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Abstract. We describe and evaluate a set of computational intelligence
techniques for long-term wind resource assessment. Short term sensor
measurements at a potential wind farm site are correlated with pub-
licly available wind data sources in close spatial proximity in order to
extrapolate long-term predictions for the site. This general approach to
assessment is called “MCP”: Measure, Correlate and Predict. Our tech-
niques are based upon statistical inference. They aim to address accu-
rately correlating inexpensive but noisy, short term measurements at the
site. Each technique relies upon estimating the joint distribution of wind
speeds at the site and the publicly available neighbouring sources. For a
site at the Boston Museum of Science when the availability of site data
varies between 3, 6 and 8 months, we find that copula modeling is robust
to data availability and consistently best overall.

Keywords: wind resource assessment, Measure-Correlate-Predict, mul-
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1 Introduction

A wind resource assessment is initiated as part of the decision process lead-
ing to selecting a wind farm site. There are multiple factors which influence
site selection. Among them are legal considerations, community opinion, ease of
construction, maintenance and cabling cost. Arguably most crucial is whether
there is enough wind in the ideal speed range that will endure over a long span
of times such as a generation or longer. Prediction of wind at high frequency
like hours to days to weeks is fraught with technical and sensing challenges plus
intrinsic uncertainty. Wind resource assessment for site selection contrasts with
high frequency prediction. Its goal is to provide a general estimate that guides
selection without being a precise prediction. The annual, actual wind resource of
a farm would be expected to deviate from the assessment with reasonable vari-
ance. However, when the actual annual resource is averaged over a long span,
the goal is that the assessment and actuality should match up. In this way wind
resource assessment helps inform the question of the production capacity of the
site over its extended lifetime (which potentially includes successive upgrades of
turbines and related facilities).



A wind resource assessment is presented as a set of probability distributions
of wind speed for directional intervals which span 360°. An example of 3 distri-
butions, for the intervals 0° — 15°, 15° — 30°, and 30° — 45° is shown on the left
of Figure 1. Each plotted probability function is modeled with a Weibull dis-
tribution which is parameterized by shape and scale. Integrating this function
(mathematically) allows one to derive the probability that the wind speed from
a given direction range will be within a specific range.

The assessment can also be visualized via a wind rose, see Figure 1, right.
The span of the entire 360 degrees is oriented in North-South compass direction
to inform its alignment to the site. Figure 1, left shows 16 direction intervals,
each as a discrete“slice” with coloring that depicts wind speed. The length and
width of the slice conveys probability.

There are multiple methodologies which derive a wind resource assessment.
All are subject to great uncertainty. When a wind resource assessment is based
upon wind maps and publicly available datasets from the closest locations, it
tends to overestimate the wind speed because the maps are so macroscopic.
Even when the resource estimated by the wind map for a geographical location
is improved upon by utilizing a model that accounts for surface roughness and
other factors, significant inaccuracies persist because specific details of the site
remain neglected. Alternatively, a computational fluid dynamics (CFD) model
can be used to achieve a better resource assessment. CFD, too, however has
limitations. It is very hard to incorporate all the local attributes and factors
related to turbulence into the simulation. While the wind industry has started
to combine CFD and wind map approaches, the current methods are ad-hoc,
not robust and more expensive than desired.

In this chapter we provide new techniques for the only assessment methodol-
ogy that takes into account as many years of historical data as possible (though
that data is remote from the site itself), while also integrating site specific
information, albeit short term and relatively noisy. We consider the Measure-
Correlate-Predict assessment methodology, abbreviated as MCP, which exploits
anemometers, and/or other sensing equipment that provide site specific data
[1-4]. The Measure step involves measuring wind speed and direction at the site
for a certain duration of time. In the Correlate step, this data is then associated
with simultaneous data from nearby meteorological stations, so-called histori-
cal sites which also have long term historical data. A correlation model is built
between the time-synchronized datasets. In the Predict step, the model is then
used along with the historical data from the meteorological stations to predict
the wind resource at the site. The prediction is expressed as a bivariate (speed
and direction) statistical distribution or a “wind rose” as shown in Figure 1.

While MCP does incorporate site-specific data, the data is based upon very
inexpensive sensors, i.e anemometers, which are consequently very noisy. Ad-
ditionally, anemometers are frequently moved on the site and not deployed for
any significant length of time. Thus, the key challenge of MCP is to accurately
predict with cheap, noisy, short-term sensor measurements. We aim to address
how techniques match up with data availability. Usually 8-10 months are consid-



ered as a standard in the wind industry. However, we seek very simple modeling
techniques which can reduce the amount of data required to get an accurate
estimation of the long term wind speed.

Another challenge is integrating historic site data. The best historic site
(e.g. airport) to correlate wind speed with a site might be somewhat intuitive
if only wind direction is considered: for example, when the wind blows from
the north at the site, its speed might be best correlated with speeds from a
particular airport meteorological tower immediately to the north. However, site
conditions such as local terrain height variation or terrain features such as forests
and large buildings make identifying the best correlation sources much more
complicated. The sites’ conditions cannot be observed directly in the data but
influence the correlative relationships. Also, the strength of correlations may
be sensitive to the how wind direction is segmented into aggregative bins and
intervals. To date, the selection is done with trial and error modeling and ad
hoc understanding of the similarity between the proposed and historic sites.
Almost always, a single historic site, closest to the test site, is used to build
the predictive model. Yet, for any directional bin, better accuracy is obtainable
when multiple historic sites in different directions with respect to the site are
candidates for integration into the estimation. In this chapter we address how
to integrate the wind information from multiple historic sites and weigh each
historic site according to its correlative strength.

It is not uncommon for wind farms to fall short of their expected energy
output. A study performed in the United Kingdom monitored small and micro
wind turbine performance and found that the wind resource was over-predicted
by a factor of 15 [5]. In another example, data analysis of 19 small turbines
installed in Massachusetts [6], showed, on average, turbines underperforming by
a factor of 4. The capacity factor was found to be as low as 3%-4%. Inadequate
wind resource assessment was determined to be one of the major factors (20%)
influencing the underperformance.

In this chapter we describe a set of computational intelligence techniques
based upon statistical inference. Each technique relies upon estimating the joint
distribution of wind speeds at the site and the publicly available neighboring
sources. The accuracy of any one of these techniques is sensitive to choices in
the modeling setup and/or parameterizations. We aim to assess which technique
and choices are best. Our assessment will utilize anemometer measurements for
a site at the Boston Museum of Science when the availability of site data varies
between 3, 6 and 8 months while correlating with data from 14 airports nearby,
see Figure 4 and Table ?7.

We proceed as follows: Section 2 presents a detailed description of MCP. Sec-
tion 3 presents statistical techniques which can be used in an MCP framework.
Section 4 presents the means by which we evaluate the techniques. Section 5
presents the empirical evaluation. Finally Section 6 states our conclusions and
outlines future work.



2 Measure-Corelate-Predict (MCP )

We consider wind resource estimation derived by a methodology known as Measure-
Correlate-Predict or MCP, see Figure 2. In terms of notation, the wind at a
particular location is characterized by speed denoted by x and direction . Wind
speed is measured by anemometers and wind direction is measured by wind
vanes. The 360° direction is split into multiple bins with a lower limit (¢;) and
upper limit (6,,). We give an index value of J = 1...j for the directional bin.
We represent the wind speed measurement at the test site (where wind resource
needs to be estimated) with y and the other sites (for whom the long term wind
resource is available) as z and index these other sites with M =1...m.

The three steps of MCP are:
MEASURE Short term sensing measurements on the site are collected. This is

denoted by Y = {4, ... y:, - Measurements can be collected using anemome-
ters on the site, a newly-constructed meteorological tower, or even remote
sensing technologies such as sonar or lidar. Different measurement techniques
incur different costs that dictate their feasibility for different projects. Mea-
surements from nearby sites for the same period are gathered. These sites,
called historical sites, have additional data for the past 10-20 years. These
are denoted by X = {x%k"gn} where each :cikv__tn corresponds to data from
one historical site, k and n are time indicies, and m denotes the total number
of historical sites. Historical data that is not simultaneous in time to the site
observations used in modeling will be used in the PREDICT step.

CORRELATE A single directional model is first built correlating the wind
directions observed at the site with simultaneous historical site wind direc-
tions. Next, for each directional interval, called a (directional) bin, of a 360°
radius, a model is built correlating the wind speeds at the site with simul-
taneous speeds at the historical sites, i.e. Y3, = fo, (i) where k < i < n.
The data available from the site at this stage is expected to be sparse and
noisy.

PREDICT To obtain an accurate estimation of long term wind conditions at
the site, we first divide the data from the historic sites (which is not simul-
taneous in time to the site observations used in modeling) into subsets that
correspond to a directional bin. Prediction of the long term site conditions
follows two steps:

A : We use the model we developed for that direction fp, and the data from
the historic sites corresponding to this direction xtll“_'f?k_le to predict
what the wind speed Yy = 4,1, —1 at the site would be.

B : With the predictions Y, from A above, we estimate parameters for a
Weibull distribution. This distribution is our answer to the wind resource
assessment problem. We generate a distribution for each directional bin.
A few example distributions for different bins are shown in Figure 1, left.
Alternatively, these distributions can be summarized via a wind rose also
shown in Figure 1, right.

The goal is to generate a predicted long term wind speed distribution in each
direction which will be as close as possible to the real (as yet unexperienced)
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Fig.1. A wind resource estimation is expressed as a bivariate (speed and direction)
statistical distribution or a “wind rose”.

distribution. The result from MCP, i.e. the statistical distribution in each bin,
is then used to estimate the energy which can be expected from a wind turbine,
given the power curve supplied by its manufacturer. This calculation can be
extended over an entire farm if wake interactions among the turbines are taken
into account. See [7] for more details.

Note that distribution not only captures the mean, but also variance in this
speed. This is critical for assessment of long term wind resource and the long
term energy estimate.

A variety of methods are developed in [8] to evaluate the accuracy of the
predicted wind speed distribution. One method measures the accuracy in terms
of ratios between true and actual parameters of the Weibull distribution. That
is, true shape versus estimated shape and true scale versus estimated scale.
To completely capture any possible inaccuracy in the predicted distribution, we
measure a symmetric Kullback-Leibler distance. It is important to note that this
measure is different than the mean-squared error or mean-absolute error which
measure the accuracy in terms of difference between each predicted value and
the true observation. Methods that minimize these errors would not necessarily
accurately express how close the approximation is to the true distribution.

We now proceed to describe the set of statistical approaches we introduce for
deployment within the MCP framework.

3 Methodology for wind speed estimation

Notationally, we refer to a training point as I € {1... L} and a point for which
we have to make prediction as k € {1...K}. We drop the notation for time
after having time synchronized all the measurements across locations. We also
drop the subscript for directional bin. From this point onwards when we refer
to a model, it is the model for a particular bin j. fz(z) refers to a probability
density function of the variable (or set of variables) z. Fz(z) refers to cumulative
distribution function for the variable z such that Fiz(z = a) = ffinf fz(z) for a
continuous density function.
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[ Historic site Test |
Date Time Di.%;ﬁm WindSpeed | WindSpeed nin+ﬁon |
11/5/2008 8:55 180 1543 0724 58.79
11/5/20089:15 140 1.543 0423 83.49
111512008 9:25 145 2058 0.500 7413
180 1543 0.705 53.62
25/200912:15 140 1.801 0.441 2S5
25| | 1.801 0.303 L29067] |
2/5/2009 12:35 135 1543
________ ? ?
11/5/2009 15:25 10 1543
11/5/2009 15:35 85 1.801

Fig. 2. MCP generates a model correlating site wind directions to those simultaneously
at historical sites. For a directional bin, it generates a model correlating simultaneous
speeds.

Our methodology for MCP has four steps.

Step 1: To start, we build a multivariate distribution with the probability den-
sity function fx y(x,y), where x = {x1...2,,} are the wind speeds at the
historic sites and y is the wind speed at the site. To do this we employ like-
lihood parameter estimation. The model building process is similar for all
the bins and only the data needs to be changed.

Step 2: Given the joint distribution from Step 1, we predict the probability
density of y that corresponds to a given test sample xx = {z1, ...Zm, } by
estimating the conditional density fy (y|xx). The conditional can be esti-
mated by:

iy (k)
e S ) “)

Step 3: We now can make a point prediction of g, by finding the value for y
that maximizes the conditional.

§ = argmax f(y1X = xi). (2)
yeyYy
Step 4: All the predictions for ;.. i are estimated to a Weibull density function
which gives an estimate of the long term wind resource at the test site.

The methodology implies two design decisions:

Choosing a model A key decision is which density function should be used
to model the univariate densities fx, (x;) and the choice of the joint density



function. A simple and straight forward choice is univariate and multivariate
Gaussians. This is because Gaussian density functions have closed form ana-
lytic equations for estimation of parameters and evaluating conditionals that
are readily computed. Unfortunately, in many cases this choice could lead
to inaccuracies. Individual variables may not fit a Gaussian density function
without significant error, e.g. when they have significant tail properties or
bi-modal distribution. A joint Gaussian density function only captures the
linear correlation between the variables. If we choose non-Gaussian univari-
ate densities for x;, we have to employ copulas to construct a multivariate
joint density function.

Assumptions Regarding Variable Dependency Structure Parametric es-

timation of a joint density function is expensive to compute and requires a
large amount of data. Inference from the joint is also expensive. Assuming
conditional independency among some variables offers efficiency in all three
respects because it allows the density function to be factored. As an example,
Figure 3 shows two different possible dependency structures for the variables
and the output variable y. On the right is the simplest structure which as-
sumes independence among the input variables given the output variable.
The plot on the left shows a possible structure that could be learnt from the
data.
In wind resource assessment a primary advantage of learning the depen-
dency structure is the reduction in prediction time despite incorporating
more airports into a model while not requiring more site data. Herein, we
will evaluate whether the the structure should be learned from the data or
predefined.

Each of our statistical techniques for wind resource assessment follow these
steps. Each is distinctive in terms of Step 1 and how it estimates the joint
multivariate density function. We now proceed to describe each of them.

3.1 Multivariate normal model

Here a multivariate normal model N (p,X) is assumed for the joint density
fx.v(x,y) given by

Fa(e) = (2m) " (5 e (4o - 5 ) O

where z = {x,y} and det represents determinant of a matrix. The multivari-
ate Gaussian density function has two parameters {p, X}. We estimate these
parameters by maximizing the likelihood function given a set of L i.i.d obser-
vations. The greatest advantage of this model is the ease with which the model
can be built since the maximum likelihood estimates (MLE) simply are given by
closed form analytic forms. The MLE for the mean vector p for the variates z
is simply the sample mean. The MLE of the covariance matrix X is given by:

S=2> (w22 (4)



Once we estimate the parameters for the joint density given the training
data, using closed form expressions, we use the joint density function to derive
the conditional density for y given xyx sample in the testing data. This density is
also Gaussian and has a mean fi,|x, and variance oy, . The value p,x, is used
as the point prediction for g, for the given xy. The variance oy, provides the
uncertainity around the prediction. If o4, is high, the uncertainty is high.

3.2 Non-parametric multivariate model

Our second model is adapted from [9] in which the authors employ a multivariate
kernel density estimator. A Gaussian kernel is chosen and the density is estimated
using all the data x;. ;. The multivariate kernel density function is given by

L m
fxy(oy) =Y [ K@ — 20Ky —w) (5)

For a test point xy, for which we do not know the output, a prediction is
made by finding the expected value of the conditional density function fy (y|xx)
given by

E(Y[X = x) = / y. Iy (u]x)dy (6)

Yy
1
L
/y. 1
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L m
iy K — 25) ®)
- L m )
Z¢:1 Hj:l K(xj,k —Tjq)

In this model there are no parameters and there is no step for estimation.
Although eq. (5) presents the density function it is not evaluated unless we see
a new testing point. For us to be able to evaluate the expected value of the wind
speed at the test site, we need to store all the training points and use them in
eq. (8) to make predictions. In (8), given a test point xx = {T1...Zmk}, the
kernel value is evaluated for difference between a training point x; and this test
point. This value is multiplied with the corresponding value of y;. This is repeated
for all the training points 1...L and summed. This forms the numerator. The
summation when done without the multiplication of y; forms the denominator
in eq. (8). This approach has a few drawbacks. The designer has to choose the
kernel. Then the parameters for the kernel need to tuned via further splitting
of the training data. It also requires retaining all the training data in order to
make predictions. The evaluation of the kernel is done for L times for each test
point.

POy | 8
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Fig. 3. Left: Naive Bayes structure. This structure is assumed and no learning is re-
quired. i ...x14 represent the 14 variables from the airports and y represents the
variable at the test site in Boston. Right: Structure is learnt using the K2 algorithm.
A maximum of two parents is specified. x2 emerges as a parent for most of the nodes.

3.3 Graphical model with naive structure

This technique uses a multivariate Gaussian model assuming independent, vari-
able dependency structure. We model the joint density function as a Bayesian
network with independent variables x; ., that is

Fxy (x,y) =[] fx(@ily) fy (). (9)

i=1

A Bayesian network B = (G, 6) is a probabilistic graphical model that repre-
sents a joint probability distribution over a set of random variables Xq,..., X,.
The Bayesian network representation has two components. A directed acyclic
graph (DAG) G encodes independence relations between variables. Each vari-
able is a node in this graph. A set of local probability models 6 defines the
conditional probability distribution of each node given its parents in the graph.
Let Pax denote the parents of node X in G. Then the network B encodes the
following probability distribution:

=1

In comparison the multivariate model previously introduced assumes the
same naive Bayes structure but uses kernel density estimators for each indi-
vidual variable.

Estimation: Given this structure, also shown in the Figure 3, we estimate the
parameters at each node in Figure 3(left) for the bivariate Gaussian density
function fx, vy (zi,y). We use maximum likelihood estimation and employ
similar analytical expressions employed in Section 3.1 but this time for each
pair z;,y individually. Parameters for fy (y) are estimated directly by using
the training data for y.



Prediction: For a test point xi, we derive the conditional:

_ H?il Ix: (@sly) fy (v)
Frixen(ylxic) = S, ILS fx (ily) fr (y)dy (10)

If we were to minimize the mean squared error, the optimal prediction is the
mean of the conditional density function above. If we were to minimize the
mean absolute error, the optimal prediction is the median of the conditional
density function [10]. Since we assume a Gaussian model for the joint density
function, this results in a Gaussian model for the conditional as well, the
mean and median for y|xy are the same. This is also the value that maximizes
the conditional. Hence gy, is

o = / Uy 3 (y]30) (11)

3.4 Graphical model with structure learning

In the model of Section 3.3 we assume a naive structure. By contrast, in this
technique, we learn the variable dependency structure (i.e. Bayesian network)
given the site data. Many structure learning algorithms are available in literature
and can be readily employed [11-13].

Estimation: Our estimation has two steps. First we learn the network structure
G and then estimate parameters for the conditional probability distribution
at each node in G. In our experiments we employ a heuristic called K2
[13]. The algorithm takes the order of the variables and attempts to learn a
dependence structure. [11]. We then estimate the parameters at each node
for the conditional joint density via likelihood parameter estimation.

Prediction: Given a new test point multiple inference techniques are available
to predict the value of yi|xy [11].

We refer the reader to [11] for a thorough introduction to Bayesian networks
and a well known publicly available MATLAB based tool for K2, likelihood
parameter estimation and inference [14].

3.5 Multivariate copulas

Our previous modeling techniques assume a Gaussian distribution for all vari-
ables and a Gaussian joint for the multivariate. It is arguable however that
Gaussian distributions do not accurately represent the wind speed distributions.
In fact, conventionally a univariate Weibull distribution [15] is used to paramet-
rically describe wind sensor measurements. A Weibull distribution is likely also
chosen for its flexibility because it can express any one of multiple distributions,
including Rayleigh or Gaussian.

To the best of our knowledge, however, joint density functions for non-
Gaussian distributions have not been estimated for wind resource assessment.



In this chapter, to build a multivariate model from marginal distributions which
are not all Gaussian, we exploit copula functions. A copula framework provides
a means of modeling a multivariate joint distribution from training data. It is
then possible to proceed with inference from the copula function.

Because copula estimation is less well known, we now briefly review copula
theory. We will then then describe how we construct the individual parametric
distributions which are components of a copula and then, how we couple them to
form a multivariate density function. Finally, we present our approach to predict
the value of y given x1._ .

A copula function C(uyq, ... un11;0) with parameter 6 represents a joint dis-
tribution function for multiple uniform random variables U; ... U,,+1 such that

C(ul,...um+1;0):F(U1§u1,...Um+1 §um+1). (12)

Let Uy ... Uy, represent the cumulative distribution functions (CDF) for vari-
ables z1, ... 2., and U,,+1 represent the CDF for y. Hence the copula represents
the joint distribution function of C(F(x1)...F(zm), F(y)), where U; = F(x;).
According to Sklar’s theorem any copula function taking marginal distributions
F(x;) as its arguments, defines a valid joint distribution with marginals F'(x;).
Thus we are able to construct the joint distribution function for 1 ... xz,,, y given
by

F(zy...xm,y) =C(F(x1)...F(zm), F(y);0) (13)

The joint probability density function (PDF) is obtained by taking the m + 1t*
order derivative of the eq. (13)

8m+1

flr..amy) =5 C(F(x1) ... F(zm), F(y);0) (14)

1. ..0T,0Y

= ILZ f(@) f(y)e(F(x1) - F(zm), F(y)) (15)

where ¢(.) is the copula density. Thus the joint density function is a weighted
version of independent density functions, where the weight is derived via cop-
ula density. Multiple copulas exisit in literature. In this chapter we consider a
multivariate Gaussian copula to form a statistical model for our variables given
by

Ca(X) = Fo(F Y u1) ... F " upw), F ' (u,), %) (16)

where Fg is the CDF of multivariate normal with zero mean vector and X as
covariance and F~! is the inverse of the standard normal.

Estimation of parameters: There are two sets of parameters to estimate. The
first set of parameters for the multivariate Gaussian copula is Y. The second
set, denoted by ¥ = {¢,,} are the parameters for the marginals of x,y.
Given N 1i.i.d observations of the variables x,y, the log-likelihood function
is:

N
L(x,y; £,0) = log f (xi, | ¥, ¥) (17)
=1



N m
=Y log { (H Flaas i) f (yis %)) c(F(z1) .. Fazm), F(y); 2)} (18)

=1

Parameters ¥ are estimated via [16]

N m
U= arg max {Zlog { (H f(x,l,w,)f(yl,wy)> c(F(x1)...F(zm), F(y); E)}}

vev U=
(19)

A variety of algorithms are available in literature to estimate the MLE in
eq. (19). We refer users to [16] for a thorough discussion of estimation meth-
ods. For more details about the copula theory readers are referred to [17].

Predictions From A Copula: For a new observation x we have to predict y.
For this we form the conditional first by

Plylx) = f];gf;;dy (20)

Our predicted § maximizes this conditional probability

§ = arg max P(y|x). (21)
yey

Note that the term in the denominator of eq.( 20) remains constant, hence for
the purposes of finding the optimum we can ignore its evaluation. We simply
evaluate this conditional for the entire range of Y in discrete steps and pick the
value of y € Y that maximizes the conditional.

4 Evaluation Setup

To evaluate and compare our different algorithms, we acquired a variety of wind
data from the state of Massachusetts. We downloaded the data from ASOS
(Automated Surface Observing System) airport database which is public and
has wind data from fourteen airports in Massachusetts collected over the last
ten to twenty years. It is frequently used by the wind industry. The airports’
locations are shown in Figure 4. We then acquired data from an anemometer
positioned on the roof top of Boston’s Museum of Science where a wind vane is
also installed. These anemometers are inexpensive and consequently noisy. The
museum is located amongst buildings, a river and is close to a harbor as shown in
Figure 5. This provides us with a site that is topographically challenging. At this
location we have approximately 2 years worth of data collected at a frequency
of 1 sample/second with 10 minute averages stored in a separate database.

To derive the wind resource assessment we train using data from the first
year. This data is split into three datasets we call D3, Dg and Dg. The split
D3 has data for 3 months. The split Dg has 3 additional months for a total of 6
and Dg has yet 2 more months for a total of 8. We divide each dataset and the
second year’s dataset further into 12 directional bins of equal sizes starting at



Fig. 4. Data is referenced from fourteen airport locations in the state of Massachusetts,
USA.

Fig. 5. Red circles show location of anenometers on rooftop of Museum of Science,
Boston.



Variable Airport Distance| (Lat, Long)
T1 North Adams 151  |(42.69°,-73.16°)
72 Bedford 187 |(42.46°,71.28°)
T3 Beverly 20.6 |(42.58°,-70.91°)
T4 Chatham 88.5 [(41.68°,-69.99°)
75 | New Bedford | 562 |(41.67°,70.95°)
T6 Fitchburg 41.2  |(42.55°,-71.75°)
x7 Hyannis 72.7 |(41.66°,-70.28°)
Zs Lawrence 28.1 |(42.71°,-71.11°)
xz9 |Vineyard Haven| 92.9 [(41.39°,-70.61°)
T10 Orange 84.7 |(42.57°,-72.28°)
T11 Norwood 23.2  |(42.18°,-71.17°)
12 Plymouth 439 [(41.96°70.68°)
T13 Taunton 39.3 |(41.87°,-71.01°)
T14 Boston 4.9 |(42.36°,-71.02°)

Table 1. The Boston Museum of Science is at position (N42.37°, W71.1°). Columns 1
and 2 show the airport names and their corresponding variable names in our multi-
variate model. Column 3 shows each airport’s line of sight distance in miles from the
Boston Museum of Science. Column 4 shows the compass position of each airport.

compass point North (0°). We assume a linear regression model can be used to
identify the wind direction at the Museum of Science. The second year’s dataset
becomes our “ground truth” - the true wind resource assessment of the site
and allows us to evaluate and compare the different techniques. We estimate
a Weibull distribution model of it for this purpose. As a measure of predictive
accuracy we compare the final estimated Weibull distribution to the ground
truth distribution using Kullback-Leibler (KL) divergence. The lower this value,
the more accurate the prediction:

Dy vy = KL(Py (y)|| Py (3)). (22)
KL divergence derives the distance between two probability distributions:

Py (y = 1)

Py =1) )

Dxw(Py (9)[1Py(9)) = Z Py(y=i)In

For baseline comparison, we also developed a linear regression model which is
used quite extensively in wind resource assessment [2,8].

5 Results and discussion

In this section, we present the results of comparing the described wind resource
assessment techniques on data acquired from the roof top anemometers at the
Boston Museum of Science. We also examine the improvement in performance
of each of the algorithms as more data is made available to each one in the forms
of increasing training data from 3 to 6 to 8 months.



5.1 Comparison of algorithms

First we compare algorithms when the same amount of data is available to each
one of them for modeling. Results are presented in Figures 6 to 8 for datasets
D3, Dg and Dg respectively. Each plots shows the KL distance between the
ground truth distribution and the distribution estimated based on the predictions
provided by each technique for the year 2 dataset per bin. We plot the KL

distance for all 12 bins.
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Fig. 6. Comparison of different techniques when 3 months worth of data is modeled and
integrated with longer term historical data from 14 airports. These results were derived
using D3 and are compared with KL divergence distance to the Weibull distribution
estimate of the second year of measurements at the Boston Museum of Science.



We notice that the copula modeling technique consistently performs better
than the other four techniques. The graphical model technique which assumes
a naive variable dependency structure performs second best though it demon-
strates poor performance on the first bin. Its performance on this bin, however,
improves as we increase the size of the dataset. One would expect the graph-
ical model which has a learned variable dependency structure to outperform
the one with naive structure assumptions. Here, except for the first bin, it does
not. This may imply a better structure learning algorithm is necessary or that
the one used needs further fine tuning. The latter possiblity is likely because the
structure learning algorithm K2 only looks at a fraction of all possible structures
when it references an order of the variables. A more robust structure learning
algorithm that does not assume order could potentially yield improvements.
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=o— Linear regression based

3.5r =8~ Copula based
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= = = Multivariate gaussian based
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Fig. 7. Comparison of different techniques when 6 months worth of data is modeled and
integrated with longer term historical data from 14 airports. These results were derived
using Dgs and are compared with KL divergence distance to the Weibull distribution
estimate of the second year of measurements at the Boston Museum of Science.

Linear regression is the worst performer of the all, but performs well when
8 months of data is available. This is consistent with many studies in the wind
energy area where it has been found that for an accurate estimation of long term
distribution 8 months worth of data is needed.
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Fig. 8. Comparison of different techniques when 8 months worth of data is modeled and
integrated with longer term historical data from 14 airports. These results were derived
using Ds and are compared with KL divergence distance to the Weibull distribution
estimate of the second year of measurements at the Boston Museum of Science.

5.2 Increasing the data available for modeling

We now examine how each technique approaches robustness when less data is
made available to it for modeling. Figure 9 plots each technique in isolation
when it is modeled using 3, 6 or 8 months of data (datasets D3, Dg and Dg)
respectively.

We observe that not only was the copula modeling technique superior overall,
its performance did not suffer greatly with decreasing amounts of data available
for modeling. The graphical model with naive variable structure overcame its
weak performance predicting the first bin as more data was made available to it.
Both linear regression and the graphical model with learned variable structure
improved significantly as more data was made available to them.

6 Conclusions and Future Work

In this chapter we have provided a set of techniques for building a statistical
model for wind resource assessment. Our goal with these techniques was to

- estimate the wind speed density with as minimal site collected data as possible
- estimate as accurately as possible with minimal cost to support inexpensive
site sensing.
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Fig. 9. Top(left): Estimation accuracy using graphical models with naive structure. Top
(right): Estimation accuracy using linear regressions. Bottom (left): Estimation accu-
racy using copulas. Bottom(right): Estimation using Bayesian networks where structure
is learned.

The ability to generate accurate estimates with as minimal data as possible
and with as cheap sensing as possible is critical for wind resource assessment
during the initial phases of wind farm planning. For community or urban wind
energy projects anemometer sensing provides a cost effective way to estimate
wind resource.

In definition the techniques are different in terms of whether they are para-
metric or not and whether they incorporate all variables into the joint distribu-
tion. This seems to have effect on the accuracy of the model in wind resource
assessment. The copula modeling is more accurate than all other techniques.

We further analyzed the performance of the techniques when different amounts
of data is made available to the modeling step. The technique based on Copula
theory performs well even when only minimal data (3 months) is available. An-
other much simpler technique based on graphical models produces competent
results as well.

Through this chapter we emphasize the need for exploration of a variety of
statistical modeling techniques. A variety of additional advances can be made
for each of the techniques presented in this chapter. These include but are not
limited to:

Copula based functions: One can estimate the marginals using non-parametric
kernel density functions to prepare input to a copula. One could also explore



systematically which copula is better however the extent to which tail behav-
ior needs to be accurately modeled is open to debate. A variety of copulas are
documented in statistics literature opening opportunities for further study.

Bayesian network functions: A more advanced structure learning algorithm
could be used to estimate the Bayesian network structure. Different param-
eter estimation techniques could be explored.

Copula Bayesian networks : The network structure could be sought while
forming the conditional at each node via a copula based multivariate density
function. This concept has been recently explored for classification problems
in machine learning, see [18]

Acknowledgements

We thank Steve Nichols (IIT Project Manager) and Marian Tomusiak, (Wind
Turbine Lab Analyst), of the Museum of Science, Boston for assisting us in
data acquisition and assessment. We thank the MIT Energy Initiative for its
sponsorship of Adrian Orozco who prepared and synchronized the data collected
from the Museum of Science as an Undergraduate Research Assistant.

References

1. Gross, R.C., Phelan, P.: Feasibility study for wind turbine installations at mu-
seum of science, boston. Technical report, Boreal Renewable Energy Development
(October, 2006)

2. Bass, J., Rebbeck, M., Landberg, L., Cabré, M., Hunter, A.: An improved measure-
correlate-predict algorithm for the prediction of the long term wind climate in
regions of complex environment. (2000)

3. Bailey, B., McDonald, S., Bernadett, D., Markus, M., Elsholz, K.: Wind resource
assessment handbook: Fundamentals for conducting a successful monitoring pro-
gram. Technical report, National Renewable Energy Lab., Golden, CO (US); AWS
Scientific, Inc., Albany, NY (US) (1997)

4. Lackner, M., Rogers, A., Manwell, J.: The round robin site assessment method:
A new approach to wind energy site assessment. Renewable Energy 33(9) (2008)
2019-2026

5. Encraft: Warwick wind trials final report. Technical report, Encraft LLC, Holly
Walk, UK (2009)

6. Shaw, S.: Progress report on small wind energy development projects receiving
funds from the Massachusetts Technology Collaborative (MTC). Cadmus Group
Inc, Waltham, MA (2008)

7. Wagner, M., Veeramachaneni, K., Neumann, F., O’Reilly, U.: Optimizing the
layout of 1000 wind turbines. In: Scientific Proceedings of European Wind Energy
Association Conference (EWEA 2011). (2011)

8. Rogers, A., Rogers, J., Manwell, J.: Comparison of the performance of four
measure-correlate-predict algorithms. Journal of wind engineering and industrial
aerodynamics 93(3) (2005) 243-264

9. Chan, C., Stalker, J., Edelman, A., Connors, S.: Leveraging high performance
computation for statistical wind prediction. In Proceedings of WINDPOWER
2010 (2010)



10.

Frank, E., Trigg, L., Holmes, G., Witten, I.: Technical note: Naive bayes for re-
gression. Machine Learning 41(1) (2000) 5-25

11. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
The MIT Press (2009)

12. Heckerman, D., Geiger, D., Chickering, D.: Learning bayesian networks: The com-
bination of knowledge and statistical data. Machine learning 20(3) (1995) 197243

13. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic
networks from data. Mach. Learn. 9(4) (1992) 309-347

14. Murphy, K., et al.: The bayes net toolbox for matlab. Computing science and
statistics 33(2) (2001) 1024-1034

15. Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E.: Wind energy: handbook. Wiley
Online Library (2001)

16. Iyengar, S.: Decision-making with heterogeneous sensors-a copula based approach.
PhD Dissertation (2011)

17. Nelsen, R.: An introduction to copulas. Springer Verlag (2006)

18. Elidan, G.: Copula bayesian networks. (2010) 559-567

19. Eaton, M., Euclid, P., Library, C.U., Press, D.U.: Multivariate statistics: a vector
space approach. Wiley New York (1983)

Appendix

Below we describe how to derive the conditional density function parameters for
y given xy under the assumption that the joint is modeled as a normal. We first
partition the mean and the covariance matrix for the joint distribution of z as

follows:
— [Py 24
u= b (24)
with sizes
1x1
[m X 1] (25)
5= [E Z0] -
Xy XX
with sizes
{1 x1 1x m} (27)
mx1lmXxXm

then, the distribution of y conditional on x = xj is multivariate normal

with [19]

u’y|xk = u’y + nyz;)i (Xk - p’x) (28)

and covariance matrix

Ty = oy — Zyx D Dxy- (29)



