
Contents

1

EC-Star: Hub and Spoke Distributed GP 1

Una-May O’Reilly, Mark Wagy and Babak Hodjat

Chapter 1

EC-Star: A MASSIVE-SCALE, HUB AND
SPOKE, DISTRIBUTED GENETIC PROGRAMMING
SYSTEM

Una-May O’Reilly1, Mark Wagy1 and Babak Hodjat2

1Evolutionary Design and Optimization Group, CSAIL, MIT, 2Genetic Finance, CA
94105 USA.

Abstract
We describe a new Genetic Programming system named EC-Star. It

is supported by an open infrastructure, volunteer-client, parallelization
framework. The framework enables robust and massive-scale evolution
and motivates the hub and spoke network topology of EC-Star’s dis-
tributed GP model. In this model an Evolution Coordinator occupies
the hub and an Evolutionary Engine occupies each spoke. The Evolution
Coordinator uses a layered framework to dispatch high performing, par-
tially evaluated candidate solutions for additional fitness-case exposure,
genetic mixing and evolution to its Evolutionary Engines. It operates
asynchronously with each Evolutionary Engine and never blocks waiting
for results from an Evolutionary Engine.

Keywords: genetic programming, cloud-scale, distributed, learning classifier system

2 Genetic Programming Theory and Practice V

1. Introduction

In this chapter we introduce a platform named EC-Star. The plat-
form pioneers a distributed Genetic Programming (GP) model upon a
volunteer resource, parallel computing framework. It is elastic: volun-
teer nodes can independently enter the framework and the evolutionary
algorithm can seamlessly integrate them as Evolutionary Engines which
each independently interact with the Evolution Coordinator. Evolution-
ary Engines can withdraw from volunteering and the evolutionary com-
putation and Evolution Coordinator continue seamlessly without them.
EC-Star could feasibly be used to solve problems that have to date been
considered intractable because it is able to integrate a virtually limitless
number of “come-and-go”, volunteer, compute nodes.

EC-Star’s distributed GP model is arranged in a unique hub and
spoke topology. In this topology an Evolution Coordinator occupies the
hub and an Evolutionary Engine occupies each spoke. The Evolution
Coordinator dispatches high performing, partially evaluated candidate
solutions for additional fitness evaluation, genetic mixing and evolution
to its Evolutionary Engines. It exploits archive layering as a means
of ensuring genetic diversity and fostering open-ended evolution. EC-
Star’s representation for a candidate solution is a classifier composed of
multiple rules. EC-Star is able to cope with the complexity and extensive
evolution required by this representation because of its massive scale.

To date, the EC-Star has been successfully used on financial time se-
ries data to trigger “buy”, “sell” and “hold” trading signals for stock
portfolios. It has significant potential to be used for other time series
applications, such as predicting trends in biological signals as well as
standard supervised (e.g. classification) and unsupervised (e.g. cluster-
ing) machine learning approaches on large datasets.

We proceed as follows: In Section 2 we describe EC-Star’s architec-
ture. In Section 3 we describe EC-Star’s classifier representation and
how a classifier is evaluated on a fitness case. In Section 4 we discuss
some of EC-Star’s novel features and compare it to other distributed GP
models. Section 5 summarizes.

2. EC-Star Architecture

EC-Star has two software layers; a parallelization framework lower
layer which supports a distributed GP model upper layer, as shown in
Figure 1-1. The lower layer is an open-infrastructure, volunteer compute
framework, similar to that of BOINC (Anderson, 2004b) which is per-
haps familiar to readers as the framework supporting the SETI@Home
project (Anderson et al., 2002). This layer enables the upper layer’s

EC-Star: Hub and Spoke Distributed GP 3

Figure 1-1. EC-Star system framework architecture. The lower layer is a paralleliza-
tion framework. Abstracted above it is a distributed GP model.

distribution and aggregation of evolutionary genetic material and dis-
tributed algorithmic control. The upper layer is a unique hub and spoke
distribution model of asynchronous evolutionary computation.

Parallelization Framework Layer

The framework has dedicated resources termed servers and volunteer
compute nodes termed clients. Clients are volunteers in the sense that
they offer to compute in their “spare time” using idle cycles that their
primary applications leave unused. Given this scheme, a client does not
deliver any work on a deadline. Nor does it, in fact, commit to ever
completing its work. It computes on behalf of the framework by means
of executing a program received from EC-Star. It executes the “guest”
program on behalf of EC-Star usually in its background. Clients do not
communicate with one another, thus assuring their privacy. A client
is persistent in the sense that it can store a state file on its disk and
shut down its program. Then when it decides to volunteer again, it can
resurrect itself using the state file to resume where it left off.

The framework’s dedicated resources and volunteer compute resources
can communicate. This encourages the former to function as hubs while
clients function as spokes. The framework designates specialized ded-

4 Genetic Programming Theory and Practice V

icated resources termed Pool Servers, Client Resource Managers and
Data Servers. The Pool Server (Figure 1-2a) functions as a center of
communication with all clients. It globally coordinates clients after they
have volunteered, similar to the master server in the BOINC system (An-
derson, 2004b), which coordinates the activities of the volunteer compute
nodes. The Data Server (Figure 1-2b) serves data requested by clients.
The Client Resource Manager is a container for groups of clients. It
launches and shuts down clients; and it distributes client state amongst
its grouping of clients if they are inactive or down, thus achieving some
level of Failure Transparency in the system to client inactivity.

(a) Pool Server (b) Data Server

Figure 1-2. The Pool Server coordinates client activity once a client volun-
teers.Clients request Data Packages from the Data Server, and the Data Server sends
a random Data Package in response.

The parallelization framework is resilient because the servers can con-
tinue to function as clients volunteer and retire completely at their own
discretion. This is because clients initiate their startup as well as any
other communication with the Pool Server and Data Server. The Data
Server only computes in response to a pull from a client. The Pool Server
computes asynchronously, in a non-blocking manner, with clients: it can
proceed without ever blocking to await a client’s message or response.
This resiliency and the Client Resource Manager are completely hidden
from the upper layer.

Distributed GP Model Layer

The natural hub and spoke relation between a server and clients in
EC-Star’s parallelization framework is exploited directly by EC-Star’s

EC-Star: Hub and Spoke Distributed GP 5

hub and spoke distributed GP model topology. An Evolution Engine is
the program that EC-Star runs on a client. The Evolution Coordinator
is a hub that runs on the Pool Server, see Figure 1.3(a). The data that
is routed to and from the Evolution Coordinator to the Evolution En-
gine is a set of individuals also known as classifiers. The Data Server
runs a Fitness Case Server, which distributes fitness cases to each Evolu-
tion Engine, see Figure 1.3(b)). The Client Resource Manager does not
have a corresponding element in the distributed model – it is completely
hidden from the distributed layer.

At first glance, the hub and spoke GP model in EC-Star appears to
be a special topological case of the coarse-grained, island model GP.
However, the key difference is that, in the case of the island model,
each island sends a set of high fitness individuals to one or more others
until some sort of halting condition is reached. In EC-Star, there is no
communication between the clients. In this respect, EC-Star’s model
in an abstract way, supports a dynamic topology because the Evolution
Coordinator collects genetic material from all Evolution Engines and
directs it to any other.

(a) Evolution Coordinator (b) Fitness Case Server

Figure 1-3. The Hub and Spoke distributed model. The Evolution Coordinator
coordinates genetic matierial. The Fitness Case Server provides fitness cases to each
Evolve Engine.

EC-Star’s Evolution Coordinator

The Evolution Coordinator maintains a layered Archive – a sorted
set of individuals that are currently the best from all Evolution Engines.
The top level of this Archive consists of the best individuals at a given

6 Genetic Programming Theory and Practice V

time – i.e. the solution. The Evolution Coordinator uses the Archive
as a reservoir of individuals to be sent out to each Evolution Engine in
order to improve fitness and possibly mix their genetic material with the
endemic population that evolves on each Evolution Engine. Individuals
are stored in the Evolution Coordinator Archive in layers. The number
of layers and individuals per layer is fixed. When a new or returning
individual comes to the Evolution Coordinator, first its updated fitness
is reconciled with any other fitness updates that may have been reported
by other Evolution Engines that also evolved it (see section 4.0 for more
details). The updated individual then competes with a layer of similar
individuals for a slot if that layer is already full.

EC-Star’s Evolution Engine

Each Evolution Engine is an execution environment of evolutionary
computation. It has a defined target population size. At initialization,
see Algorithm 1, it receives a set of features (indicators) and some indi-
viduals from the Evolution Coordinator before generating the rest ran-
domly. To execute its evolutionary loop, it obtains fitness cases (training
data from a machine learning perspective) from the Fitness Case Server
as a Data Package. Each classifier of a population is evaluated on the
Data Package, and after a fixed number of Data Packages – the Train-
ing Window – selection, reproduction and variation take place and the
next generation’s population is again tested and evolved. It periodically
receives individuals from the Evolution Coordinator to integrate into its
current population. To the Evolution Coordinator, it reports its best
individuals and returns updated fitness information on the individuals
it receives. See Algorithm 2 for more details.

Algorithm 1 Evolution Engine: Initialization

coordinateSoftwareV ersionWithEvolutionEngine()
featureSet← EvolutionCoordinator.getFeatureSet()
population← EvolutionCoordinator.fetchIndividuals()
if population.size < TARGET SIZE then

population+ = generateRandomIndividuals()
end if

The Fitness Case Server

The Fitness Case Server disseminates random packages of fitness cases
upon Evolution Engine requests. A Data Package consists of column-
wise features and row-wise time-series data. Rows of time-series data can

EC-Star: Hub and Spoke Distributed GP 7

Figure 1-4. A Data Package example illustrating the layout of blood pressure data
collected at different parts of the body for three patients.

additionally be grouped into Bins. For example, given measurements of
blood pressure at different locations of the body in multiple patients,
each column in a Data Package is a measurement time at a different
body location, each row is be a set of measurements recorded at the
same time, and one Bin – set of rows – is a different patient’s time-series
values (see Figure 1-4).

Each generation, the population on an Evolution Engine is evaluated
with respect to a certain predefined number of Data Packages. This
quantity is only a subset of the entire data set implying that evolution
takes place while the population is progressively evaluated against more
Data Packages, see Section 3.0 and Chapter ?? for more details on this
“age-varying fitness estimation”.

3. EC-Star’s Classifier Representation and
Fitness Evaluation

In EC-Star, an individual or classifier consists of an age, set of rules
and a fitness, see Table 1-1. Each rule is a size-varying conjunctive set
of conditions with an associated action, the latter of which represents a
class in a classification problem . Each condition acts as a propositional
variable, which is then applied to the real-valued training environment.
Apart from conjunction operators, a complement operator and a time-
lag operator can be applied to each condition. The complement operator

8 Genetic Programming Theory and Practice V

Algorithm 2 Evolution Engine: Evolution

1: loop
2: for all dataPackageIdx = 1 to TRAINING WINDOW SIZE do
3: dataPackage← dataServer.getDataPackage()
4: for all bins ∈ dataPackage.bins do
5: for all individuals ∈ population do
6: matchSet← []
7: for all dataPoints ∈ bin do
8: for all rules ∈ ruleset do
9: if allrule.conditions == True then

10: matchSet.add(rule)
11: end if
12: end for
13: chosenRule← pickSingleRule(matchSet)
14: useAction(chosenRule)
15: end for
16: individual.age + +
17: end for
18: end for
19: end for
20: reportPopulationInfoToEvolutionCoordinator(population)
21: newPopulation← EvolutionCoordinator.fetchIndividuals()
22: elitistPool← getBest(population)
23: newPopulation+ = evolve(elitistPool)
24: if newPopulation.size < TARGET SIZE then
25: newPopulation+ = generateRandomIndividuals()
26: end if
27: classId← EvolutionCoordinator.checkClassId()
28: savePopulationStateToDisk()
29: population← newPopulation
30: end loop

EC-Star: Hub and Spoke Distributed GP 9

< classifier > ::= < age >< fitness >< rules >
< rules > ::= < rule > | < rule >< rules >
< rule > ::= < conditions >< action >
< conditions > ::= < condition > | < condition > ∧ < conditions >
< action > ::= prediction label
< condition > ::= < predicate > |¬ < condition > | < condition > [lag]
< predicate > ::= truth value on a feature indicator

Table 1-1. Classifier definition in BNF notation. The lag operator refers to a past
instance of a value to be used in a given condition.

negates the condition’s truth value, whereas the time-lag operator refers
to “past” values of an attribute. See Figure 1-5 for an example of an
individual.

Figure 1-5. An example of what an individual or classifier looks like.

The representation of individuals in EC-Star is very similar to a clas-
sifier in the so-called Pitt-Style version of a Learning Classifier System
(LCS)(Urbanowicz and Moore, 2009), (Jong et al., 1993). As in a Pitt-
style LCS, the individual or classifier represents a full solution-space –
that is, each individual contains the rules needed to classify a row of test
data (in distinction to the Michigan-style of LCS in which all classifiers
together represent a classification solution). And like Pitt-style LCS,
each rule-set is assigned a fitness.

10 Genetic Programming Theory and Practice V

Fitness Evaluation of a Classifier

Each individual in an Evolution Coordinator’s population is evaluated
with respect to a set of fitness cases (a.k.a training data) which spans
one or more Data Packages. For each fitness case (or row of data), the
variables in the classifier’s rules’ conditions are bound to the features of
the fitness case. For each rule of the classifier, the body of the rule – that
is, the rule’s conditions – is tested for its truth value. If all conditions in
the rule’s body evaluate to true, the rule is added to a Match Set. When
all rule bodies have been tested, a voting mechanism referencing the
Match Set elects a single rule’s action to ”act” on behalf of the classifier.
This action becomes the classifier’s predicted class for the fitness case.
The prediction is compared against the actual class (available in a special
column) and fitness is assigned according to whether there is agreement.
Fitness scoring takes place for each row of fitness case data in a Data
Package and a set number of Data Packages before a new population is
created through selection, mutation and crossover. See Algorithm 2 for
pseudocode of this process.

Genetic Variation

In EC-Star conditions are the most primitive evolvable genetic unit.
Evolutionary variation can also take place within rule sets via condition
and action crossover and mutation. It can also take place across rules
by rule exchange or addition. When crossover takes place between rules,
actions are swapped.

EC-Star imposes certain restrictions on the variation and creation of
rules to avoid tautologies and logical fallacies. This includes requiring
that no two conditions of a rule can reference the same feature, unless
they have different time lags. This restriction helps to control rule bloat.

4. Other Aspects of EC-Star

Apart from its novel distributed GP model supported by a robust
volunteer-compute framework, EC-Star has other aspects worthy of de-
scription and related to previous work.

Experience Archive Layering Population Structure

One particularly interesting feature of the EC-Star is its Experience
Archive Layering Population Structure, “Experience Layering”, at Evo-
lution Engines and the Evolution Coordinator. This archival layering of
classifiers is similar and inspired by, but not precisely the same as, Age-

EC-Star: Hub and Spoke Distributed GP 11

Layered Population Structure (ALPS) (Hornby, 2006) or Hierarchical
Fair Competition (HFC) (Hu and Goodman, 2002).

In HFC, individuals are put into layers, but the layers are based on
their fitness. In Experience Layering, individuals are layered by their
experience on the training data. This is very similar to ALPS, with
the distinction of how an individual’s “age” is defined. In ALPS, age is
defined as the number of generations of evolution that an individual has
survived. However in Experience Layering, the idea of age is one of how
many training data points an individual has seen up to that point.

Experience Layering offers diversity promotion: it is promoting in-
dividuals of diverse experience. It encourages diversity because if an
individual with experience just over the lower threshold of a given layer
is inserted into layer Li, another individual with an experience level just
below the lower threshold of layer Li competes for a slot in layer Li−1

and it is shielded from competing with the former individual, despite
both having very similar experience.

Another purpose of Experience Layering is to serve the Evolution
Coordinator as a resource for selecting individuals to send to Evolution
Engines for improved fitness estimation. At each Evolution Engine, an
individual will be evaluated against new fitness cases. This contrasts
with ALPS isolated selection process per layer.

Evolvable Time Lags

Another notable aspect of the EC-Star is a lag, which is optionally
appended to a condition (see Table 1-1). A lag supports efficient repre-
sentation of time-series data in the Data Package. Instead of requiring a
single time-series and delayed copies of the same time-series as separate
fitness cases, the lag allows a more compact time series representation
which is reference when fitness is tested. Only one copy of the time-series
needs be included in a Data packer, and the fitness test procedure uses
a pointer to “past” events matched to the lag.

In the context of time-series prediction, the evolvability of this lag is
particularly interesting. The fitness of an individual is computed with
respect to values that have occurred in “the past” relative to the current
fitness case but the precise lag does not have to be identified ahead of
time. Evolution can find the appropriate lag.

The ability to evolve the lag and calculate fitness with lags built into
conditions allows reward to be allocated to an individual with respect to
the events in time that occurred in the past rather than just at a single
point in time. This serves a similar purpose to the mechanism of delayed
reward propagation in reinforcement learning (Goldberg, 1989),(Wilson,

12 Genetic Programming Theory and Practice V

1995) but without the need to explicitly maintain a data structure for
classifier memory.

Rule Election

When an individual is evaluated against a fitness case, all of the indi-
vidual’s rules that evaluate to “true” are collected into a Match Set. An
election strategy must be implemented to choose between equally valid
rules in the Match Set. EC-Star supports any election strategy. For
example, one strategy could pick a rule at random from the Match Set.
Another can elect the rule that has fired most frequently over the course
of the classifier’s lifetime. The strategy has significant implications in
the evolved capability of EC-Star. Design and comparison of different
election strategies will be a topic of future work.

Feature Selector

EC-Star assumes very high dimensional data. Thus it maintains a
Feature Selector: a repository of feature subsets of the full feature space.
This Feature Selector creates new subsets of features which it initially
sends out in response to an Evolution Engine’s request when the engine
is initializing. It then monitors the progress of each feature subset as
Evolution Engines report their fitness progress to the Evolution Coor-
dinator. Depending on the performance of each subset of features, the
Feature Selector potentially removes sets or merges them in an effort to
direct evolution with the most strongly indicative feature set.

EC-Star: Hub and Spoke Distributed GP 13

5. Summary

EC-Star is characterized by its:

massive distribution capacity derived from being able to enlist
come-and-go volunteer compute nodes while running multiple, non-
blocking, dedicated resources.

capacity for large numbers of fitness cases and cost-effectie means
of sampling them using “age-varying” fitness estimation (see Chap-
ter ?? by Hodjat and Shahrzad).

hub and spoke topology for distributed GP.

Experience Archive Layering Population Structure, Experience Lay-
ering. This layering of individuals according to MasterFitness fos-
ters a diverse population and encourages open ended evolution.

elasticity: EC-Star computes for an open ended duration during
which its resource capacity, in terms of Evolution Engines, can
expand and contract.

scalability: The Pool Server/Evolution Coordinator is capable of
handling many clients and multiple Pool Servers can be deployed to
extend the amount of clients available for computation. Multiple
Data Servers/Fitness Case Servers can be deployed to scale up
to larger and larger amounts of data to be used as fitness cases.
Multiple clients/Evolution Engines can come and go as volunteers.

classifier representation where a classifier is composed of multiple
rules, each with variable numbers of conditions. EC-Star supports
different election strategies for matched rules election.

robustness: Clients/Evolution Engines can go up and down with-
out negatively impacting the overall system. A Pool Server/Evolution
Coordinator is a single point of failure but fairly lightweight. When
a failed Pool Server/Evolution Coordinator comes back online,
clients/Evolution Engines will continue to update it with individ-
uals which they have been evolving.

Evolvable Time Lags: Lags support a compact representation of
fitness case data and imply the references to past events in time-
series data do not have to be pre-determined.

Feature Selector: Subsets of the feature space are tracked for con-
vergence. This exposes those features most germane to guiding the
solution toward convergence.

14 Genetic Programming Theory and Practice V

Acknowledgments

The authors acknowledge the generous support of the Li Ka Shing
Foundation as well as Kaivan Kamali and Hormoz Shahrzad of Genetic
Finance and Kalyan Veeramachaneni of MIT.

References

Anderson, David P., Cobb, Jeff, Korpela, Eric, Lebofsky, Matt, and
Werthimer, Dan (2002). Seti@home: an experiment in public-resource
computing. Commun. ACM, 45(11):56–61.

Anderson, D.P. (2004a). BOINC: a system for public-resource computing
and storage. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM
International Workshop on, pages 4 – 10.

Anderson, D.P. (2004b). BOINC: a system for public-resource computing
and storage. In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM
International Workshop on, pages 4 – 10.

Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, Reading, Mass.

Hornby, Gregory S. (2006). ALPS: the age-layered population struc-
ture for reducing the problem of premature convergence. In Keijzer,
Maarten et al., editors, GECCO 2006: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, volume 1, pages
815–822, Seattle, Washington, USA. ACM Press.

Hu, Jianjun and Goodman, Erik D. (2002). The hierarchical fair com-
petition (HFC) model for parallel evolutionary algorithms. In Fogel,
David B. et al., editors, Proceedings of the 2002 Congress on Evolu-
tionary Computation CEC2002, pages 49–54. IEEE Press.

Jong, Kenneth A. De, Spears, William M., and Gordon, Diana F. (1993).
Using genetic algorithms for concept learning. Machine Learning, 13.

Urbanowicz, Ryan J. and Moore, Jason H. (2009). Learning classifier
systems: A complete introduction, review, and roadmap. Journal of
Artificial Evolution and Applications, 2009. Article ID 736398.

Wilson, Stewart W. (1995). Classifier fitness based on accuracy. Evolu-
tionary Computation, 3(2):149–175.

