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Chapter 1

Genetic Programming

Genetic programming is the subset of evolutionary computation in which the aim is to create an executable
program. It is an exciting field with many applications, some immediate and practical, others long-term
and visionary. In this chapter we provide a brief history of the ideas of genetic programming. We give a
taxonomy of approaches and place genetic programming in a broader taxonomy of artificial intelligence. We
outline some hot topics of research and point to successful applications.

1.1 Introduction

There have been many attempts to artificially emulate human intelligence, from symbolic artificial intelligence
to connectionism, to sub-cognitive approaches like behavioural artificial intelligence and statistical machine
learning, and domain-specific achievements like Google search and the autonomous car. Darwinian evolution
has a type of distributed intelligence distinct from all of these. It has created lifeforms and ecosystems of
amazing diversity, complexity, beauty, facility, and efficiency. It has even created several forms of intelligence
very different from itself, including our own.

The principles of evolution—biased selection and inheritance with variation—serve as inspiration for
the field of evolutionary computation, an adaptive learning and search approach which is general-purpose,
applicable even with “black-box” performance feedback, and “embarrassingly parallel”. In evolutionary
computation “individuals” are evaluated for fitness, good ones are selected as parents, and new ones are
created by inheritance with variation. See Figure 1.1.

Genetic programming is the subset of evolutionary computation in which knowledge and behaviour
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Figure 1.1: The fundamental loop of evolutionary computation



are evolved, represented by programs. The key distinguishing feature is that of evolving in an executable
representation. A program’s fitness is evaluated by executing it to see what it does. New, syntactically
correct programs are created by inheriting material from their parents and by varying it.

Genetic programming is very promising, because programs are so general. A program can generate any
other data structure: numbers, strings, lists, dictionaries, sets, permutations, trees, and graphs [51, 57, 126].
A program can emulate any model of computation, including Turing machines, cellular automata, neural
networks, grammars, and finite state machines. [FIXME [128] for Turing machines?]

A program can be a data regression model [47] or a probability distribution TODO: cite. It can express
the growth process of a plant [103], the gait of a horse [77], or the attack strategy of a group of lions [34];
it can model behaviour in the Prisoner’s Dilemma [15] or play chess [33], Pacman [26], or a car-racing game
[130]. A program can generate designs for physical objects, like a space-going antenna [60], or plans for
the organisation of objects, like the layout of a manufacturing facility [24]. A program can implement a
rule-based expert system for medicine [7], a scheduling strategy for a factory [35], or an exam timetable for
a university [3]. A program can recognise speech [11], filter a signal [18], or smooth the raw output of a
brain-computer interface [101]. It can generate a piece of abstract art [118], a 3D architectural model [86],
or a piece of piano music [13].

A program can take input from a random number generator. A program can interface with natural or
man-made sensors and actuators in the real world, so it can both act and react. It can interact with a user
or with remote sites over the network [137]. It can also introspect and copy or modify itself [122]. If true
artificial intelligence is possible, then a program can be intelligent [40]. TODO: add citations

Genetic programming exists in many different forms which differ (among other ways) in their executable
representation. As in programming “by hand”, genetic programming works more readily if it is allowed to
create programs without a pre-stipulated length. Programs are also generally hierarchical in some sense.
They often have statement or control nesting. Genetic programming works more readily if given the flexi-
bility of exploring hierarchical programs. These representation properties (variable length and hierarchical
structure) raise a very different set of technical challenges for genetic programming compared to typical
evolutionary computation.

In each form of genetic programming, the term “program” may have a different meaning. We take a
broad view: we define a program as a data structure capable of being executed directly by a computer, or of
being compiled to a directly executable form by a compiler, or of interpretation, leading to execution of low-
level code, by an interpreter. A key feature of some programming languages, such as Lisp, is homoiconicity:
program code can be viewed as data. This is essential in genetic programming, since when the algorithm
operates on existing programs to make new ones, it is regarding them as data; but when they are being
executed in order to determine what they do, they are being regarded as program code. This double
meaning echoes that of DNA, which is both data and code in the same sense.

1.2 History

GP has a surprisingly long history, dating back to very shortly after John Von Neumann’s 1945 description
of the stored-program architecture [136] and the 1946 creation of ENIAC [30], sometimes regarded as the
first general-purpose computer. In 1948 Alan Turing stated the aim of machine intelligence and recognised
that evolution might have something to teach us in this regard:

Further research into intelligence of machinery will probably be very greatly concerned with
“searches”. [...] There is the genetical or evolutionary search by which a combination of genes
is looked for, the criterion being survival value. The remarkable success of this search confirms
to some extent the idea that intellectual activity consists mainly of various kinds of search.

—Turing, “Intelligent Machinery” [133]

However, Turing also went a step further. In 1950 he more explicitly stated the aim of automatic program-
ming and a mapping between biological evolution and program search:
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We have [...] divided our problem [automatic programming] into two parts. The child-programme
[Turing machine] and the education process. These two remain very closely connected. We can-
not expect to find a good child-machine at the first attempt. One must experiment with teaching
one such machine and see how well it learns. One can then try another and see if it is better or
worse. There is an obvious connection between this process and evolution, by the identifications:

Structure of the child machine = Hereditary material
Changes = Mutations
Natural selection = Judgment of the experimenter

—Turing, “Computing Machinery and Intelligence” [132].

This is an unmistakeable, if abstract, description of GP (though a computational fitness function is not
envisaged).

Several other authors expanded on the aims and vision of automatic programming and machine intelli-
gence. In 1959 Arthur Samuel wrote that the aim was to be able to “Tell the computer what to do, not how
to do it” [109]. An important early attempt at implementation of automatic programming was the “learning
machine” of R. M. Friedberg [22].

In 1963 John McCarthy summarised [65] several representations with which machine intelligence might be
attempted: neural networks, Turing machines, and “calculator programs”. With the latter, McCarthy was
referring to Friedberg’s work. McCarthy was prescient in identifying important issues such as representations,
operator behaviour, density of good programs in the search space, sufficiency of the search space, appropriate
fitness evaluation, and self-organised modularity. Many of these remain open issues in GP [85].

Lawrence J. Fogel’s 1960s work using finite state machines as the representation for evolutionary pro-
gramming can probably be called the first successful GP implementation. A detailed history is available in
David Fogel’s 2006 book [20].

One noticeable omission from Turing’s description (above) is the idea of crossover, though one could argue
that by “mutations” he intended to include all methods of genetic variation. Either way, the importance of
crossover as a mechanism in both Darwinian evolution and EC raises an interesting question of primacy: who
was the first to explicitly describe a crossover mechanism in program search? This honour also appears to go
to Fogel, who in 1967 assessed the utility of crossover operators in the finite state machine representation [19].
However, more typically EP did not use crossover.

In the 1980s, inspired by the success of GAs and LCS, several authors experimented with hierarchically-
structured and program-like representations. Smith [120] proposed a representation of a variable-length list
of rules which could be used for program-like behaviour such as maze navigation and poker. Cramer [12]
was the first to use a tree-structured representation and appropriate operators. A simple proof of concept,
it successfully evolved a multiplication function in a simple custom language. Schmidhuber [111] describes
a GP system with the possibility of Turing-completeness, though the focus is certainly on meta-learning
aspects. Fujiki and Dickinson [23] generated Lisp code for the prisoner’s dilemma, and Bickel and Bickel
[6] used a GA to create variable-length lists of rules, each of which had a tree structure. Another approach
was also successfully used by Ray [105]. All of these would likely be regarded as on-topic in a modern GP
conference.

However, the founding of the modern field of GP, and the invention of what is now called “standard” GP,
are credited to John Koza [47]. In addition to the abstract syntax tree representation (see Figure 1.3), the
key innovations were probably subtree crossover (see Figure 1.3(b)) and the description and set-up of many
test problems. In this and later research [48, 51, 52] symbolic regression of synthetic data and real-world
time series, Boolean problems, and simple robot control problems such as the lawnmower problem and the
artificial ant with Santa Fe trail were introduced as benchmarks and solved successfully for the first time,
demonstrating that GP was a potentially powerful and general-purpose method. Mutation was minimised
in order to make it clear that GP was different from random search. GP took on its modern form in the
years following Koza’s 1992 book: many authors began to work in the field, new types of GP were developed
(see Section 1.3), successful applications appeared (see Section 1.4), key research topics were identified (see
Section 1.5), further books were written, and conferences and journals were established (see Section 1.6).
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Table 1.1: Acronyms for research fields and techniques. TODO: can we delete this?

Field/technique acronym
Artificial intelligence Al
Machine learning ML
Automatic programming AP
Evolutionary computation EC
Inductive programming P
Genetic programming GP
Evolutionary programming EP
Evolutionary strategies ES
Differential evolution DE
Genetic algorithm GA
Machine learning ML
Particle swarm optimisation | PSO
Ant Colony Optimisation ACO
Strongly-Typed GP STGP
Cartesian GP CGP
Linear GP LGP
Standard GP StdGP
Simulated annealing SA
Hill climbing HC
Probabilistic graphical model | PGM
Neural network NN
Support vector machine SVM
Learning classifier systems LCS

Another important milestone in the history of GP was the 2004 establishment of the “Humies”, the
awards for human-competitive results produced by EC methods. The entries are judged for matching or
exceeding human-produced solutions to the same or similar problems, and for criteria such as patentability
and publishability. The impressive list of human-competitive results (http://www.genetic-programming.
org/hc2011/combined.html) again helps to demonstrate to researchers and clients outside the field of GP
that it is powerful and general-purpose.

1.3 Taxonomy: Upward and Downward from GP

In this section we present a taxonomy which firstly places GP in the context of the broader fields of evolution-
ary computation, machine learning, and artificial intelligence. It then classifies GP techniques according to
their representations and their population models. The acronyms we use throughout are set out in Table 1.1.

1.3.1 Upward

GP is a type of EC, which is a type of ML, which is itself a subset of the broader field of AI. Carbonell et al.
[9] classify ML techniques according to the underlying learning strategy, which may be rote learning, learning
from instruction, learning by analogy, learning from examples, and learning from observation and discovery.
In this classification, EC and GP fit in the “learning from examples” category, in that an (individual, fitness)
pair is an example drawn from the search space together with its evaluation. They also classify ML techniques
according to their representation—we deal with this issue in the next section.

It is also useful to see GP as a subset of another field, AP. The term “automatic programming” seems to
have had different meanings at different times, from automated card-punching, to compilation, to template-
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Figure 1.2: A taxonomy of Al, EC, and GP.

driven source generation, then generation techniques such as Universal Modelling Language (UML), to
the ambitious aim of creating software directly from a natural-language English specification. “Automatic
programming has been a goal of computer science and artificial intelligence since the first programmer came
face to face with the difficulties of programming. As befits such a long-term goal, it has been a moving
target—constantly shifting to reflect increasing expectations.” [106]. We interpret AP to mean creating
software by specifying what to do rather than how to do it. While GP clearly fits into this category, other
non-evolutionary techniques do also. A good example is IP. The main difference between GP and IP is that
typically IP works only with programs which are known to be correct, achieving this using inductive methods
over the specifications. In contrast, GP is concerned mostly with programs which are syntactically correct,
but behaviourally suboptimal. GP uses heuristic methods to create programs and then test them against the
specifications. Nevertheless IP (http://www.inductive-programming.org/) may serve as a useful source
of inspiration and benchmarking for GP practitioners.

1.3.2 Downward

It is traditional to divide EC into four main sub-fields: ES, EP, GA, and GP. In this view, ES is chiefly
characterised by real-valued optimisation and self-adaptation of algorithm parameters; EP by a finite state
machine representation (later generalised) and the absence of crossover; GA by the bitstring representation;
and GP by the abstract syntax tree representation. While historically useful, this classification is not
exhaustive: in particular it does not provide a home for the many alternative GP representations which now
exist. It also separates EP and GP, though they are both concerned with evolving programs. We prefer to
use the term GP in a general sense to refer to all types of EC which evolve programs. We use the term
standard GP (StdGP) to mean Koza-style GP with a tree representation. With this view, StdGP and EP are
types of GP, as are PushGP, GE, CGP, STGP, and several others treated below. In the following we classify
GP algorithms according to their representation and according to their population model: see Fig. 1.2.

Representations

Throughout EC it is useful to contrast direct and indirect representations. Standard GP is direct, in that the
genome (the object created and modified by the genetic operators) serves directly as an executable program.
Some other GP representations are indirect. An example is GE (see below), where the genome is an integer
array which is used to generate a program. Indirect representations have the advantage that they may allow
an easier definition of the genetic operators, since they may allow the genome to exist in a rather simpler
space than that of executable programs. Indirect representations also imitate somewhat more closely the
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mechanism found in nature, a mapping from DNA to RNA to mRNA to codons to proteins and finally to
cells. The choice between direct and indirect representations also affects the shape of the fitness landscape
(see Section 1.5.2). In the following we present a non-exhaustive selection of the main representations used
in GP, in each case describing the three key operators: initialisation, mutation, and crossover.

Standard GP In Standard GP (StdGP), the representation is an abstract syntax tree, or can be seen as a
Lisp-style S-expression. All nodes accept zero or more arguments of the same type and return a single value
of the same type. Trees can be initialised by recursive random growth starting from a null node. StdGP
uses parameterized initialisation methods that diversify the size and structure of initial trees. Fig. 1.3(a)
shows a tree in the process of initialisation. Trees can be crossed-over by cutting and swapping the subtrees
rooted at randomly-chosen nodes, as shown in Fig. 1.3(b). They can be mutated by cutting and regrowing
from the subtrees of randomly-chosen nodes, as shown in Fig. 1.3(c). Another mutation operator, HVL-
Prime, is shown in Fig. 1.10. Note that crossover or mutation creates an offspring of potentially different
size and structure but the offspring remains syntactically valid for evaluation. With these variations, a tree
could theoretically grow to infinite size or height. To circumvent this, as a practicality, a hard parameterized
threshold for size or height or some other threshold is used. Violations to the threshold are typically rejected.
Bias may also be applied in the randomized selection of crossed-over subtree roots. A common variation is
strongly-typed GP [75, 145], in which nodes can have different input and output types, and all the above

operations must respect these types.
jé@ () () ()
© — OO ©O —»
@ W ®O ©

(a) Initialisation (b) Crossover (c) Mutation

Figure 1.3: The StdGP representation is an abstract syntax tree. The expression that will be evaluated in
the 2nd tree from left is, in inorder notation, (z * y) — (z + 2). In preorder, or the notation of Lisp-style
S-expressions, it is (— (x ¢ y) (+ = 2)). GP presumes that the variables z and y will be already bound
to some value in the execution environment when the expression is evaluated. It also presumes that the
operations * and —, etc are also defined. Note that, all interior tree nodes are effectively operators in some
computational language. In standard GP parlance, these operators are called functions and the leaf tree
nodes which accept no arguments and typically represent variables bound to data values from the problem
domain are referred to as terminals.

Executable graph representations A natural generalisation of the executable tree representation of
StdGP is the executable graph. Neural networks can be seen as executable graphs in which each node
calculates a weighted sum of its inputs and outputs the result after a fixed shaping function such as tanh().
Parallel and distributed GP (PDGP) [91] is more closely akin to StdGP in that nodes calculate different
functions, depending on their labels, and do not perform a weighted sum. It also allows the topology of the
graph to vary, unlike the typical neural network. Cartesian GP (CGP) [74] uses an integer-array genome and
a mapping process to produce the graph. Each chunk of three integer genes codes for a single node in the
graph, specifying the indices of its inputs and the function to be executed by the node. See Fig. 1.4. Neuro-
evolution of augmented topologies (NEAT) [125] again allows the topology to vary, and allows nodes to be
labelled by the functions they perform, but in this case each node does perform a weighted sum of its inputs.
Each of these representations uses different operators. For example, CGP can use simple array-oriented
(GA-style) initialisation, crossover, and mutation operators (subject to some constraints).
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Figure 1.4: Cartesian GP. An integer-array genome is divided into chunks: in each chunk the last integer
specifies a function (top-left). Then one node is created for each input variable (x, y, z) and for each genome
chunk. Nodes are arranged in a grid and outputs are indexed sequentially (bottom-left). The first elements
in each chunk specify the indices of the incoming links. The final graph is created by connecting each node
input to the node output with the same integer label (right). Dataflow in the graph is bottom to top.
Multiple outputs can be read from the topmost layer of nodes. In this example node 6 outputs xy — z + vy,
node 7 outputs = + z 4+ y, and node 8 outputs xy/xy.

Evolutionary programming The original incarnation of evolutionary programming (EP) [21] also uses
graphs, but in this case the model of computation is the finite state machine rather than the executable
functional graph (see Fig. 1.5). In a typical implementation [21], five types of mutation are used: adding
and deleting states, changing the initial state, changing the output symbol attached to edges, and changing
the edges themselves. Crossover is not used. TODO: I can’t find any explanations of initialisation
or crossover in FSM-style EP!

Grammatical GP
grammar (CFG) [71]. Often the CFG defines a subset of the valid programs in a programming language
such as C or Python which is then compiled or interpreted, or in a Lisp-like syntax which is interpreted. In
one early system [138], the derivation tree is used as the genome: initial individals’ genomes are randomly-
generated according to the rules of the grammar. Mutation works by randomly generating a new subtree
starting from a non-terminal, and crossover is constrained to exchange subtrees whose roots are identical
non-terminals. In this way, new individuals are guaranteed to be valid derivation trees. The executable
program is then created from the genome by reading the leaves left to right. A later system, grammatical
evolution (GE) [83] instead uses an integer-array genome. Initialisation, mutation and crossover are defined
as simple GA-style array operations. The genome is mapped to an output program by using the successive
integers of the genome to choose among the applicable production choices at each step of the derivation
process. Fig. 1.6 shows a simple grammar, integer genome, derivation process, and derivation tree. At
each step of the derivation process, the left-most non-terminal in the derivation is re-written. The next
integer gene is used to determine, using the “mod rule”, which of the possible productions is chosen. The
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output program is the final step of the derivation tree. ======= In grammatical GP [71] the context-free
grammar (CFQG) is the defining component of the representation. In the most common approach, search
takes place in the space defined by a fixed non-deterministic CFG. The aim is to find a good program in
that space. Often the CFG defines a subset of a programming language such as Lisp, C or Python which is
then compiled or interpreted. The advantages of using a CFG are that it allows a fine-grained definition of
multiple data-types and the imposition of domain knowledge into the problem representation. For example,
if it is known that good programs will consist of a conditional statement inside a loop, it is easy to express
this knowledge using a grammar. The grammar can express restrictions on the ways program expressions
are combined, for example making the system “dimensionally aware” [44, 104]. A grammatical GP system
can be applied to new domains, or can incorporate new domain knowledge, through updates to the grammar
rather than large-scale reprogramming.

In one early system [138], the derivation tree is used as the genome: initial individals’ genomes are
randomly-generated according to the rules of the grammar. Mutation works by randomly generating a
new subtree starting from a non-terminal, and crossover is constrained to exchange subtrees whose roots
are identical non-terminals. In this way, new individuals are guaranteed to be valid derivation trees. The
executable program is then created from the genome by reading the leaves left to right. A later system,
grammatical evolution (GE) [83] instead uses an integer-array genome. Initialisation, mutation and crossover
are defined as simple GA-style array operations. The genome is mapped to an output program by using
the successive integers of the genome to choose among the applicable production choices at each step of the
derivation process. Fig. 1.6 shows a simple grammar, integer genome, derivation process, and derivation
tree. At each step of the derivation process, the left-most non-terminal in the derivation is re-written.
The next integer gene is used to determine, using the “mod rule”, which of the possible productions is

<e> ::= <o><e><e> | <v>
<0> :i:=+ | *

<v> =X |y

L« ]2 [ir]sr[ua] 8] [2s] © © ©

<e> [start]
-> <o><e><e> [ 4 % 2 = 0] ° @ @
> Fo<ed<e> [1%2=1]
-> ¥ <y><e> [17 % 2 = 1]
> Ky <e> [61 %2 = 1]
> ky <> [11%2 = 1] ° °
> ¥y x [8%2=0]

Figure 1.6: Grammatical GP representation: grammar, genome, derivation process, and derivation tree.

and widely-used, GE has also been criticised for the disruptive effects of its operators. Another system, tree
adjoining grammar-guided genetic programming (TAG3P) has also been used successfully [36]. Instead of a
string-rewriting CFG, TAG3P uses the tree-rewriting tree adjoining grammars. The representation has the
advantage, relative to GE, that individuals are valid programs at every step of the derivation process. TAGs
also have some context-sensitive properties [36]. However, it is a more complex representation.

Another common alternative approach, surveyed by Shan et al. [114], uses probabilistic models over
grammar-defined spaces, rather than direct evolutionary search.

Linear GP In Linear GP, the program is a list of instructions to be interpreted sequentially. In order to
achieve complex functionality, a set of registers are used. Instructions can read from or write to the registers.
Several registers, which may be read-only, are initialised with the values of the input variables. One register
is designated as the output: its value at the end of the program is taken as the result of the program. Since
a register can be read multiple times after writing, a linear GP program can be seen as having a graph
structure. A typical implementation is that of [8]. It uses instructions of three registers each, which typically
calculate a new value as an arithmetic function of some registers and/or constants, and assign it to a register
(see Fig. 1.7). Tt also allows conditional statements and looping. It explicitly recognises the possibility of
non-functioning code, or introns. Since there are no syntactic constraints on how multiple instructions may
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[ [ =[] ] =]
[ [=]r]-]2]
[ [=[e]-]n]

Figure 1.7: Linear GP representation: a list of register-oriented instructions. In this example program of
three instructions, rg is the output register, and the formula 4(zo + x1)2 is calculated.

be composed together, initialisation can be as simple as the random generation of a list of valid instructions.
Mutation can change a single instruction to a newly generated instruction, and crossover can be performed
over the two parents’ list structures. More complex possibilities also exist. An interesting alternative is the
implementation of Poli and McPhee [96], which takes advantage of the linear representation to use an n-gram
based estimation of distribution algorithm. Initialisation is again by random generation, but reproduction
is implemented by observing the frequency of n-grams of instructions among highly-fit programs, and then
generating new programs with the same frequencies.

Stack-based GP A variant of linear GP avoids the need for registers by adding a stack. The program is
again a list of instructions, each now represented by a single label. In a simple arithmetic implementation,
the label may be one of the input variables (x;), a numerical constant, or a function (x, +, etc.). If it is
a variable or constant, the instruction is executed by pushing the value onto the stack. If a function, it is
executed by popping the required number of operands from the stack, executing the function on them, and
pushing the result back on. The result of the program is the value at the top of the stack after all instructions
have been executed. With the stipulation that stack-popping instructions become no-ops when the stack
is empty, one can again implement initialisation, mutation, and crossover as simple list-based operations
[90]. Ome can also constrain the operations to work on what are effectively subtrees, so that stack-based
GP becomes effectively equivalent to a reverse Polish notation implementation of standard GP [54]. A more
sophisticated type of stack-based GP is PushGP [123], in which multiple stacks are used. Each stack is
used for values of a different type, such as integer, boolean, and float. When a function requires multiple
operands of different types, they are taken as required from the appropriate stacks. With the addition of
an ezec stack which stores the program code itself, and the code stack which stores items of code, both of
which may be both read and written, PushGP gains the ability to evolve programs with self-modification,
modularity, control structures, and even self-reproduction.

Low-level programming Finally, several authors have evolved programs directly in real-world low-level
programming languages. Schulte et al. [112] automatically repaired programs written in Java byte code and
in x86 assembly. Orlov and Sipper [89] evolved programs such as trail navigation and image classification de
novo in Java byte code. This work made use of a specialised crossover operator which performed automated
checks for compatibility of the parent programs’ stack and control flow state. Nordin [79] proposed a machine-
code representation for GP. Programs consist of lists of low-level register-oriented instructions which execute
directly, rather than in a virtual machine or interpreter. The result is a massive speed-up in execution.

Population Models

It is also useful to classify GP methods according to their population models. In general the population model
and the representation can vary independently, and in fact all of the following population can be applied
with any EC representation including bitstrings and real-valued vectors, as well as with GP representations.

The simplest possible model, hill-climbing, uses just one individual at a time [87]. At each iteration,
offspring are created until one of them is more highly fit than the current individual, which it then replaces.
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If at any iteration it becomes impossible to find an improvement, the algorithm has “climbed the hill”,
i.e. reached a local optimum, and stops. It is common to use a random restart in this case. The hill-climbing
model can be used in combination with any representation. Note that it does not use crossover. Variants
include ES-style (u, A) or (1 + A) schemes, in which multiple parents each give rise to multiple offspring by
mutation.

The most common model is an evolving population. Here a large number of individuals (from tens
to many thousands) exist in parallel, with new generations being created by crossover and mutation among
selected individuals. Variants include the steady-state and the generational models. They differ only in
that the steady-state model generates one or a few new individuals at a time, adds them to the existing
population and removes some old or weak individuals; whereas the generational model generates an entirely
new population all at once and discards the old one.

The island model is a further addition, in which multiple populations all evolve in parallel, with
infrequent migration between them [131].

In coevolutionary models, the fitness of an individual cannot be calculated in an endogenous way.
Instead it depends on the individual’s relationship to other individuals in the population. A typical example
is in game-playing applications such as checkers, where the best way to evaluate an individual is to allow
it to play against other individuals. Coevolution can also use fitness defined in terms of an individual’s
relationship to individuals in a population of a different type. A good example is the work of Arcuri and Yao
[2], which uses a type of “predator-prey” relationship between populations of programs and populations of
test cases. The test cases (“predators”) evolve to find bugs in the programs; the programs (“prey”) evolve
to fix the bugs being tested for by the test suites.

Another group of highly biologically-inspired population models are those of swarm intelligence. Here
the primary method of learning is not the creation of new individuals by inheritance. Instead, each individual
generally lives for the length of the run, but “moves about” in the search space with reference to other
individuals and their current fitness values. For example, in PSO individuals tend to move towards the
global best and towards the best point in their own history, but tend to avoid moving too close to other
individuals. Although PSO and related methods such as DE are best applied in real-valued optimisation,
their population models and operators can be abstracted and applied in GP methods also [76, 82].

Finally, we come to estimation of distribution algorithms (EDAs). Here the idea is to create a
population, select a sub-sample of the best individuals, model that sub-sample using a distribution, and then
create a new population by sampling the distribution. This approach is particularly common in grammar-
based GP [70], though it is used with other representations also [96, 61]. The modelling-sampling process
could be regarded as a type of multi-parent crossover. Alternatively one can view EDAs as being quite far
from the biological inspiration of most EC, and in a sense they bridge the gap between EC and statistical
ML.

1.4 Well Suited Domains and Noteworthy Applications of GP

Our introduction (Section 1.1) has touched on a wide array of domains in which GP has been applied. In
this section we give more detail on just a few of these.

1.4.1 Symbolic regression

Symbolic regression is one of the most common tasks for which GP is used. It is used as a component
in techniques like data modelling, clustering, and classification, for example in the modelling application
outlined in Sect. 1.4.2. It can be seen as a generalisation of techniques such as linear or quadratic regression,
but does not require a priori specification of the model as those techniques do.

A typical symbolic regression is implemented as follows. It begins with a dataset which is to be regressed,
in the form of a numerical matrix. Each row ¢ is a data-point consisting of some input (explanatory) variables
x; and an output (response) variable y; to be modeled. As in other machine learning methods, a subset of
the data is withheld for testing purposes. The remaining n rows are termed the training set.

14



Typically StdGP is used. It is set up with a numerical “language” which includes arithmetic operators
and numerical constants, sometimes functions like sinusoids and exponentials, and the input variables of the
dataset. The operators and functions can be internal nodes of an abstract syntax tree and the constants and
variables its leaf nodes. An initial population of StdGP trees is generated, each regarded as a model. To
calculate the fitness of each model, each training point’s explanatory variable is bound to the corresponding
input variable of the model and the expression is executed. The output of the expression is the model’s
predicted response. This value is then comparable to the response of the training point. Fitness is usually
defined as the root-mean-square error of the model’s outputs versus the training data. In this formulation,
therefore, fitness is to be minimised:

n

fitness(f) = Z(f(mz) - yi)?

=1

Over the course of evolution, the population moves towards better and better models of the training data.
After the run, the testing set is used to confirm that the model is capable of generalisation to unseen data.

1.4.2 GP and Machine Learning

Like other machine learning methods, GP is successful in quantitative domains where data is available
for learning and both approximate solutions and incremental improvements are valued. In modeling or
supervised learning, GP is preferable to other machine learning methods in circumstances where the form of
the solution model is unknown a priori, see Figure 1.8, left. For the sensory evaluation problem described in
[? ], the authors use GP as an anchor of a ML framework, see Figure 1.8, right. Their goals are to discover
the dependency of a liking score on the concentration levels of flavors’ ingredients, identifying ingredients
that drive liking, segmenting the panel into groups with similar liking preferences and optimizing flavors to
maximize liking per group. The framework employs genetic programming symbolic regression and ensemble
methods to generate multiple diverse explanations of assessor liking preferences with confidence information.
It uses statistical techniques to extrapolate from the genetically evolved model ensembles to unobserved
regions of the flavor space and to segment the assessors into groups which either have the same propensity
to like flavors, or whose liking is driven by the same ingredients. Sensory evaluation data is very sparse and
there is large variation among the responses of different assessors. A Pareto-GP algorithm (see [? ]| was
therefore used to evolve an ensemble of models for each assessor and to use this ensemble as a source of robust
variable importance estimation. The frequency of variable occurrences in the models of the ensemble was
interpreted as information about the ingredients that drive the liking of an assessor. Model ensembles with
the same dominance of variable occurrences and which demonstrate similar hedonic response directionality
when the important variables are varied, were grouped together to identify assessors who are driven by the
same ingredient set, in the same direction. Varying the input values of the important variables, while using
the model ensembles of these panel segments, provided a means of conducting focused sensitivity analysis.
Subsequently, the same model ensembles when clustered constitue the “black box” which is used by an
evolutionary algorithm in its optimization of flavors that are well liked by assessors who are driven by the
same ingredient.

1.4.3 Software Engineering

At least three aspects of software engineering have been tackled with remarkable success by GP: bug-fixing
[58], parallelisation [108, 140], and optimisation [139]. These three projects are very different in their aims,
scope, and methods; however, they all need to deal with two key problems in this domain: the very large and
unconstrained search space, and the problem of program correctness. They therefore have two key features
in common: they do not aim to evolve new functionality from scratch, but instead use existing code as
material to be transformed in some way; and they either guarantee correctness of the evolved programs as a
result of their representations, or take advantage of existing test suites in order to provide strong evidence
of correctness. These techniques have also been proven on real-world problems.
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Figure 1.8: Genetic programming symbolic regression is unique and useful as a machine learning technique
because it obviates the need to define the structure of a model prior to training.

Le Goues et al. [58] show that automatically fixing software bugs is a problem within the reach of GP.
They describe a system called GenProg for automatically fixing several classes of bugs in a generic way. It
operates on C source code taken from open-source projects. GenProg works by forming an abstract syntax
tree from the original source code. The initial population is seeded with variations of the original. Mutations
and crossover are constrained to copy or delete complete lines of code, rather than editing sub-expressions,
and they are constrained to alter only lines which are exercised by the failing test cases. Again, this helps to
reduce the search space size. The original positive test cases are used to give confidence that the program
variations have not lost their original functionality. Fixes for several real-world bugs are produced, quickly
and with high success certainty of success, including bugs in HTTP servers, Unix utilities, and a media
player. The fixes can be automatically processed to produce minimal patches. Best of all, the fixes are
demonstrated to be rather robust: some even generalise to fixing related bugs which were not explicitly
encoded in the test suite.

Ryan [108] describes a system, Paragen, which automatically re-writes serial Fortran programs to parallel
versions. In Paragen I, the programs are directly varied by the genetic operators, and automated tests are
used to reward the preservation of the program’s original semantics. In Paragen II, correctness of the
new programs is guaranteed by using a different approach. The programs to be evolved are sequences of
transformations defined over the original serial code. Each transformation is known to preserve semantics.
Some transformations however directly transform serial operations to parallel, while other transformations
merely enable the first type. Paragen II is thus a meta-level GP algorithm. The work of Williams [140] was
in some ways similar to Paragen I.

A third goal of software engineering is optimisation of existing code. White et al. [139] tackle this task
using a multi-objective optimisation method. Again, an existing program is used as a starting-point, and
the aim is to evolve a semantically equivalent one with improved characteristics, such as reduced memory
usage, execution time, or power consumption. The system is capable of finding “non-obvious” optimisations,
i.e. ones which cannot be found by optimising compilers. A population of test cases is coevolved with the
population of programs.

Other GP-based software engineering work includes that of O’Keeffe and O Cinnéide [81] on automated
refactoring, in which a large set of possible refactoring steps are provided as types of mutation. A survey of
the broader field of search-based software engineering is given by Harman [31].
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1.4.4 Art, Music, and Design

GP has been successfully used in several areas of design. This includes both engineering design, where the
aim is to design some hardware or software system to carry out a well-defined task, and aesthetic design,
where the aim is to produce art objects with subjective qualities.

One of the first examples of GP design was the synthesis of analog electrical circuits by Koza et al.
[50]. This work attacked the problem of automatically creating circuits to perform tasks such as a filter or
an amplifer. Eight types of circuit were automatically created, each having certain requirements, such as
outputting an amplified copy of the input, and low distortion. These functions were used to define fitness.
A complex GP representation was used, with both STGP (see Section 1.3.2) and ADFs (see Section 1.5.3).
Execution of the evolved program began with a trivial “embryonic circuit”. GP program nodes, when
executed, performed a actions such as altering the circuit topology or creating a new component. These
nodes were parameterised with numerical parameters, also under GP control, which could be created by more
typical arithmetic GP subtrees. The evolved circuits solved significant problems to a human-competitive
standard.

Another significant success story was the space-going antenna evolved by Lohn et al. [60] for the NASA
Space Technology 5 spacecraft. The task was to design an antenna with certain beamwidth and bandwidth
requirements, which could be tested in simulation (thus providing a natural fitness function). GP was used to
reduce reliance on human labour and limitations on complexity, and to explore areas of the search space which
would be rejected as not worthy of exploration by human designers. Both a GA and a GP representation
were used, producing quite similar results. The GP representation was in some ways similar to a 3D turtle
graphics system. It relied on the idea of “state”, representing the current position and orientation of a
“turtle”. Commands included forward which moved the state forward, creating a wire component, and
rotate-x which changed orientation. Branching of the antenna arms was allowed with special markers similar
to those used in turtle graphics programs. The program composed of these primitives, when run, created a
wire structure, which was rotated and copied four times to produce a symmetric result for simulation and
evaluation TODO: did this antenna actually make it to space?.

There have also been successes in the fields of graphical art, 3D aesthetic design, and music. Given
the aesthetic nature of these fields, GP fitness is often replaced by an interactive approach where the user
performs direct selection on the population. This approach dates back to Dawkins’ seminal Biomorphs [14]
and has been used in other forms of EC also [127]. Early successes were those of Todd and Latham [129], who
created pseudo-organic forms, and Sims [118] who created abstract art. An excellent overview of evolutionary
art is provided by Lewis [59].

A key aim throughout aesthetic design is to avoid the many random-seeming designs which tend to be
created by typical representations. For example, a naive representation for music might encode each quarter-
note as an integer in a genome whose length is the length of the eventual piece. Such a representation will
be capable of representing some good pieces of music, but it will have several significant problems. The vast
majority of pieces will be very poor and random-sounding. Small mutations will tend to gradually degrade
pieces, rather than causing large-scale and semantically-sensible transformations [69].

As a result, many authors have tried to use representations which take advantage of forms of re-use.
Although re-use is also an aim in non-aesthetic GP (see Section 1.5.3), the hypothesis that good solutions
will tend to involve re-use, even on new, unknown problems, is more easily motivated in the context of
aesthetic design.

In one strand of research, the time or space to be occupied by the work is pre-defined, and divided into
a grid of 1, 2, or 3 dimensions. A GP function of 1, 2 or 3 arguments is then evolved, and applied to each
point in the grid with the coordinates of the point passed as arguments to the function. The result is that
the function is re-used many times, and all parts of the work are felt to be coherent. The earliest example
of such work was that of Sims [118], who created fascinating graphical art (a 2D grid) and some animations
(a 3D grid of 2 spatial dimensions and 1 time dimension). The paradigm was later brought to a high degree
of artistry by Hart [32]. The same generative idea, now with a 1D grid, was used by Hoover et al. [38], Shao
et al. [115] and McDermott and O’Reilly [67] to produce music as a function of time, and by Clune and
Lipson [10] to produce 3D designs.

17



Other successful work has used different approaches to re-use. L-systems are grammars in which symbols
are recursively expanded in parallel: after several expansions (a “growth” process”), the string will by highly
patterned, with multiple copies of some sub-strings. Interpreting this string as a program can then yield
highly patterned graphics [66], artificial creatures [39], and music [144]. Grammars have also been used in 3D
and architectural design, both in a modified L-system form [86] and in the standard GE form [68]. Although
not explicitly grammatical, the Ossia system of Dahlstedt [13] again uses a recursive structure (GP trees
with recursive pointers) to impose re-use and a natural, gestural quality on short pieces of art-music.

1.5 Research topics

Many research topics of interest to GP practitioners are also of broader interest. For example, the self-
adaptation of algorithm parameters is a topic of interest throughout EC. We have chosen to focus on four
research topics of specific interest in GP: bloat, GP theory, modularity, and open-ended evolution.

1.5.1 Bloat

Since the vast majority of GP-type problems are not amenable to a priori specification of the exact size of
the solution, variable-length representations are needed. Program size is constrained to be nonnegative, but
it is natural to consider the possibility that some programs will become very large. It might be expected
that selection pressure would effectively guide the population towards sizes appropriate to the problem, and
indeed this is sometimes the case. However it has also been observed that in some circumstances, for many
different representations and problems, programs grow over time without apparent fitness improvements.
Bloat is the name given to this phenomenon, and is defined as “program growth without (significant) return
in terms of fitness.” [99, p. 101]. Since the time complexity for the evaluation of a GP program is generally
proportional to its size, this slows the GP run down unnecessarily. The outcome has been well described by
Luke and Panait [64] as “a kind of Zeno’s paradox”: each generation becomes slower than the last, and it
can appear unprofitable to continue the run.

A second drawback of uncontrolled growth in program size is that the eventual solution may be so
large and complex that is unreadable, negating a key advantage of symbolic methods like GP. Overly-large
programs also tend to generalise less well than parsimonious ones.

Clearly, then, bloat is a significant obstacle to successful GP. It has become an important topic of research,
with differing viewpoints both on the causes of bloat and the best solutions.

The competing theories of the causes of bloat are summarised by Luke and Panait [64] and Silva et al.
[117]. A fundamental idea is that adding material to a GP tree is more likely than removing material from
a tree to lead to a fitness improvement. The intron theories include: hitchhiking, where non-effective code
is carried along by virtue of being attached to useful code; defense against crossover, which suggests that
large amounts of non-effective code give a selection advantage later in GP runs when crossover is likely to
highly destructive of good, fragile programs; and remowval bias, which is the idea that it is harder for GP
operators to remove exactly the right (i.e. non-effective) code than it is to add more. The fitness causes
bloat theory [55] is different. When fitness improvements are hard to find, most new individuals are at best
fitness-neutral with respect to their parents, especially for discrete-valued fitness functions. However since
there are many more programs with the same functionality at larger sizes than at smaller, there is a drift
towards larger programs. The modification point depth theory suggests that children formed by tree crossover
at deep crossover points are likely to have fitness similar to their parents and thus more likely to survive
than the more radically different children formed at shallow crossover points. Because larger trees have more
very deep potential crossover points, there is a selection pressure towards growth. Finally, the crossover bias
theory [16] explains the effect of bloat by firstly ignoring selection, and concentrating on the effects of the
crossover operator in isolation. Simply put, after many crossovers, a population will tend towards a limiting
distribution of tree sizes [53]. In this distribution, small trees are more common than large ones—note that
this is the opposite of the effect that might be expected as the basis of the theory of bloat. However, when
selection is considered, the majority of the small programs cannot compete with the larger ones, and so the
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distribution is now skewed in favour of larger programs.

Many different solutions to the problem of bloat have been proposed, many with some success. One
simple method is depth limiting, imposing a fixed limit on the tree depth that can be produced by the
variation operators [47].

Another simple method is parsimony pressure, i.e. a fitness penalty imposed on overly-large individuals.
This implicitly or explicitly assumes that fitness is commensurable with size: the magnitude of the punish-
ment effectively establishes an “exchange rate” between the two. Luke and Panait [64] found that parsimony
pressure was surprisingly effective across problems and across a wide range of exchange rates.

The choice of a de facto exchange rate can be avoided. One can define a multi-objective algorithm in
which one of the objectives is fitness and the other program length or complexity, for example ParetoGP
[121]. The correct definition for complexity in this context is itself an interesting research topic [135, 134].
Alternatively the pressure can be moved into the selection phase of the algorithm instead of the fitness
evaluation phase, using the double tournament method [64]. Here individuals must compete in one fitness-
based tournament and one size-based one. Another approach is to incorporate tree size directly into fitness
evaluation using a minimum description length principle [41].

Another simple but surprisingly effective method is Tarpeian bloat control [102]. The basic idea is that
individuals which are larger than average receive, with a certain probability, a constant, punitively bad
fitness instead of being evaluated. It can therefore be seen as a variation on the parsimony pressure method.
The key advantage of the method is that the large, unlucky individuals are not evaluated, and so a huge
amount of time can be saved and devoted to running more generations (as in [64]). The Tarpeian method
does allow the population to grow beyond its initial size, since the punishment is only applied to a proportion
of individuals—typically around 1 in 3. This value can be set adaptively in a later variation of the method
[102]. The Tarpeian method is theoretically well-motivated and has achieved good results on benchmarks
and real-world problems.

Another important strand of research into bloat control is known as operator length equalisation. It is
motivated by the crossover bias theory. At each generation a distribution of program sizes is formed. In
the distribution the frequency of programs with a particular size depends on the fitness of existing programs
of that size. This distribution is then used to control which new individuals will be accepted into the
population. Individuals of a particular size are accepted if the capacity of the distribution at that size has
not been exceeded, orif they are exceptionally fit for that size. Individuals whose size places them outside the
distribution entirely can be accepted, again, if they are exceptionally fit. Operator length equalisation is thus
a dynamic method. A mutation-based variation of the method does not reject individuals which fall outside
the desired distribution, but instead mutates them using directed mutations to become smaller or larger as
needed. This tends to save CPU time. The method has enjoyed significant success. Although it imposes a
programming burden larger than many other methods, recent work has also shown that in most practical
cases the desired size distribution is effectively flat [116]. This suggests that a simpler implementation may
be possible.

Although some of the above theories and methods are representation-specific, it is also possible to think
about bloat in a representation-free way [4]. Some authors have argued that the choice of GP representation
can avoid the issue of bloat [73].

Some authors also aim to avoid the problem of bloat rather than tackle it head-on. One possibility is to
make GP fitness evaluation more computationally efficient by using word-level parallelism in the CPU [97],
optimising it for GPU [54], producing and evaluating individuals lazily [93], or caching the results of subtrees
[43].

In summary, researchers including Luke and Panait [64], Poli et al. [102], Miller [73] and Silva et al. [117]
have effectively “declared victory” in the fight against bloat. However, their techniques have not yet become
de rigeur for new GP research and benchmark experiments.

1.5.2 GP Theory

Theoretical research in GP seeks to answer a variety of questions, for example: what are the drivers of
population fitness convergence? how does the behavior of an operator influence the progress of the algorithm?
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how does the combination of different algorithmic mechanisms steer GP toward fitter solutions? what
mechanisms cause bloat to arise? what problems are difficult for GP? how diverse is a GP population?
Theoretical methodologies are based in mathematics and exploit formalisms, theorems and proofs for rigor.
While GP may appear simple, beyond its stochastic nature which it shares with all other evolutionary
algorithms, its variety of representations each impose specific requirements for theoretical treatment. All
GP’s representations share two common traits which greatly contribute to the difficulty it poses for theoretical
analysis. First, the representations have no fixed size, implying a complex search space. Second, GP
representations do not imply that parents will be equal in size and shape. While crossover accommodates
this lack of synchronization, it allows the exchange of content from anywhere in one parent to anywhere
in the other parent’s tree. This implies combinatorial outcomes and “likes not switching with likes”. This
functionality contributes to complicated algorithmic behavior which is challenging to analyze.

Here we select three influential methods of theoretical analysis and very briefly describe them and their
results: schema-based analysis, Markov chain modeling, and runtime complexity. We also include a brief
introduction to the No Free Lunch Theorem to explain its implications for GP.

In schema-based analysis the search space is conceptually partitioned into hyperplanes (a.k.a schemas)
which represent sets of partial solutions. There are numerous ways to do this and, as a consequence,
multiple schema definitions have been proposed [1, 49, 88, 92, 107]. The fitness of a schema is estimated
as the average fitness of all programs in the sample of its hyperplane, given a population. The processes of
fitness-based selection and crossover are formalized in a recurrence equation which describes the expected
number of programs sampling a schema from the current population to the next. Exact formulations have
been derived by [94, 95] for most types of crossover. These alternatively depend upon explicitizing the effects
and the mechanisms of schema creation. This is insightful, however, tracking schema equations in actual
GP population dynamics is infeasible. As well, while schema theorems predict from one generation to the
next, they cannot predict further into the future to predict the long term dynamics that GP practitioners
care about.

Markov chain models are one means of describing such long term GP dynamics. They take advantage
of the Markovian property observed in a GP algorithm: the composition of one generation’s population
relies only upon that of the previous generation. Markov chains describe the probabilistic movement of a
particular population (state) to others using a probabilistic transition matrix. In evolutionary algorithms the
transition matrix must express the effects of any selection and variation operators. The transition matrix,
when multiplied by itself k& times, indicates which new populations can be reached in k generations. This, in
principle, allows a calculation of the probability that a population with a solution can be reached. To date a
Markov chain for a simplified GP crossover operator has been derived, see [98]. Another interesting Markov
chain-based result has revealed that the “distribution of functionality of non-Turing complete programs
approaches a limit as length increases”. Markov chain analysis has also been the means of describing what
happens with GP semantics rather than syntax. The influence of subtree crossover influence studied in a
semantic building block analysis by [72]. Markov chains, unfortunately, combinatorially explode with even
simple extensions of algorithm dynamics or, in GP’s case, its theoretically infinite search space. Thus, while
they can support further analysis, ultimately this complexity is unwieldy to work with.

In a nutshell, the No Free Lunch Theorem [141] proves that, averaged over all problem instances, no
algorithm outperforms another. Follow-up NFL analysis [113, 143] yields a similar result for problems where
the set of fitness functions are closed under permutation. One question is whether the NFL theorem applies
to GP algorithms: for some problem class, is it worth developing a better GP algorithm, or will this effort
offer no extra value when all instances of the problem are considered? Research has revealed two conditions
under which the NFL breaks down for GP because the set of fitness functions is not closed under permutation.
First, GP has a many-to-one syntax tree to program output mapping because many differerent programs
have the same functionality while program output functionality is not uniformly distributed across syntax
trees. Second, a geometric argument has shown [100], that many realistic situations exist where a set of GP
problems is provably not closed under permutation. The implication of a contradiction to the No Free Lunch
theorem is that it is worthwhile investing effort in improving a GP algorithm for a class of problems.

Due to stochasticity, it is arguably impossible in most cases to make formal guarantees about the num-
ber of fitness evaluations needed for a GP algorithm to find an optimal solution. However, initial steps in
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the runtime complexity analysis of genetic programming have been made in [17]. The authors study the
runtime of hill climbing GP algorithms which use a mutation operator called HVL-Prime, see Figures 1.9
and 1.10. Several of these simplified GP algorithms were analyzed on two separable model problems, OR-
DER and MAJORITY introduced in [28]. ORDER and MAJORITY each have an independent, additive
fitness structure. They each admit multiple solutions based on their objective function, so they exhibit a
key property of all real GP problems. They each capture a different relevant facet of typical GP prob-
lems. ORDER represents problems, such as classification problems, where the operators include conditional
functions such as an IF-THEN-ELSE. These functions gives rise to conditional execution paths which have
implications for evolvability and the effectiveness of crossover. MAJORITY is a GP equivalent of the GA
OneMax problem[29]. It reflects a general (and thus weak) property required of GP solutions: a solution
must have correct functionality (by evolving an aggregation of sub-solutions) and no incorrect functionality.
The analyses highlighted, in particular, the impact of accepting or rejecting neutral moves and the impor-
tance of a local mutation operator. A similar finding, [46], regarding mutation arose from analysis of the
Maz problem [27] and hillclimbing. For a search process bounded by a maximally sized tree of n nodes, the
time complexity of the simple GP mutation-based hillclimbing algorithms using HVL-Prime for the entire
range of MAX variants are O(n log? n) when one mutation operation precedes each fitness evaluation. When
multiple mutations are successively applied before each fitness evaluation, the time complexity is O(n?). This
complexity can be reduced to O(nlogn) if the mutations are biased to replace a random leaf with distance
d from the root with probability 2.

Substitution to
chosen node

Figure 1.9: HVL-Prime: Left: Parse tree before substitution, deletion, Center: Result of substitution, Right:
Result of deletion

Chosen node

Figure 1.10: HVL-Prime: Left: Parse tree before insertion, Right: Result of insertion

Runtime analyses have also considered parsimony pressure and multi-objective GP algorithms for gener-
alizations of ORDER and MAJORITY [78].

Other theoretical avenues of investigation which are noteworthy, but which can not be covered here,
include fitness landscape and problem difficulty as well as the analysis and amelioration of bloat. GP
algorithms have also been studied in the PAC learning framework [45].

1.5.3 Modularity

Modularity. ADFs, ADMs, etc. Other approaches. Hornby on modularity/regularity/hierarchy. Olson’s
approach to abstraction/ADFs in ADATE [37]. [FIXME Please mention re-use as a motivation/method
since I refer here from the art section. Bentley’s embryogeny stuff?]
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1.5.4 Open-ended GP

Segue from modularity to here:

Automatically-defined iterations, loops, recursions, and stores: [51]. Architecture-altering: “The idea
of architecture altering operations was extended to the ex- tremely general Genetic Programming Problem
Solver (GPPS), which is described in detail in (Koza et al., 1999, part 4). This is an open ended system
which combines a small set of basic vector-based primitives with the architecture altering operations in a
way that can, in theory, solve a wide range of problems with almost no input required from the user other
than the fitness function. The problem is that this open-ended system needs a very carefully constructed
fitness function to guide it to a viable solution, an enormous amount of computational effort, or both. As a
result it is currently an idea of more conceptual than practical value.”—[Field Guide p. 51].

True GP as a research topic: In his first (?) book, Koza presents a high-level view of EC: we have
done everything with data structures—meaning optimisation of bitstrings, continuous values, permutations,
etc.—but not nearly enough with programs. But right after saying this, he writes four massive books which
really don’t deal with full-on programs, only mathematical formulae. Many people have worked to reclaim
the vision of real genetic programming and more generally automated programming: Tina Yu, Lee Spector,
Alex Agapitos, Simon Lucas and others. Harrington. Zippers — a method of copying/varying individuals.
Autoconstructive evolution — all levels of abstraction (pop, ind, component) are a part of the program itself.
Homoiconicity. In Push, programs can self-modify while they run via exec stack. We would like to be in
that tradition also. We could call it True GP.

More examples:

J. R. Woodward, “Evolving Turing complete representations,” in Proc. CEC, vol. 2. Dec. 2003, pp.
830837. [142]

open-ended, large-scale, modularity, cloud

From GPEM article: Open-ended evolution in GP Issue: Design an evolutionary system capable of
continuously adapting and searching. Difficulty: Medium to Hard. There is difficulty in defining clear
criterion for measuring success, and whether or not open-ended evolution is required by GP practitioners.
Can we achieve open-ended evolution with GP, where, for example, a GP system forms the core part of a
financial trading system required to continuously learn without being switched off?7 Would it be possible that
that same system can adapt over time to a completely different problem? Notions of computational evolution
can again provide a bridge between biology and EC, as exemplified by recent work of Moore and co-workers
[87]. Essential ingredients of open-ended evolution are (i) a dynamically changing fitness landscape, (ii)
availability of co-evolutionary processes, (iii) search with contin- uously injected randomness. The latter
point is important. How can a GP system be open to randomness and at the same time stabilize its best
adapted solutions? Tiered systems whose basic layer consist of random solutions that are being promoted
to higher layers based on their performance seems to be a feasible way to achieve this goal. Systems based
on fitness layers or on age layers have shown considerable success in this context [45, 46].

1.6 Practicalities

1.6.1 Conferences and Journals

Several conferences provide friendly venues for the publication of new GP work. The ACM Genetic and
Evolutionary Computation Conference (GECCO) alternates annually between North America and the rest
of the world and includes high-quality GP tracks. EuroGP is held annually in Europe as the main event
of Evo* and focusses only on GP. The IEEE Congress on Evolutionary Computation is a larger event with
broad coverage of EC in general. Genetic Programming Theory and Practice is held annually in Ann Arbor,
Michigan, USA and provides a focussed forum for GP discussion. Although previously invitation-only, it
has recently begun an open submission process. Parallel Problem Solving from Nature is one of the older,
general EC conferences, held biennially in Europe. It alternates with the Fvolution Artificielle conference.
Finally, Foundations of Genetic Algorithms is a small and theory-focussed conference, though not always
including GP material.
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The journal most specialised to the field is probably Genetic Programming and Evolvable Machines
(published by Springer). The September 2010 10-year anniversary issue included several review articles
which are a useful view of the literature. Fvolutionary Computation (MIT Press) and the IEEE Transactions
on FEvolutionary Computation also publish important GP material. Other on-topic journals with a broader
focus include Applied Soft Computing and Natural Computing.

1.6.2 Software

A great variety of GP software is available. Most researchers will be interested only in open-source software:
in this area, as in others, the quality varies widely. A useful rule of thumb is to avoid packages which have
not had recent updates or releases (since unmaintained code is likely less flexible and less reliable), or which
use colourful and non-standard terminology in their documentation and source code (since it may indicate
that the authors do not have significant experience in the field). We will recommend only a few packages.

One of the Java heavyweights is ECJ [63] http://cs.gmu.edu/~eclab/projects/ecj/. It is a general-
purpose system with support for many representations, problems, and methods, both within GP and in
the wider field of EC. It has a very helpful mailing list. Watchmaker is another good-quality general-
purpose system with excellent out-of-the-box examples https://github.com/dwdyer/watchmaker. GEVA
[84] http://ncra.ucd.ie/Site/GEVA.html is another Java-based package, this time with support only for
GE.

For users of C++ the situation is more difficult. Popular packages including OpenBeagle [25] http:
//beagle.sourceforge.net/ and GPC++ appear to be unmaintained. FEwvolutionary Objects http://
eodev.sourceforge.net/ and uGP http://www.cad.polito.it/research/Evolutionary_Computation/
MicroGP/index.html [110, 124] are better bets.

Matlab users may be interested in GPLab http://gplab.sourceforge.net/, which implements stan-
dard GP, while DEAP http://code.google.com/p/deap/ provides implementations of several algorithms
in Python. PushGP is available in many languages http://hampshire.edu/lspector/push.html.

Many more options are available—see for example the list maintained at http://en.wikipedia.org/
wiki/Genetic_programming#Implementations. T'wo more systems are worth mentioning for their deliber-
ate focus on simplicity and understandability. TinyGP http://cswww.essex.ac.uk/staff/rpoli/TinyGP/
and PonyGE http://code.google.com/p/ponyge/ implement standard GP and GE respectively, each in a
single, readable source file.

Moving on from open source, Michael Schmidt and Hod Lipson’s Fureqa http://creativemachines.
cornell.edu/eureqa is a high-quality and free-to-use tool containing a great deal of GP modelling technol-
ogy.

Finally, the authors are aware of two commercially available GP tools, each fast and industrial-strength.
They have more automation and “it just works” functionality, relative to most free and open-source tools.
Free trials are available. DataModeler (Evolved Analytics LLC) http://www.evolved-analytics.com/
runs as a plugin to Mathematica. Its primary technology is the ParetoGP method [121], which gives the
power of trading off program fitness against complexity, and forming ensembles of programs. It has useful
tools for automatically dealing with ill-conditioned data and extracting information on variable importance.
Discipulus (Register Machine Learning Technologies, Inc.) http://www.rmltech.com/ evolves machine code
based on the ideas of Nordin et al. [80]. It runs on Windows only. The machine code representation allows
very fast fitness evaluation and low memory usage, hence large populations. In addition to typical GP
features, it can: use an ES to optimise numerical constants; automatically construct ensembles; preprocess
data; extract variable importance after runs; automatically simplify results, and save them to high-level
languages.

1.6.3 Resources and Further Reading

An indispensable resource for GP research is Bill Langdon’s GP Bibliography http://www.cs.bham.ac.
uk/~wbl/biblio/. In addition to its huge, regularly updated collection of BibTeX-formatted citations,
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it has lists of researchers’ homepages http://www.cs.ucl.ac.uk/staff/W.Langdon/homepages.html and
co-authorship graphs.

The GP mailing list http://groups.yahoo.com/group/genetic_programming/ is also useful, though
only sporadically active for anything other than announcements. Newcomers should beware that questions
are generally ignored if they give the impression of asking for help as a first resort.

Many of the traditional GP benchmark problems have been criticised for being unrealistic in various
ways. The lack of standardisation of benchmark problems also allows the possibility of cherry-picking of
benchmarks. Effort is underway to bring some standardisation to the choice of GP benchmarks at the GP
Benchmarks wiki http://groups.csail.mit.edu/EV0-DesignOpt/GPBenchmarks/.

Those wishing to read further have many good options. The Field Guide is a wonderful introduction and
resource, walking the reader through simple examples, scanning vast amounts of the existing literature, and
offering practical advice [99]. Luke’s Essentials of Metaheuristics [62] also has an enjoyable, introductory
style, but is broader in scope. Both are free to download. Other broad and introductory books include those
by Fogel [20] and Banzhaf et al. [5]. More specialised books include those by Langdon and Poli [56] (coverage
of theoretical topics), Langdon [57] (narrower coverage of GP with data structures), O’Neill and Ryan [83]
(GE), Iba et al. [42] (GP-style machine learning), and Sipper [119] (games).
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Appendix A

Notes

A.1 Sources

GPEM

Field Guide

This is from Field Guide preface: “As mentioned above, this book started life as a chapter. This was for
a forthcoming handbook on computational intelligence edited by John Fulcher and Lakhmi C. Jain. We are
grateful to John Fulcher for his useful comments and edits on that book chapter. [Tentatively entitled Com-
putational Intelligence: A Compendium and to be pub- lished by Springer in 2008. http://www.springer.
com/engineering/computational+intelligence+and+complexity/book/978-3-540-78292-6]"

Field Guide starts by quoting Turing, Samuel, etc.

Definition: “At the most abstract level GP is a systematic, domain-independent method for getting
computers to solve problems automatically starting from a high-level state- ment of what needs to be done.”
(p- 1).

Selection, crossover, mutation, initialisation, fitness, termination, parameters.

“GP runtime can be estimated by the product of: the number of runs R, the number of generations G,
the size of the population P, the average size of the programs s and the number of fitness cases F.”—p. 27.

We think that a system for automatically creating computer programs should create entities that
possess most or all of the above essential features of computer programs (or reasonable equivalents
thereof). A non-definitional list of attributes for a system for automatically creating computer
programs would include the following 16 items:

Attribute No. 1 (Starts with ”What needs to be done”): It starts from a high-level statement
specifying the requirements of the problem.

Attribute No. 2 (Tells us ”How to do it”): It produces a result in the form of a sequence of steps
that can be executed on a computer.

Attribute No. 3 (Produces a computer program): It produces an entity that can run on a
computer.

Attribute No. 4 (Automatic determination of program size): It has the ability to automatically
determine the exact number of steps that must be performed and thus does not require the user
to prespecify the size of the solution.

Attribute No. 5 (Code reuse): It has the ability to automatically organize useful groups of steps
so that they can be reused.

Attribute No. 6 (Parameterized reuse): It has the ability to reuse groups of steps with different
instantiations of values (formal parameters or dummy variables).
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Attribute No. 7 (Internal storage): It has the ability to use internal storage in the form of
single variables, vectors, matrices, arrays, stacks, queues, lists, relational memory, and other
data structures.

Attribute No. 8 (Iterations, loops, and recursions): It has the ability to implement iterations,
loops, and recursions.

Attribute No. 9 (Self-organization of hierarchies): It has the ability to automatically organize
groups of steps into a hierarchy.

Attribute No. 10 (Automatic determination of program architecture): It has the ability to
automatically determine whether to employ subroutines, iterations, loops, recursions, and internal
storage, and the number of arguments possessed by each subroutine, iteration, loop, recursion.

Attribute No. 11 (Wide range of programming constructs): It has the ability to implement
analogs of the programming constructs that human computer programmers find useful, including
macros, libraries, typing, pointers, conditional operations, logical functions, integer functions,
floating-point functions, complex-valued functions, multiple inputs, multiple outputs, and ma-
chine code instructions.

Attribute No. 12 (Well-defined): It operates in a well-defined way. It unmistakably distinguishes
between what the user must provide and what the system delivers.

Attribute No. 13 (Problem-independent): It is problem-independent in the sense that the user
does not have to modify the system’s executable steps for each new problem.

Attribute No. 14 (Wide applicability): It produces a satisfactory solution to a wide variety of
problems from many different fields.

Attribute No. 15 (Scalability): It scales well to larger versions of the same problem.

Attribute No. 16 (Competitive with human-produced results): It produces results that are com-
petitive with those produced by human programmers, engineers, mathematicians, and designers.

—http://www.genetic-programming.com/attributes.html

In his 1983 talk entitled “Al: Where It Has Been and Where It Is Going”, machine learning pioneer
Arthur Samuel stated the main goal of the fields of machine learning and artificial intelligence: “[T]he aim
[is] ... to get machines to exhibit behavior, which if done by humans, would be assumed to involve the use
of intelligence.”—Koza, http://wuw.genetic-programming.com/jkpdf/burke2003tutorial .pdf

A.2 Frank’s advice

Do you want it to be a survey with lots of references?

Or do you want it to explain the algorithm (kind of like a tutorial), give a bit of history, talk about state
of art and open challenges, success stories.

Something like tutorial, history, state of the art, success stories would be great.

Should we cover GP software (commercial and academic)? What about benchmarks? would be good as
well (perhaps very brief). What about our research (I would think not, it’s more of a textbook, correct?)

perhaps just pointers to what you find currently interesting.

A.3 Length

As a rule of thumb, one (two-column) page in the final layout corresponds to 2.5 one-column pages generated
by the Springer ITEX style. So if you are aiming at 20-30 pages in the handbook, this corresponds to roughly
50-75 one-column KTEX pages. Alternatively, you can estimate that a page in the final layout contains
roughly 5500 characters (including blanks).

James guesses: roughly 24-28 pages with fullpage, excluding TOC and notes.

38


http://www.genetic-programming.com/attributes.html
http://www.genetic-programming.com/jkpdf/burke2003tutorial.pdf

Proposed budget:

1.5 intro

1.5 history

6 taxonomy

3 applications

6 research topics
1 practicalities

8 citations

27 total
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