated by prob-
lem solving, whereas in ALIFE triggering reactions to perturbations are often the
goal.

One further analogy is helpful, ECStar’s developer’s goal and means of interac-
tion, from the perspective of making a system evolve toward something, places the
developer in the role of a bench scientist using directed evolution to isolate a bio-
logical property of interest in a cell line. The bench scientist aims to coax evolution
to biologically generate a collection of cells with a specific property. A starting cell
population is allowed to proliferate and evolve, then, iteratively it is filtered (and
perhaps divided for concurrent evolution) to focus its trajectory with an end point
in mind. Evolution accomplishes the work of search and adaptation with in-vivo se-
lection while the bench scientist adds an external selection pressure to the process.

In this contribution we augment existing descriptions of ECStar which focus
on its distributed design and application, see O’Reilly et al (2012); Hemberg et al
(2013b); Hodjat and Shahrzad (2012). We comment on the way inwhich ECStar’s
scale, resource choice of nodes offering idle cycles and distributed hub-and-spoke
design have implications on how a very large, multi-node instance is managed. We
describe the entirely new proposition of setting up, deploying, operating, monitor-
ing, harvesting, securing and even software updating an instance of such a large,
distributed and long running system. Broadly, we describe how it is possible to min-
imize the installation of new Evolutionary Engines while enabling wide ranging,
tunable behavior that a developer can oversee and control. We describe how ECStar
is designed to allow manual guidance and re-alignment of itsevolutionary "trajec-
tory" through an assortment of mechanisms.
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We proceed as follows. In Section 1.2 we compare ECStar in terms of distributed
model, size and use of volunteer compute node idle cycles to related work. Sec-
tion 1.3 provides a description of ECStar sufficient to visitits design motivation.
In Section 1.4 the long running and large scale system features are explained. The
operation and direction of ECStar are explained in Section 1.5. In Section 1.6 there
is a discussion of how ECStar influences the GP experimental paradigm. Finally, a
summary and future work are in Section 1.7.

1.2 Previous work

There are other distributed GP systems documented but none has the same archi-
tecture, size, execution duration or particular use of volunteer nodes’ idle cycles as
ECStar.

In terms of architecture, typically distribution follows two basic models:

• Master-slave where the fitness function evaluation is distributed and a single
server executes the main evolutionary algorithm

• Islands with migration where a number of independent EA algorithms each
execute on a node, and exchange best solutions regularly (though often asyn-
chronously) using a fixed neighbor topology Cantu-Paz (2000); Tomassini
(2005); Crainic and Toulouse (2010); Scheibenpflug et al (2012).

ECStar and just a few others use the model where a pool of individuals are coor-
dinated centrally while a set of client nodes evolve them andpass their best to the
central server. Merelo et al (2012) report an initial exploration examining pool ver-
sus island based models. Their algorithm IslandSofEA uses separate clients and a
pool and scales best of their tested methods.

In terms of size, i.e. number of nodes deployed, a dated but valuable descrip-
tion of larger GP systems and how to build a parallel system can be found in Ben-
nett III et al (1999). This source reports how to build a parallel computer system
for $18,000 (1999 prices) that performs a half peta-flop per day. It employed 10
nodes with 533 MHz Alpha processors. Langdon (2012) talks about running GP on
the Emerald GPU super computer which has 1008 x86 CPU cores and 372 nVidia
M2090 Tesla (In total Emerald has 190,464 stream processors), providing an aver-
age of 33GPopS−1. An instance of ECStar has been run on more nodes than either
of these two systems. However it is difficult to quantify a comparison because EC-
Star uses idle cycles of many different types of CPUs. ECStar’s Evolutionary Engine
software has not been ported to execute on a GPU because, at the time, GPU com-
puting offers too small a fraction of its resource pool. A GPU, because it is SIMD,
is best deployed to execute a lot of data simultaneously. A good strategy is for the
GP individual to be evaluated after compilation or with a compiled evaluator down-
loaded into the GPU with its fitness evaluation cases distributed across the GPU.
Empirical design questions as to the breakpoints where thisstrategy works for EC-
Star would have to be resolved first. ECStar does not exclude the possibility that
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individuals from Evolutionary Engines with GPUs can be reported to the Evolu-
tionary Coordinator. One other evolutionary algorithm system also volunteer based
has a large number of hosts, Desell et al (2010) execute a distributed genetic algo-
rithm for the MilkyWay@home project which, at time of this article being written,
lists 316,902 hosts (see http://boincstats.com/).

In terms of systems that employ volunteer resources, the ways in which they are
used is diverse. Fernández de Vega et al (2012) present a customizable execution
environments for evolutionary computation using BOINC (Anderson (2004)) plus
virtualization, by running VMWare in the BOINC wrapper. Thecomputing model
is focused on institutions, which own their computers, and an end-user application
that administers the BOINC resources of an institution and allows existing EAs to
run multiple executions. The scale is smaller than ECStar and the system is used
for conventional EA runs, with no mention of long running evolution or any de-
scription of how to maintain it. Smaoui and Garbey (2013) study how to improve
volunteer computing scheduling for evolutionary algorithms. They only use the vol-
unteer compute node clients for computation of fitness function, not for running
independent EAs per the master-slave model.

Desell et al (2010), who run a distributed genetic algorithmfor the Milky-
Way@home project, also use clients for fitness evaluation inthe master-slave model.
Fault tolerance in a master-slave environment for evolutionary algorithms is dis-
cussed in Gonzalez et al (2012). The authors find the parallelEAs to be robust to
faults, i.e. loss of fitness evaluations on the slave nodes. In ECStar the Evolutionary
Engine executes an EA and sends solutions to the Evolutionary Coordinator, thus
the fault tolerance considers churn of Evolutionary Engines instead of only single
fitness evaluations.

We next provide an overview of the ECStar system architecture.

1.3 ECStar System Architecture

ECStar is a distributed EC system, see Figure 1.1, that employs a modified deci-
sion list representation Rivest (1987). It uses a large number of volunteer compute
nodes as “Evolutionary Engines”. The individual solutionsfrom the Evolutionary
Engines are coordinated by an Evolutionary Coordinator, and data is distributed to
an Evolutionary Engine by a Data Server.

1.3.1 Evolutionary Engine

Each Evolutionary Engine runs a completely independent evolutionary algorithm
in its client’s spare cycles. It has a fixed population size and initially generates the
population randomly. In the evolutionary loop, it requestsfitness cases (training
data) from the fitness case server in the form of adata package. Each individual in
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Figure 1.1 The hub and spoke model of ECStar.

the population is evaluated, and after a fixed number of data packages, selection and
breeding take place before replacement and the next generation. Periodically local
individuals become graduates and are dispatched to the Evolutionary Coordinator
andmigrantsare received from the Evolutionary Coordinator.

Evolutionary Engines are unpredictably available with an unknown work and
communication channel capacity. These constraints (deriving from the volunteer
“contract”) mean that Evolutionary Engines are designed tooccupy a modest CPU,
RAM, storage and network footprint, plus devote added computational time to se-
curity. Hodjat and Shahrzad (2012); Hemberg et al (2013b,a)describes in detail
ECStar’s age layering model for training data access and usage.

1.3.2 Evolutionary Engine Representation

An individual in ECStar is represented as a set of conjunctive rules. Operating on
logical predicates based on expressing conditions of testson the problem domain
features gives the ECStar solutions the advantage of being human readable..

An individual (a.k.aclassifier) has a header with id, age, fitness and a body with
a set of rules. Each rule is a variable length conjunctive setof conditions with an
associated action which is a class in a classification problem. Each condition acts as
a propositional variable, which is then applied to the discretized real-valued training
environment. Apart from conjunction operators each condition can have, acomple-
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mentoperator, negating the truth value and alag which refers to “past" values of an
attribute.

<rules> ::= <rule> | <rule> <rules>
<rule> ::= <conditions> => <action>
<conditions> ::= <condition> | <condition> & <conditions>
<action> ::= prediction label
<condition> ::= <predicate> | !<condition> | <condition> [lag]
<predicate> ::= truth value on a feature indicator

Each individual in an Evolutionary Engine is evaluated on a number of fitness
cases every generation. Each fitness case is in a data packageand consists of a
number of rows, called events. For each event, the variablesin the classifiers rules’
conditions are bound to the features of the event. For each rule in the individual,
the rule’s conditions are evaluated. If all are true, the rule is added to aMatch Set.
Finally, a voting mechanism elects from theMatch Seta single rule’s action as a
prediction for the fitness case. When no rule fires, no prediction is made. We track
activity and use is as a basis for selection into the breeding population. Predictions
for all events in a fitness case are verified against the true class labels. A correct
prediction increases the fitness and incorrect decreases. Each individual records its
fitness in two ways: relative fitness and absolute fitness. (Relative fitness is the fit-
ness per data package evaluated, i.e. fitness normalization)

1.3.3 Evolutionary Coordinator

The Evolutionary Coordinator coordinates migration amongthe Evolutionary En-
gines. It maintains a layeredarchive – a sorted set of individuals that are currently
the best from all Evolutionary Engines. When amigrantquery is received,migrants
are randomly picked from its archive and sent to the requesting Evolutionary En-
gine. Migration serves two purposes: it allows individualsto be sent out to each
Evolutionary Engine in order to be evaluated on more fitness cases (because Evo-
lutionary Engines appraise an individual’s fitness on only afraction of the fitness
cases before selecting graduates) and it allows the arriving migrants to mix their
genetic material with the host Evolutionary Engine’s localpopulation. When ami-
grant message is received, the returning individuals compete forthe space in the
archive if it is full. The comparisons will be asymmetric, since different individuals
have been evaluated on different data packages but the layers maintain individuals
evaluated on approximately the same number of data packagesto minimize noisy
comparison. More details of archive management are mentioned in Section 1.4.2.5.
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1.4 ECStar Design Rationale

We split our discussion of the reasons behind ECStar’s design choices into two sub-
sections. In Section 1.4.1 we discuss how general properties of volunteer computing
and using ECStar’s hub and spoke model impose requirements on its distributed
evolutionary algorithm and these requirements, in turn, lead to its design choices.
In Section 1.4.2 we next discuss how requirements imposed bythe sheer large size
and running time of ECStar have prompted design choices.

1.4.1 Idle Cycles, EA Requirements and Design Choices

Cost is arguably a primary driver for using idle cycles. Using volunteer compute
nodes makes an ECStar system instance inexpensive relativeto owning equivalent
hardware capacity, or contracting cloud services. The decision to use idle cycles
leads to a number of requirements that, in turn, lead to ECStar’s design decisions.
In this section, we connect the consequences to the requirements then to the de-
sign decisions. We accomplish this in a space efficient manner by cross referencing
Tables 1.1 to 1.3. The Properties table, Table 1.1, numerically itemized, enumer-
ates properties associated with using large quantities of volunteer compute nodes
in a hub-and-spoke model with a many to one relationship between a volunteer
client (a.k.a node) and a dedicated server. Recall that in the ECStar system, servers
support Evolutionary Coordinators and Data Servers. The Requirements table, Ta-
ble 1.2, alphabetically itemized, presents design requirements of an evolutionary
algorithm system which ensue from various properties in theProperties table. It
cross references requirements to properties using the Property table’s item numbers.
Finally, Table 1.3, the Design Choice table, enumerated with roman numerals, cross
references design choices to multiple requirements in the Requirements table.

Table 1.1 Properties associated with using many volunteer compute nodes.
1. Large scale geographic distribution of nodes implies, ata macro-scale, that resource availability
follows diurnal cycles across time zones. At a micro-scale,volunteer clients are available unpre-
dictably.
2. RAM and permanent storage at each client (a.k.a Evolutionary Engine) are small.
3. Clients are not allowed to communicate with each other to ensure privacy of each volunteer client.
4. Extended time is required to enlist, deploy or shut down large quantities of clients.
5. Communication channels are insecure and noisy and their capacity is modest.
6. In many cases, clients should run while the host machines are in use.
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Table 1.2 EA Requirements imposed by Volunteer Compute Nodes’ Properties. () indicates row
in Table 1.1

A. The EA must handle irregular compute availability, be able to cope with clients suddenly becoming
ready or unavailable and be able to cope with asynchronous data communication. (1,4)
B. The Evolutionary Engine footprint must be small. (2)
C. The EA must be able to incorporate new islands while executing. It must continue to execute and
utilize available nodes while not blocking to wait for unavailable others. (3)
D. Migration of information between EA islands (Evolutionary Engines in ECStar) must occur with-
out the need for island to island identification. (1,5)
E. The EA must robustly run with many islands exchanging information.
F. The EA must not rely on running iterated experiments. (4)
G. The EA, while still using all fitness cases, must only reference a few at a time and all transactions
with the servers should be lightweight. (5)
H. The EA should minimize its CPU (and memory) utilization soas not to disrupt host machine’s
main processing priorities. (6)

Table 1.3 ECStar’s Design Choices following from its Requirements. () indicates row in Table 1.2

I. The Evolutionary Engines, coded in C, occupy a small footprint. Their stats can be quickly saved
and restored. (B)
II. The Evolutionary Engines save their state frequently, they obtain fitness cases from the fitness data
server in small quantities and execute the entire population on them before requesting more. (A,B)
III. There is no sequence related bottleneck in the Evolutionary Coordinator logic. It never blocks
which allows it to always respond to any Evolutionary Enginegraduate or migrant report. If it is
busy, it harmlessly rejects the report and the reporter backs off before retrying.(A).
IV. The Evolutionary Coordinator uses a relative fitness metric when comparing individuals during
archive management to address the fact that individuals areevaluated at different speeds. It also uses
archive layering to impose a (reasonably) fair comparison between migrants in terms of fitness case
exposure. (A).
V. The Evolutionary Engines are booted with configuration information that informs them of the
Evolutionary Coordinator’s and Data Server’s IPs. They usethis information to integrate with the
current system. They do not need IPs of the other Evolutionary Engines because they communicate
with them through the Evolutionary Coordinator. (C,D).
VI. Random migration is directed by the Evolutionary Coordinator. (C,D)
VII. Distributed, random fitness case evaluation defines interim solutions in terms of partial fitness as
well as evolutionary progress. Neither the Evolutionary Engine or Evolutionary Coordinator have to
maintain exact knowledge of which fitness cases an individual has been evaluated. (E)
VIII. No restart is required to run parallel experiments andthey are integrated using federated re-
sources. (F)
IX. The Evolutionary Engines use age layering and an elite pool to handle migrant guests of different
ages. This prevents a migrant from being eliminated from providing genetic material too soon. (D)
X. Evolutionary Engines run at lower priority than host processes. The Evolutionary Engine can be
stopped, paused, or restarted, and state files can be deletedfrom a container runner (GFRunner) or
remotely by the server.

1.4.2 Scale Related Design Rationale

We now discuss the features which are key in allowing ECStar to execute continu-
ously at a very large scale.
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1.4.2.1 Resources federation

The Evolutionary Coordinator is a source of two potential bottlenecks. The archive
may become too large to manage if there are a lot of Evolutionary Engines and the
bandwidth of the channels into the Evolutionary Coordinator used by the Evolu-
tionary Engines may become over-subscribed. While it wouldbe possible to dis-
tribute the Evolutionary Coordinator itself to address load balance and archive man-
agement, this solution would create another bottleneck dueto numerous reads and
writes to the distributed archive.

Instead, ECStarfederatesthe functions of the Evolutionary Coordinator, see Fig-
ure 1.2. An Evolutionary Coordinator can be down-chain to another Evolutionary
Coordinator, acting as an Evolutionary Engine minus the evolutionary process it-
self. Down-chain Evolutionary Coordinators control and interact as Evolutionary
Coordinators with their down-chains, which can be Evolutionary Engines, or Evo-
lutionary Coordinators themselves, but they act as Evolutionary Engines to their up-
chains. Each down-chain Evolutionary Coordinator maintains its own local archive,
reducing the load on the top Evolutionary Coordinator’s archive, as well as reduc-
ing bandwidth requirements. Note that Evolutionary Engines and down-chains of
Evolutionary Coordinators need to exclusively communicate with their assigned up-
chains. This is because the archives are federated themselves, and material received
from these archives need to be reported back to them once aged, and would be miss-
ing from other archives.

1.4.2.2 Evolutionary Engine state preservation with statemigration

A large computation executing over a long duration needs to be able to preserve
its state if interrupted. This state must be quick to restore(and even modify before
a restart). It needs to withstand a reboot or even prolonged shut-down of its host.
While results are inevitably lost in these circumstances, they should be minimized.
In this respect, ECStar can serialize and save the Evolutionary Engine population
and the whole state of the evolution at intervals that are specified in an Evolution-
ary Engine’s configuration in what is called thestate file. Further, this state can
be remote from the Evolutionary Engine, a local state-server, making it stateless.
This makes the large, long computation is robust to lost nodes. When a Evolution-
ary Engine comes online for the first time, or if it is ordered to restart by its up
chain Evolutionary Coordinator, it can request a state file from the local state-server
and continue processing from that state onwards. This exploitation of a state-server
also provides more management control of the Evolutionary Engines, especially for
adding or removing them.
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Figure 1.2 Resource federation in ECStar.

1.4.2.3 Unique IDs and Snapshots

Recall that the Evolutionary Coordinator cannot send an individual to only one Evo-
lutionary Engine in case that Evolutionary Engine never responds (it is a volunteer
after all). Therefore, it sends a copy of an individual whilekeeping it in the archive in
order to maintain selection pressure (more details on this follow in Section 1.4.2.3).
Scaling introduces the issue of tracking these replicated individuals as they return in
an unpredictable order. To address this, the Evolutionary Coordinator, for each indi-
vidual, creates unique Evolutionary Engine identifiers andprefixes them to unique
identifiers assigned by the original Evolutionary Engine. This makes all individuals
distinguishable both locally and globally. When an Evolutionary Engine receives a
migrant, it creates a copy called asnapshot. Then after evaluating the original indi-
vidual on a number of fitness cases, it reports back both the individual with updated
fitness and the snapshot to the Evolutionary Coordinator. This allows the Evolution-
ary Coordinator to easily recognize and consolidate the differences between the two
with its own current version of the individual. As a result, when ten Evolutionary
Engines evaluate a gene on ten fitness cases, the Evolutionary Coordinator merges
those reports so that the individual’s fitness is based on thehundred cases.
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1.4.2.4 Fitness-age normalization and layering

No ECStar Evolutionary Engine fully evaluates an individual on all the fitness cases.
This partial evaluation implies a need to compare individuals that more or less match
in terms of being evaluated on the same number of fitness cases. This is addressed
through age-layering, see Hodjat and Shahrzad (2012); Hemberg et al (2013b). Lay-
ering (at either Evolutionary Engine or Evolutionary Coordinator allows individuals
to only compete with others of the same level of fitness case evaluation, based on
their relative fitness.

1.4.2.5 Archive Selection Pressure Through Alive/Dead State

It is important for the Evolutionary Coordinator to direct selection pressure among
the individuals it receives. From Hemberg et al (2013a) we know that the coverage of
the training fitness cases and the symmetry of the training fitness cases of individuals
due to the evaluation of random training fitness cases increases as the individual
solution is exposed to more cases. Parameterization supports changing the size of
the layers on the Evolutionary Coordinator, to tune the pressure and address the
issue of asymmetric comparisons (noisy) between individual solutions that have
seen only a few training fitness cases. These parameters can be adjusted as ECStar
executes.

Individuals that are dispatched by the Evolutionary Coordinator as migrants to
Evolutionary Engines are not deleted from its archive. Retaining them maintains
selection pressure in the context of returning migrants. However, these individuals
may be displaced by new migrants with superior fitness. This creates a timing glitch:
when the migrants of an individual return, it might have beendisplaced. The fitness
of the displaced individual must be updated and it must be allowed to compete for
entry into the archive. To resolve the glitch, displaced individuals are retained but
marked as “dead” and called “ghosts”. Ghosts are kept in the archive until the ratio
of “dead” genes is too high, then the archive is flushed of them.

1.4.2.6 Application Specific Interpreter in Evolutionary Engines

Each Evolutionary Engine is deployed with a very small, application specific, lan-
guage interpreter. This allows instructions to be passed, via a configuration message
passed by the Evolutionary Coordinator, to be executed and avoids needing to re-
place the software on the Evolutionary Engine. It makes the Evolutionary Engine to
be a general executable which in turn is 100% configurable by the Evolutionary Co-
ordinator via the configuration messages. The interpreter supports signals to restart,
flush the Evolutionary Engine’s population, or stop before abackward incompatible
software upgrade is loaded. A configuration message can alsocarry:

• new evolutionary algorithms settings, such as mutation rate, population size,
maturity age, etc.
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• a meta description of a new fitness objective
• a definition of new discrete intervals for feature discrimination
• a definition of new features in data packages

1.4.2.7 Integrated Data Feature Server

Because it executes uninterrupted for a long time, ECStar incorporates the ability
to perform online feature selection. This function is controlled by the Data Feature
Server.

Two feature sets are managed by a data base table which countsthe number
of handshakes (migrants reported to the Evolutionary Coordinator to be added or
merged) which were requested and the number of handshakes which were fulfilled.
The Data Feature Server looks at these ratios, an absolute threshold and improve-
ment in fitness. When the improvement rate declines and the number of requested
handshakes is more thanC1, the feature sets are ready to merge and a new set will
be created. The merged feature set uses the union of featuresof both sets. The in-
dividuals are merged in the Evolutionary Coordinator and marked as coming from
the merged set. The new set uses a fix collection of features and chooses others
randomly. Merging and new feature set creation is coordinated via a properties file
referenced by the Evolutionary Coordinator.

The Evolutionary Engines receive the definitions of the new feature set from
the Evolutionary Coordinator via a configuration message. This minimizes the ef-
fort spent on updating the Evolutionary Engine. Configuration messages propagate
through the normal Evolutionary Engine Evolutionary Coordinator communication
and take a while to be completely reach all Evolutionary Engines.

1.4.2.8 Security

An ECStar system instance is running on public networks and the integrity of Evo-
lutionary Engines is not assured. Ensuring security increases the computational cost
of data transfers but is vital. Detecting injection of erroneous solutions is handled
by consulting the identifiers on solutions and by executing out-of-sample tests. Sen-
sitive data is encrypted and serialized. The Evolutionary Coordinator, Data Server
and client-state servers are also required to reside behindfirewalls.

1.4.2.9 Summary

Some of these scaling design choices function below the level of the attention of
the engineer supervising an ECStar system instance. Othersare exposed via param-
eterization or for provisioning. This becomes clear in the next section on System
Instance Management.
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Figure 1.3 ECStar System Management Phases

1.5 ECStar System Instance Management

For an example of a use case for a deployment and maintenance of a run with 10,000
Evolutionary Engines, see Figure 1.3. ECStar executes overthree phases:

Phase 0: Local experiments The initial step:

Local experiments On a cluster local experiments are completed before in
preparation to scale. This includes iterating to decide upon an efficient for-
mat for data packages, features, representation parameters, objective function
and execution parameters in Evolutionary Engine and Evolutionary Coordi-
nator, see O’Reilly et al (2012). The output of the process are source and
configurations for the Evolutionary Coordinator and Evolutionary Engine.

Phase I: Large-scale deployment preparation There are two preparation steps:

Quality Assurance The binaries for the Evolutionary Engines must pass a
Quality Assurance (QA) checking whether it is able to run within the limi-
tations of the client’s footprint, and not disrupt the volunteer while it is not
idle. This includes 24-48h execution and profiling of the binary.

Deployment After the QA the deployment is initiated to an controlled environ-
ment of 1000 Evolutionary Engines for a couple of days. The Evolutionary
Coordinator servers and Data Servers are configured to handle the initial Evo-
lutionary Engine load. Finally, the Evolutionary Engine code is distributed
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and deployed globally. This can take a week. The management of resources
continues during Phase II.

Phase II: Long-term operation As soon as an Evolutionary Engine has received
the binary code and has idle cycles it can start to compute. When the network
capacity allows, it can request training cases from the dataserver. After enough
time processing with idle cycles it tries to report results as snapshots of individual
solutions to the Evolutionary Coordinator server. If the network capacity allows
the Evolutionary Coordinator receives them. When there is high throughput the
Evolutionary Coordinator is usually configured to toleratea wave of 10000 re-
quests per minute. There are a number of steps:

Software update In order to update the Evolutionary Engine anew binary or
parameter settings would need to be distributed. This is discouraged since it
could take a week. Moreover, when updates are done on the servers it must be
taken into account that there are Evolutionary Engines which are using data
from previous versions, thus the turn around for updates is the same as for a
new deployment. See Section 1.5.2 for more details on how this is nonetheless
possible.

Resources management By adding or removing Evolutionary Engines the re-
sources can be managed during the run.

Monitor We are continuously monitoring the state of the hardware and the
network as well as the solutions at the evolutionary coordinator.

Harvesting The harvesting is performed by filtering the solutions at the Evolu-
tionary Coordinator or out-of-sample tests. See Section 1.5.2 for more details.

Directed Evolution The design of ECStar allows a directed evolution of the
system. Promising combination within the system can be allowed more re-
sources, while worse can be terminated.

Phase III: Stop The final step:

Stop Halting the run takes a while as well, a couple of days. Itis important
to make sure that all the Evolutionary Engines stop sending solutions to the
Evolutionary Coordinator.

1.5.1 Monitoring a Deployed ECStar System Instance

When ECStar is up and running there are multiple automatic monitors in action.
There is basic IT monitoring of data base load and connections. This mainly pre-
ventive and can identify where the Evolutionary Engines have slowed down.

Even more important is the monitoring of the Evolutionary Coordinators. The
improvement of fitness is constantly monitored to warn when it trails off. In ad-
dition, individuals are constantly filtered and harvested from the Evolutionary Co-
ordinator and tested on out-of-sample data for generalization. The convergence of
the clients are monitored by looking at the ratio of number ofhandshakes between
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Table 1.4 Components of ECStar and their access and maintenance

Component Access Maintenance
Evolutionary Engine Unpredictable Sporadic & Delayed
Evolutionary CoordinatorPredictable Continuous & “hot swap”
Data Server Predictable Continuous & “hot swap”
Data Feature Server Predictable Continuous & “hot swap”

the Evolutionary Engine and the Evolutionary Coordinator and the accepted hand-
shakes (individuals) at the Evolutionary Coordinator. Thefitness function is used to
drive the evolution, but there can also be other domain specific properties in the in-
dividual which are interesting. The monitoring can be configured to find individuals
with these properties in the Evolutionary Coordinator archive as well.

1.5.2 Updating a Deployed ECStar System Instance

The state of a Evolutionary Coordinators, Evolutionary Engine, Data Server and
Data Feature Server are: inactive (Off) and active (On). When a component is active
the versions of all the components need to be compatible. Changing the active ver-
sion of the components can be done interactively during runtime or with a restart.
If the component is restarted, a new parameter file or a new binary can be used.
The runtime changes require the fewest steps, but they will still result in the system
being in a state with hetereogenous versions.

Table 1.4 shows the accessibility and the mode of maintenance of each compo-
nent. Each of the components in ECStar has a configuration file. This reduces the
need to recompile the components and instead a restart of thecomponent is suffi-
cient to make changes.

The Evolutionary Coordinator, Data Server and Data FeatureServer are the com-
ponents which are the most accessible, since they are currently not part of the vol-
unteer compute. When there are changes made that requires feedback from the Evo-
lutionary Engines then there will always be the turn around of all the clients being
available and updated. The simplest change is when it is pushed out via the servers
without stopping the run. It becomes slightly more complex when the clients need
to be stopped and updated.

ECStar’s design deals with the appearance of Evolutionary Engines after long
periods of idleness. This situation is handled by the check for version comparability
between Evolutionary Engine and Evolutionary Coordinatorwhen the Evolutionary
Engine restarts. When incompatible Evolutionary Engines contact a Evolutionary
Coordinator they are terminated by a kill signal sent from the Evolutionary Coordi-
nator.

The federation of Evolutionary Coordinators allows the archive size to be scaled
according to the number of Evolutionary Engines. In addition, federation allows a
tiered evolution where different tiers control the selection pressure and supply of
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individuals. Finally, the federation allows more control for ECStar, since the Evolu-
tionary Coordinators are under direct control.

The servers can be “hot swapped” by simply redirecting the IPof the server to
a duplicate, while the original server is updated. The Evolutionary Engines are not
so easy to change, since they cannot be accessed at will, but there is access to the
state server. The loss of the Evolutionary Engine local datais therefore limited to
the state file save interval.

The multiple objectives in the fitness function can be altered when ECStar is
deployed. This has to be done with care because of the interaction of the old pop-
ulation under the new fitness objectives. It could wipe out the old population with
no genetic legacy left behind or it may allow the population to converge to local
minima.

1.6 Directed Evolution

The properties which imply ECStar is impressive and exemplary by contemporary
measures of scale and computational evolutionary complexity also make ECStar a
square peg in the evolved round hole of GP research expectations. This is because
it is impractically prohibitive to repeatedly execute ECStar at least 30 times to ob-
tain performance characterization which carries statistical significance. Like nature,
ECStar won’t pass a t-test; its scale, inherent asynchronicity and complexity dictate
that its“tape” can only be played once.

Instead, a directed evolution approach can be taken when studying ECStar. This
involves changing parameter settings during the run, adding and removing Evo-
lutionary Engines and updating the software. The reset is never complete as with
a standard GP system, it is more of a nudge of the current population. This re-
quires either the population to be sufficiently diverse, or the ability to inject diver-
sity, see Hemberg et al (2013a).

In addition, due to the robust setup ECStar allows investigation of what happens
in the system when a change is not yet propagated to all the parts of the system,
i.e. the components are hetereogenous. In other words, there will be intermediate
effects of the system heterogeneity.

1.7 Summary

In summary, we believe it inevitable that more and more GP (and EC) systems will
become distributed on much larger scale than is presently the case. This transition
will be driven by operational costs of clouds and grids decreasing plus increasingly
bigger applications with training data from so called “Big Data” repositories. This
move from somewhat small-scale distribution in the order often’s or hundred’s to
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thousands through to millions is around 3 orders of magnitude in terms of computing
nodes. ECStar addresses this scale up in the following ways:

• It has a hierarchical federated resources design which creates a hierarchy of
Evolutionary Coordinators to handle the scale of the volunteer compute node
and uses the Evolutionary Engine as the base. (Section 1.4.2.1)

• It explicitly deals with the inevitable and higher risk, introduced by running so
many nodes, of losing computed information by means of Evolutionary Engine
state preservation, state migration and a strategy of polling for required data in
frequent but small quantities. (Section 1.4.2.2)

• It has an explicit means of resolving asynchronously computed work on the
same datum (i.e. rule set) that occurs because of the unpredictable availabil-
ity of its Evolutionary Engines by employing snapshots and unique IDs. (Sec-
tion 1.4.2.3)

• It uses fitness normalization and layering to deal with the different types
and value of fitness cases that have been evaluated by each solution. (Sec-
tion 1.4.2.4)

• It maintains archive selection pressure by means of ghosts in the archive and
flushing periodically flushing. (Section 1.4.2.5)

• It integrates a meta language to simplify deployment to the Evolutionary En-
gines. (Section 1.4.2.6)

• it incorporates the ability to perform feature selection onthe data. (Section 1.4.2.7)
• It deals with security via encoding data, compiled binaries, firewalls and re-

calculation of fitness at the Evolutionary Coordinator, as well as out-of-sample
evaluation of the top solutions. (Section 1.4.2.8)

ECStar also introduces explicit operational means of addressing its execution
complexity which arises from using so many resources in an asynchronous way the
time cost to deploy so many resources the need to update deployed resources. It
has facilities for: monitoring, see Section 1.5.2, harvesting, see Section 1.5.1 and
software updating, see Section 1.5.2.

ECStar offers a digital version of directed evolution. It has strong commonality
with Artificial Life systems because, like them, it is a single execution process,
rather than a restart-rerun platform. It is NOT an ALIFE system because it is applied
to solving a problem, for purposes much more typical of evolutionary computation.
It is applied and GP in practice rather than a digital experiment being studied for its
behavior to validate and explicate a biological system.

We embrace a new "zen" of design with this unique evolutionary system. ECStar
allows us to try to do direct evolution in a system which you donot completely turn
off.
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