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Abstract We introduce hedonic modeling benchmarks for the field of sensory science
evaluation. Our benchmark framework provides a general means of defining
a response surface which we call a “sensory map”. A sensory map is described
by a mathematical expression which rationalizes domain specific knowledge of
the explanatory variables and their individual or higher order contribution to he-
donic response. The benchmark framework supports the sensory map’s so-called
ground truth to be controllably distorted to mimic the human and protocol fac-
tors that obscure it. To provide a baseline for future algorithm comparison, we
evaluate a public research release of genetic programming symbolic regression
algorithm on a sampling of the framework’s benchmarks.
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1. Introduction
Benchmark problems (or simply “benchmarks”) allow the evaluation of al-

gorithms. The GP research community has a variety of useful, realistic general
GP symbolic regression benchmarks including non-linear non-polynomials
(Keijzer, 2003; Vladislavleva et al., 2009), publicly obtainable financial market
data (Nikolaev and Iba, 2001; Becker et al., 2006; Becker et al., 2007; Becker
and O’Reilly, 2009), the Mathematica-Wolfram data set (Kotanchek et al.,
2009) and the accuracy problems of (Korns, 2011).

To systematically design a general benchmark for GP symbolic regression
is straightforward. One creates a response surface which is a function of ex-
planatory variables. The function is executed to obtain observational samples
of the response surface. Samples are usually collected all at once and split into
training and cross validation sets before the GP symbolic regression algorithm
executes. When the algorithm completes and produces a predictive model of
the response surface, this model can be queried with a set of unseen samples
(i.e. the test set) and its predictive accuracy on the benchmark response surface
can be ascertained.

We have developed a suite of GP symbolic regression and complementary
algorithms (Veeramachaneni et al., 2010; Vladislavleva et al., 2010a; Vladislavl-
eva et al., 2010b) to knowledge-mine hedonic preferences data collected when
multiple assessors (also called panelists) are each asked how much he or she
likes a set of food or highly aromatic stimuli. Figure 1-1 depicts the gen-
eral sensory evaluation process. In a study (or experiment) each assessor is
presented, in succession, with a limited quantity of randomly ordered, pre-
selected, different products from a design space. On each presentation, the
assessor must sense the product (by taste or smell) and respond to a query de-
signed to elicit information as to how much s/he likes it. In the benchmarks
we present here, the query to the assessor is “how much do you like X?” and
the response structure (or format) is that the assessor must respond with one
of nine discrete choices from the range bounded by extremely dislike through
neutral to extremely like. An assessor’s responses are collected for one experi-
ment. These responses are observational samples of the assessor’s (unknown)
hedonic response surface. GP symbolic regression can be used to model an as-
sessor’s hedonic response to the product space by training with some (or all) of
these numerically converted observations and knowledge of the design inputs
(i.e. explanatory variables, ingredients of the food or the constituents of the
aroma) in the product space (Vladislavleva et al., 2010a).

Validating this hedonic modeling of real data is virtually impossible be-
cause the number of queries is extremely low - around 10 for taste and around
40 for smell due to sensory fatigue. Using precious data samples for testing
and cross validation is of little value because frequently the queries are de-
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Figure 1-1. The sensory protocol and experimental analysis process which situates the context
of the presented benchmark design and framework.

termined by experimental design and are very distant from one another in the
design space (i.e. they are at design corners). They are better exploited for
training.

Other means of validation might be to use domain experts’ experience, ask
assessors to test optimized product designs derived using the predictive mod-
els or go back to the original assessors to confirm unseen sample predictions.
These options turn out to be infeasible because assessors individually tend to
not be consistent across days with their hedonic responses to a set of products
(though as an aggregate there is stability), experts do not match with naive
assessors, and, often neither are available. Thus, in the domain of sensory
evaluation, there is no means of evaluating modeling methods.

Using a general symbolic regression benchmark is also insufficient. First,
there is no rational basis for using any existing benchmark. They do not ratio-
nally express domain specific knowledge of how the ingredients, individually
or in higher order combinations, contribute to hedonic response. Second, a
benchmark should express one defining aspect of the sensory evaluation do-
main: a human is in the loop and introduces “noise” into the sampling for
a number of different reasons. These range from human factors like fatigue,
moodiness, inconsistency, perceptual confusion and memory loss to how hu-
mans deal with the protocol’s response format, e.g. the 9 value hedonic range.

As a solution, we present a means of systematically designing, in a pa-
rameterized, controllable manner, domain-informed sensory evaluation bench-
marks. To accomplish this, a benchmark expresses a sensory map plus what
an assessor will report given this ground truth sensory map and the distor-
tions arising from human judgment and protocol-driven response decision. The
benchmark framework simulates the end to end process of sensory evaluation
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(see Figure 1-2): Queries, each accompanied by a sample, are formulated ac-
cording the protocol. Each sample is presented the assessor, the latter sniffs or
tastes it (which is a physical stimulus) and responds to the query. The bench-
mark framework assumes the physical stimulus generates a raw sensory inter-
pretation in the brain which it represents via the sensory map. It assumes the
way the assessor reports each response, which also depends on the protocol,
is the combination of this raw information, and the distortions involved by the
human judgment and reporting.

Protocol dependant queries 
Human judgment reporting 

Human
interpretation
distortion

Physical
Stimulus

0.5

Training-set
information

Non-distorted ground-truth to be recovered 
Sensory Map 

A.I.
Algorithms 

Validation 

Figure 1-2. Simulation scope of the benchmark framework.

We proceed thus: Section 2 describes sensory map construction. Section 3
describes how we tunably model distortion. Section 4 uses the benchmark
framework to evaluate the predictive accuracy of simple GP symbolic regres-
sion models trained on successively less training samples and on successively
more distortion. Section 5 concludes.

2. Generation of a sensory map (Ground truth)
The benchmark framework assumes there exists a “ground-truth” definition

of the non-distorted hedonic function, a so-called sensory map. It is conve-
nient to think of the map as being in the assessor’s brain. The sensory map
describes the hedonic response of the assessor for each possible product in a
design space. For example, in (Vladislavleva et al., 2010b), the design (or
product) space is all possible combinations of seven flavoring ingredients, re-
ferred to as keys. Here, the sensory map is a function of seven variables (the
volume of each key) and one output which is the hedonic score. Each key level
is normalized to range continuously from 0 to 1, meaning respectively ingre-
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dient not present and clearly too much of this ingredient. For comparison, the
range of a map is always [−4, 4] where −4 means extremely dislike, 4 means
extremely like, and a 0-value means neutrally like.

Naive sensory maps
A naive sensory map is a completely analytic function of explanatory vari-

ables (e.g. the key levels) with one output ranging from −4 to 4. It is not
intended to represent a plausible human sensory response to flavors. Because
of this drawback, we present only one example, Equation 1.1, (of 7 dimen-
sions):

hnaive(
−→
k ) = sigmoid(sin(10k1) + cos(10k3) + sin(7k2 + 3k4)

+sin(3k7 + k5k6), [−4, 4], 0.75)
(1.1)

where
−→
k is the sample i.e. the vector of the key levels ki and sigmoid is:

sigmoid(x, [a, b], β) = (b− a)
1

1 + e−2βx
+ a (1.2)

where a and b respectively are the lower and upper asymptotes and β controls
the steepness of the curve. This easily keeps the hedonic score within the range
of [−4, 4].
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Figure 1-3. Examples of sensory response to individual keys (a) Linear response (b) Roof
response (c) Piecewise response and (c) smoothed piecewise response

Rational Sensory Maps
Rational sensory maps exploit domain specific knowledge expressing an as-

sessor’s hedonic response to a single ingredient (a.k.a. key). Founding our
approach on this knowledge provides plausibility to the extent this knowledge
is acquired or estimated. Our approach is to rationally combine the response
function of each ingredient (domain knowledge) into a comprehensive one for
multiple ingredients. We mathematically construct an n-dimensional sensory
map which uses lower dimensional information which is known, or easily ac-
cessible. Two domain specific properties are integrated as design invariants:
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Invariant #1 If all key levels are 0, meaning that only the base is present, the
liking score has to be neutral, i.e. 0.

Invariant #2 For each key i, the single response for this specific key has to be
continuously recovered when all other keys are at their zero levels.

Design Steps. Designing a rational sensory map involves 3 steps: (1) de-
sign 1-dimensional sensory responses (2) combine these single responses to
form a multi-dimensional map, (3) design a merging function for the combina-
tion to preserve the two invariant properties. Use a post-merging coefficient γ
to scale the merged map relative to the combined responses, then, if necessary,
apply a sigmoid function to ensure responses are within the range [−4, 4].

Step 1. 1-Dimensional Sensory Response Design. A 1D sensory response
expresses how an assessor responds to an increasing level of one flavor ingre-
dient. We describe a 1D response to key i as hi, with one of four parameterized
functions:

1 Linear response: A linear sensory response either increases or decreases
linearly with the increase of an ingredient. The response is parameter-
ized by the slope and intercept of the linear function given in the follow-
ing equation.

hi = ai × ki + bi (1.3)

2 Piecewise linear (2-piece): This map models the following hedonic re-
sponse behavior: as the key level ki increases, the assessor likes it more
until a point of maximal preference. Then, when the key level further in-
creases, the flavor is too strong and the assessor actually starts to dislike
it. This is characterized by a piecewise linear function with 2-pieces. For
any key ki this function is parameterized by {li, a(1)i , b

(1)
i , a

(2)
i , b

(2)
i }.

hi =

{
a
(1)
i × ki + b

(1)
i if ki ≤ li

a
(2)
i × ki + b

(2)
i if li < ki < 1

(1.4)

3 Piecewise linear (n-piece): This map models hedonic response be-
havior in which an assessor changes from positive to negative or vice
versa, or has a constant hedonic response at multiple volume intervals
between the minimum and maximum of the key. In any volume interval
the response is a linear function with a specific slope. This is thought
to be more realistic for many ingredients and assessors. For any key ki
this function is parameterized by a set of interval extrema {l(1)i , ....l

(n)
i }

and the coefficients for the linear function that describes each segment.
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These are a1, . . . an and, b1, . . . bn.

hi =

n−1∑
p=1

ap × ki + bp if l(p)i ≤ ki ≤ l
(p+1)
i (1.5)

4 Piecewise linear smooth: Piecewise linear single responses are defined
by their intervals and slopes within each interval. However, smoothed
single responses are presumably even more plausible. To model this, we
apply a smoothing mean filter, Equation 1.6), over a range controlled by
a so-called smoothing coefficient sc. The smoothed single response of
Figure 1-3 (c) is Figure 1-3(d) when a smoothing coefficient of 0.1 is
used.

hismoothed
(k) =

∫ k+sc

k−sc

hidk, (1.6)

Examples of these single response models are shown in Figure 1-3-bottom.
We can design a homogeneous set of 1D responses for the keys in which all the
keys have similar sensory response functions but the parameters are varied. A
heterogeneous alternative mixes multiple kinds of 1D response functions.

Step 2. Multi-dimensional Sensory Map Design. These sensory maps are
a combination of the 1D response functions. We call the functional relationship
linking the lower dimensional functions to the higher dimensional sensory map
a combining function. Combining function outputs are scaled with λ, a scaling
coefficient before merging. We defer explaining λ until the end of Step 3 where
we also explain a second scaling coefficient, γ.

Three kinds of combining functions are:

1 Additive:

h1,··· ,d = λ
d∑

i=1

hi, (1.7)

2 Multiplicative
h1,··· ,d = λ ∗Πd

i=1hi (1.8)

3 Second order combining function Pairs of keys may also generate
second-order responses, on top of first order ones. This 2nd order com-
bining function is:

h1,··· ,d = λΣ
(
(HTH) ∗K

)
, (1.9)

where K is the coefficient matrix for the second order terms and ∗ the
term-by-term multiplication of it with the single response functions in
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H. An example of a 7-dimensional function is given by

H =



h1
h2
h3
h4
h5
h6
h7


, and K =



0 2 0 1 3 1 0
0 0 1 0 1 0 2
0 0 0 3 0 0 0
0 0 0 0 1 2 1
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

Step 3. Merging to Preserve Map Invariants. In all but additive com-
bining functions, merging is required to preserve design invariant #2. Recall
that this invariant maintains that the 1D response to a key i is recoverable when
all other key levels are 0. To understand a merging function, first consider a
simpler case where there is only two ingredients. Then, the merging procedure
can be formulated as follows:

h
′
1,2 = mr2

down(k2)h1
+ mr1

down(k1)h2
+ (1−mr1

down(k1))(1−mr2
down(k2))h1,2

(1.10)

with h1,2 as the combining function from Step 2 and mri
down the "merging-

down" function defined by:

mri
down(ki) =

{
1− (kiri −

1
2πsin(2π

ki
ri
)), if 0 ≤ ki ≤ ri

0, if ri < ki ≤ 1
(1.11)

with ri the range of the merging in the direction of ki. Figure 1-4 depicts this
merging down function with a range of 0.5.
Correspondingly, note that 1 −mri

down(ki) can be seen as a "merging-up" co-
efficient.

The idea of this merging procedure is that the 2d sensory map h1,2 (which is
the result of a combination of both single responses h1 and h2) is valid when
both key levels k1 and k2 are sufficiently large. However, when a key level,
say k1, approaches zero, one wants to smoothly recover the 1d response h2.
This is implemented using the merging coefficient of equation (1.10). In the
example, as k1 approaches 0, the coefficient mr1

down(k1) approaches 1, em-
phasizing the influence of the single response h2, while at the same time, the
coefficient (1 − mr1

down(k1)) approaches 0 diminishing the influence of h1,2.
The same logic applies when key level k2 approaches zero. This approach can
be generalized to the n-dimensional case as follows:

h
′
1,··· ,d =

∑d
i=1Mi(k1, · · · , ki−1, ki+1, · · · , kd)hi

+
∏d

i=1 (1−Mi)h1,··· ,d
(1.12)
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Figure 1-4. Merging down function with ri = 0.5.

with Mi(k1, · · · , ki−1, ki+1, · · · , kd) =
∏

j ̸=im
rj
down(kj).

Maintaining consistency of the 2-d hedonic response ’building blocks’ (i.e.
when other key levels approach 0), can be achieved with the following equa-
tion:

h
′
1,··· ,d =

∑d
i=1Mihi

+
∏d

i=1(1−Mi)
[
∑

(p,q)∈S hpqMpq

+
∏

(p,q)∈S(1−Mpq)h1,··· ,d,··· ,p1q1,··· ,ps,qs)) ]

(1.13)

with Mpq =
∏

j ̸=p,j ̸=q m
rj
down(kj),

and S the set of the s pairs (pi, qi) whose 2-d responses are known and used to
build the d dimensional sensory space.

A post-merging coefficient γ is used to scale the merging function. If re-
sponses are outside the range [−4 4], a sigmoid function with parameter β is
further applied:

h
′′
1,··· ,d = sigmoid(γ × h

′
1,··· ,d, [−4 4], β) (1.14)

Scaling Coefficients, λ, γ: We “tune” a map by choosing the λ and γ coef-
ficients in a coupled manner. We aim for a factor of 2 between the entire range
of the map, h1,...,d, and the sub-range when only a single key level is non-zero.
The range of a combining function can be calculated in a straight-forward ana-
lytical manner for any heterogenous or homogeneous set of 1D responses. This
allows us to pick one of λ or γ and set the other accordingly. For example, in
map 1 of Table 1-2, the range of h before scaling with λ is [−8 8] so, when we
pick γ = 1/2, we set λ = 1. In map 2 of Table1-2, the maximum of h happens
to be 176 (occurring at key levels equaling [0.5, 0.25, 0.75, 1.0, 0.5, 0.5, 0]) so,
picking γ = 1/2, implies we set λ = 4/88 = 8/176.
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When using a second order combining function, the choice of coefficients
is arbitrary. We proceed by identifying “interesting” 2D cuts of the multi-
dimensional surface and use particle swarm optimization to find the range of
h

′
. We loosely aim for a factor of 2 between this range and the range of the

responses when only a single key level is non-zero when picking λ, γ and β.

3. Sample Distortion
When reporting their judgment, humans are sources of error (Leibowitz and

Post, 1982). These errors or distortions arise from: (1) assessors’ intrinsic
characteristics/abilities, and (2) protocol induced factors. The literature on
psychological analysis of hedonics and hedonics protocols describes such er-
rors and human characteristics. As well, experts who conduct many hedonic
sensory evaluation protocols record many examples. Certain error sources are
well understood and can be avoided very easily. For instance, expectation of
the observer can be avoided by labeling samples in a neutral manner (Leibowitz
and Post, 1982). This eliminates expectations and a priori biases in judgment.
Table 1-1 mathematically describes our framework’s distortions. We use htj
where h denotes the hedonic response (undistorted at first, later successively
changed by each distortion), the superscript t indexes the position of the sam-
ple in the query sequence and subscript j indexes each successive distortion.

Human Induced Distortion
The first distortion factor is the inconsistency in the ratings from an assessor.

For instance in (Costello et al., 2007), only roughly 1/3 of assessors gave the
exact same rating to actually identical flavors. The second factor is mood,
which increases or decreases the hedonic response. The third factor is the
sensitivity of an assessor to distinguishing among samples.

Protocol Induced Distortion
How a judgment is reported can lead to different information (Moskowitz,

1982). While this is not strictly “error”, it implies that ground truth will be
transformed in a protocol dependent way before it is reported. For instance,
when using fixed 9-point category scaling (a.k.a. a hedonic scale), assessors
must respond within this range. This causes clipping and discretization distor-
tion. In addition, an assessor may use an extremum of the scale early on one
sample then later like (or dislike) another sample more. Assessors “solve” this
dilemma with truncation – i.e. re-using an extremum to express a more extreme
response. For the forced response hedonic protocol we initially simulate, we
model these distortions as first query ignorance.

Sensory judgment will be biased by previously tested samples. For instance,
a given sample will tend to be judged saltier when presented in a set that in-
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cludes many low salt concentration samples, while it will tend to be judged less
salty when presented in a distribution including many high salt concentration
samples (Riskey, 1982). We call this type of distortion contextual exaggera-
tion.

Table 1-1. Models for a variety of distortion sources

Distortion Source Model Parameter
Inconsistency Human ht1 = ht0 + η(0, σ1(t)) σ1(t)

Sensitivity Human ht2 = s(t)× ht1 0 ≤ s(t) ≤ 1
Mood Human ht3 = ht2 +m(t) m(t)

Ist Query
Ignorance Protocol h14 = h13 + η(0, σ4) σ4

Contextual
Exaggeration Protocol

ht4 = ht−1
3 + α(δ, t)× δ

with δ = ht3 − h
(t−1)
3

and ∀t > 1

α(δ, t)

Time Varying Fatigue Distortion
Sensory fatigue that increases over causes time varying error. We assume

time to be discrete and corresponding to successive presentation of samples.
The quality and accuracy of human input greatly degrades with repeated prompts
for input (Schmidt and Lipson, 2006). Even though protocols are often de-
signed to keep sample quantity low, fatigue will eventually alter assessors’
capabilities. For instance, the average person can sample only up to seventy
aromas before they become biased (Costello et al., 2007). In our framework,
this is modelled by giving a temporal dimension to every source of distortion.
This means that the parameters described for different distortions in Table 1-
1 change over time. σ1(t), s(t) and m(t) change using a temporal evolution
function defined below. α is a function of t and δ. Its values with changing t
for different δ’s is shown in the figure 1-5(b).
Starting with an initial value of a distortion parameter ri and a set final value
rf of this same parameter, the temporal evolution of the parameter corresponds
to equation 1.15 and is depicted in figure 1-5. In this equation, τ is a time con-
stant that can be interpreted in term of number of sample tested.

r(t) = ri + (rf − ri)(1− e−t/τ ) (1.15)
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(a) (b)

Figure 1-5. Temporal evolution of a distortion parameter due to (a) panelist fatigue, (b) con-
textual exaggeration.

4. Baseline GP symbolic regression experiments
We now apply “standard” symbolic regression to sensory evaluation bench-

marks of varied difficulty. We use the GPLAB toolbox (Silva and Almeida,
2003; Silva, 2011). We control modeling difficulty via sensory map choice,
presence or absence of distortion, and, the number of samples recorded. We
set the dimensionality of all maps to 7 and use the four sensory maps described
in Table 1-2. We then set the initial and final levels for the distortion as de-
tailed in Table 1-3 or choose not to have distortion. We use sample sizes of
[40, 100, 1000]. Thus we have experiments pertaining to 36 datasets. A bench-
mark experiment proceeds per Figure 1-6.

Table 1-2. The 4 sensory maps used.

Sensory
Map

Single Responses Combining
Function

Merging
Range

Scaling
Parameters

1 Linear with
different

coefficients

Additive No
merging
needed

λ = 1
γ = 1

2

2 2-piece-linear with
different

coefficients

2nd order, K per
example in 2.0

ri = 0.5 λ = 4
88

γ = 1
2

3 Diverse and more
complex

Involving +, ×,
cos, sin,√ , and

| |

ri = 0.3 λ = 4
5

γ = 3.5
β = 0.1

4 Naive Sensory Map, Equation 1.1
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Figure 1-6. Flow of the benchmark framework.

Table 1-3. Parameter settings for distortion

No
Distortion

Strong
Distortion

With
Fatigue
(τ = 20)

Strong
Distortion
Without

Fatigue

Parameter r {ri, rf} r
σ1 0 {0.75, 2.25} 0.75
s 1 {0.5, 0.2} 0.5
m 0 {1,−1} 1
σ4 0 2 2

α(δ) 1 {1 + 1
4δ, 1 +

1
2δ} 1 + 1

4δ

Rating range [−4, 4] Cont. [1, 9] Discrete [1, 9] Discrete
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Results
We perform 30 runs for each experiment and collect statistics on the GP

symbolic regression performance. We evaluate model predictive accuracy. Pre-
dictive accuracy compares the predictions from the best evolved model to the
hedonic response values (ground truth) in the sensory map (without distortion).
Our definition of accuracy uses a tolerance of 1, meaning that if the predicted
liking score of a testing sample is in the range of the actual ground-truth liking
score plus or minus 1, the prediction is considered as being correct. Accu-
racy is defined as a ratio of quantity of correctly predicted samples to the total
quantity of testing samples. We use 3000 samples that are generated using a
uniform random distribution for testing. We run GP symbolic regression with
a population of 500, for 39 generations after random population initialization.
During each run we compute the predictive accuracy (using the testing dataset)
of the best-so-far evolved model every second generation. At the experiment’s
end we compute the mean and variance of accuracy.

Figure 1-7 shows how well the 4 sensory maps can be predicted without any
distortion. GP symbolic regression is able to very accurately predict map 1
which is an additive map of 7 1D linear response functions after approximately
20 generations with just 40 samples. For the map 2 which is a 2nd order map
composed of 2-piece linear 1D responses, the more samples, the higher the pre-
diction accuracy. That is, for 40 and 100 samples, prediction accuracy is above
0.9 and with 1000 samples accuracy hits 1.0. The 1000 sample experiment’s
accuracy is achieved by the end of 39 generations. For the two smaller sam-
ple sizes, it is possible that the accuracy could improve more if GP symbolic
regression had been run for additional generations.

Maps 3 and 4, ’diverse and more complex’ and naive respectively, cannot
be accurately modeled even with 1000 training samples. Their accuracy varies
over sample size from 40 to 1000 between (0.4 . . . 0.55) and (0.3 . . . 0.4) re-
spectively. However, more samples definitely improve their prediction perfor-
mance. The reason for lower performance on these maps is the complexity of
the underlying sensory map. E.g., the third map, whose features are presented
in Table 1-2 is more complex and diverse due to the presence of cos, sin, square
root and absolute functions. It doesn’t appear that more evolutionary genera-
tions would substantially improve accuracy way for either map.

Consider the same 4 maps, but now with the strong distortion and fatigue we
choose to model as arising from the protocol and human behavior. Modeling
results are shown in Figure 1-8. There is a large drop in prediction accuracy
compared to the distortion-free, fatigue-free experiment set. For map 1 and
map 2, prediction accuracy, with distortion and fatigue present, drops from
perfect (samples=1000) or near perfect (samples=100 or 40) to 0.2, 0.3, and
0.3 respectively. Map 3’s modeled accuracy is similar to those of maps 1 and
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Figure 1-7. GP symbolic regression modeling performance without distortion or fatigue and
three training sample sizes. Clockwise from top left: map 1, map 2, map 3, map 4.
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Figure 1-8. GP symbolic regression modeling performance with distortion and fatigue and
three training sample sizes. Clockwise from top left: map 1, map 2, map 3, map 4.
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Figure 1-9. GP symbolic regression modeling performance with distortion but not fatigue and
three training sample sizes. Clockwise from top left: map 1, map 2, map 3, map 4.
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Figure 1-10. GP symbolic regression modeling performance comparing cases of distortion-
noise-free, distortion only, distortion+noise.
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2, but, compared to its distortion-free, fatigue free equivalent, this represents
a drop from 0.4, 0.4 and 0.5 for sample sizes 40,100,1000 respectively to 2.5,
2.4 and 1.9.

This implies that protocol and human “noise” are the key contributors to
inability to recover ground truth. Together, distortion and fatigue sufficiently
reduce the information content of later samples in the query chain to make
them not worth soliciting (under the distortion and fatigue levels modeled with
the parameters of Table 1-3). When the samples increase from 40 to 100, the
information content of the extra 60 samples is relatively neutral or slightly
detrimental toward recovering the ground truth of the map. When the samples
increase from 100 to 1000, there is always a decrease in model accuracy. The
results call for further work to understand the sensitivity of sample size and
map properties to fatigue and distortion levels.

Figure 1-9 shows the results of experiments that model only distortion. Let
ss denote sample size. In the case of map 1, for ss = 100, predictive accuracy
improves by about 0.15 (to 0.48 from 0.32) without fatigue. For ss = 100,
the predictive accuracy of 0.3 does not change. For ss = 1000, predictive
accuracy improves to 0.1 (from 0.2 to 0.3). Map 2 results are essentially similar
to those of map 1. With map 3 there is a clearer distinction between ss = 40
and ss = 100, and the order based on predictive accuracy changes from 100
being better with fatigue to 40 being better without fatigue. The predictive
accuracy ranking according to sample size of map 4 is {40, 100, 1000} with
distortion and fatigue. When fatigue was not modeled, the ordering changes to
ss = 100 with highest predictive accuracy and no difference between ss = 40
or ss = 1000. Figure 1-10 cross-references data from each of Figures 1-7 to
1-9 to show the impact of fatigue and/or distortion on predictive accuracy for
one sample size for each map.

5. Summary, Discussion and Future Work
Our aims in designing this specialized benchmark framework for sensory

evaluation are:

1 to rationally support the description of sensory maps which are hedonic
response surfaces as a function of product design inputs

2 to rationally express, with mathematics, the distortions which arise when
using a specific hedonic sensory evaluation protocol

3 to support the assessment of the performance of GP symbolic regression
algorithms with respect to how predictive accuracy scales with:

sampling quantity for training

sensory maps with different degrees of ruggedness



20 GENETIC PROGRAMMING THEORY AND PRACTICE III

different sources and levels of distortion which arise when using a
specific hedonic sensory evaluation protocol

Our goal is a level of generality which:

supports the modeling of different sources of human sensory distortion
manifested when assessors are queried about hedonic response

supports modeling how a protocol’s query-response component contributes
to distorting the ground truth of the sensory map, in addition to human
sourced distortions

We have demonstrated the benchmark framework in a baseline evaluation
of GP symbolic regression on sensory maps while controlling distortion and
the simulation of human sensory fatigue. We have gained insights into predic-
tive accuracy and determined in what cases more samples help in increasing
predictive capability. When there is no distortion, additional samples always
increase predictive capability. However, when distortion is present, this is not
necessarily the case. With an additional factor of fatigue, the performance de-
clines with additional number of samples, as the data becomes more and more
noisy with each additional sample.

Experts with commercial interest in sensory evaluation have noted that the
benchmark framework can also assist with the specialized co-design of algo-
rithms and protocols for a given product design space. When these domain
experts have evidence of assessor characteristics and feedback on how proto-
cols are interpreted by assessors, or when they have deeper knowledge of the
sensory map for the product design space, this knowledge can be expressed
via the benchmark framework. This allows them to explore the limits of what
they can learn if they use a protocol, with some limited number of samples,
on a specific quality of assessor, given the product space and an algorithm for
analyzing the data after the experiment. Interactively, they can gain insight
into the impact of how assessor errors (which partially relate to the number of
samples) makes some surveys impractical. They can also vary sensory maps
under the same set of protocol and assessor conditions to see how a product
design space may be suitable for a real experiment. Alternatively, for a design
space they can describe, they can determine how many samples are needed by
the algorithm to derive models that predict accurately.

We plan to extend the algorithm suite we can run on the benchmarks. As
well, we will extend the benchmark framework with additional protocols.
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