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Abstract

An intersection of events has led to a massive increase in the amount of medical data
being collected from patients inside and outside the hospital. These events include
the development of new sensors, the continuous decrease in the cost of data storage,
the development of Big Data algorithms in other domains and the Health Information
Technology for Economic and Clinical Health (HITECH) Act’s $20 billion incentive
for hospitals to install and use Electronic Health Record (EHR) systems. The data
being collected presents an excellent opportunity to improve patient care.

However, this opportunity is not without its challenges. Some of the challenges are
technical in nature, not the least of which is how to efficiently process such massive
amounts of data. At the other end of the spectrum, there are policy questions that
deal with data privacy, confidentiality and ownership to ensure that research continues
unhindered while preserving the rights and interests of the stakeholders involved.

This thesis addresses both ends of the challenge spectrum. First of all, we design
and implement a number of methods for automatically discovering groups within
large amounts of data, otherwise known as clustering. We believe this technique
would prove particularly useful in identifying patient states, segregating cohorts of
patients and hypothesis generation. Specifically, we scale a popular clustering algo-
rithm, Expectation-Maximization (EM) for Gaussian Mixture Models to be able to
run on a cloud of computers. We also give a lot of attention to the idea of Consen-
sus Clustering which allows multiple clusterings to be merged into a single ensemble
clustering. Here, we scale one existing consensus clustering algorithm, which relies on
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EM for multinomial mixture models. We also develop and implement a more general
framework for retrofitting any consensus clustering algorithm and making it amenable
to streaming data as well as distribution on a cloud.

On the policy end of the spectrum, we argue that the issue of data ownership is
essential and highlight how the law in the United States has handled this issue in
the past several decades, focusing on common law and state law approaches. We
proceed to identify the flaws, especially the fragmentation, in the current system
and make recommendations for a more equitable and efficient policy stance. The
recommendations center on codifying the policy stance in Federal Law and allocating
the property rights of the data to both the healthcare provider and the patient.

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist, CSAIL

Thesis Supervisor: Kalyan Veeramachaneni
Title: Research Scientist, CSAIL
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Chapter 1

Introduction

This thesis focuses on technical and policy challenges in knowledge mining of medical

data. In this chapter, we describe the motivation for the choice of problem space and

methods. We also give an overview of the main contributions of this work.

1.1 Motivation

We are at an important point in history that necessitates a focus on what may be

called Big Medical Data. Due to multiple drivers, there has been an explosion in the

amount of medical data collected by several means for different purposes. The first of

these drivers is the cheap availability of data storage. Figure 1-1 shows the dramatic

decline in the cost of data storage over the last two decades. The collection of data in

the United States is also accelerated by the Federal Government’s $20 billion incentive

to adopt electronic health records. This incentive is contained within the Health Infor-

mation Technology for Economic and Clinical Health (HITECH) Act which stipulates,

among other things, that healthcare providers be paid significant sums of money if

they can attest to meaningful use of an electronic health record (EHR) system (Blu-

menthal, 2010). Finally, an increase in personal monitoring (Milenković et al., 2006)

has equally led to increased gathering of personal physiological data. Personal moni-
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toring includes portable Holter monitors for taking ECG measurements on the move

and other wearable devices like FitBit1 and Nike’s FuelBand2 which monitor human

activity such as sleep, steps walked, calories burned, etc.

Figure 1-1: Plummeting data storage costs (Smith and Williams, 2010)

While the increase in data collection is commendable, we fear its utility might be

severely limited by a human’s limited ability to process large amounts of data that

typically spans several hours/days of historical information, may include multiple data

streams from multiple indices measured and is gathered from multiple individuals.

This volume, variety and velocity of data therefore calls for scalable and innovative

knowledge mining technology such as machine learning which has been applied in

other Big Data domains. For instance, large amounts of data generated by online

services like Google, Amazon, Twitter as well as brick-and-mortar businesses like

Walmart has led to methods that can mine such data and has resulted in advances

in collaborative filtering, recommendation systems and smart product placement in

stores thereby leading to drastic improvements in the way these businesses operate.

1www.fitbit.com
2www.nike.com/us/en us/c/nikeplus-fuelband
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There is a similar opportunity to improve and lower the cost of patient care using

medical knowledge mining. Given the frequency of errors (Schoen et al., 2005) and

high costs (Brill, 2013) associated with health care, there is an opportunity to optimize

hospital resources by allocating more resources to sicker patients and supporting

doctor decision-making by automatically extracting patterns from a patient’s history

and other similar patients.

This thesis is both a technology and a policy thesis centered around the opportunity to

improve patient care using knowledge mining of medical data. On the technology end,

we focus on a specific method of knowledge mining known as clustering. This method,

which falls within the larger domain of unsupervised machine learning, enables the

discovery of groups within data which, in contrast to supervised learning, does not

have to be labelled by a domain expert or data for which the labels may not even be

known. The clustering method is particularly suited to medical data mining because

getting such labelled datasets may be expensive and time-consuming given the volume

of data in question.

On the policy end, we shift focus from the methods for analyzing the data to the policy

stances that ensure the availability of data. We are specifically interested in the issue

of data ownership and the policy directions that will ensure the availability of large

amounts of medical data for knowledge mining and consequent improvements in the

quality of patient care. The next two sections will briefly discuss the contributions this

thesis makes to both large-scale clustering and the subject of medical data ownership.

1.2 Clustering

Clustering is an unsupervised learning method for discovering hidden patterns in data

without any reference to a known patterns or ground truth. We focus on clustering

because it provides an ideal platform for hypothesis generation within the relatively

novel area of large-scale medical knowledge mining. Clustering also provides a means

to group similar patients and similar segments of patient timelines. This grouping
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can then provide higher fidelity for supervised tasks like classification or regression

since group-wise models that have reduced within-group variance can then be built

for each cluster.

However, there are a number of technical challenges that arise in clustering this

type and scale of data, notably the multiplicity of possible results and the data size

involved. Our work in this thesis addresses some of those challenges as discussed in

the following subsections.

1.2.1 Multiplicity of possible results

A potential issue with clustering techniques is the multiplicity of results that can be

obtained just by changing the clustering method used or even by varying the param-

eters of the same clustering method. Since clustering is an unsupervised process and

there is no ground truth, every clustering outcome is correct in some sense. How-

ever, not all clusterings are based on underlying patterns; some are more sensitive to

certain types of noise.

To address this issue, we focused our efforts on the idea of consensus clustering.

Consensus clustering methods allow us merge multiple base clusterings to form one

clustering that, on average, reflects the best agreement with all the base clusterings.

These base clusterings may have come from different methods, different clustering

parameters or from different feature combinations of the data and consensus cluster-

ing attempts to find commonalities between them. In this thesis we generate multiple

clusterings by first projecting the data to a random subspace before clustering using

the same clustering method: Expectation-Maximization for Gaussian Mixture Mod-

els. We focus on using one clustering method so that we can channel our efforts to

consensus clustering because the consensus problem for large datasets has not received

significant attention unlike the clustering problem which has been heavily addressed

over the last five decades.
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1.2.2 Data Size

Given the noisiness of data and diversity in patients, a lot of data necessarily needs

to be studied to be able to extract statistically significant results. This scale of data

is typically larger than the amount of memory installed on commodity computers3.

Many clustering methods therefore fail since a lot of the methods require the entire

dataset to be loaded into memory. Another weakness of existing clustering methods

lies in the required multiple passes through the data that result in very long run times

for large amounts of data.

There are three ways to solve this problem. First, it may be possible to sample the

data and perform analysis on the sample. This approach runs the risk of selecting

a non-representative sample and obtaining inaccurate results. Second, the analysis

could be run on powerful computers with large installed memory. Unfortunately, such

computers are expensive and may be out of the reach of many research groups. A

third approach is to develop distributed methods that can run on an large number

of commodity machines. We favor this approach and pursue it in this thesis because

commodity machines are typically more accessible than single, powerful computers.

It is also possible to, with minimal effort, massage such methods to run on volunteer

compute nodes as well as run in streaming fashion.

The solutions we present in this thesis are of two classes. First, we implement dis-

tributed versions of the popular Expectation-Maximization algorithm for Gaussian

Mixture Models and Multinomial Mixture Models (MMM). Our focus with both

methods is to deliver timely clustering and consensus clustering results given a cer-

tain amount of computing resources. However, both these methods are unable to

handle certain data sizes given a fixed amount of computing resources. Second, to

deal with data sizes where the MMM with Distributed EM algorithm fails, we have

also developed the Streaming Consensus Clustering method that is able to process

3e.g. a dual core, 4GB server/workstation at a cost of $1,500. The CSAIL internal cloud currently
has over 1,500 virtual cores and 3 TB of memory which we use to construct several “commodity”
nodes
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any amount of data on any number of computing nodes and deliver timely results

with reasonable accuracy.

1.3 Data Ownership

A number of non-technical challenges also affect the ability of researchers to extract

knowledge from medical data. These non-technical challenges specifically affect the

availability of large datasets for research. While considering the policy challenges,

we do not limit ourselves to any specific form of medical data. Our analyses and

conclusions here examine these policy challenges from the perspective of all forms of

medical data including physiological signals, clinical information such as medication

and doctors’ notes as well as genomic data. Specifically, in this thesis, we focus on

question of medical data ownership.

This thesis reviews the legal stance on medical data ownership in United States

common law and state law. It considers how the law has evolved to account for

the changing definition of what constitutes a medical record ranging from x-rays to

other types of data such as ECG. Also of particular interest, is how the law has

evolved to deal with the shift from paper to electronic medical records. Finally, it

makes and justifies recommendations for Federal medical data ownership laws as well

as patient and healthcare provider co-ownership of property rights to such data.

1.4 Organization

The thesis is organized as follows:

Chapter Two describes our implementation of a distributed clustering algorithm that

is able to produce multiple clusterings of the same data set by projecting the dataset

into random subspaces. It presents results on clustering a large synthetic dataset. It

also highlights performance metrics such as computation time and memory usage.
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Chapter Three presents two approaches to consensus clustering. The first approach

relies on modelling the consensus clustering problem as a mixture of multinomial

distributions and identifies the consensus clusters using a distributed implementation

of the Expectation-Maximization algorithm. The second approach is a more gen-

eral framework that involves progressively sampling the data points with adaptive

replacement till all the data points have been clustered. The goal with both algo-

rithms is to produce consensus clusterings that are both timely and accurate. Both

approaches are therefore compared theoretically and empirically by presenting results

that highlight the trade-offs in terms of accuracy, memory requirements and running

time (wall-clock time).

Chapter Four discusses the data ownership considerations that affect the availability

of medical data for research. It provides a historical overview of legal approaches

to the data ownership question, analyzing the flaws and inconsistencies in these ap-

proaches by presenting an overview of the common law approach as well as a survey

of the current landscape of US state law. It then proceeds to make recommendations

for an approach that fixes these issues by striking an appropriate balance between

efficiency and equity.
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Chapter 2

Distributed Clustering of Large

Datasets

As we mentioned in Chapter 1, the idea of clustering very large datasets is central to

this thesis. In the past years, several approaches to both clustering and large-scale

clustering have been developed. CURE (Guha et al., 1998) represents clusters as

multiple points that have been shrunk towards the center and this approach was used

to cluster over 100,000 data points. BIRCH (Zhang et al., 1996), which was also

used to cluster 100,000 data points, builds a “CF-tree” that contains summaries of

densely packed regions of the input space and disposes of sparse regions as outliers.

DBSCAN (Ester et al., 1996) discovers clusters by finding points that have “MinPts”

other points within “Eps” distance of themselves and denoting the groups as clusters,

using this method to cluster over 12,000 data points. More recently, Chitta et al.

(2011) developed an approximation to the kernel k-means method (Dhillon et al.,

2004) which avoided the expensive computation of the full kernel by ”restricting the

cluster centers to a small subspace spanned by a set of randomly sampled data points”.

This method was used to cluster over 1.2 million images.

However, none of these methods hit the scale of data (e.g. > 100 million data points)

we are targeting in this thesis so we created a distributed implementation of the
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Expectation-Maximization (EM) algorithm (Dempster et al., 1977) for Gaussian Mix-

ture Models. We are not the first to perform distributed EM in this fashion. Gu (2008)

states that expectation-maximization on all exponential family distributions may be

done this way and Lin et al. (2005) uses this approach to perform privacy-preserving

clustering on computing nodes that do not share data. However, neither of these

authors tackle the specific problems which we address in this thesis:

Data Size: We demonstrate the distributed EM algorithm on a dataset that is two

orders of magnitude higher than what we find in the literature.

Memory: Due to the sheer size of the data, it is unable to fit entirely in the memory

of a single computing node thereby mandating the use of multiple computing

nodes.

In the next sections, we describe our implementation of a distributed EM algorithm

for Gaussian Mixture Models. Table 2.1 describes the notation used in the subsequent

sections.

2.1 Gaussian Mixture Models

Since clustering involves the discovery of groups within data, one approach is to model

the data set as points drawn from a mixture of underlying probability distributions.

The clustering task then becomes one of discovering the parameters of the underlying

distributions. One popular type of distribution for this analysis is the multivari-

ate Gaussian distribution, N (x|µ,Σ). Figure 2-1b shows a mixture of 3 bivariate

Gaussian distributions.

The parameters to be learnt are: the means of each Gaussian distribution, µj, which

reveal where the j component distributions are centered, the covariance matrix of the

distributions, Σj, that reveals the dispersion of each model and the ratio of mixing,

πj, that reveals the likelihood of data points being drawn from each of the component

distributions.
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(a) Single Bivariate Gaussian Distribution (b) Mixture of 3 Bivariate Gaussian Distri-
butions

Figure 2-1: Example showing the distribution of a single bivariate Gaussian distribu-
tion and a mixture of 3 bivariate distributions

Given an n × D dataset X drawn from a mixture of m Gaussian distributions, the

likelihood of a data point xi is given by Bishop (2006) as:

p(xi|µ,Σ,π) =
m∑
j=1

πjN (xi|µj ,Σj)

where,

N (xi|µj ,Σj) =
1

(2π)D/2
1

|Σj|1/2
exp

(
−1

2
(xi − µj)TΣ−1

j (xi − µj)
)

The likelihood and log-likelihood of the entire dataset is therefore given by:

p(X|µ,Σ,π) =
n∏
i=1

m∑
j=1

πjN (xi|µj ,Σj)

ln p(X|µ,Σ,π) = ln
n∏
i=1

m∑
j=1

πjN (xi|µj ,Σj)

=
n∑
i=1

ln
m∑
j=1

πjN (xi|µj ,Σj)

To determine the optimal parameters, we can attempt to maximize the likelihood by

differentiating with respect to µj, Σj and πj and setting the derivatives to zero. This,

according to Bishop (2006), leads to the following maximum likelihood expressions for
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µj, Σj and πj ∀j ∈ {1 . . .m}:

µj =
1

Nj

n∑
i=1

γ(zij)xi

Σj =
1

Nj

n∑
i=1

γ(zij)(xi − µj)(xi − µj)T

πj =
Nj

n

where,

Nj =
n∑
i=1

γ(zij) and

γ(zij) =
πjN (xi|µj,Σj)

m∑
k=1

πkN (xi|µk,Σk)

Note however, that due to the presence of a log of a sum in Eqn. 2.1, the estimate of

parameters µj, Σj and πj contain the term γ(zij) which in turn depends on µj, Σj

and πj. This observation however presents an iterative approach to solving for the

parameters known as expectation-maximization. The idea is that parameters from

the previous iteration are used to calculate γ(zij), µj, Σj and πj and the updated

parameters are used in the next iteration. This algorithm was shown by Dempster

et al. (1977) to increase the likelihood in every iteration and converge. The full EM

algorithm is described in Algorithm 1.

We can also introduce the idea of an unobserved 1 × m latent variable zi which

determines the particular mixture component a data point xi was drawn from. In a

scenario where xi is a member of only 1 cluster, zi contains a 1 in one column and 0

in m− 1 columns. The marginal distribution of zi is given by

p(zj = 1) = πj

γ(zij) can therefore be written as:
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γ(zij) =
p(zj = 1)N (xi|µj,Σj)
m∑
k=1

p(zj = 1)N (xi|µk,Σk)
=

p(zj = 1)p(xi|zj = 1)
m∑
k=1

p(zk = 1)p(xi|zk = 1)

Written this way, it becomes apparent that γ(zij) is the posterior probability of the

latent variable. In other words, γ(zij) is the probability that the ith point belongs to

the jth cluster given the data, and parameters µ and Σ.
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Input: X, an n x D matrix of data to be clustered
Output: y, an n x 1 matrix of cluster labels from 1 . . .m

1 Initialize parameters, θ(0): µ(0), Σ(0), π(0)

2 L(−1) = −∞; L(0) = 1; a← 0

3 while 1− L(a−1)

L(a) ≥ ε do
// Expectation Step.

4 for i = 1→ n do
66 for j = 1→ m do

88 p(xi|θ(a), zij = 1) = 1

(2π)
D
2

1

|Σ(a)
j |

1
2

exp
(
−1

2
(xi − µ(a)

j )Σ
(a),−1
j (xi − µ(a)

j )T
)

9 end

10 end
11 for i = 1→ n do
12 for j = 1→ m do

1414 γ(zij) = p(zij = 1|θ(a),xi) =
π

(a)
j p(xi|θ(a), zij)

m∑
k=1

π
(a)
k p(xi|θ(a), zik)

15 end
1717

18 end
// Recompute likelihood

19 L(a) =
n∑
i=1

lnπ(a),Tp(xi|θ(a), zi)

// Maximization Step.

20 for j = 1→ m do

21 µ
(a+1)
j =

1
n∑
i=1

γ(zij)

n∑
i=1

γ(zij)xi

22 π
(a+1)
j =

1

n

n∑
i=1

γ(zij)

23 Σ
(a+1)
j =

1
n∑
i=1

γ(zij)

n∑
i=1

γ(zij)(xi − µ(a+1)
j )T (xi − µ(a+1)

j )

24 end
25 a← a+ 1

26 end
27 for i = 1→ n do
28 yi = arg max

j∈1...m
p(zij = 1|θ(a),xi)

29 end
//

Can be

distributed

and

performed

independently

on

different

nodes

Partial

sums can

computed on

different

nodes,

aggregated

on central

node and

re-distributed

to nodes

Algorithm 1: EM Algorithm for Gaussian mixture models. See Table 2.1 for a
legend of the symbols in the algorithm
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Notation Dimension Meaning
n 1 x 1 Number of data points
D 1 x 1 Number of input data dimensions
m 1 x 1 Number of desired clusters or distributions in GMM
a 1 x 1 Iteration counter
xi 1 x D ith row of input data
zij 1 x 1 Latent variable indicating if the ith row of input data

belongs to cluster j, zij ∈ {0 . . . 1}
µj 1 x D Mean of jth cluster
πj 1 x 1 Probability of selecting jth cluster
Σj D x D Covariance of jth cluster
L 1 x 1 Data likelihood
γ(zij) 1 x 1 Probability that the ith data point belongs to the jth

cluster given the dataset, µ and Σ

Table 2.1: Legend of symbols in Algorithm 1

2.2 Distributed Expectation-Maximization

Since the computation of p(xi|θ(a), zij) and γ(zij) as shown in lines 8 and 14 of Algo-

rithm 1 depends on just the parameters of the model (and not the values of other data

points), this computation can be parallelized to multiple computing nodes provided

each node has the current global parameters (µ(a), Σ(a), π(a)). Similarly, since the

maximization step comprises of summations over the data points, the dataset could

be partitioned into non-overlapping sets and summation for each set could happen

independently, then the sets are summed themselves. We exploit both opportunities

for parallelism in order to implement a shared-nothing, distributed EM framework

for GMM that can generate clusterings for an arbitrarily large dataset using a cloud

of computers even when the entire dataset cannot entirely reside in the memory of

any one computer in the cloud.

The central idea here is to partition the data into non-overlapping sets, transfer these

sets to ”slave” nodes on the cloud and perform EM independently on each node.

At different points during each iteration, the parameters computed on each node

are sent to a “master” central node where they are aggregated and summed before

being broadcast back to the compute nodes. The steps involved in developing an
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implementation of distributed EM are:

Step 0: Decide on the number of instances to use. This depends on the size

of the dataset and the amount of memory on every instance. Decide upon the

architecture (Section 2.2.1) and protocols e.g ssh, scp etc. (Section 2.2.4) for

communication between nodes.

Step 1: Partition the data (Section 2.2.2)

Step 2: Initialize the parameters (Section 2.2.3) and distribute them to the

slaves

Step 3: Start the process on each slave

Step 4: Calculate, on each slave, the conditional probabilities and posteriors

for the data points on it. Calculate the partial sum of log-likelihoods and send

them to the master.

Step 5: Sum the partial sums of log-likelihoods from the slaves on the master

and send the sum to the slaves. If the sum of log-likelihoods satisfy the stop-

ping condition, stop the process on the master and retrieve the cluster label

assignments from the slaves.

Step 6: Calculate, on each slave, a partial sum of posterior probabilities and

send them to the master. On the master, aggregate these partial sums to form

the full sum of posterior probabilities. Then compute the priors on the master

and send both the sum of posteriors and the priors to the slaves.

Step 7: On each slave, calculate the partial means and sends them to the

master. On the master, aggregate these partial means to form the global means

and send them to the slaves.

Step 8: On each slave, calculate partial covariance matrices and sends them

to the master. On the master, aggregate these partial covariance matrices to

form the global covariance matrices and send them to the slaves. Start the next

iteration at Step 4.
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Steps 4-8 are detailed in Section 2.2.4. In the subsequent sections, we describe the

architecture and niceties of our implementation.

2.2.1 Architecture

In this thesis, we adopt a master-slave topology for distributed learning of the pa-

rameters. Therefore, a node is designated as the master node and is responsible for

partitioning the data, starting up the slave nodes and aggregating the parameters.

The algorithms are implemented in MATLAB1 because of its superior efficiency in

matrix manipulation. Distribution is performed on an internal OpenStack2 cloud at

the Computer Science and Artificial Intelligence Laboratory (CSAIL)3 at MIT.

2.2.2 Data Partitioning

Our goal here is to create almost equal partitions of the data so each slave would pro-

cesses an equal-sized partition. Since the data is too large to load into and partition

in memory, the data is read in blocks and partitioned on the master node and the

partitions are written out to disk. After each block of data is read, it is randomly per-

muted before roughly equal partitions corresponding to the amount of slave nodes are

created. This random permutation is not absolutely necessary since the distributed

EM approach we have described so far performs no local approximations of global

parameters. Therefore, even if all the data points on a slave belong to a single cluster,

the EM results are unaffected. We have, however, chosen to randomize the data par-

titioning because in our distributed EM implementation, if one or more slaves hold up

an aggregation step, the local parameters from the nodes that have completed that

step are used to form the global view of the parameters. This implementation detail

is explained further in Section 2.2.5. Under this scenario, having some ordering on

the data points sent to a slave could affect the results.

1http://www.mathworks.com/products/matlab/
2http://www.openstack.org/
3http://tig.csail.mit.edu/wiki/TIG/OpenStack
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2.2.3 Parameter Initialization

According to (Vlassis and Likas, 2002), there is no single accepted way of performing

parameter initialization. They recommend that µ be initialized to random points in

the data set and Σ set to a spherical covariance with σ2 = 1
2D

min
i 6=j
||µi − µj||2. This

strategy would involve loading the entire dataset into memory or at least knowing

the size of the dataset a priori. Therefore, for µ and Σ we had to devise a parameter

initialization scheme that is compatible with our approach of streaming in the data

in blocks.

While streaming the data in, we keep track of the minimum and maximum datapoints

in every dimension, xmin and xmax (both of dimension, 1×D). We then select each µj

by randomly sampling the space between the maximum and the minimum in every

dimension and we obtain each Σj by finding the variance of a 2-element dataset

that contains only the maximum and the minimum values in every dimension. This

variance becomes the diagonal of the initial shared diagonal covariance matrix for

every component:

µj = xmin + (xmax − xmin) diag(rand1×D)

Σj = diag

(
1

4
(xmin − xmax) diag(xmin − xmax)

)

where randc×d is a c× d matrix of random numbers varying from 0 to 1

We initialized the priors on the components as πk = 1
m

following the approach used

by Vlassis and Likas (2002)
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2.2.4 Distributed Learning

Communication between the master node and the slaves happens over ssh, scp and

Java4 sockets. The EM process and other housekeeping on the slave nodes is started

using ssh and global parameters5 are transferred to the slaves using master-initiated

scp. Similarly, local parameters are obtained from the slaves using master-initiated

scp by making the slaves ping the master when a local view of variables is awaiting

collection.

Suppose there are S slaves and a slave, s, receives a subset of the data, Xs, such that

|Xs| = ns and each row of Xs is denoted by xs,i the distributed learning approach

works as follows:

Step 0 (master): Parameters µ(0), Σ(0) and π(0) are initialized at the master and

sent to the slaves. Iteration counter, a, is also initialized to 0.

Step 1 (slave): On each slave, s, and for each data point i, and each cluster j, the

following is done:

(a) Conditional probabilities are computed:

p(xs,i|θ(a), zij = 1) =
1

(2π)
D
2

1

|Σ(a)
j |

1
2

exp

(
−1

2
(xs,i − µ(a)

j )Σ
(a),−1
j (xs,i − µ(a)

j )T
)

(b) Posteriors are computed:

γs(zij) =
π

(a)
j p(xs,i|θ(a), zij)

m∑
k=1

π
(a)
k p(xs,i|θ(a), zik)

4http://java.com/en/
5’Parameters’ in this section is a looser term and includes γ(zij) and L which are not parameters

of the distribution
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(c) and the partial sum of log-likelihoods is computed and sent to the master:

L(a)
s =

ns∑
i=1

lnπ(a),Tp(xs,i|θ(a), zi)

Step 2 (master): The global sum of log-likelihoods L(a) is computed. If 1− L(a−1)

L(a) <

ε, the computation is stopped and the cluster labels are collected from the slaves.

Otherwise, L(a) is sent to the slaves:

L(a) =
S∑
s=1

L(a)
s

Step 3 (slave): The partial sum of posteriors, Ns,j, for each cluster j is computed

on each slave, s, and sent to the master:

Ns,j =
ns∑
i=1

γs(zij)

Step 4 (master): The partial sum of posteriors from the slaves is aggregated to

form the global sum of posteriors, Nj, for each cluster, j. The new priors for

each cluster, π
(a+1)
j are also recomputed and both posteriors and priors are sent

to the slaves:

Nj =
S∑
s=1

Ns,j

π
(a+1)
j =

Nj

n

Step 5 (slave): The partial means, µ
(a+1)
s,j are calculated and sent to the master:

µ
(a+1)
s,j =

ns∑
i=1

γs(zij)xs,i

Nj

(2.1)

Step 6 (master): The partial means are summed to compute the global mean,
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µ
(a+1)
j , for each cluster, j, and these are sent to the slaves:

µ
(a+1)
j =

S∑
s=1

µ
(a+1)
s,j

Note that the denominator in Eqn. 2.1 is the global posterior, Nj, such that

summing the partial means at the master is sufficient to compute the global

means.

Step 7 (slave): The partial covariance matrices, Σ
(a+1)
s,j are calculated and sent to

the master:

Σ
(a+1)
s,j =

ns∑
i=1

γs(zij)(xs,i − µ(a+1)
j )T (xs,i − µ(a+1)

j )

Nj

Step 8 (master): The partial covariance matrices are summed to compute the global

covariance matrix, Σ
(a+1)
j , for each cluster, j, and these are sent to the slaves:

Σ
(a+1)
j =

S∑
s=1

Σ
(a+1)
s,j

The iteration counter, a, is also incremented i.e. a← a+1 and the computation

loops to Step 1.

2.2.5 Wait time-out and parameter approximation

The master node has to wait for local parameter views at aggregation points; four of

them per iteration (log-likelihood (Step 2), posteriors (Step 4), means (Step 6) and

covariances (Step 8)) as shown in Figure 2-2. This amounts to four pings and scp

calls per node per iteration. We must ensure against any one slave’s message being

lost and the computation left hanging. Therefore, we time-bound the wait at the

master nodes. At time-out the global parameter is estimated from the parameters

received from S ′ slaves. Let Φ represent a global parameter to be estimated i.e.
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Φ ∈ {L(a), Nj,µ
(a+1)
j ,Σ

(a+1)
j } and Φ̂ be the sum of the local parameters received so

far i.e. Φ̂ =
S′∑
s=1

Φs, we estimate Φ as:

Φ =
nΦ̂
S′∑
s=1

ns

In our case time-outs were infrequent, happening about once in every run.

Figure 2-2: Master-Slave Communication and Processing during one Distributed
GMM Iteration

2.3 Generating Multiple Clusterings

One approach to generating multiple clusterings from the same dataset is to cluster

the dataset using a variety of algorithms and varying clustering parameters such as

distance measures, feature sets, initializations (Fred and Jain, 2002), and number of

clusters (Topchy et al., 2004). To follow this approach would have required scaling

up multiple clustering algorithms. In the interest of our time budget, we, instead,

explored methods for generating multiple clusterings from our scaled-up expectation-
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maximization (EM) for Gaussian mixture models (GMM) described in Section 2.2.

We generated multiple clusterings by, first, projecting the data to a random subspace,

Γ, as described in (Topchy et al., 2004), before clustering using our distributed EM

for GMM platform. In contrast to (Topchy et al., 2004), we project the data, not just

to a 1-dimensional subspace but to a subspace of D′ dimensions varying from 1 to D

dimensions. The subspace is randomly generated, then Gram-Schmidt orthonormal-

ization is performed to ensure that the basis vectors of the subspace are orthogonal

and of unit length. The projected data XSS is thus calculated as

D′ = ceiling(1 + 1×1(D − 1))

Γ = qr(randD×D′)

XSS = XΓ

where qr is the Gram-Schmidt orthonormalization operation.

Figure 2-3: Projection of 3-dimensional point P to 2-dimensional plane M6

A similar approach was used by Fern and Brodley (2003) before ensemble clustering to

demonstrate an alternative to using PCA for dimensionality reduction. A number of

authors have also shown that random projection brings out some interesting properties

of the data such as making “eccentric” cluster shapes more spherical (Dasgupta, 2000).

6Image source: http://commons.wikimedia.org/wiki/File:Linalg projection onto plane 2.png
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2.4 Inter-clustering comparison

Throughout this thesis, to evaluate the effectiveness of our algorithms, we need to

measure the similarity between two clusterings or between a clustering and the ground

truth. To do this, we employ the mutual information between the clusterings as de-

scribed in (Strehl and Ghosh, 2003). In that paper, the authors utilized the normalized

mutual information (NMI), using the geometric mean of entropies of both clusterings

as the normalization factor. This constrains the NMI to a value between 0 and 1

because the mutual information is observed to be lower than the minimum of the two

entropies.

The mutual information between two clusterings, yi and yj, with cluster labels sam-

pled from {1 . . . F}, is given by

I(yi,yj) =
F∑

fi=1

F∑
fj=1

p(fi, fj) log

(
p(fi, fj)

p(fi)p(fj)

)

and the entropy of a clustering, y, is given by

H(y) =
F∑
f=1

p(f) log p(f)

Recalling that the total number of data points is n, if the size of f th cluster in ith

clustering is given by nfi and nfi,fj is the number of points that fall both into cluster

fi in clustering yi and cluster fj in clustering yj, then the NMI of clusterings yi and

yj is thus given by
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φ(yi,yj) =
I(yi,yj)√
H(yi)H(yj)

=

F∑
fi=1

F∑
fj=1

p(fi, fj) log
(

p(fi,fj)

p(fi)p(fj)

)
√√√√( F∑

fi=1

p(fi) log p(fi)

)(
F∑

fj=1

p(fj) log p(fj)

)

=

F∑
fi=1

F∑
fj=1

p(fi|fj)p(fj) log
(
p(fi|fj)p(fj)

p(fi)p(fj)

)
√√√√( F∑

fi=1

p(fi) log p(fi)

)(
F∑

fj=1

p(fj) log p(fj)

)

=

F∑
fi=1

F∑
fj=1

nfi,fj

nfj

nfj

n
log

( nfi,fj
nfj

nfj
n

nfi
n

nfj
n

)
√√√√( F∑

fi=1

nfi

n
log

nfi

n

)(
F∑

fj=1

nfj

n
log

nfj

n

)

=

F∑
fi=1

F∑
fj=1

nfi,fj log
(
nfi,fj

n

nfi
nfj

)
√√√√( F∑

fi=1

nfi log
nfi

n

)(
F∑

fj=1

nfj log
nfj

n

)

2.5 Results

2.5.1 Dataset

We employ a synthetic dataset generated using a multivariate Gaussian modelN (x|µ,Σ)

similar to Welling and Kurihara (2006). We set the dimensions D = 8 and specify

the number of clusters as m = 10. We first generate the means for each category

(µj), then we generate the standard deviations for each dimension such that no two

categories are closer than τ = σi+σk
2

. Thus τ gives us a parameterized way to vary
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the difficulty level of the task. For our analysis, we set the τ = 1.

2.5.2 Algorithm Verification

We, first of all, verified the equivalence of distributing the EM algorithm by running

the non-distributed and distributed versions of the algorithm on the same synthetic

dataset of 100,000 points, using the same parameter initializations for both schemes.

The distributed algorithm was run on 5 slaves running Ubuntu Linux with 1 core and

2GB of RAM. The master ran on an Ubuntu Linux node with 2 cores and 4GB of

RAM. Both schemes came up with the exact same clustering after 51 iterations.

2.5.3 Synthetic Dataset Performance

We then demonstrated the ability of the algorithm to scale up to very large amounts

of data and significantly more computing nodes. To do this, we generated 400 million

data points using the scheme described in Section 2.5.1. We then partitioned the data

44 ways and ran the distributed EM algorithm on 44 slave nodes running Ubuntu

Linux with 4 cores, 8GB of RAM and 90GB of disk space. The master ran on an

Ubuntu Linux node with 24 cores, 46GB of RAM and 370GB of disk space. Note that

the master could have run on a node with less cores and RAM. All we required was

the disk space necessary to store the generated data, its partitions and the results.

However, due to inflexibility in sizing of the available nodes, we were constrained to

run on such large processing and memory specifications in order to meet our disk

space needs.

We generated 20 clusterings for this data, by first projecting the data to a random

subspace (with a random number of dimensions < 8) and then clustering using the

distributed EM for GMM algorithm. Details of how the data was projected were

discussed in Section 2.3.
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Computational performance

Figure 2-4 shows the computational performance of each of the 20 clustering tasks,

highlighting both the time taken and number of iterations performed and showing

how these numbers vary with the number of dimensions in the input dataset. The

number of EM iterations performed by each clustering task was limited to 100 and

it is apparent from Figure 2-4 that many of the clustering processes were cut off by

this limit. A qualitative examination of the figures also indicates that there is more

variance in clustering times in low dimensions. This may indicate the presence of

more local optima at lower dimensional projections of the input data set.

(a) Clustering times vs. iterations (b) Average clustering times vs. average it-
erations

Figure 2-4: EM computational performance in clustering 400 million data points
across 44 nodes for 20 different experimental tasks with m = 10 clusters

Accuracy

Figure 2-5 shows the pairwise NMI between each of the clusterings as well as the NMI

between each clustering and the ground truth. This figure indicates that clusterings

that were projected to fewer dimensions agree less with other clusterings and the

ground truth.
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2.6 Conclusion

We distributed the Expectation-Maximization algorithm for Gaussian Mixture Mod-

els and ran it on a very large dataset, demonstrating its performance characteristics.

We employed a streaming parameter initialization technique to be able to scale to a

dataset that is much larger than the memory of a single commodity computing node.

We also utilized a partial update method to enable us overcome any bottlenecks

during the communication phase within an EM iteration.

2.7 Future work

One future direction this work could take would be to use other clustering methods

in addition to EM for GMM. Some of these methods have been built to handle large

datasets e.g. CURE, CLARA, CLARANS, BIRCH and DBSCAN (Xu et al., 2005).

Investigation of these methods for the scale of data in this thesis as well as their

amenability to distribution on a cloud of computers is therefore worth considering.
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Chapter 3

Large-Scale Consensus Clustering

While clustering has its strengths in discovering patterns in unlabelled data, one

of its major weaknesses is the multiplicity of possible correct results when different

clustering algorithms or algorithm parameters are applied to the same dataset (Xu

et al., 2005). Unfortunately, since there is typically no ground truth, there is no clear

way of ranking the correctness of the clusterings. The approach we employ in this

thesis is to create a consensus clustering from the multiple diverse base clusterings,

the idea being that if there are commonalities shared by the multiple base clusterings,

the consensus clustering will highlight them. Specifically, we focus on developing and

implementing methods for consensus clustering that are able to handle large amounts

of data.

There are a number of methods that may be used to merge multiple clusterings to

form a single consensus clustering. Some popular methods include graph partitioning

based methods, CSPA, HGPA and MCLA (Strehl and Ghosh, 2003) as well as multidi-

mensional scaling-based methods such as DISTATIS Abdi et al. (2007). In this thesis,

we exploit the mixture model method developed in (Topchy et al., 2004) because this

method was shown to have more accurate results than graph-based methods HGPA

and MCLA and we have discovered, empirically, that it has higher memory efficiency

than any of the methods mentioned above.
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In this method, multiple clusterings are modelled as a mixture of multinomial models

(MMM) and the EM algorithm is used to discover the parameters of the component

models and mixing priors. Example input to a consensus clustering algorithm can

be found in Table 3.1. We implement a strategy for distributing the EM algorithm

developed in (Topchy et al., 2004) to run on a shared-nothing cloud of computers that

are able to handle a large amount of data provided sufficient computing resources are

available. Wolfe et al. (2008) also uses this approach for multinomial mixture models

for use in the natural language processing task of word alignment. The main problem

with this approach to distributing the EM algorithm is that for a given amount of

computational resources, the algorithm will fail above a particular data size. Also,

due to the need to share and maintain global distribution parameters across all nodes,

communication bottlenecks could lead to high run times.

To overcome these problems, we additionally developed and implemented an alter-

native strategy for scaling any consensus clustering algorithm including the EM al-

gorithm already mentioned. Unlike the MMM with Distributed EM algorithm, our

proposed strategy is able to run on any amount of computational resources from 1

computing node to a cloud of computing nodes and still achieve comparable accuracy

and reasonable time performance. We discuss and compare both these approaches in

this chapter. In summary our major contributions in this chapter are:

• We develop a novel approach to consensus clustering that resamples the in-

put data and incrementally builds the consensus clustering, demonstrating the

ability of this method to perform reasonably without minimum requirements of

number of computing nodes or memory. We also test this method by running

it on up to 150 cloud computing nodes while processing both a large synthetic

dataset of 400 million data points as well as a real-world dataset of over 90,000

images and 10,000 base clusterings of those images.

• We implement a distributed version of the Expectation-Maximization algorithm

for consensus clustering, running it on up to 150 cloud computing nodes and

processing the same 400 million-point synthetic dataset and real-world dataset
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of 90,000 images. This implementation allowed us to demonstrate empirically

that given a fixed amount of computational resources, this method has an upper-

bound on the data sizes it can handle.

3.1 Mixture of Multinomial Models

We model the consensus clustering problem as one of determining the parameters

of a mixture of G multinomial models as described in (Topchy et al., 2004). Each

multinomial model represents a different consensus cluster in the set of base cluster-

ings, Y where every 1×G data point in Y corresponds to a 1×D data point in X

from Chapter 2. Table 3.1 shows an example of what the input data to a consensus

clustering algorithm looks like. Note that this model requires no correspondence or

alignment between cluster labels in different clusterings.

Base clusterings
g = 1 g = 2 g = 3 ... g = G

y1 5 1 5 ... 3
y2 5 1 3 ... 1
y3 5 1 4 ... 5
y4 5 1 2 ... 2
y5 5 3 5 ... 1
...

...
...

...
...

...
yn 2 1 1 ... 5

Table 3.1: Example of input to consensus clustering algorithm with G base clusterings
and n data points

A data point in the multinomial model is the G-dimensional vector consisting of clus-

ter labels from the G base clusterings for that data point. There are two parameters

for describing a mixture of H multinomial models. The parameter αh = p(h), is the

probability of sampling from the hth model and the parameter, βhgf = pg(f |h), is the

probability of obtaining a value(label), f ∈ {1 . . . F}, for the dimension(clustering),

g, given that the data point is from a specific multinomial model, h. The likelihood

of a data point, yi and the log-likelihood of the dataset, Y , is given by:
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p(yi) =
H∑
j=1

αh

G∏
g=1

F∏
f=1

β
δ(yig ,f)
hgf

p(Y ) =
n∏
i=1

H∑
j=1

αh

G∏
g=1

F∏
f=1

β
δ(yig ,f)
hgf

ln p(Y ) =
n∑
i=1

ln
H∑
j=1

αh

G∏
g=1

F∏
f=1

β
δ(yig ,f)
hgf

where δ(yig, f) = 1 if yig = f and 0 otherwise

3.1.1 Expectation-Maximization

To facilitate performing expectation-maximization for the discovery of the model pa-

rameters, latent variables are introduced here. The latent variable indicating mem-

bership of a data point in one of H multinomial models is an n × H matrix where

each row contains one column with value 1 and H−1 columns with value 0 (assuming

each data point must belong to one multinomial model). The update expressions for

the parameters Θ : αh, βhgf ∀h ∈ {1 . . . H}, g ∈ {1 . . . G} and f ∈ {1 . . . F} are shown

by Topchy et al. (2004) to be:

α
(new)
h =

n∑
i=1

ψ(zih)

H∑
k=1

n∑
i=1

ψ(zik)

β
(new)
hgf =

n∑
i=1

δ(yig, f)ψ(zih)

n∑
i=1

ψ(zih)

where ψ(zih) = p(zih = 1|Θ(old),yi) =

α
(old)
h

G∏
g=1

F∏
f=1

(
β

(old)
hgf

)δ(yig ,f)

H∑
k=1

α
(old)
k

G∏
g=1

F∏
f=1

(
β

(old)
kgf

)δ(yig ,f)

The full EM algorithm is shown in Algorithm 2.
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Input: Y , an n x G matrix of G base clusterings of n data points
Output: r, an n x 1 vector of consensus cluster labels from 1 . . . H

1 Initialize parameters, Θ(0): α(0), β(0)

2 L(−1) = −∞; L(0) = 1; a← 0

3 while 1− L(a−1)

L(a) ≥ ε do
// Expectation Step

4 for i = 1→ n do
5 for h = 1→ H do

6 ψ(zih) = p(zih = 1|Θ(a),yi) =

α
(a)
h

G∏
g=1

F∏
f=1

(
β

(a)
hgf

)δ(yig ,f)

H∑
k=1

α
(a)
k

G∏
g=1

F∏
f=1

(
β

(a)
hgf

)δ(yig ,f)

7 end

8 end
// Recompute likelihood

9 L(a) =
n∑
i=1

ln
H∑
h=1

α
(a)
h

G∏
g=1

F∏
f=1

(
β

(a)
hgf

)δ(yig ,f)

// Maximization Step

10 for h = 1→ H do

11 α
(a+1)
h =

n∑
i=1

ψ(zih)

H∑
k=1

n∑
i=1

ψ(zik)

12 for g = 1→ G do
13 for f = 1→ F do

14 β
(a+1)
hgf =

n∑
i=1

δ(yig, f)ψ(zih)

n∑
i=1

ψ(zih)

15 end

16 end

17 end
18 a← a+ 1

19 end
20 for i = 1→ n do
21 ri = arg max

h∈1...H
ψ(zih)

22 end
// δ(yig, f) = 1 if yig = f and 0 otherwise

// See Table 3.2 for a legend of the symbols in the algorithm

Algorithm 2: EM Algorithm for multinomial mixture models
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Notation Dimension Meaning
g 1 x 1 Clustering index
f 1 x 1 Cluster label
F 1 x 1 Maximum cluster label in any base clustering
h 1 x 1 Multinomial model in mixture of multinomial models
H 1 x 1 Number of multinomial models in mixture of multino-

mial models
yi 1 x G Cluster assignment of data point i in each of G base

clusterings
zih 1 x 1 Latent variable indicating if the ith row of input data

belongs to consensus cluster h
βhgf 1 x 1 Probability of emitting label f from base clustering g if

data point belongs to consensus cluster h
αh 1 x 1 Probability of a data point belonging to the hth consen-

sus cluster

Table 3.2: Legend of symbols in Algorithm 2

3.2 Consensus Clustering for Big Data

We implement two approaches to do consensus clustering on large datasets:

1. Distributing the EM algorithm and performing it synchronously over a cloud of

computing nodes

2. Building consensus incrementally by iteratively resampling the input data

3.2.1 MMM with Distributed EM

In similar fashion to the approach described in Section 2.2, the EM algorithm for

the multinomial mixture model can be distributed to multiple computing nodes by

partitioning the input data into non-overlapping sets and performing the expectation

step and part of the maximization step on slave nodes with aggregation of L and Θ

updates at the master. Here again this is enabled by the between-point independence

of computing p(zih = 1|Θ(a),yi) as well as being able to compute partial sums for

α
(a+1)
h and β

(a+1)
hgf on each slave node and summing these partial sums on the master

node. Suppose there are S slaves and a slave, s, receives a subset of the data, Ys,
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such that |Ys| = ns and each row of Ys is denoted by ys,i, the distribution approach

can be outlined as follows:

Step 0 (master and slaves): Iteration counter, a, is initialized to 0.

Step 1 (slave): On each slave, s, and for each data point i, and each cluster j,

randomly initialize and normalize the posterior probabilities:

Ωs = randns,H

ψs(zih) =
Ωs,ih

H∑
k=1

Ωs,ik

Recall that randc×d is a c× d matrix of random numbers varying from 0 to 1

Step 2 (slave): The partial sum of posteriors, Ψs,h for each cluster h is computed

on each slave and sent to the master

Ψs,h =
ns∑
i=1

ψs(zih)

Step 3 (master): The partial sum of posteriors from the slaves is aggregated to

form the global sum of posteriors, Ψh, for each cluster, h and sent to the slaves:

Ψh =
S∑
s=1

Ψs,h

Step 4 (slave): The priors, αh, are calculated:

α
(a+1)
h =

Ψh

H∑
k=1

Ψk

Step 5 (slave): The local views of parameter, β
(a+1)
s,hgf , are calculated and sent to the
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master:

β
(a+1)
s,hgf =

ns∑
i=1

δ(ys,ig, f)ψs(zih)

ψh
(3.1)

Step 6 (master): The partial β
(a+1)
s,hgf ’s are summed to compute the global β

(a+1)
hgf and

this is sent to the slaves:

β
(a+1)
hgf =

S∑
s=1

β
(a+1)
s,hgf

Step 7 (slave) The slaves are then able to update their posteriors for data points

i ∈ {1 . . . ns}:

ψs(zih) =

α
(a+1)
h

G∏
g=1

F∏
f=1

(
β

(a+1)
hgf

)δ(ys,ig ,f)

H∑
k=1

α
(a+1)
k

G∏
g=1

F∏
f=1

(
β

(a)
hgf

)δ(ys,ig ,f)

and the partial sum of log-likelihoods is computed and sent to the master:

L(a+1)
s =

ns∑
i=1

ln
H∑
h=1

α
(a+1)
h

G∏
g=1

F∏
f=1

(
β

(a+1)
hgf

)δ(yig ,f)

Step 8 (master): The global sum of log-likelihoods L(a+1) is computed. If 1 −
L(a)
L(a+1) < ε, the computation is stopped and the cluster labels are collected from

the slaves. Otherwise, L(a+1) is sent to the slaves:

L(a+1) =
S∑
s=1

L(a+1)
s

The iteration counter, a, is also incremented i.e. a← a+1 and the computation

loops to Step 1.

3.2.2 Building Consensus Clustering via Resampling

One of the main contributions of this thesis is Streaming Consensus Clustering, an

intuitive approach to performing large-scale consensus clustering given limited com-
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Figure 3-1: Master-Slave Communication and Processing during one MMM with
Distributed EM Iteration

putational resources. While the previous approach of distributing the EM algorithm

outlined in Section 3.2.1 can be limited by number of slaves available and the amount

of memory on each slave, this proposed method has the following advantages:

• It would work on any number of nodes including a single commodity node.

• This approach is also useful for performing consensus clustering when the input

base clusterings are streamed in.

• This approach allows us plug in other consensus clustering methods that would

have otherwise been limited by available computational resources. In this the-

sis, we demonstrate its usage with the Expectation-Maximization method for

consensus clustering (Topchy et al., 2004).

Notation for Streaming Consensus Clustering

In addition to the notation already described, we define 3 subsets of the base cluster-

ings, Y (Table 3.1 describes what this input looks like):

• The resolved set, U

• The current set, W , and
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• The anchor set V

Clusterings
Idx 1 2 3 4
1 2 1 3 2
5 1 3 3 1
7 2 2 3 3
10 2 1 2 3
15 1 1 2 3
16 1 3 2 2
17 2 3 1 3
20 1 2 2 1
22 1 3 3 3
25 3 3 2 2
26 3 1 3 1
28 3 3 1 1
29 2 2 1 3
31 2 2 2 1
32 1 3 3 2

(a) Remaining dataset, Y (a)

Clusterings
Idx 1 2 3 4 Lbl
2 1 1 1 2 2
3 1 2 2 3 2
4 3 3 3 1 1
6 1 1 3 2 3
8 2 2 3 1 3
9 3 1 2 3 3
12 1 2 2 2 1
13 3 1 3 2 1
23 2 1 1 1 2
24 1 3 1 1 3
27 3 3 3 1 3
30 3 3 2 2 1
33 1 3 2 1 2
34 3 2 3 2 1
35 2 2 1 3 2

(b) Resolved set, U (a)

Clusterings
Idx 1 2 3 4 Lbl
4 3 3 3 1 1
6 1 1 3 2 3
9 3 1 2 3 3
13 3 1 3 2 1
23 2 1 1 1 2
33 1 3 2 1 2

(c) Anchor set, V

Clusterings
Idx 1 2 3 4
11 2 3 1 1
14 1 1 3 2
18 1 2 2 3
19 2 2 3 2
21 2 1 2 2

(d) Current set, W

Table 3.3: Sample dataset with 35 data points, 4 base clusterings and 3 consen-
sus clusters showing the remaining dataset after sampling as well as the resolved
set(highlighting anchor indices), anchor set and current set

Table 3.3 shows a sample dataset that has been partitioned into sets U (a), V and

W after a iteration steps. As is apparent from the table, V ⊂ U (a). Also note that

the indexes used in each of these sets are indices in Y i.e. global, thus they have no

relation to the size of the set. For instance, U (a) contains index 35 even though it

contains only 15 points.

Recalling that the number of base clusterings is given by G, the dimensions of these

sets are |U | ×G, |W | ×G and |V | ×G, respectively. Also, recalling that the desired

number of consensus clusters is given by H, let cU ,j and cV ,j represent the indices

(in Y ) of the members of U (a) and V respectively, that belong to the jth consensus

cluster. Similarly, let cW ,j and cV ∪W ,j represent the indices of the data points that

belong to the jth cluster of W and V ∪W respectively. For instance, in Table 3.3,

cU ,1 = {4, 12, 13, 30, 34}.
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Algorithm

Initialization Step: Randomly sample the rows of Y without replacement to ini-

tialize the subset, U (0). Then, perform consensus clustering on this subset to

generate cU ,j ∀j ∈ {1 . . . H} using an algorithm like Expectation-Maximization

as described in Section 3.1. If the data is ordered in some way, a full read pass

over the data may be required to ensure that the entire input space is properly

sampled1. The size of this sample, |U (0)|, should be such that the sample can

be clustered in-memory using the chosen method.

Since this sampling is without replacement, set Y (0) ← Y −U (0). Also, initialize

iteration counter: a← 0. Table 3.4 shows an example of initial input data and

Table 3.5 shows the initial sample and remaining input data.

Step 1: Sample from input data Sample a random subsetW from the remaining

input data, Y (a). Let b represent the indices in Y of the data points in W .

Initialize a |W | ×H votes matrix T to all zeros. The columns of T represent

the number of votes for each consensus cluster and the rows represent the data

points in the current set. Set Y (a+1) ← Y (a)−W . Table 3.6 shows the current

set sample and the remaining input data from the data in Table 3.5.

Step 2: Sample from resolved set : Sample p representatives from each cU ,j which,

recall, are the indices (in Y ) of the members of U (a) that belong to the jth con-

sensus cluster. These representatives, cV ,j ∀j ∈ {1 . . . H} form sets of indices

that are used to select a new anchor set V from U (a). Tables 3.7 and 3.9 show

the set of representatives for 2 resamples of the resolved set in Table 3.5.

Step 3: Consensus : Perform consensus clustering on V ∪W and build the set of

indices for each cluster found: cV ∪W ,j ∀j ∈ {1 . . . H}.

Step 4: Vote : Update the votes array by incrementing the votes for each data point

in the column representing the anchor set cluster that was most represented in

1If the data is ordered but not fully read, it is possible that the initial resolved set would not
contain any samples from one or more clusters
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the current set cluster where the data point was found as follows:

(a) Count the number of members, ccjk, from each anchor set cluster, k, that

falls in each resulting cluster, j, found in V ∪W as per step 3:

ccjk = |cV ∪W ,j ∩ cV ,k ∀j, k ∈ 1 . . . H|

(b) For each data point, wi ∈W , get its corresponding index in Y , bi

(c) Locate the cluster, l, where wi falls: l = arg max
k∈{1...H}

| cV ∪W ,k ∩ bi|

(d) Update the appropriate cell in T :

Tih = Tih + 1

where h = arg max
k∈{1...H}

| cV ∪W ,l ∩ cV ,k|

Tables 3.8 and 3.10 show the intersection count, ccjk, and votes array, T , for

clustering the current set in Table 3.6 and the anchor sets in Tables 3.7 and 3.9.

Step 5: Rinse, repeat : Perform steps 2 - 5, B times in total.

Step 6: Merge : Merge the current set and resolved set i.e. Ua+1 ← U (a) ∪W .

Also merge the cluster indexes of the resolved set and current set by assigning

the data points in the current set to the clusters in the resolved set that received

the most votes in T i.e. cU,j ← cU,j ∪ i if j = arg max
k∈1...H

Ti,k. Table 3.11 shows

the new resolved set for the process described in Tables 3.6 - 3.10.

Step 7: Stop? : If |Y | = 0 then stop or else go to Step 1.
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Idx Clusterings
1 2 1 1 2
2 1 2 2 2
3 2 1 2 1
4 1 2 2 1
5 2 2 1 2
6 1 2 1 1
7 2 1 1 2
8 1 1 2 1
9 1 1 1 2
10 2 1 1 2
11 2 1 1 2
12 1 2 1 1
13 1 1 2 2
14 2 1 1 1
15 1 1 2 2
16 1 1 1 1
17 2 1 1 2
18 1 1 2 1
19 1 1 2 2
20 1 2 2 2
21 2 1 2 1
22 1 1 2 2
23 2 2 2 1
24 1 1 1 2
25 1 1 1 1
26 1 2 2 1
27 1 2 2 1
28 2 1 2 1
29 2 1 1 2
30 2 2 2 2
31 2 2 2 2
32 2 1 1 1
33 2 2 2 2
34 1 1 2 1
35 2 2 1 1

Table 3.4: n = 35 dataset input to consensus clustering algorithm. Number of base
clusterings, G = 4, maximum cluster label, F = 2

Having presented a basic framework for streaming through the data and building a

consensus clustering, we now address choices we have to make for the parameters and

a simple extension to form our final algorithm.
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Idx Clusterings Lbl
3 2 1 2 1 1
4 1 2 2 1 2
5 2 2 1 2 2
6 1 2 1 1 2
12 1 2 1 1 2
18 1 1 2 1 1
20 1 2 2 2 2
21 2 1 2 1 1
29 2 1 1 2 2
35 2 2 1 1 2

(a) Resolved set, U (0)

Idx Clusterings
1 2 1 1 2
2 1 2 2 2
7 2 1 1 2
8 1 1 2 1
9 1 1 1 2
10 2 1 1 2
11 2 1 1 2
13 1 1 2 2
14 2 1 1 1
15 1 1 2 2
16 1 1 1 1
17 2 1 1 2
19 1 1 2 2
22 1 1 2 2
23 2 2 2 1
24 1 1 1 2
25 1 1 1 1
26 1 2 2 1
27 1 2 2 1
28 2 1 2 1
30 2 2 2 2
31 2 2 2 2
32 2 1 1 1
33 2 2 2 2
34 1 1 2 1

(b) Remaining input data, Y (0)

Table 3.5: Streaming Consensus Clustering Initialization Step showing U (0) and Y (0).
As is evident, cU ,1 = {3, 18, 21} and cU ,2 = {4, 5, 6, 12, 20, 29, 35}

Choosing Size of Anchor Set

The size of the anchor set is determined by the number of representatives sampled

from each of the resolved set clusters. We set the number of representatives per

cluster as a fraction, η, of the smallest cluster size i.e. p = ηmin(|cU ,j|). This

allows us sample equally from all clusters in the resolved set. As the resolved set

grows, sampling a fraction of even the smallest cluster will become impractical so the

maximum p possible is limited to a constant. We set this constant as a fraction of

the current set size so that the mixture ratio between the anchor set and the current
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Idx Clusterings
7 2 1 1 2
13 1 1 2 2
14 2 1 1 1
17 2 1 1 2
19 1 1 2 2
28 2 1 2 1

(a) Current set, W

Idx Clusterings
1 2 1 1 2
2 1 2 2 2
8 1 1 2 1
9 1 1 1 2
10 2 1 1 2
11 2 1 1 2
15 1 1 2 2
16 1 1 1 1
22 1 1 2 2
23 2 2 2 1
24 1 1 1 2
25 1 1 1 1
26 1 2 2 1
27 1 2 2 1
30 2 2 2 2
31 2 2 2 2
32 2 1 1 1
33 2 2 2 2
34 1 1 2 1

(b) Remaining input data, Y (1)

Table 3.6: Streaming Consensus Clustering Step 1 showing W and Y (1). T is initial-
ized to a 6× 2 matrix of zeros

Idx Clusterings Lbl
3 2 1 2 1 1
5 2 2 1 2 2
6 1 2 1 1 2
18 1 1 2 1 1

Table 3.7: Streaming Consensus Clustering sample from resolved set, for b = 1 show-
ing anchor set V obtained from sets of indices, cV ,1 = {3, 18} and cV ,2 = {5, 6}

set can be controlled.

Streaming Consensus Clustering

The amenability of the algorithm described in Section 3.2.2 to streaming is not im-

mediately apparent since the entire input data, Y , and resolved set, U seem to reside

entirely in memory. Therefore, to utilize the streaming properties of the algorithm,
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k
1 2

j
1 2 0
2 0 2

(a) Intersection count, ccjk

1 2
0 1
1 0
0 1
0 1
1 0
1 0

(b) Votes array, T

Table 3.8: Streaming Consensus Clustering Vote Step, for b = 1 showing ccjk and
votes array T obtained from clustering results, cV ∪W ,1 = {3, 13, 18, 19, 28} and
cV ∪W ,2 = {5, 6, 7, 14, 17}

Idx Clusterings Lbl
3 2 1 2 1 1
20 1 2 2 2 2
21 2 1 2 1 1
29 2 1 1 2 2

Table 3.9: Streaming Consensus Clustering sample from resolved set, for b = 2 show-
ing anchor set V obtained from sets of indices, cV ,1 = {3, 21} and cV ,2 = {20, 29}

k
1 2

j
1 2 1
2 0 1

(a) Intersection count, ccjk

1 2
1 1
1 1
1 1
1 1
1 1
2 0

(b) Votes array, T

Table 3.10: Streaming Consensus Clustering Vote Step, for b = 2 showing ccjk and
votes array T obtained from clustering results, cV ∪W ,1 = {3, 7, 14, 17, 21, 28, 29} and
cV ∪W ,2 = {13, 19, 20}

the following modifications must be made.

• The initial resolved set, U (0), and subsequent current sets, W , are read (rather

than sampled) from the stream (or disk). The amount of data read from the

stream is determined by how much data can be clustered in-memory by the

chosen method.

• After step 7 in 3.2.2 where a new resolved set is generated by merging with the
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Idx Clusterings Lbl
3 2 1 2 1 1
4 1 2 2 1 2
5 2 2 1 2 2
6 1 2 1 1 2
7 2 1 1 2 1
12 1 2 1 1 2
13 1 1 2 2 1
14 2 1 1 1 1
17 2 1 1 2 1
18 1 1 2 1 1
19 1 1 2 2 1
20 1 2 2 2 2
21 2 1 2 1 1
28 2 1 2 1 1
29 2 1 1 2 2
35 2 2 1 1 2

Table 3.11: Streaming Consensus Clustering Merge Step showing U (0). As is evident,
cU ,1 = {3, 7, 13, 14, 17, 18, 19, 21, 28} and cU ,2 = {4, 5, 6, 12, 20, 29, 35}

current set (U a+1 ← U (a)∪W ), the resolved set is sampled without replacement

and the sample written to the output stream (or disk) i.e

Sample out ∼ U a+1 where, |out| = |W |

U a+1 ← U a+1 − out

For this procedure to function properly, we assume that there is no ordering on the

clusters in the input stream. We also recognize that this modified form of sampling

is not probabilistically equivalent to sampling over the entire dataset. This approach

biases the sampling towards more recent input values. This property may actually be

useful for applications where there is a temporal relationship between values in the

input stream and deserves further investigation.
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Input: Y (0), an n x G matrix of G base clusterings of n data points
Output: r, an n x 1 matrix of consensus cluster labels from 1 . . . H

1 Sample U (0) ∼ Y (0)

2 b← indices in Y of W

3 Y (1) ← Y (0) −U (0)

4 {cU,1 . . . cU,H} ← Cluster(U (0))
5 a← 0

6 while |Y (a)| > 0 do
7 Sample W ∼ Y (a)

8 Y (a+1) ← Y (a) −W
9 T ← |W | ×H array of zeros

10 for b = 1→ B do
11 V ← {}
12 for j = 1→ H do
13 Sample cV ,j ∼ cU ,j, where |cV ,j| = p
14 V ← V ∪UcV ,j

15 end
16 cV ∪W ,1 . . . cV ∪W ,H ← Cluster(V ∪W )
17 for i = 1→ |W | do
18 j = arg max

k∈{1...H}
| cV ∪W ,k ∩ bi|

19 cW ,j ← cV ∪W ,j − cV ,j
20 Tih = Tih + 1, where h = arg max

k∈{1...H}
| cV ∪W ,j ∩ cV ,k|

21 end

22 U (a+1) ← U (a) ∪W
23 for i← 1→ |W | do
24 cU ,j ← cU ,j ∪ bi where j = arg max

k∈1...H
Tik

25 end
26 a← a+ 1

27 end

28 end
29 for j = 1→ H do
30 rcU,j

= j
31 end

// See Table 3.12 for a legend of the symbols in the algorithm

Algorithm 3: Streaming Consensus Clustering

Distributed Streaming Consensus Clustering

The streaming property of this algorithm permits finding the consensus clustering of

an arbitrarily large input data set while running on a single commodity node, albeit at
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Notation Dimension Meaning
U ,V ,W |U | ×G, |V | ×G, |W | ×G Resolved, anchor, current set re-

spectively
cΓ,j |Γ| × 1 Indexes of elements in set Γ ∈

{U ,V ,W ,V ∪ W } that are in
cluster j

T |W | ×H Votes for each consensus cluster
for each data point in W

B 1 x 1 Number of resamples of cU ,j done
for each W

Table 3.12: Legend of symbols in Algorithm 3

the expense of time. In the event that there are more computational nodes available,

the algorithm is also able to make use of those nodes and shorten wall-clock time.

The key to doing this is to perform the initialization step in Section 3.2.2 on one

master node and distribute both the initial resolved set, U (0), and resulting clusters ,

cU ,j, to all nodes to independently carry out the algorithm on their non-overlapping

partitions of the remaining data. In this thesis, we combine both the distribution of

the algorithm as well as streaming on the slaves to generate a consensus clustering on

a dataset that is infeasible for MMM with Distributed EM given a particular amount

of computing resources, achieving both time and accuracy results that are competitive

with MMM with Distributed EM.

3.3 Results

In this section, we will discuss the two datasets that we have chosen to test both

algorithms on, highlighting how each dataset tests the system in a different dimension.

We will then present comparative results on the accuracy of the outcomes as well as

the computational performance of the algorithms.
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3.3.1 Datasets

Synthetic Dataset

We used the output of our random projection and clustering runs described in Sec-

tion 2.5 as the input to the consensus clustering methods. Recall that this data was

generated by projecting to a random subspace a dataset of 400 million points from

an mixture of 10 8-dimensional Gaussian distributions (see Section 2.5.1). The pro-

jections were then clustered. The projection-clustering procedure was run 20 times

to generate an input dataset of 400 million points by 20 base clusterings for the con-

sensus clustering algorithms. Figure 2-5 shows the diversity of the base clusterings in

terms of the normalized mutual information (NMI) between them.

We then ran both our MMM with Distributed EM and Streaming Consensus Cluster-

ing algorithms on 25, 50, 100 and 150 cloud nodes to understand how the performance

of the algorithms changed with the number of nodes. Each cloud node was a virtual

machine on an OpenStack cloud with 2 virtual CPUs and 4GB of memory. Each

algorithm was run 10 times on each number of nodes setup to gain confidence and

understand the variability in the results.

SUN 397

We also used a real dataset from the computer vision domain to demonstrate the

ability of our methods to scale in other dimensions and handle real-world problems.

We chose the SUN 397 (Xiao et al., 2010) dataset of 108,754 images where each image

is labelled as one of 397 scene categories. Each category contains at least 100 images

and it is a “well-sampled” subset of the larger SUN database which contains 131,072

images and 908 categories. A 2-level hierachy is built on the 397 categories which

reduces the categories to 16 categories at the second level and 3 categories at the top

level.

In choosing the dataset, we were looking for a dataset that was well matched to scene-
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based GIST features (Oliva and Torralba, 2001) since GIST feature generation code

was readily available and easy to use. We therefore declined to use the 80 million

images dataset (Torralba et al., 2008) nor ImageNet (Deng et al., 2009) neither of

which is labelled by scenes despite them having more images than SUN397.

GIST features capture the “spatial envelope” of a scene which according to Oliva

and Torralba (2001) may be described as “a set of perceptual properties (naturalness,

openness, roughness, ruggedness and expansion)”. Using code supplied by the au-

thors, we generated 512 GIST features for each image and projected the features to

a random subspace whose number of dimensions was governed by a sample drawn

from the Gaussian distribution depicted in Figure 3-2. We centered this distribution

at 70 dimensions and used a standard deviation of 25 in order to reduce the average

runtime of each of the 10,000 GMM runs. We also farmed out the feature extraction

and clustering tasks to a cloud of 100 nodes. For feature extraction each node handled

a subset of images and for clustering, each node generated 100 clusterings. Both the

MMM with Distributed EM and Streaming Consensus Clustering algorithms were

run 10 times each on this dataset using 25 2-core, 4GB memory cloud nodes similar

to those described in Section 3.3.1.

Table 3.13 compares both datasets on a number of characteristics. Given a fixed

amount of computing resources, MMM with Distributed EM is unable to handle data

sizes over a certain maximum. For instance, at 25 computing nodes with 4GB of

memory each MMM with Distributed EM fails on the 400 million-point synthetic

dataset. So for that configuration, we only present results from Streaming Consensus

Clustering.

3.3.2 Accuracy Results and Comparison

In this section, we compare the accuracy of both algorithms on both datasets. The

strengths of SCC are emphasized when it achieves comparable accuracy because as

we shall see in later sections, it runs in less walk-clock time than the MMM with
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Figure 3-2: Distribution of random subspace dimensions GIST features were projected
to

Distributed EM algorithm on the same number of computing nodes.

Synthetic Dataset Results and Comparison

We expected that the accuracy of the MMM with Distributed EM algorithm not to

change much as the number of nodes changes since the same basic algorithm is running

regardless of number of nodes. This is evident in Figure 3-3. Note that we were unable

to run MMM with Distributed EM on 25 nodes due to memory limitations. With the

Streaming Consensus Clustering algorithm, however, we expected that there would

be a drop in the accuracy as the number of nodes increase. This is because, as

the number of nodes increases, the size of the current set decreases and in a bid to

maintain consistent mixture ratio between the current set and the anchor set, the

size of the anchor set must be similarly reduced making it less representative of the

full dataset. Interestingly, our results indicate that even at 150 nodes, the accuracy

of the Streaming Consensus Clustering algorithm is not significantly lower than the

accuracy of the MMM with Distributed EM method. This result may be sensitive to

the dataset chosen.

66



Property Synthetic Dataset SUN397 Dataset
Number of data points (n) 400 million 90,331
Number of base cluster-
ings (G)

20 10,000

Consensus clustering in-
put data size

8 billion × 4 bytes = 29.8
GB

900 million × 4 bytes =
3.4 GB

Number of output clusters
(m)

10 15

Number of parameters to
be estimated

2010 2,250,015

Number of features before
clustering

8 512

Minimum number of
4GB computing nodes
required for MMM with
Distributed EM (Leaving
about 1GB for running
the operating system)

40 2

Maximum amount of data
that can be handled by
MMM with Distributed
EM on 25 4GB computing
nodes

248 million points by 20
clusterings

2 million pictures by
10,000 clusterings or
90,331 images by 198,000
clusterings

Approximate size of data
transfer during 1 MMM
with Distributed EM iter-
ation

1MB 1GB

Table 3.13: Comparison of two datasets used

SUN397

Achieving high accuracy was not the aim of introducing the SUN397 dataset since

we were interested in a real world dataset that tested the scalability of the algorithms

in another dimension: number of base clusterings. When compared to the ground

truth, consensus labels were not very accurate according to either algorithm. Figure

3-4 shows that both MMM with Distributed EM and Streaming Consensus Clustering

perform poorly with MMM with Distributed EM having higher accuracy on average

than Streaming Consensus Clustering.

One possible reason for the accuracy difference between MMM-EM-CC and SCC is
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Figure 3-3: Average NMI to ground truth, over 10 runs, of two consensus clustering
approaches on the synthetic dataset

that the SCC was not tuned for the nature of the SUN397 problem. This problem

has fewer data points, leading to lower sizes of the anchor set and possible sampling

issues.

We might be able to achieve better SCC results by changing the stopping criterion

for the EM process on the slaves to perform more iterations. We could also do more

anchor set resamplings per current set. These measures could potentially increase

the SCC runtime, but performance results, shown later in this chapter, illustrate

that MMM-EM-CC is an order of magnitude slower than SCC such that we could

implement these measures without a damaging impact to the comparative time per-

formance of SCC.

3.3.3 Wall-clock time

Synthetic Dataset

As expected, the results presented below indicate that the MMM with Distributed

EM algorithm’s performance does not take advantage of extra nodes at the same rate
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Figure 3-4: Average NMI to ground truth, over 10 runs, of two consensus clustering
approaches on the SUN 397 dataset

that Streaming Consensus Clustering does. This is due to an I/O performance hit

that the MMM with Distributed EM method takes with each extra slave. As more

nodes are added, the steps in which the local parameters are aggregated to form

the global parameters (three times in every iteration) becomes a bottleneck. If the

network has latency or bandwidth issues or if the parameter size is increased as in

the SUN397 problem, the performance hit becomes even more pronounced.

This is not a significant issue with Streaming Consensus Clustering because after the

distribution of the initial anchor set to the slaves, the slaves do not communicate with

the master till the end of the iteration. This higher efficiency is evident in Figure 3-5

which shows the average slave CPU utilization in both MMM with Distributed EM

and Streaming Consensus Clustering. Note that the CPU utilization can be above

100% because some operations make use of both CPU cores on the slaves. MMM

with Distributed EM shows decreasing CPU utilization with increasing number of

nodes due to longer waits for global parameters. However, the speed gains from each

node processing smaller partitions of the dataset as the number of nodes increase

offset these bottlenecks and lead overall to shorter computation times per iteration
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and overall processing times (see Figures 3-6 and 3-7). We expect though, that at

some high number of nodes and network latency, the marginal benefit of adding a

node will be less than the performance hit.

Figure 3-5: Average CPU utilization, over 10 runs, of two consensus clustering ap-
proaches on the synthetic dataset

Finally, note that SCC spends significantly less time per iteration than MMM-EM-CC

because it incurs no communication cost. However, this does not directly translate to

overall time savings in Figure 3-6 because 1) SCC generally executes more iterations

due to resamplings and 2) the overall size of the data clustered being somewhat

increased as a result of the anchor set i.e. many data points are clustered more than

once: first as part of a current set and, possibly, as part of a later anchor set.. We,

however, have more flexibility with the time cost of SCC because we are able to

adjust the number of resamplings and the stopping criteria on the slaves to meet a

time budget. We believe that SCC is robust to relaxing the slave stopping criteria

because of the resamplings.
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Figure 3-6: Average time taken per run, over 10 runs, of two consensus clustering
approaches on the synthetic dataset

SUN397

The large number of clusterings in the SUN397 dataset and consequent large number

of parameters emphasize the strengths of the SCC algorithm. As Figure 3-8 shows,

MMM with Distributed EM takes 10x more time to complete clustering the dataset

on 25 nodes. This is due to the large number of parameters that have to be transferred

between each slave and the master once in every iteration. We observed the size of

the transfer to be as large as 40MB per node per roundtrip per iteration which leads

to an overall 20 × 25 nodes × 2 (for roundtrip) = 1GB of data transferred in every

iteration. Since SCC does not have such transfers, the algorithm completes much

quicker than MMM with Distributed EM.

3.4 Conclusion

We demonstrated that the EM algorithm used for consensus clustering can be dis-

tributed to run on a large number of computing nodes by creating an implementation

of this distribution scheme. This allowed us to empirically show the maximum limits
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Figure 3-7: Average time taken per iteration, over 10 runs, of two consensus clustering
approaches on the synthetic dataset

on the size of the dataset for a given number of nodes and memory size in each.

We also created an algorithm for streaming the consensus clustering operation with-

out a limit on the size of the dataset it can handle as input in contrast to MMM

with Distributed EM. We show empirically that this method achieves comparable

accuracy results and will execute to completion more quickly by incurring smaller

data transfers. By running both algorithms on two datasets that test the algorithms’

ability to scale to a large number of nodes or a large number of base clusterings, we

have demonstrated the robustness of both systems to a variety of problem types and

scales.

3.5 Future work

The Streaming Consensus Clustering algorithm could be further sped up. We could

implement a strategy allowing points in the current set to be added to the resolved

set before all the resamples are completed. Currently, the current set is kept constant

till all B resamples of the anchor set are completed. However, since the voting that
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Figure 3-8: Average time taken per run, over 10 runs, of two consensus clustering
approaches on the SUN397 dataset

is done on the current set is a simple majority vote, once any data point gets > B
2

votes for a particular consensus cluster, that point should be added to the resolved

set and replaced with another point from the remaining unclustered dataset. This

way, points will be added to the resolved set at up to twice the current rate leading to

overall faster completion times, and there will be no impact on algorithm accuracy.
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Chapter 4

Data Ownership

In Chapters 2 and 3 we presented data mining methods that are amenable to the

type and scale of medical data that is available today and is increasingly being gath-

ered in many modern healthcare facilities. However, for these methods to have any

chance of improving the quality of care, they must be applied to actual patient data.

Unfortunately, we fear that due to issues of data ownership, patient data is being

siloed within hospital systems - hospitals are reluctant to aggregate this data among

themselves or make it available for knowledge mining. In this chapter, we examine

the issue of data ownership with a focus on ensuring the availability of large medical

datasets for knowledge mining. We proceed in the following fashion. We:

• begin by defining certain terms that are essential to understanding our argu-

ments

• justify our focus on medical data ownership by highlighting its possible impacts

on data availability

• highlight the landmark cases that have shaped common law around data own-

ership

• survey the current statutory positions that different states in the United States

have taken on medical data ownership, expanding on previous work by Stearns
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(2000) and identifying four main classes of ownership stances

• make and justify a recommendation for the creation of Federal law for data

ownership

• recommend the codification of co-ownership of medical data between the patient

and healthcare provider.

We will now proceed to define some important terms used frequently in this chapter.

4.1 Definitions

Property rights: Honoré (1961) cited by Morales (2013) defined property

rights as:

the right to possess, the right to use, the right to manage, the right to the income

of the thing, the right to the capital, the right to security, the rights or incidents

of transmissibility and absence of term, the prohibition of harmful use, liability

to execution, and the incident of residuarity.

Note that even though this definition does not include the right to exclude oth-

ers from such property, some other definitions do (Balganesh, 2008). However,

Morales (2013) points out that the right to exclude can be left out from the bun-

dle of rights above without drastically affecting the sufficiency of the remaining

rights. This point is important because in a later part of this chapter, we argue

for co-ownership of medical data where one owner is not able to exclude the

other from their intended uses.

Access: In contrast to ownership which is implied by property rights, access

as it is typically used in this domain refers to the ability of a party to view

and, perhaps, make copies of a medical record regardless of whether they are

owners or not. The definition of property rights above imply access for the

owner but we can foresee a few situations where owners do not have access. For

example, patients can be denied access to their own mental records especially if
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the healthcare providers believe that access could be detrimental to the patient’s

well being.

Privacy: According to Earl (2008), privacy is the right of a patient to not

have their medical information disseminated to the public.

Medical record: Morales (2013) defines a medical record as “all written,

typed, or electronically stored traces of any aspect of patient treatment that has

official status within the hospital system”. There is a historically-created, subtle

distinction between the record and the information on the record. The record is

the physical media the information is stored on (e.g paper) while the information

is the knowledge housed in the record. This distinction was relevant mostly

before the advent of electronic health records (EHRs). They (EHRs), in being

able to be displayed on read-only devices such as monitors or stored in multiple

places, blur the distinction to a point where the difference becomes irrelevant.

In this chapter, when we are conveying historical information, we retain the

distinction. Otherwise, we simply use the term, “medical record”, to reflect the

reality of the present day.

4.2 Medical Data Ownership

Various stakeholders have argued that debating issues of medical data ownership is

not as relevant as issues of access (Bloomrosen and Detmer, 2008; Safran et al., 2007)

and, perhaps, privacy. We however insist on exploring this issue for two reasons:

1) Firstly, uncertain property rights are generally a bottleneck to exploiting such

property since the uncertainty creates tensions between contestable owners. These

tensions in turn prevent any party from fully engaging in transactions with that

property. For instance, hospitals may be afraid of the legal fallout of selling or

transferring patient data if it is not clearly theirs. In fact, Hall and Schulman

(2009) state that these uncertain rights are slowing investments in electronic health
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records (EHR) despite the HITECH Act’s $20 billion incentive to promote EHR

use.

2) Ownership questions have arisen in the past in court cases and will continue to

arise as long as there is legal uncertainty in this area. As we shall show later, some

of these cases have been used to form body of common law on the subject but the

piecemeal legal landscape developed by common law is insufficient to address the

uncertainties in this area. These uncertainties will continue to increase even as

more types of medical data are gathered and these datasets become increasingly

valuable.

Since data ownership is relevant to the subject of data availability, it is important

to understand how the law currently defines ownership. The state of the law on

the subject is contained within the body of common law as defined by a number

of landmark cases. Some states in the US have also codified medical data ownership

stipulations in their state statutes. In the next sections, we will therefore examine the

cases that have defined common law, identifying the contribution each case brought to

the body of common law. We will also identify which states have medical ownership

stipulations and attempt to find the commonalities and differences between each

state. In doing so, we will be able to highlight the flaws in the status quo and make

recommendations for fixing them.

4.3 Common Law Medical Data Ownership

Over the years, common law has evolved partial answers to the question of medical

data ownership. Each new case has brought with it, reinforcement of the past ones

and, sometimes, an addition that takes care of a peculiarity that did not arise pre-

viously. In this section we examine how these answers have developed over time as

a series of precedents. We therefore walk down the landmark cases in chronological

order starting from the first known medical data ownership case in 1935. For each

case, we present:
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• A brief summary of the dispute before the court

• The judgement delivered

• The contribution of the decision to the body of common law

We outline five chosen cases because these five contributed something new to the

body of common law on the subject. Some of the cases expanded the definition of

what constitutes a medical record by differentiating the record from the information

within it and, in some cases, defining the record to include x-rays, dental records,

blood analyses etc. Other cases established the health care provider as the owner of

the record and one case clarified that the allocation of property rights is currently

not contained within the constitution. We will now delve into some more details.

4.3.1 McGarry v. J.A. Mercier, 1935

Dispute summary: In one of the first cases of medical data ownership Mc-

Garry v. J.A. Mercier Co. (1935), McGarry, a doctor had been treating one of

Mercier Co.’s employees who had sustained an on-the-job injury. Mercier Co.

sought the courts to compel McGarry to hand over x-ray films of the employee

in question.

Court ruling: The court ruled that the films were the property of McGarry

in the absence of a contrary agreement, and regardless of the fact that the

physician was paid by for his services because:

1. The X-rays are practically meaningless to the layman

2. The X-rays constitute part of the doctor’s record which in the aggregate

have value “incident to a physician’s ... experience”

3. The X-rays might constitute an important part of evidence in a malpractice

case

4. Payers pay for medical services not records, records are a by-product of
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the service and thus do not belong to the payer

Contribution: X-ray negatives as well as “microscopic slides of tissue” be-

long to the physician who obtained them in the process of delivering medical

attention.

4.3.2 Wallace v. University Hospitals of Cleveland, 1959

Dispute summary: In Wallace v. University Hospitals of Cleveland (1959),

Wallace, the plaintiff, sought an injunction to compel the University Hospitals

of Cleveland to permit her attorney’s inspection of her hospital records as well

as provide a copy of the records to her attorney. The hospitals defended their

refusal of this request by stating, among other things, that the records were

property of the hospital.

Court ruling: The court held that, even though the hospital owns the records

since they constitute the administrative documents of the business, the patient

still has a property right to the information in the records.

Contribution: This case made a distinction between a medical record and the

information contained within it, demonstrating that property rights in one did

not imply property rights in the other. The case also established that patients

have a property right to the information in their medical records.

4.3.3 Bishop Clarkson Memorial Hospital v. Reserve Life

Ins. Co., 1965

Dispute summary: The dispute in Bishop Clarkson Memorial Hospital v.

Reserve Life Ins. Co. (1965) stemmed from the hospital’s refusal to let Reserve

Life Insurance company inspect and make copies of, without a supervising physi-

cian, the medical records of its clients.
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Court ruling: The court ruled that since the patient has a property right to

the record, an authorised representative should be allowed to inspect and make

copies of the record.

Contribution: In contrast to the patient’s property right to the information

in Wallace v. University Hospitals of Cleveland (1959), this case established

that patient’s have a property right to their medical record itself.

4.3.4 Matter of Culbertson, 1968

Dispute summary: In Matter of Culbertson (1968), Harold Culbertson, a

physician, had requested that his executors burn the medical records of all his

patients after his death. Culbertson’s former patients who were the petitioners

in this case tried to compel the executors to allow them inspect and make copies

of the records.

Court ruling: The court ruled in favor of the petitioners, allowing them to

inspect and make copies of their records before the records were destroyed.

Contribution: Part of the ruling of the court for the petitioners may be

interpreted as an expansion of the definition of a medical record in McGarry v.

J.A. Mercier Co. (1935). The implied definition includes, not just X-rays but,

blood analyses, electro-cardiograms etc. A similar ruling in Matter of Striegel v.

Tofano (1977) further extended this definition to include dental records as well.

This case also reinforced that patients have a property right to their records.

4.3.5 Gotkin v. Miller, 1975

Dispute summary: In Gotkin v. Miller (1975) Jane Gotkin had been treated

in a number of mental hospitals and sought to obtain her records for a book she

was writing. The hospitals refused her request, and their position was supported

by federal courts.

81



Ruling: Notably, the ruling pointed out that the 4th and 14th amendments

of the US constitution which the Gotkins used to support their case did not

provide property rights. Rather, those amendments enforced property rights

already allocated by state law and common law. Since New York law at that

time did not recognize a patient’s property rights to their medical records, the

courts dismissed that argument.

Contribution: The case made the first stipulation about the role that the

Federal constitution plays in the data ownership issue: enforcement of rights

defined elsewhere. The case also established that the property rights must be

allocated by common law or state law.

The recognition in Gotkin v. Miller (1975) of the importance of state law in de-

termining medical data property rights provides a strong motivation to examine the

current status of these laws with the aim of identifying which states have laws and

the similarities between their laws. We proceed to do this in the next section.

4.4 Medical Data Ownership in State Law

Table 4.1 shows the 16 states that have codified medical data ownership into their

statutes or administrative code. It identifies four stances:

1. Nine states recognize the hospital as the owner. Most of the states that have a

stipulation on medical data ownership fall in this category.

2. One state recognizes the physician as the record owner, South Carolina is the

only state in this category.

3. One state, New Hampshire, that recognizes the patient as the owner of the

information within the record. It is also worth noting that New Hampshire law

is silent about ownership of the record itself and is the only state that makes

the distinction between the record and the information contained within the

record.
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Stipulation States using Relevant statutes

Medical facility owns records

Alaska 7 Alaska Admin. Code 12.770
Illinois 210 ILCS 85/6.17
Maryland COMAR 10.01.16.04
Mississippi Miss. Code Ann. §41-9-65
North Carolina 10A N.C.A.C. 13B.3903
Oregon Or. Admin. R. 333-505-0050
Pennsylvania 28 Pa. Code §115.28
Tennessee Tenn. Code Ann. §68-11-304
Utah U.A.C. R432-100-33

Physician owns records South Carolina S.C. Code Ann. §44-115-20
Information in record is pa-
tient’s property

New Hampshire RSA 332-I:1

Provider (hospital or doctor)
owns records

Florida Fla. Stat. §456.057
Georgia O.C.G.A. §31-33-3
Louisiana La. R.S. 40:1299.96
Texas 22 TAC §165.1
Virginia Va. Code Ann. §54.1-2403.3

Table 4.1: Survey of states that have codified some stance on medical data ownership

4. Five states recognize the healthcare provider (i.e. hospital or doctor) as the

owner. This group of states is mostly made up of states in the South East

and their laws appear to be derivative of each other’s. These laws are vague

about whether the physician’s or the hospital’s property rights take precedence.

The one exception is Virginia which, incidentally, is not in the South East. In

Virginia, “Medical records ... shall be the property of such health care provider

or, in the case of a health care provider employed by another health care provider,

the property of the employer.” (Va. Code Ann. §54.1-2403.3)

The remaining 34 of 50 states do not have any explicit stance on data ownership.

Such states will have to rely on common law when disputes arise. This is a problem

because, as mentioned earlier, the uncertainties in common law legal landscape will

dissuade some actors from making their medical datasets available. State laws are

not immune to this uncertainty because the laws are inconsistent among themselves.

This non-comprehensive and inconsistent legal landscape is the subject of the next

section where we unify the key stances in common and state law, identify where they
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differ and further explain why this is a problem.

4.5 Issues with Data Ownership Legal Landscape

4.5.1 Issues with common law approaches

So far, common law answers to the medical data ownership question have been rela-

tively consistent with each other:

• The physician owns medical records

• Medical records may include x-rays, blood analyses, electrocardiogram and den-

tal records

• The patient has a property right in both the information and the record

However, common law is still not a sufficient legal stance because:

Common law is outdated: The first common law answer to the question of

medical data ownership was ruled on in 1935. Between then and now, and

especially in the last few years, a lot has changed in the area of medical data

gathering and knowledge-mining thus making such old judgements less and less

relevant. Unfortunately, this first case, McGarry v. J.A. Mercier Co. (1935),

has been cited in a court decision as recently as 2010 (Holtkamp Trucking Co.

v. Fletcher, 2010). The common law approach of gradually evolving the legal

stance using more recent cases may not be sufficient either. The rapid changes

in the area of medical data gathering requires a clean break from the past. This

position is supported by Pound (1908):

...courts are less and less competent to formulate rules for new relations which

require regulation. They have the experience of the past. But they do not have

the facts of the present.

Common law is less democratic: Pound (1908) also forwards the notion

that common law is generally less democratic than legislative approaches to
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issues because legislators are elected representatives of the people in contrast to

the judges that make common law who are appointed to their positions. This

is also true in the case of administrative rule-making which is typically used to

add greater detail to laws legislated in the United States. In the Administrative

Procedure Act which defines the due process for administrative rule-making,

regulations are made after months of making public proposals and receiving, as

well as responding to proposal comments from the general public. Rulemaking

also frequently involves public hearings that permit debate on the proposed

regulations. The judicial process hardly works this way and gives little room

for the public to influence the decisions made.

4.5.2 The Shift to Electronic Records

The patchwork of common law and state statutes used to answer the data ownership

question leads to significant differences and ambiguity from state to state and case to

case. This inconsistency might have been manageable when paper records were pri-

marily in use and as such were bound by state lines. However, with the advent and

widespread adoption of electronic records, state lines have become irrelevant since

data may easily be stored in a different state from the health service provider or pos-

sibly replicated to multiple data centers in different states to enable disaster recovery.

The data centers, servers and databases that hold this data may also hold data from

multiple health service providers domiciled in different states further complicating

adherence to a mishmash of rules about ownership. To drive the point home, there

are even states like Alabama that have codified how the rules of data management

should be applied, albeit without codifying ownership rules: “Licensure to practice

medicine in Alabama determines treatment of medical data regardless of where the

data is maintained” (Code of Ala. §34-24-504)
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4.5.3 Definition of a record

The differences that arise due to the inconsistency of the law on medical data own-

ership are not only found in how ownership is defined. There are also differences in

what constitutes a medical record. As highlighted in Section 4.3, Gotkin v. Miller

(1975) initialized the definition of a medical record to x-rays and tissue and Matter of

Culbertson (1968) expanded it to include blood analyses and electro-cardiograms. In

similar fashion, many of the states that have codified ownership have set out some def-

initions for what constitutes a record. Unfortunately, these definitions do not always

agree with each other. For example, North Carolina excludes x-rays from the defini-

tion of a medical record (10A N.C.A.C. 13B.3903) whereas Pennsylvania specifically

includes “radiology & radiotherapy” (28 Pa. Code §127.35). Such inconsistencies

could easily cause legal conflicts in any process to aggregate medical data across state

lines for research uses.

4.6 Recommendations

In this section, we propose two recommendations for deciding on the issue of data

ownership. The first recommendation - enactment of Federal Law - is geared at fixing

the problems with the status quo as identified in the previous section. We then

proceed to recommend the form that such federal law should take by considering

various possible stakeholders in the issue and coming up with a co-ownership proposal

that would strike a balance between equity and efficiency.

4.6.1 Federal Law

The three issues with the status quo - the inadequacy of common law, the advent

of electronic records and the differences in the definition of a medical record - have

prompted the recommendations that will be discussed in this section. We, first of

all, recommend that explicit law be created to mitigate the issues in common law
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approaches. Secondly, we recommend that this law should be federal in nature to

deal with all the inconsistencies that arise in state law. While the merit in these

recommendations is apparent given the flaws in the status quo, we further justify the

need for a federal stance on the issue by demonstrating how medical data has become

a matter of interstate commerce. We also demonstrate that, even within the medical

domain, there is a precedent for this path from patchwork of common and state laws

to federal law as seen in the Health Insurance Portability and Accountability Act thus

emphasizing the feasibility of our recommendations. Finally, we argue that existing

state laws on ownership have been motivated by privacy demands, not by the research

goals that we target in this thesis and newly enacted laws can include such research

motivations and have provisions that specifically make it easier to get access to data

for research purposes.

Interstate Commerce

One of the prerequisites for the Federal government to wade into the issue and de-

fine laws that govern ownership is for the issue to border on interstate commerce.

Healthcare information may not have been an issue of interstate commerce a few

decades ago when hospitals kept their own paper records and patients rarely received

healthcare services across multiple states. However, it can be argued that the present

proliferation of hospital networks that cut across states and the massive adoption of

electronic health records has made healthcare information an interstate issue. Ad-

ditionally, as pointed out by Bishop (2002), patient data travels between insurance

companies and health providers located in different states. This gives the Federal

Government the right and responsibility to make policies for the sector. In the words

of AHIMA (2003) speaking about medical privacy,

Modern realities, including the movement of patients and their healthcare information

across state lines, the exchange of such information through automated databases,

and the emergence of multi-state providers, simply render anything less than federal

standards impractical.
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Finally, it is plausible that if the kind of data aggregation we advocate for ever

happens, it would start at the level of hospital networks. According to American

Hospital Association (2007), a hospital network is “a group of hospitals, physicians,

other providers, insurers and/or community agencies that work together to coordi-

nate and deliver a broad spectrum of services to their community”, and there are over

400 hospital systems, networks and alliances in the United States (American Hospi-

tal Association, 2013). The largest ones include the Veterans Administration (VA),

Healthcare Corporation of America (HCA) and Ascension Health (Dark Daily, 2009)

and each of these three hospital networks all have one Electronic Health Records

(EHR) system running or being deployed across all their facilities (Hammond et al.,

2010; HCA, 2012; Rose, 2012). Having a single EHR deployed across the entire hos-

pital network allows the kind of intra-system aggregated data analysis that we are

developing methods for without having to deal with issues of integration and inter-

operability. Unfortunately, what we gain in technical interoperability is lost in legal

non-interoperability due to the fragmentation of the legal landscape of medical data

ownership. To illustrate how the fragmentation may affect a hospital network, Figure

4-1 shows the locations of HCA facilities (which all run one EHR system) overlaid

on the legal stance of different states with respect to data ownership. This graphic

shows that 42% of HCA’s 302 facilities lie in the five states that define the provider

(physician or facility) as the data owner, 34% in the nine states that define the facil-

ity as the owner, 3% in South Carolina that defines the physician as the owner, 1%

in New Hampshire that defines the patient as the owner of the information in the

records and the remaining 20% in the 34 states that have no stance on medical data

ownership.

Following the HIPAA precedent

Before the enactment of the Health Insurance Portability and Accountability Act

in 1996, many states had privacy laws (Cohen, 2006) governing the disclosure of

private medical information. According to Hussong (2000), healthcare organizations
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Figure 4-1: Locations of America’s largest hospital network, HCA, also showing the
host states’ stance on medical data ownership

report more confusion and higher administrative costs with multiple state privacy

laws. Federally-enacted HIPAA therefore brought some legal uniformity to the issue

of privacy which was good given the increasing importance of electronic health records

and the issues associated with privacy law fragmentation. To deal with the existing

state laws, HIPAA includes provisions that allows it pre-empt state laws that are

contrary to it (Cohen, 2006). We therefore argue that since the issue of data ownership

is in a similar situation to where privacy was, pre-HIPAA, it is only logical that the

Federal law precedent set by HIPAA be followed for medical data ownership.

Addressing the research motivation

After studying the existing state statutes on ownership as well as common law on

the subject, it is our conclusion that these legal stances are motivated by a need to

protect a patient’s privacy and right of access. This is evidenced by subtle points in

the various states’ statute, for instance, the Illinois ownership stipulation is located

in a section titled “Protection of and confidential access to medical records and infor-

mation”(210 ILCS 85/6.17). The laws are also targeted at protecting the rights of

healthcare providers with regards to their business records. However, in this thesis
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we are concerned with a different motivation for addressing the ownership question

- access to data for research. A new (Federal) law concerning ownership of medical

data will be able to add this increasingly important issue to the current motivations

and address the niceties that may not be fully addressed when medical data mining

was less prominent or practical.

4.6.2 Allocation of Property Rights

Even if the proposition of enacting Federal law to allocate medical data property

rights is accepted, the question still remains of who the property rights in the data

should be allocated to. There are a number of actors that can be considered here:

government, patients, healthcare providers (facilities and physicians), insurance com-

panies and device manufacturers. A case may be made for each of these actors to

have a property right to the data. However, we dismiss the insurance companies and

device manufacturers immediately. Even though the insurance company pays, they

pay for treatment and not the medical record. Hence, they have no true stake to the

data provided they get sufficient access for their business operations. Conversely the

device manufacturers, since the hospital pays for the equipment, cannot lay claim to

the data gathered by it. We will now give some more focus to the remaining players:

the government, patient and healthcare provider.

Government

The government has been proposed by some as a possible owner of medical data.

Specifically, Rodwin (2009) proposes that the government set up a central public

repository that healthcare providers will be compelled by Federal law to submit

anonymized patient data to. He argues that treating patient data as private property

will preclude the formation of aggregated databases. While there may be some merit

to this argument, we have also seen that private hospital networks are deploying

EHRs across their entire network and these networks could easily be the precursors
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to a national medical database given that sufficient work is done in standardization

of access to the network databases.

A similar point Rodwin (2009) tries to make is that private ownership of patient data

will exclude public uses. However, Evans (2011) rebuts this by pointing out that the

government still has the power to invoke takings on private property. This rebuttal

is supported by an analogy with the private takings of land used for building rail

tracks. We also add that the government has, in the past, shown a preference for

private ownership for things like government-funded research. This was enabled by

the Bayh-Dole Act of 1980 which, as The Economist (2002) highlights, led to rapid

diffusion into public uses of research that would have otherwise gathered dust. The

Bayh-Dole Act example also demonstrates the limited ability of the government to

optimize the use of public resources - a fate that could be shared by patient data

if ownership is assigned to the government. Additionally, citing the Privacy Act (5

U.S.C. §552a), Evans (2011) points out that, in federal government hands, patient

data may be subjected to even more privacy requirements which will make research

access more difficult. The Privacy Act requires federal agencies to notify individuals

with personally-identifiable information before such information is disclosed.

The Patient

Allocating exclusive property rights to the patient might sound like the equitable

thing to do but it might not be the most efficient. Lessons from intellectual property

in synthetic biology have demonstrated that fragmented property rights could lead

to an “anticommons” problem (Heller and Eisenberg, 1998). Heller and Eisenberg

(1998) discusses how, in synthetic biology, fragmented intellectual property rights

have made it increasingly difficult for scientists to innovate given the amount of

intellectual property (IP) required in every project and the difficulties and transaction

costs associated with negotiating license agreements with all the IP owners. Similarly,

Evans (2008) compared such dispersion of property rights to the physical rights of

way that have to be acquired at high transaction costs for infrastructure development.
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Allocating medical data property rights to the patients runs the risk of creating such

an anticommons problem where data consumers will find it infeasible to negotiate

with all the data owners.

Another reason put forward (by some stakeholders) for patient ownership is for privacy

protection. However, this is more an outcome of conflating a number of patient data-

related issue: privacy, access, control and ownership. This is partly due to the inter-

relationships between these issues. For instance, if privacy were strictly enforced such

that, say, only the patient and the provider who made the record have access to it,

it would preclude other stakeholders e.g. another doctor from the access they need

to work effectively. However, these issues can be dealt with separately without using

ownership as a proxy for privacy. For instance, HIPAA addresses many privacy pain

points without touching on the ownership question and the ideas we propose in this

thesis should do the same for ownership without negatively impacting the patient’s

privacy. This stance is shared by Rodwin (2009).

Finally, if a patient is made the sole owner of their record and the ownership right

spills into the domain of access and control, patients may be able to require that their

approval is sought before their data is used in any form for research. Evans (2011)

points out that this may pose a threat to the validity of the research results because

even if the researchers are able to reach every patient in the system some patients

would not approve of the use and this will possibly introduce a statistical bias in the

sample obtained.

Nonetheless, we remain mindful of the patient’s right to access the data and use it as

they see fit. We therefore propose a system where a patient is an owner but not the

sole owner of the data. The patients’ co-ownership rights will therefore not exclude

other owners of the data (the healthcare provider) from using it provided privacy is

protected and access for all necessary parties is preserved.
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Healthcare Provider

We believe that having the healthcare provider own the data, as it is currently de-

fined in some states, strikes the right balance between equity and efficiency. It is an

equitable approach given the effort the hospital puts into making and maintaining the

records. It is also efficient because it does not disperse the rights to so many parties

as to risk falling into Heller and Eisenberg (1998)’s “tragedy of the anticommons”.

This efficiency driven by aggregation of rights is even more so because of the existence

of hospital networks and network-wide EHR systems as discussed earlier.

The stipulation in Virginia provides an ideal model for such a law because it clearly

gives a hospital superior property rights in the records than the physicians employed

there thus further curtailing the fragmentation of those rights:

Medical records maintained by any health care provider ... shall be the property of

such health care provider or, in the case of a health care provider employed by another

health care provider, the property of the employer. (Va. Code Ann. §54.1-2403.3)

4.7 Future Work

One direction this work could be expanded to would be to look outside the United

States for countries implementing either the changes we have proposed or some al-

ternative policy stance and to study the effect on data availability in those countries.

This research direction will also have to account for differences in legal, cultural and

commercial systems in the countries studied.
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Chapter 5

Conclusion

In this thesis we set out to address some of the technical and policy challenges to

effective mining of the massive amounts of medical data currently being gathered in

and outside hospitals. Our main contributions were:

• Our implementation of a distributed EM algorithm for Gaussian mixture models

demonstrates a method for initializing the parameters of the algorithm when

data is streamed in without having to store the entire dataset in memory or

know the size of the dataset a priori. We also present a partial parameter update

method that allows the distributed EM operation continue when a computing

node holds up an iteration step. These capabilities will enable medical data

mining at very large data scales on modest quantities of commodity computers.

• One contribution in the area of consensus clustering is our implementation of a

distributed EM algorithm for performing consensus clustering using multinomial

mixture models. This implementation, to the best of our knowledge, is the only

such distributed implementation of a similar single-node algorithm created by

Topchy et al. (2004). Our implementation allowed us demonstrate the inability

of the algorithm to handle datasets past a certain size for a given amount of

computational resources. Specifically, the algorithm was unable to process a

400 million-point dataset ( 30GB) on a cloud of 25 computing nodes with 4GB
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of memory each.

• Our main contribution to the consensus clustering body of knowledge is an al-

gorithm for scaling any consensus clustering method to be able to handle large

amounts of data that would have neither fit in memory of a single comput-

ing node nor even a cloud of nodes running the MMM with Distributed EM

algorithm. Our algorithm has the following advantages:

– It can perform consensus clustering on any amount of data given any

amount of computing resources

– It can perform consensus clustering on data that is streamed in

– It is demonstrably faster than the MMM with Distributed EM algorithm

We ran this algorithm on as few as 25 computing nodes with 4GB of memory,

processing 400 million data points ( 30GB) in less than 4 hours and achieved

normalized mutual information of about 0.8 which is about the same average

received with MMM with Distributed EM when run on a sufficient number of

computing nodes.

• Finally, we described the legal position of the United States on the issue of

medical data ownership as defined in common law and state law. We then

recommended that explicit law be created to replace the outdated common law.

We also recommended that the law be federally defined to deal with the non-

comprehensiveness and inconsistency of state law. Our final recommendation

is that property rights in the data be allocated to both the patient and the

healthcare provider.

96



Bibliography

Abdi, H., Valentin, D., Chollet, S., and Chrea, C. (2007). Analyzing assessors and
products in sorting tasks: Distatis, theory and applications. Food quality and
preference, 18(4):627–640.

AHIMA (2003). Confidentiality of Medical Records: A
Situation Analysis and AHIMA’s Position. Available
http://library.ahima.org/xpedio/groups/public/documents/ahima/bok2 000623.hcsp,
accessed June 2013.

American Hospital Association (2007). Fast facts on US hospitals. Available
http://www.aha.org/aha/resource-center/Statistics-and-Studies/fastfacts.html,
accessed June 2013.

American Hospital Association (2013). American Hospital Association Guide.

Balganesh, S. (2008). Demystifying the right to exclude: Of property, inviolability,
and automatic injunctions. Harv. JL & Pub. Pol’y, 31:593.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning, volume 4. Springer,
New York.

Bishop, R. H. (2002). Final Patient Privacy Regulations under the Health Insur-
ance Portability and Accountability Act - Promoting Patient Privacy or Public
Confusion? Ga. L. Rev., 37:723.

Bishop Clarkson Memorial Hospital v. Reserve Life Ins. Co. (1965). 350 F. 2d 1006.
Court of Appeals, 8th Circuit.

Bloomrosen, M. and Detmer, D. (2008). Advancing the framework: Use of health
dataa report of a working conference of the american medical informatics associa-
tion. Journal of the American Medical Informatics Association, 15(6):715–722.

Blumenthal, D. (2010). Launching HITECH. New England Journal of Medicine,
362(5):382–385.

Brill, S. (2013). Bitter pill: Why medical bills are killing us. Available
http://www.time.com/time/magazine/article/0,9171,2136864,00.html accessed
March 2013.

97



Chitta, R., Jin, R., Havens, T., and Jain, A. (2011). Approximate kernel k-means:
Solution to large scale kernel clustering. In Proc. ACM SIGKDD, pages 551–556.

Cohen, B. (2006). Reconciling the HIPAA privacy rule with state laws regulating
ex parte interviews of plaintiffs treating physicians: a guide to performing HIPAA
preemption analysis. Houston Law Review, 43(1091).

Dark Daily (2009). Nations list of top ten largest healthcare systems in-
clude some surprises. Available http://www.darkdaily.com/nations-list-of-top-ten-
largest-healthcare-systems-include-some-surprises-113, accessed June 2013.

Dasgupta, S. (2000). Experiments with random projection. In Proceedings of the Six-
teenth conference on Uncertainty in artificial intelligence, pages 143–151. Morgan
Kaufmann Publishers Inc.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), pages 1–38.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE.

Dhillon, I. S., Guan, Y., and Kulis, B. (2004). Kernel k-means: spectral clustering
and normalized cuts. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 551–556. ACM.

Earl, M. (2008). Concise dictionary of modern medicine, by joseph c. segen. MEDI-
CAL REFERENCE SERVICES QUARTERLY, 27(1):121.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. Kdd.

Evans, B. J. (2008). Congress’ new infrastructural model of medical privacy. Notre
Dame L. Rev., 84:585.

Evans, B. J. (2011). Much ado about data ownership. Harv. JL & Tech., 25:69.

Fern, X. Z. and Brodley, C. E. (2003). Random projection for high dimensional
data clustering: A cluster ensemble approach. In Proceedings of the Twentieth
International Conference on Machine Learning, volume 20, page 186.

Fred, A. L. and Jain, A. K. (2002). Data clustering using evidence accumulation.
In Pattern Recognition, 2002. Proceedings. 16th International Conference on, vol-
ume 4, pages 276–280. IEEE.

Gotkin v. Miller (1975). 514 F. 2d 125. Court of Appeals, 2nd Circuit.

Gu, D. (2008). Distributed EM algorithm for Gaussian mixtures in sensor networks.
Neural Networks, IEEE Transactions on, 19(7):1154–1166.

98



Guha, S., Rastogi, R., and Shim, K. (1998). Cure: an efficient clustering algorithm
for large databases. In ACM SIGMOD Record, volume 27, pages 73–84. ACM.

Hall, M. A. and Schulman, K. A. (2009). Ownership of medical information. Journal
of the American Medical Association, 301(12):1282–1284.

Hammond, K. W., Efthimiadis, E. N., Weir, C. R., Embi, P. J., Thielke, S. M., Laun-
dry, R. M., and Hedeen, A. (2010). Initial steps toward validating and measuring
the quality of computerized provider documentation. In AMIA Annual Symposium
Proceedings, volume 2010, page 271. American Medical Informatics Association.

HCA (2012). Frequently Asked Questions about hCare. Available
http://hcare.acareerathca.com/hca-ehr-faq/, accessed June 2013.

Heller, M. A. and Eisenberg, R. S. (1998). Can patents deter innovation? The
anticommons in biomedical research. Science, 280(5364):698–701.

Holtkamp Trucking Co. v. Fletcher (2010). Ne 2d.
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